
http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(4): xxx–xxx.
DOI: 10.3934/math.2020xxx
Received: 04 October 2019
Accepted: 09 April 2020
Published: XX April 2020

Research article

Normalization proofs for the un-typed µµ′-calculus

Péter Battyányi1, Karim Nour2,∗

1 Department of Computer Science, Faculty of Informatics, University of Debrecen, Kassai út 26,
4028 Debrecen, Hungary

2 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LAMA, LIMD, 73000
Chambéry, France

* Correspondence: Email: karim.nour@univ-smb.fr.

Abstract: A long-standing open problem of Parigot has been solved by David and Nour, namely, they
gave a syntactical and arithmetical proof of the strong normalization of the untyped µµ′-reduction. In
connection with this, we present in this paper a proof of the weak normalization of the µ and µ′-rules.
The algorithm works by induction on the complexity of the term. Our algorithm does not necessarily
give a unique normal form: sometimes we may get different normal forms depending on our choice.
We also give a simpler proof of the strong normalization of the same reduction. Our proof is based on
a notion of a norm defined on the terms.

Keywords: λµ-calculus; µµ′-calculus; strong normalization; weak normalization; normalization
algorithm
Mathematics Subject Classification: 03B40, 03B70, 03F05, 68Q42

1. Introduction

Natural deduction is not intrinsically symmetric but Parigot has introduced the so called “Free
Deduction” [5], which is completely symmetric. The λµ-calculus derives from there. To get a confluent
calculus he had, in his terminology, to fix the inputs on the left. To keep the symmetry, it is enough to
keep the same terms and to add a new reduction rule (called the µ′-reduction) which is the symmetric
counterpart of the µ-reduction. The µ′-reduction also corresponds to the elimination of a cut. We then
get a symmetric calculus that is, together with the β-rule, called the symmetric λµ-calculus.

The µ′-reduction has been considered by Parigot for the following reasons. The λµ-calculus (with
the β-reduction and the µ-reduction) has some good properties: confluence in the un-typed version,
subject reduction and strong normalization in the typed calculus. But this system has, from a computer

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020xxx
AIMS
高亮

2

science point of view, a drawback: the unicity of the representation of data is lost. It is known that, in
the λ-calculus, any term of type N (the usual type for the integers) is β-equivalent to a Church integer.
This is no more true in the λµ-calculus: we can find normal terms of type N that are not Church integers.
Parigot has remarked in [6] that by adding the µ′-reduction and some simplification rules the unicity of
the representation of data is recovered and subject reduction is preserved, at least for the simply typed
system, even though the confluence is lost. In [4], Nour presents three different methods for finding the
value of a classical integer in the λµ-calculus. It turns out that the introduction of the µ′-rule greatly
simplifies the problem: a λµ-normal term of integer type reduces to its value when we add the µ′-rule to
the calculus. We are concerned with a more relaxed form of the λµ-calculus proposed by de Groote [3].
His aim was twofold by this proposition: on the one hand, the more flexible µ′-reduction considered as
a call-by-value rule allows to retain the property of confluency [3, 8] and enables the definition of an
abstract machine for the λµ-calculus [3], and, on the other hand, Saurin [9] showed that the separation
property could be restored, which has been lost in the Parigot-style λµ-calculus.

We consider here the de Groote-style λµ-calculus with the only rules µ and µ′. It was known that,
for the un-typed calculus, the µ-reduction is strongly normalizing [8] but the strong normalization
of the µµ′-reduction in the un-typed setting was an open problem raised long ago by Parigot [6].
In his thesis, Polonovsky [7] has proved that the µµ̃-calculus has the strong normalization property,
which is the untyped part of a calculus corresponding to the classical Gentzen-style deduction via the
Curry-Howard isomorphism and very similar in nature to the µµ′-calculus. His proof was based on a
modified Tait-Girard reasoning using reducibility candidates. As mentioned before, Py [8] has given
a simple proof of the strong normalization of the µ-rule in itself, while David and Nour has presented
in [2] an arithmetical proof of the termination of the µµ′-reduction. Studying this reduction by itself is
interesting since a µ (or µ′)-reduction can be seen as a way “to put the arguments of the µ where they
are used” and it is useful to know that this is terminating. They also gave an arithmetical proof of the
strong normalization of the βµµ′-reduction in the simply typed calculus.

The proof in [2] consists of two main components: first the strong normalization of the untyped µµ′-
reduction is demonstrated and then a proof of the normalization of the βµµ′-reduction is given along the
same lines. In the proof in question, the normalization of the untyped µµ′-calculus is obtained by a quite
sophisticated argument with sets of alternating µ- and µ′-substitutions. Then this argument is extended
to the β-reduction by reasoning with types: the lengths of the types in the range of the substitution is
also taken into account as one of the members of the multiset underlying the induction. The proof of
the strong normalization of the µµ′-reduction is almost as difficult as that of the βµµ′-reduction: the
case of the β-rule differs from that of the µµ′-reduction only in considerations on the lengths of the
types. In our paper, we present simpler proofs for the µµ′-rule. First of all, we demonstrate that the
reduction is weakly normalizing. We give an algorithm that necessarily leads to a normal form. We
remark that the algorithm does not necessarily lead to a unique normal form: depending on our choice
we may obtain different normal forms of the same term. Then we prove strong normalization: instead
of tracing back to the substitution that could in principle cause the term to not be strongly normalizing,
as was accomplished by David and Nour [2], we establish a norm for the µµ′-terms that is decreasing
and strict inequality holds for certain subterms of the reducts. This leads to a contradiction. Intuitively,
our norm gives an upper estimation on the lengths of the reduction sequences consisting of µ or µ′-
redexes that are created when performing an uppermost µ or µ′-redex. By the introduction of that norm,
we can eliminate the appearance of alternating sets of substitutions defined by mutual induction in [2].

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

3

Our proofs are arithmetical, which means that we use combinatorial reasoning that can be formalized
in first order Peano arithmetic.

The paper is organized as follows: In the next section we give the necessary definitions, in Section
3 we demonstrate that the untyped µµ′-reduction is weakly normalizing. We give an algorithm for
obtaining a normal form of an arbitrary µµ′-term. Then we turn to the proof of the strong normalization.
Our proof considerably simplifies that of David and Nour [2] by finding a norm which estimates from
above the lengths of the µµ′-reduction sequences created by reducing the uppermost µ or µ′-redexes.
We conclude with some future work.

2. The µµ′-calculus

In this section we present the part of the λµµ′-calculus that interests us.

Definition 2.1 (Terms).

1. Let Vλ = {x, y, z, . . . } denote a set of λ-variables and Vµ = {α, β, γ, . . . } denote a set of µ-
variables, respectively. The term formation rules are the following.

T := Vλ | (T)T | [Vµ]T | µVµ.T

2. The complexity of a term is defined inductively as follows:
cxty(x) = 1, cxty((M)N) = cxty(M) + cxty(N) + 1 and cxty(µα.M) = cxty([α]M) = cxty(M) + 1.

3. For every term M, we define by induction on M the set of free µ-variables of M:
Fv(x) = ∅, Fv((M)N) = Fv(M)∪Fv((N), Fv([α]M) = Fv(M)∪{α} and Fv(µα.M) = Fv(M)\{α}.

4. In a term the µ operator binds the variables. We therefore consider the terms modulo equivalence
under renaming of variables bound by µ.

Remark 2.2. To better understand the intuition behind the formation of terms, we will present a typed
version of this calculus, though we are concerned with the untyped calculus throughout the paper.

The types are built from atomic types and the constant ⊥ with the connectors ¬ and →. In the
definition below Γ denotes a (possibly empty) context, that is, a set of declarations of the form x : A
(resp. α : ¬A) for a λ-variable x (resp. a µ-variable α) and type A such that a λ-variable x (resp. a
µ-variable α) occurs at most once in an expression x : A (resp. α : ¬A) of Γ. The typing rules are as
follows.

Γ, x : A ` x : A
ax

Γ ` M : A→ B Γ ` N : A
Γ ` (M)N : B

→e

Γ, α : ¬A ` M : A
Γ, α : ¬A ` [α]M : ⊥

⊥i
Γ, α : ¬A ` M : ⊥

Γ ` µα.M : A
⊥e

We say that the term M is typable with type A, if there is a set of declarations Γ such that Γ ` M : A
holds.

The typed version of µµ′-calculus restricts the set of terms. For example we can not write a term of
the form ([α]M)N.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

4

Definition 2.3 (Substitution).

1. A simultaneous substitution is an expression of the form

σ = [α1 :=s1 N1, . . . , αk :=sk Nk]

where ∀ 1 ≤ i ≤ k, si ∈ {l, r}, αi is a µ-variable and Ni is a term.
2. If σ = [α1 :=s1 N1, . . . , αk :=sk Nk], α a µ-variable, N a term and s ∈ {l, r}, we denote by
σ + α :=s N the simultaneous substitution
[α1 :=s1 N1, . . . , αk :=sk Nk, α :=s N].

3. Let σ = [α1 :=s1 N1, . . . , αk :=sk Nk] and M a term. We define by induction the term Mσ. We can
assume that the variables of the terms Ni are not linked by µ in the term M.

• If M = x, then Mσ = x.
• If M = (M1)M2, then Mσ = (M1σ)M2σ.
• If M = µα.M′, then Mσ = µα.M′σ.
• If M = [α]M′ and α < {α1, . . . , αk}, then Mσ = [α]M′σ.
• If M = [αi]M′ for 1 ≤ i ≤ k and si = r, then Mσ = [αi](M′σ)Ni.
• If M = [αi]M′ for 1 ≤ i ≤ k and si = l, then Mσ = [αi](Ni)M′σ.

Definition 2.4 (Redex).

1. A µ-redex is a term of the form (µα.M)N and we call µα.M[α :=r N] its contractum. Intuitively,
M[α :=r N] is obtained from M by replacing every subterm in M of the form [α]U by [α](U)N.

2. A µ′-redex is a term of the form (N)µα.M and we call µα.M[α :=l N] its contractum. Intuitively,
M[α :=l N] is obtained from M by replacing every subterm in M of the form [α]U by [α](N)U.

3. If a term contains no µ-redex (resp. µ′-redex), then it is said to be µ-normal (resp. µ′-normal). A
term is said to be in normal form (or simply normal) if it is µ and µ′-normal. We denote by NF
(resp. NFµ or NFµ′) the set of normal terms (resp. of µ-normal terms or µ′-normal terms).

Remark 2.5.

1. The intuitive meaning of the reduction of (µα.M)N to µα.M[α :=r N] is that the argument N of
the function µα.M is passed as an argument to all the functions in M named by the symbol [α].

2. The intuitive meaning of the reduction of (N)µα.M to µα.M[α :=l N] is that the function N having
µα.M as argument becomes the functional part of the application by every subterm of M named
by the symbol [α].

Definition 2.6 (Reduction).

1. Let M and M′ be two terms.

• We write M →µ M′, if M′ is obtained from M by replacing a µ-redex of M by its contractum.
• We write M →µ′ M′, if M′ is obtained from M by replacing a µ′-redex of M by its contractum.

2. Let → stand for one of the relations →µ,→µ′ . We denote by � (resp. �µ or �µ′) the reflexive
and transitive closure of → (resp. →µ or →µ′). For example, M � M′ if M → M1 → M2 →

· · · → Mk = M′. Finally, We denote by�+ the transitive closure of→, i.e. M �+ M′ if there is
k > 0 such that M → M1 → M2 → · · · → Mk = M′.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

5

Remark 2.7.

1. We can show that the reduction �µ (resp. �µ′) is confluent. On the other hand, the reduction
� is not. Indeed, if x, y are two different λ-variables and M = (µα.x)µβ.y, then M →µ µα.x and
M →µ′ µβ.y.

2. We will also be able to verify that the reduction� preserves types, i.e. if Γ ` M : A and M � N,
then Γ ` N : A.

3. Note that reducing a redex in a term can:

• modify the other redexes (perform substitutions in some of them and duplicate others),
• create new redexes.

We will immediately give some examples of the creation of redexes.

((µα.M)N)O →µ (µα.M[α :=r N])O,
(O)(µα.M)N →µ (O)µα.M[α :=r N],
(O)(N)µα.M →µ′ (O)µα.M[α :=l N],
((N)µα.M)O →µ′ (µα.M[α :=l N])O.

Definition 2.8 (Normalization).

1. A λ-term M is said to be weakly normalizable (resp. µ-weakly normalizable or µ′-weakly nor-
malizable) if there exists M′ ∈ NF (resp. M′ ∈ NFµ or M′ ∈ NFµ′) such that M � M′ (resp
M �µ M′ or M �µ′ M′). We denote by WN (resp WNµ or WNµ′) the set of weakly normalizable
(resp. µ-weakly normalizable or µ′-weakly normalizable) terms.

2. A term M is said to be strongly normalizable, if there exists no infinite reduction paths starting
from M. That is, any possible sequence of reductions eventually leads to a normal term. We
denote by S N the set of strongly normalizable terms.

In the sequel, we study the µµ′-calculus with respect to the properties “weak normalization” and
“strong normalization”.

3. Every term is in WN

Although we know that the µµ′-calculus has the strong normalization property, we will present a
very simple demonstration of the weak normalization of this calculus. The goal is to present a simple
algorithm for finding one of the normal forms of a given term.

The following result means that a simultaneous substitution in a µ or µ′-normal term cannot create
a µ abstraction.

Lemma 3.1. Let M be a term and σ a simultaneous substitution.

1. If M ∈ NFµ and Mσ�µ µα.M′ for some term M′, then M = µα.M′′ for some term M′′.
2. If M ∈ NFµ′ and Mσ�µ′ µα.M′ for some term M′, then M = µα.M′′ for some term M′′.

Proof. We only prove the first item by induction on cxty(M).

• It is clear that M , x and M , [α]M1.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

6

• If M = (M1)M2, then Mσ = (M1σ)M2σ and, since M ∈ NFµ we have M1 , µα.M′
1, therefore, by

IH, M1σ 6�µ µα.M′′
1 , hence, Mσ 6�µ µα.M′. A contradiction.

We deduce that M = µα.M′′ for some term M′′. �

The following result is fundamental. In particular, it allows µ-normalizing a substitution when the
terms in the image are normal and also characterizes the µ′-redexes of the µ-normal form obtained. We
will see later that the iteration of the algorithm resulting from this lemma constitutes a normalization
algorithm.

Lemma 3.2. Let M,N ∈ NF, σ = [α1 :=r N, . . . , αk :=r N] and
σ′ = [β1 :=l N, . . . , βk :=l N].

1. Then ∃M′ ∈ NFµ such that Mσ �µ M′ and the µ′-redexes of M′ are of the form [β](V)N if
N = µγ.U for some term U. In particular Mσ ∈ WNµ and Mσ ∈ WN if N , µγ.U.

2. Then ∃M′ ∈ NFµ′ such that Mσ′ �µ′ M′ and the µ-redexes of M′ are of the form [β](N)U if
N = µγ.V for some term V. In particular Mσ ∈ WNµ′ and Mσ′ ∈ WN if N , µγ.V.

Proof. We only prove the first item by induction on cxty(M).

• The result is obvious if M = x.
• If M = µα.M′ or M = [β]M′ where β , αi and 1 ≤ i ≤ k, it is enough to apply the IH on M′.
• If M = [αi]M′ where 1 ≤ i ≤ k, then Mσ = [αi](M′σ)N. By IH, ∃M′′ ∈ NFµ such that

M′σ�µ M′′. We distinguish two cases.

– If M′′ , µα.W, then Mσ�µ (M′′)N ∈ NFµ.
– If M′′ = µα.W, then, by Lemma 3.1, M′ = µα.W ′ and

Mσ = [αi](µα.W ′σ)N →µ [αi]µα.W ′[σ+α :=r N]. By IH, we have W ′[σ+α :=r N] ∈ WNµ,
then Mσ ∈ WNµ.

The requirement for the µ′-redex can be checked in both of the above cases.
• If M = (M1)M2, then Mσ = (M1σ)M2σ and, by IH, ∃M′

1,M
′
2 ∈ NFµ such that M1σ �µ M′

1,
M2σ�µ M′

2, thus M �µ (M′
1)M′

2. Since M ∈ NF, by Lemma 3.1, M′
1 and M′

2 do not begin with
µ, hence M ∈ WNµ. We can easily check the property for the µ′-redexes.

�

The goal of Lemma 3.4 is to finish the normalization of a term after the application of Lemma 3.2.

Definition 3.3 (µ- and µ′-good).

1. A term M is said to be µ-good if M ∈ NFµ and its µ′-redexes are of the form [β](V)µγ.U.
2. A term M is said to be µ′-good if M ∈ NFµ′ and its µ-redexes are of the form [β](µγ.V)U.

Lemma 3.4.

1. If M is µ-good, then ∃M′ ∈ NF such that M �µ′ M′ and M′ = µγ.V for some term V iff
M = µγ.U for some term U; in particular M ∈ WN.

2. If M is µ′-good, , then ∃M′ ∈ NF such that M �µ M′ and M′ = µγ.V for some term V iff
M = µγ.U for some term U; in particular M ∈ WN.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

7

Proof. We only prove the first point by induction on cxty(M).

• The result is obvious if M = x.
• If M = µα.N or M = [α]N where N is not a µ′-redex, then N is µ-good and it is enough to apply

the IH on N.
• If M = [α](V)µγ.U, then U and V are µ-goods and, by IH, ∃U′,V ′ ∈ NF such that U �µ′ U′,

V �µ′ V ′ and V ′ , µδ.W (since M ∈ NFµ), thus M �µ′ [α]µγ.U′[γ :=l V ′], therefore, by point 2
of Lemma 3.2, U′[γ :=l V ′] ∈ WN and M ∈ WN.
• If M = (M1)M2, then M1 and M2 are µ-goods and, by IH, ∃M′

1,M
′
2 ∈ NF such that M1 �µ′ M′

1,
M2 �µ′ M′

2, M′
1 , µδ.W1 (since M ∈ NFµ) and M′

2 , µδ.W2 (since M is good), thus M �µ′

(M′
1)M′

2 ∈ WN and M ∈ WN.

�

We can now prove our weak normalization result.

Theorem 3.5. The µµ′-calculus weakly normalizes, i.e. for every term M, we have M ∈ WN.

Proof. Let M be a term. We prove by induction on cxty(M) that M ∈ WN.

• The result is obvious if M = x.
• If M = µα.M′ or M = [α]M′, it is enough to apply the IH on M′.
• If M = (M1)M2, then, by IH, ∃M′

1,M
′
2 ∈ NF such that M1 � M′

1 and M2 � M′
2. We distinguish

four cases.

– If M′
1 , µα.M

′′
1 and M′

2 , µβ.M
′′
2 , then M � (M′

1)M′
2 ∈ NF.

– If M′
1 = µα.M′′

1 and M′
2 , µβ.M

′′
2 , then

M � (µα.M′′
1)M′

2 →µ µα.M′′
1 [α :=r M′

2]. By Lemma 3.2,
M′′

1 [α :=r M′
2] ∈ WN, then M ∈ WN.

– If M′
1 , µα.M

′′
1 and M′

2 = µβ.M′′
2 , then

M � (M′
1)µβ.M′′

2 →µ′ µβ.M′′
2 [β :=l M′

1]. By Lemma 3.2,
M′′

2 [β :=l M′
1] ∈ WN, then M ∈ WN.

– If M′
1 = µα.M′′

1 and M′
2 = µβ.M′′

2 , then we can conclude in two different ways.
∗ We have M � (µα.M′′

1)µβ.M′′
2 →µ µα.M′′

1 [α :=r µβ.M′′
2]. By Lemma 3.2, ∃T ∈ NFµ

such that M′′
1 [α :=r µβ.M′′

2]�µ T and the µ′-redexes of T are of the form [γ](V)µβ.M′′
2 ,

then, T is µ-good and, by Lemma 3.4, T ∈ WN, thus M ∈ WN.
∗ We have M � (µα.M′′

1)µβ.M′′
2 →µ′ µβ.M′′

2 [β :=l µα.M′′
1]. By Lemma 3.2, ∃T ∈ NFµ′

such that M′′
2 [β :=l µα.M′′

1]�µ′ T and the µ-redexes of T are of the form [γ](µα.M′′
1)U,

then, T is µ′-good and, by Lemma 3.4, T ∈ WN, thus M ∈ WN.

�

Remark 3.6. We summarize what we did to present a normalization algorithm.

1. Lemma 3.2 gives an algorithm to µ-normalize (resp. µ′-normalize) terms of the form Mσ where
M ∈ NF, σ = [α1 :=r N, . . . , αk :=r N] (resp. σ = [α1 :=l N, . . . , αk :=l N]) and N ∈ NF.

2. Lemma 3.4 gives an algorithm (using the first one) to normalize µ-normal (resp. µ′-normal) terms
having only µ′-redexes (resp. µ-redexes) of the form [β](V)µγ.U (resp. [β](µγ.V)U).

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

8

3. Theorem 3.5 gives an algorithm to normalize a term M (by induction on cxty(M)). In the case
where M is an application, the first two algorithms are successively used. Case 3 in the proof of
Theorem 3.5 leaves us with a nondeterministic choice concerning the process of finding a normal
form of M. This means that instead of one uniquely determined normal form we end up with one
of the possible normal forms of M.

4. Every term is in S N

In this section, we improve the result of the previous section by showing that every term is strongly
normalizable.

First, we begin by stating classical and simple properties that will be used in our proofs. We will
not detail the proofs of the first two lemmas. The reader is referred to [6] and [8] for the proofs of these
results.

Lemma 4.1. Let M,N be terms, s ∈ {r, l} and σ a simultaneous substitution. Then M[α :=s N]σ =

Mσ[α :=s Nσ].

Proof. By induction on cxty(M). �

Lemma 4.2. Let M,N,M′,N′ be terms such that M � M′ and N � N′, and s ∈ {r, l}. Then M[α :=s

N]� M[α :=s N′], M[α :=s N]� M′[α :=s N] and M[α :=s N]� M′[α :=s N′].

Proof. We prove the first two properties for one step reductions by induction on cxty(M). The third
one comes directly from the first two properties. �

Lemmas 4.3, 4.4, 4.6 and 4.9 below can also be found in [2]. They help us explain why a term might
not be in SN. In order to make our presentation self-contained, we recall the proofs of the lemmas from
[2], perhaps, in a bit more detailed way. Lemma 4.3 says that an application reduces to a µ-abstraction
only if either its left or right member reduces to a µ-abstraction.

Lemma 4.3. Let (M)N � µα.P. Then either M � µα.M1 and M1[α :=r N] � P or N � µα.N1 and
N1[α :=l M]� P.

Proof. By induction on the length of the reduction (M)N � µα.P.
If (M)N → O� µα.P, we distinguish several cases.

• If O = (M′)N where M → M′ or O = (M)N′ where N → N′, then we simply apply IH on O,
then, by Lemma 4.2, we obtain the result.
• If M = µα.M1 and O = µα.M1[α :=r N], then M1[α :=r N]� P.
• If N = µα.N1 and O = µα.N1[α :=l M], then N1[α :=r M]� P.

�

The next lemma generalizes Lemma 3.1.

Lemma 4.4. Let M be a term and σ a simultaneous substitution. If Mσ � µα.P for some P, then
there exists a Q such that M � µα.Q and Qσ� P.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

9

Proof. By induction on cxty(M). The only possibilities are M = µα.M1 and M = (M1)M2. The former
case is trivial. In the latter, we have (M1σ)M2σ � µα.P. By Lemma 4.3, either M1σ � µα.N1,
N1[α :=r M2σ] � P or M2σ � µα.N2, N2[α :=l M1σ] � P. Suppose the former holds. By IH, there
is an R such that M1 � µα.R and Rσ � N1. Then, by Lemmas 4.1 and 4.2, M � µα.R[α :=r M2]
and R[α :=r M2]σ = Rσ[α :=r M2σ] � N1[α :=r M2]σ � P. Our assertion holds with Q = R[α :=r

M2]. �

Definition 4.5 (Function η). If a term M is strongly normalizable, then, since the reduction tree of M
is locally finite by König Lemma, we can denote the length of the longest reduction sequence of M by
η(M).

The previous definition helps us to demonstrate properties of strongly normalizable terms. Indeed
if M → M′, then η(M) > η(M′).

Lemma 4.6. Let M, N be terms such that M, N ∈ S N and (M)N < S N. Then either M � µα.M′ such
that µα.M′[α =r N] < S N or N � µβ.N′ such that µβ.N′[β =l M] < S N.

Proof. By induction on η(M) + η(N). If M → M′ and (M′)N < S N, then η(M′) < η(M) and the IH
applies. The situation is similar when N → N′ and (M)N′ < S N. If M = µα.M1 and µα.M1[α :=r N] <
S N, or N = µβ.N1 and µβ.N1[β :=l M] < S N, then the result is obvious. �

Definition 4.7 (Relation @ and ≺).

1. We use the notation N v M if N is a subterm of M, and the notation N @ M if N is a subterm of
M other than M.

2. Let M, N be terms. The notation N ≺ M will signify the fact that there is an M′ such that
M � M′ w N holds and either M �+ M′ or N @ M is valid. The symbol � will be the reflexive
closure of ≺. The relations ≺ and � are transitive. Moreover, N � M iff there is an M′ such that
M � M′ and N v M′.

Remark 4.8. The above definition should be made precise by talking about subterm occurrences ad-
dressed by a finite list of index symbols. To facilitate understanding, we ignore the exact treatment
of subterm occurrences together with the problem of variable collisions induced by the substitutions.
Obviously, a nameless representation of terms would eliminate all these difficulties.

Lemma 4.9. Let M,N ∈ S N such that M[α :=r N] < S N (resp. M[α :=l N] < S N) for some
α. Then there is an [α]M1 � M for which M1[α :=r N] ∈ S N (resp. M1[α :=l N] ∈ S N) and
(M1[α :=r N])N < S N (resp. (M1[α :=l N])N) < S N).

Proof. The proof proceeds by induction on 〈cxty(M), η(M)〉. Let us only treat the case of M[α :=r

N] < S N.

• If M = µβ.M1, the result is trivial.
• If M = [β]M1, then we have two cases to distinguish.

– If β = α, then if M1[α :=r N] < S N, the IH applies. Otherwise our assertion follows with the
M1 under discussion.

– If β , α, then the IH gives the result.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

10

• If M = (M1)M2, then, by Lemma 4.6, either M1[α :=r N] � µβ.M′
1 and µβ.M′

1[β :=r M2[α :=r

N]] < S N or M2[α :=r N]� µγ.M′
2 and µγ.M′

2[γ :=l M1[α :=r N]] < S N. Suppose the former
case holds, the latter being similar. Then, by Lemma 4.4, there is an M3 such that M1 � µβ.M3

and M3[α :=r N] � M′
1. By this we have, by Lemmas 4.1 and 4.2, µβ.M3[β :=r M2][α :=r

N] = µβ.M3[α :=r N][β :=r M2[α :=r N]] � µβ.M′
1[β :=r M2[α :=r N]] < S N. But then, since

η(µβ.M3[β :=r M2]) < η(M), we can apply the IH.

�

Our new proof of the strong normalization of the µµ′-calculus is based on the introduction of a norm
for the terms which does not increase through a reduction.

Definition 4.10 (Norm for terms). Let M be a term. Let us define a norm for M, denoted by |M|, by
induction on cxty(M) :

|M| =



0 if M = x,
|M1| + |M2| if M = (M1)M2,

max{|M2| | [α]M2 v M1} + 1 if M = µα.M1 and α ∈ Fv(M1),
0 if M = µα.M1 and α < Fv(M1),
0 if M = [α]M1.

For every M the norm of M is a natural number. Intuitively, by this norm we can find an upper
bound for the lengths of the reduction sequences consisting of the redexes created from top to bottom
when performing an uppermost µ- or µ′-redex.

The main idea of our proof is to demonstrate that the norm is non-increasing with respect to µ and
µ′-redexes, and, furthermore, we show that it strictly decreases on certain subterms of the contractum.
Namely, assuming the uppermost redex is (µα.M)N, then the subterms U[α :=r N], where [α]U v M,
have smaller norms than (µα.M)N. Similarly for (N)µα.M. This will lead to a contradiction, since if
we assume that we have an application (M)N of minimal norm which is not in S N and we may assume
that M = µα.M′. Then, by Lemma 4.9, we can find a subterm of the contractum of (M)N which is not
in S N and is such that its norm is strictly less than that of (M)N.

The following lemma is very simple but worth noting.

Lemma 4.11. Let [α]M1 v M[β :=s N] and s ∈ {r, l}.

1. If α , β, then M1 = M2[β :=s N] where [α]M2 v M.
2. If α = β, then M1 = (M2[β :=s N])N if s = r and M1 = (N)M2[β :=s N] if s = l where [α]M2 v M.

Proof. By induction on cxty(M). �

We now show how the norm we defined behaves with the reductions.

Lemma 4.12. Let M,N be terms and s ∈ {r, l}. Then |M[α :=s N]| = |M|.

Proof. We accomplish the proof for s = r. The proof goes by induction on cxty(M).
The only interesting case is M = µβ.M1.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

11

• If β ∈ Fv(M1), then, by Lemma 4.11 and applying the IH,

|µβ.M1[α :=r N]| = max{|M′
1| / [β]M′

1 v M1[α :=r N]} + 1
= max{|M2[α :=r N]| / [β]M2 v M1} + 1 = |µβ.M1|.

• In case of β < Fv(M1), the equation |µβ.M1[α :=r N]| = |µβ.M1| = 0 is valid.

�

The next lemma implies that, if we have a redex (µα.M)N, then, for every [α]M1 v M, the norm
of ([α]M1)[α :=r N] will be strictly less than that of (µα.M)N. The situation is similar for the topmost
µ′-redex.

Lemma 4.13. Let M,M′,N be terms and s ∈ {r, l}. If [α]M′ v M, then |µα.M| > |M′[α :=s N]|.

Proof. By Lemma 4.12, we have |µα.M| = max{|P| / [α]P v M} + 1 > |M′| = |M′[α :=s N]|. �

The following lemma states that the norm of the contractum is not greater than that of the redex.

Lemma 4.14. Let M,N be terms. Then |(µα.M)N| ≥ |µα.M[α :=r N]| and |(M)µα.N | ≥ |µα.N[α :=l

M]|.

Proof. We deal with the case of the µ-reduction only.

• Let us suppose first α ∈ Fv(M). By Lemmas 4.11 and 4.12,

|µα.M[α :=r N]| = max{|M1| / [α]M1 v M[α :=r N]} + 1
= max{|(M2[α :=r N])N| / [α]M2 v M} + 1
= max{|M2| / [α]M2 v M} + |N | + 1
= |µα.M| + |N | = |(µα.M)N |.

• If α < Fv(M), then |(µα.M)N | = |µα.M| + |N| = |N| ≥ |µαM[α :=r N]| = 0.

�

As a consequence, we can assert that the norm is not increasing regarding the reduction sequences.

Lemma 4.15. Let M � N. Then |M| ≥ |N |.

Proof. It is enough to show that M → N implies |M| ≥ |N|. The proof goes by induction on cxty(M).
The only interesting case is M = (M1)M2.

• If M1 → M′
1 or M2 → M′

2, it’s obvious.
• If M1 = µα.M3, N = µα.M3[α :=r M2], or M2 = µβ.M3, N = µβ.M3[α :=l M1], applying Lemma

4.14, we obtain the result.

�

We can now prove the strong normalization result.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

12

Theorem 4.16. The µµ′-calculus has the strong normalization property, i.e. for every term M, we have
M ∈ S N.

Proof. It is enough to prove that, for arbitrary M,N ∈ S N, (M)N ∈ S N as well. Let M,N ∈ S N
such that (M)N < S N, with the property that 〈|(M)N|, η(M) + η(N)〉 is minimal. Then, by Lemma 4.9,
either M � µα.M′ and µα.M′[α =r N] < S N or N � µβ.N′ and µβ.N′[β =l M] < S N. Suppose
the former is valid. On account of Lemma 4.15, M �+ µαM′ contradicts the minimality of (M)N, so
we may assume M = µαM′. In accordance with Lemma 4.9, there exists an [α]M1 � M′ such that
M1[α :=r N] ∈ S N and (M1[α :=r N])N < S N. By Lemma 4.13, this contradicts the minimality of
(M)N again. �

5. Conclusions

We have presented in this paper a rather simple algorithm for normalizing a term. We have also
found a very simple proof of the strong normalization of the µµ′-calculus. We know that if we add
to our calculus the simplification rules ρ and θ, we lose the strong normalization property [1]. It is
therefore interesting to show that this calculus is weakly normalizing and to look for algorithms that
terminate on every term. As future work, it also seems to be promising to study the weak and the strong
normalization properties of the λµµ′-calculus (with the reduction β) in a typed frame.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

1. P. Battyányi, Normalization properties of symmetric logical calculi [dissertation], University of
Chambéry, 2007, 118.

2. R. David, K. Nour, Arithmetical proofs of strong normalization results for symmetric lambda cal-
culi, Fundamenta Informaticae, 77 (2007), 489–510.

3. P. de Groote, An environment machine for the λµ-calculus, Math. Struct. Comput. Sci., 8, (1998)
637–669.

4. K. Nour, La valeur d’un entier classique en λµ-calcul, Archive Math. Logic, 36, (1997) 461–473.

5. M. Parigot, Free Deduction: An Analysis of ”Computations” in Classical Logic, In: A. Voronkov,
editors. Logic Programming Lecture Notes in Artificial Intelligence 592, Berlin, Heidelberg:
Springer-Verlag, 1992, 361–380.

6. M. Parigot, λµ-calculus: An algorithmic interpretation of classical natural deduction, In: A.
Voronkov, editors. Logic Programming and Automated Reasoning, LPAR 1992, Lecture Notes
in Artificial Intelligence 624, Berlin, Heidelberg: Springer-Verlag, 1992, 190–201.

7. E. Polonovsky, Substitutions explicites, logique et normalisation [dissertation], Paris 7, 2004, 257.

8. W. Py, Confluence en λµ-calcul [dissertation], University of Chambéry, 1998, 117.

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

13

9. A. Saurin, Böhm theorem and Böhm trees for the Λµ-calculus, Theor. Comput. Sci., 435 (2012),
106–138.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 4, xxx–xxx.

http://creativecommons.org/licenses/by/4.0

	Introduction
	The '-calculus
	Every term is in WN
	Every term is in SN
	Conclusions

