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Abstract

Spectral analysis and spectral synthesis problems are formulated on
noncommutative locally compact groups and solved on compact groups.

1 Introduction

In this paper C denotes the set of complex numbers. If G is a locally compact
group with identity e, then C(G) denotes the locally convex topological vector
space of all continuous complex valued functions defined on G equipped with the
point-wise operations and with the topology of uniform convergence on compact
sets.

For each y in G the symbol τy denotes the right translation operator by y
which is defined on each f in C(G) by the formula

τyf(x) = f(xy) ,

whenever x is in G. The operator ∆y is defined by

∆y = τy − 1 ,

where 1 is the identity operator τe. It is called the right difference operator by
y. The iterates ∆y1,y2,...,yn

are defined by the obvious way:

∆y1,y2,...,yn
= ∆yn

∆yn−1 . . .∆y1 ,

further we write ∆n
y for ∆y,y,...,y, which is the n-th iterate of ∆y.
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A linear subspace V of C(G) is called right invariant, if τyf belongs to V ,
whenever f is in V . A right invariant closed linear subspace of C(G) is called a
right variety. We can analogously define the concepts of left translation operator,
left invariant subspace, left variety. A right variety, which is also a left variety
is called a two-sided variety, or simply a variety. As each finite dimensional
subspace of C(G) is closed, hence each finite dimensional translation invariant
subspace is a variety.

If f is any function in C(G), then τ(f) denotes the smallest variety containing
f , the variety generated by f .

A nonzero right (left, or two-sided) variety in C(G) is called decomposable, if
it is the sum of two subvarieties, both of them different from it. Otherwise it is
called indecomposable. Clearly, if V is a finite dimensional variety, which is the
sum of two subvarieties, both of them different from it, then both summands
have smaller dimension than that of V .

Spectral analysis and spectral synthesis deal with the description of different
varieties. Recently several new results on spectral analysis and spectral synthesis
have been found on discrete Abelian groups. In this paper we make an attempt
to formulate and study the basic problems of spectral analysis and spectral
synthesis in the noncommutative non-discrete setting. In particular, we prove
that spectral synthesis holds over compact groups.

2 Exponential monomials on Abelian
groups

If G is a locally compact Abelian group, then the building blocks of spectral
analysis and spectral synthesis are the exponential monomials. A continuous
homomorphism of G into the multiplicative group of nonzero complex numbers
is called an exponential, and a continuous homomorphism of G into the additive
group of complex numbers is called an additive function. A complex valued
function on G having the form x 7→ P

(
a1(x), a2(x), . . . , an(x)

)
is called a poly-

nomial, if P : Cn → C is a complex polynomial and a1, a2, . . . , an : G → C are
additive functions. Hence polynomials are the elements of the function algebra
generated by the constants and the additive functions. It is well-known (see e.g.
[16], Section 3.2) that for any nonzero polynomial p there exists a nonnegative
integer n such that

∆n+1
y p(x) = 0

holds for each x, y in G. The smallest n with this property is called the degree of
the polynomial p. Clearly, p is constant if and only if ∆yp(x) = 0 for each x, y
in G, an if p is nonconstant and its degree is n, then ∆yp is of degree at most
n− 1 for each y in G. If p is of degree n ≥ 1, then ∆n

yp is a nonzero constant.

A function which is a product of a polynomial and an exponential is called
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an exponential monomial. Therefore the general form of exponential monomials
is

ϕ(x) = p(x)m(x) , (1)

where m : G → C is an exponential and p : G → C is a polynomial.

Theorem 1. Let G be a locally compact Abelian group and let V be a variety in
C(G). If the exponential monomial (1) belongs to V and y is in G, then ∆yp ·m
belongs to V , too.

Proof. For any y in G we have

∆yp(x)m(x) = m(y−1)ϕ(xy)− ϕ(x) ,

which implies our statement.

Corollary 1. Let G be a locally compact Abelian group and let V be a vari-
ety in C(G). If the nonzero exponential monomial (1) belongs to V , then the
exponential m belongs to V , too.

Proof. The statement follows from the previous theorem by iterating ∆y.

Linear combinations of exponential monomials are called exponential poly-
nomials. Hence the general form of an exponential polynomial is

ϕ(x) =
n∑

i=1

pi(x)mi(x) , (2)

where mi : G → C is an exponential and pi : G → C is a polynomial for i =
1, 2, . . . , n. From Lemma 4.3 on p.41. in [16] it follows that if the exponentials
mi in (2) are different, then this representation is unique. Moreover, it follows
from Lemma 4.2 on p. 40. in [16] that if ϕ in (2) belongs to a variety V and the
exponentials mi in (2) are different and the polynomials pi are different from
zero, then all these exponentials belong to V , too.

Theorem 2. Let G be a locally compact Abelian group and let V be a variety in
C(G). If the exponential polynomial (2) belongs to V , where the pi’s are nonzero
polynomials and the mi’s are different exponentials, then all the exponential
monomials pi ·mi belong to V , too (i = 1, 2, . . . , n).

Proof. In the proof we shall use multi-index notation. We recall that if n is a
positive integer, then an n-dimensional multi-index α is an element of Nn, that
is,

α = (α1, α2, . . . , αn) ,

where the αi’s are nonnegative integers. Ordering of multi-indices is defined
componentwise.

First of all we fix a linearly independent set of additive functions on G and
we always suppose that all polynomials of the form

p(x) = P
(
a1(x), a2(x), . . . , ak(x)

)
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are built up from these additive functions.

It is easy to see that for any linearly independent additive functions
a1, a2, . . . , ak, for any different exponentials m1,m2, . . . ,mn and for any k-
dimensional multi-index α the set of functions

{aα1
1 aα2

2 . . . aαk

k ·mi |α ∈ Nk, i = 1, 2, . . . , n}

is linearly independent.

For any complex polynomial P in k variables let degi P denote the degree
of P in the i-th variable for i = 1, 2, . . . , k and let degP denote the multi-index

degP = (deg1 P,deg2 P, . . . , degk P ) .

We call degP the multi-degree of the polynomial P .

Now let ϕ be an exponential polynomial of the form

ϕ(x) =
n∑

i=1

pi(x)mi(x) =
n∑

i=1

Pi

(
a1(x), a2(x), . . . , ak(x)

)
mi(x) ,

where the Pi’s are nonzero complex polynomials in k variables, the mi’s are
different exponentials and the aj ’s are linearly independent additive functions.
Suppose that ϕ belongs to the variety V and let y be in G arbitrary. Then, by
the Taylor–formula we have

ϕ(x + y) = (3)

=
n∑

i=1

∑
α≤degPi

1
α!

∂αPi

(
a1(x), . . . , ak(x)

)
mi(x)a1(y)α1 . . . ak(y)αkmi(y)

for each x in G. Here α! = α1!α2! . . . αk! and ∂α = ∂α1
1 ∂α2

2 . . . ∂αk

k . As the
functions

y 7→ a1(y)α1 . . . ak(y)αkmi(y)

for different multi-indices α and i = 1, 2, . . . , n are linearly independent, hence
there exist elements yj for j = 1, 2, . . . , N in G such that the matrix(

a1(y)α1 . . . ak(y)αkmi(y)
)
i=1,2,...,n;α≤degPi

is regular. Here N is the number of these functions for i = 1, 2, . . . , n and
α ≤ degPi

. Substituting yj for y in (3) we get a system of linear equations
with the previous matrix for the unknowns ∂αPi

(
a1(x), . . . , ak(x)

)
mi(x) for

any fixed x in G. This means, by Cramer’s rule, that these functions are linear
combinations of translates of ϕ, hence they belong to V . In particular, with
α = (0, 0, . . . , 0) we have that x 7→ Pi

(
a1(x), . . . , ak(x)

)
mi(x) belongs to V and

the theorem is proved.

Now we characterize exponential monomials on Abelian groups.
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Theorem 3. Let G be a locally compact Abelian group and ϕ a function in
C(G). The function ϕ is an exponential monomial if and only if τ(ϕ) is finite
dimensional and indecomposable.

Proof. By the results of [14] (see also [13], [10], [11], [16]) it follows that if τ(ϕ)
is finite dimensional, then ϕ is an exponential polynomial, that is, it has the
form

ϕ(x) = ϕ1(x) + ϕ2(x) + · · ·+ ϕn(x)

for each x in G with some exponential monomials ϕ1, ϕ2, . . . , ϕn of the form

ϕi(x) = pi(x)mi(x) i = 1, 2, . . . , n ,

where the pi’s are nonzero polynomials and the mi’s are different exponentials.
If n ≥ 2 and V1 = τ(ϕ1) and V2 = τ(ϕ2) + · · · + τ(ϕn), then clearly V2 is a
translation invariant subspace, thus — by finite dimensionality — it is closed,
hence it is a variety. Further, ϕ belongs to V1 + V2, therefore

τ(ϕ) = V1 + V2 ,

where both V1 and V2 are different from τ(ϕ), which contradicts to the inde-
composability of τ(ϕ). Hence ϕ is an exponential monomial.

Conversely, let ϕ be an exponential monomial of the form

ϕ(x) = p(x)m(x)

for each x in G, with some nonzero polynomial p and exponential m. In this
case p has the form p(x) = P

(
a1(x), a2(x), . . . , ak(x)

)
for each x in G with some

complex polynomial P and additive functions ai (i = 1, 2, . . . , k). By (3) one
can see that τ(ϕ) is linearly generated by the functions

x 7→ ∂α1
1 ∂α2

2 . . . ∂αk

k P
(
a1(x), a2(x), . . . , ak(x)

)
m(x)

for each multi-indices α ≤ degP , hence it is of finite dimension.

Suppose that τ(ϕ) = V1 + V2, where V1, V2 are subvarieties of τ(ϕ), both
different from it. Clearly ϕ cannot belong to either V1 or V2. This means that
for any exponential monomial q ·m in V1 and V2 the degree of q is less than the
degree of p, hence it is impossible to represent p ·m as a sum of an element of V1

and one element of V2. This contradiction shows that τ(ϕ) is indecomposable
and the theorem is proved.

We can prove another characterization of exponential monomials.

Theorem 4. Let G be a locally compact Abelian group and ϕ a function in
C(G). The function ϕ is an exponential monomial if and only if ϕ belongs to a
finite dimensional indecomposable variety.
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Proof. The necessity is obvious by the previous theorem. Suppose that ϕ be-
longs to the finite dimensional and indecomposable variety V . Then, exactly
like in the previous theorem, ϕ is an exponential polynomial, that is, it has the
form

ϕ(x) = ϕ1(x) + ϕ2(x) + · · ·+ ϕn(x)

for each x in G with some exponential monomials ϕ1, ϕ2, . . . , ϕn, and the proof
can be finished like in the previous theorem.

3 Spectral analysis and spectral synthesis over
Abelian groups

Let G be a locally compact Abelian group and let V be a variety in C(G).
We say that spectral analysis holds in V , if V contains an exponential. We say
that spectral synthesis holds in V , if all exponential monomials in V span a
dense subvariety in V . If V is a nonzero variety, then, by Corollary 1, spectral
synthesis in V implies spectral analysis in V . We say that spectral analysis,
respectively, spectral synthesis holds over G, if spectral analysis, respectively,
spectral synthesis holds in every nonzero variety in C(G). Clearly, the locally
compactness of the group is not necessary to formulate the above concepts, but
in this paper we consider this setting only.

Now we shortly summarize the most relevant results on spectral analysis and
spectral synthesis over discrete Abelian groups.

The first important result on spectral synthesis is due to L. Schwartz, who
proved his celebrated theorem in his 1947 paper [15] (see also [5] and [6]).

Theorem 5. Spectral synthesis holds over the reals with the usual topology.

Actually this is the only general result on spectral synthesis over non-discrete
locally compact groups. On discrete Abelian groups the first general result is
due to M. Lefranc from 1958 in [9].

Theorem 6. Spectral synthesis holds over finitely generated free Abelian groups.

Finitely generated free Abelian groups have the form Zk. In 1965 R. J. Elliot
published the paper [2] including a theorem on spectral synthesis over arbitrary
discrete Abelian groups, but in 1986 Z. Gajda observed that the proof of Elliot’s
theorem was defective.

In his 1975 paper [3] D. I.Gurevič showed that spectral synthesis fails to hold
over R2.

In 1991 the present author published a monograph about the possible appli-
cations of spectral analysis and spectral synthesis over discrete Abelian groups.
In 2001 we proved the following theorem (see [17]).
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Theorem 7. Spectral analysis holds over discrete commutative torsion groups.

The following 2001 result in [18] extends Lefranc’s result.

Theorem 8. Spectral synthesis holds over finitely generated discrete Abelian
groups.

In our 2004 paper [19] we presented a counterexample for the above men-
tioned result of R. J. Elliot and we proved the following theorem.

Theorem 9. Spectral synthesis fails to hold over any discrete Abelian group
with infinite torsion free rank.

In the same paper we formulated the following conjecture: spectral synthesis
holds over a discrete Abelian group if and only if its torsion free rank is finite.

In 2005 we proved the following theorem in [1].

Theorem 10. Spectral synthesis holds over discrete commutative torsion
groups.

Concerning spectral analysis over discrete Abelian groups in 2005 M. Lacz-
kovich and G. Székelyhidi settled the problem (see [7]).

Theorem 11. Spectral analysis holds over a discrete Abelian group if and only
if its torsion free rank is less than the continuum.

In our paper [8] we have verified the above mentioned conjecture by proving
the following theorem.

Theorem 12. Spectral synthesis holds over a discrete Abelian group if and only
if its torsion free rank is finite.

Now we reformulate the concepts of spectral analysis and spectral synthesis
in order to extend their meaning for noncommutative groups. In fact, it turns
out that exponentials and exponential monomials - defined in the same way
as in the commutative case - are not the adequate building blocks for spectral
analysis and spectral synthesis over noncommutative groups.

Theorem 13. Let G be a locally compact Abelian group and V a nonzero variety
in C(G). Then spectral analysis holds in V if and only if there is a nonzero
exponential monomial in V .

Proof. The necessity is obvious, and the sufficiency follows from Theorem 1.

Let G be a locally compact Abelian group and V a nonzero variety in C(G).
We say that there are sufficiently many exponential monomials in V if the linear
hull of all exponential monomials in V is dense in V . The following theorem is
just a reformulation of the definition in order to see clearly the relation to and
the contrast with Theorem 13.
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Theorem 14. Let G be a locally compact Abelian group and V a nonzero variety
in C(G). Then spectral synthesis holds in V if and only if there are sufficiently
many exponential monomials in V .

Theorem 15. Let G be a locally compact Abelian group. Then spectral synthesis
— hence also spectral analysis — holds in every finite dimensional nonzero
variety in C(G).

Proof. This is a consequence of Theorem 2.

The following theorem is an immediate consequence of our previous results.
We note that by the sum of a set of subvarieties we mean the closure of the set
of all finite sums, where the summands are taken from the given subvarieties.

Theorem 16. Let G be a locally compact Abelian group and let V be a variety
in C(G). Spectral analysis holds in V if and only if V has a nonzero finite
dimensional subvariety. Spectral synthesis holds in V if and only if V is the
sum of its finite dimensional subvarieties.

Another corollary is formulated below.

Corollary 2. Let G be a locally compact Abelian group. Spectral analysis holds
over G if and only if each variety in C(G) has a nonzero finite dimensional
subvariety. Spectral synthesis holds over G if and only if each variety in C(G)
is the sum of finite dimensional varieties.

4 Spectral analysis and spectral synthesis over
locally compact groups

After the previous considerations we can define exponential monomials on any
— not necessarily commutative — locally compact groups. We call the func-
tion ϕ in C(G) an exponential monomial, if ϕ belongs to a finite dimensional
indecomposable variety. By Theorem 4 in the commutative case this coincides
with the previous concept of exponential monomials. Using this definition, we
say that spectral analysis holds in a variety, if there is a nonzero exponential
monomial in the variety, and spectral synthesis holds in a variety, if the linear
hull of the set of all exponential monomials in the variety is dense in the variety,
or, in other words, there are sufficiently many exponential monomials in the
variety. The analogue of Theorem 15 follows.

Theorem 17. Let G be a locally compact group. Then spectral synthesis —
hence also spectral analysis — holds for each finite dimensional variety in C(G).

Proof. We have to show that if V is a finite dimensional variety, then it is
the sum of indecomposable subvarieties. Indeed, if V is decomposable, say
V = V1 + V2, and V1, V2 are indecomposable, then we are ready. If any of them
is decomposable, then we apply the same process for it. As the dimensions
decrease at each step, finally we arrive at a decomposition of V into the sum of

8



indecomposable subvarieties. Together with the second statement this proves
or theorem.

Now the analogue of Theorem 16 can be stated.

Theorem 18. Let G be a locally compact group and let V be a variety in C(G).
Spectral analysis holds in V if and only if V has a nonzero finite dimensional
subvariety. Spectral synthesis holds in V if and only if V is the sum of its finite
dimensional subvarieties.

Proof. This is a consequence of the previous theorem.

Corollary 3. Let G be a locally compact group. Spectral analysis holds over G
if and only if each variety in C(G) has a nonzero finite dimensional subvariety.
Spectral synthesis holds over G if and only if each variety in C(G) is the sum of
finite dimensional varieties.

5 Spectral synthesis on compact groups

In this section we prove that spectral synthesis holds on compact groups.
Our method is based on the theory of almost periodic functions.

Following [4], given a group G the function f : G → C is called almost
periodic, if the set {τyf : y ∈ G} is relatively compact in the Banach space
B(G) of all bounded complex valued functions, equipped with the sup-norm. If
G is a locally compact topological group, then the set of all continuous almost
periodic functions A(G) on G forms a translation invariant closed subspace of
C(G) ∩ B(G).

In [12] in paragraph 13. the author deals with modules of almost periodic
functions. Actually, by a module he means a linear subspace of A(G). An in-
variant module is a translation invariant subspace and a closed invariant module
is exactly a variety. A module is called finite if it is finite dimensional and it is
called irreducible, if it has no proper submodule. The fundamental theorem of
almost periodic functions follows (see e.g. [12], Hauptsatz on p.47.).

Theorem 19. Each closed invariant submodule in A(G) is the sum of finite
irreducible invariant submodules.

In our terminology this theorem reads as follows.

Theorem 20. Each variety in A(G) is the sum of finite dimensional varieties,
which have no proper subvarieties.

Now we can easily derive the following result.

Theorem 21. Spectral synthesis — hence also spectral analysis — holds over
compact groups.

Proof. If G is a compact group, then every continuous complex valued function
on G is almost periodic (see [12], Satz 1. on p.154), that is, A(G) = C(G).
Hence, by the previous theorem, the proof is complete.
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