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Ágoston Tóth 

The Distributional Compatibility Relation* 

 

Abstract 

The present paper discusses the nature of the lexical relation exploited in automatized, corpus-based, statistical 

explorations of word meaning. This relation captures and quantifies the distributional similarity of lexical items. 

For reasons presented in this paper, I call it the Distributional Compatibility Relation (DCR). I argue that DCR is 

a fuzzy relation and I compare it to selected lexical relations known from the linguistic literature to see if – and to 

what extent – their basic properties are similar.  

Keywords: distributional semantics, lexical semantics 

1 Introduction 

An important field of computational linguistics is the measurement of the similarity of words. 

Emerging vector-space model solutions implement this task by collecting word co-occurrence 

frequency information from large text corpora. Preselected words of a corpus (the target 

words) are characterized by the frequency of certain co-occurrence phenomena, usually the 

appearance of one or more of the many context words in the close vicinity (a “window”) of 

the target word, but other linguistic phenomena, including part of speech information and 

syntactic features, can also be considered for pattern analysis. Co-occurrence statistical 

information extracted in this way can be treated as empirical evidence of a word’s potential 

for replacing another word, which is an approach to measuring similarity (cf. Miller & 

Charles 1991). According to the distributional hypothesis, this similarity is a semantic 

phenomenon. More details about distributional semantics and the distributional hypothesis 

(including their precursors in the linguistic literature) can be found in Lenci (2008).  

In computational linguistics, distributional semantics is seen as an alternative to measuring 

semantic similarity by seeking shared hyperonyms (e.g. car and van share the same 

hyperonym: vehicle; their similarity can be quantified, too, cf. Resnik 1995). That type of 

analysis requires the use of ontologies (is-a hierarchies) and also the identification of the right 

concept in the ontology before the similarity measurement can be carried out. Distributional 

similarity measurement, however, works with words (rather than concepts) and corpora 
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(rather than precompiled databases), which makes it an important, readily available 

alternative. 

The next section of this paper provides details about the vector space model used in 

measuring distributional similarity. As an illustration, I include a case study that returns data 

on a common Hungarian adjective. Section 3 investigates the nature of the Distributional 

Similarity Relation, the relation exploited in my case study and in all vector-space 

investigations of word similarity. Section 4 highlights a few areas where distributional 

similarity is used and adds my concluding remarks.  

2 The vector space model 

Systems designed to collect distributional information about words1 usually rely on a 

geometrical interpretation of the empirical data. Each target word is represented by a context 

vector. Each position of the vector is responsible for counting the number of co-occurrences 

of the given target word with one of the context words. For example, if the word drink is a 

target word, and the word tea is among the context words, and tea occurs 23 times in the close 

vicinity (in the context window) of drink, then the vector element corresponding to the word 

tea (in the context vector describing the word drink) will be set to 23. In most cases, we work 

with a few target words (typically 10-100) and a much larger number of context words (e.g. 

10,000 words or more). The result is a multi-dimensional vector space in which each context 

word has its own dimension. 

Vectors can be collected into a matrix in which each row is a context vector for a single 

target word. These matrices are useful for illustrative purposes, too (figure 1). 

 

Figure 1: A context matrix 

 

Large corpora (20-50-100 million words or even more) are necessary for this type of 

investigation. “Raw”, unprocessed corpora may be suitable for the task. In the presence of 

linguistic annotation, we can take additional details into consideration (part of speech labels, 

syntactic category labels, etc.) – in this case, we can make the feature vectors more directly 

useful in finding linguistic patterns. 

As a next phase, the values in the context matrix can be weighted so that unusual or 

“surprising” events become more salient in our large collection of co-occurrence events. An 

                                                 
1  It is possible to use word forms or lemmas as target and context words. This choice is usually treated as one 

of the many parameters of vector space experiments. In Bullinaria and Levy’s (2012) paper on parameter 

setting, lemmatization and stemming did not consistently improve precision. In what follows, I will default to 

the word form interpretation when referring to “words” in this paper.  
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effective way of normalizing the vectors is replacing positive pointwise mutual information 

(pPMI) scores for the raw frequency values (Turney 2001). 

At this point, an optional dimension-reduction step may be carried out (see, for instance, 

Landauer & Dumais 1997). 

We can now compare the distribution of the target words by comparing their context 

vectors. There are two basic methods for comparing context vectors: we can measure vector 

distances (figure 2) or the cosine of the angle between vectors (figure 3). The latter promises 

the advantage of being able to avoid problems arising from vector length differences, which is 

useful, since length depends on the frequency of context words and, because of this, it also 

depends on the frequency of the target word itself, which is a problem if we try to detect a 

relation between a frequent and a rare word. More information about the geometrical 

background of distributional semantics can be found in Widdows (2004). 

 

 

Figure 2: Vector similarity: distance 

 

Figure 3: Vector similarity: cosine 

 

Testing the results is the usual last phase of vector space experiments. The steps are the 

following: 1) a semantic task is solved, 2) the performance of the system is measured (through 

computing precision and recall) and compared to a known baseline and to the performance of 

similar systems, and 3) the parameters of the system are fine-tuned so that the performance 

indicators are maximized.2 In vector-space investigations, the evaluation task can be a 

similarity-related multiple choice test: for an input word, the system selects the most “similar” 

word from a list of candidates, then the automatically selected answer is compared to a key. A 

variation of this evaluation method is the TOEFL test, in which the system answers TOEFL 

exam questions. 

As an illustration of what kind of “raw” results are returned in a vector-space investigation, 

I have set up an experiment for a brief qualitative case study.  

My experiment has been based on the analysis of a 80-million-word subcorpus of the 

Hungarian Webcorpus (Kornai et al. 2006). A high number of target words have been 

examined: 15,000 words (the most frequent words of the corpus) have been characterized by 

co-occurrence data with 15,000 context words (again, the 15,000 most frequent words of the 

corpus). The resulting context matrix has had 15,000 x 15,000 (225 million) elements. I have 

used pPMI weighting on the values before comparing the context vectors. Comparison was 

carried out using cosine vector comparison.  

I have chosen the adjective kis (English equivalents include ‘small’, ‘little’ and ‘short’) for 

this case study.3 Table 1 shows the distributionally most similar words (out of the 15,000 

                                                 
2  Computational linguistic research tends to have a very strong quantitative character. 
3  This adjective is very frequent and quite general, but it is not completely unaffected by selectional 

restrictions and it is not free from lexical ambiguity, either. Further investigations are required to see if and to 

what extent these properties influence the results. Note that nouns and verbs may behave differently, too. 
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words examined and ranked) and their measured distributional similarity grades. Figure 4 

visualizes the scores in a chart.  

 

Rank Similar word Typical English equivalents Similarity score 

1 nagy big, large 0.413 

2 kisebb smaller 0.376 

3 nagyobb bigger, larger 0.347 

4 hatalmas huge, enormous, vast 0.32 

5 apró tiny, minuscule 0.3 

6 sok many, much 0.296 

7 egy a, an, one 0.291 

8 a the 0.282 

9 kicsi tiny, small, little 0.265 

10 olyan such, so 0.264 

11 legnagyobb biggest, largest 0.258 

12 szép nice, pretty, beautiful  0.257 

13 ilyen such a(n), so 0.253 

14 másik other 0.25 

15 kevés little 0.242 

16 két two 0.241 

17 egész all, whole, complete 0.237 

18 óriási gigantic, giant, enormous 0.237 

19 legtöbb most 0.223 

Table 1: Words distributionally most similar to kis 

 

 

Figure 4: Words most similar to kis 
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In this experiment, the distribution of the adjective kis is found most similar to the distribution 

of the adjective nagy (‘big’, ‘large’). The top 20 include other antonyms, too (hatalmas, sok, 

óriási). Synonyms are also on the list (kicsi, kevés), as well as the comparative form of kis 

(kisebb). The superlative form, legkisebb, is the 26th item on the list and therefore it is not 

shown above, although its score is still relatively high. Separating synonymy from antonymy 

is virtually impossible in this approach. In the case of nouns, it is equally difficult to tell 

hyponymy/hyperonymy apart from synonymy. It is a general observation that words that can 

be related to the target word through the established lexical semantic relations do appear in 

the results, but we cannot distinguish among these relations using distributional vector-space 

calculations. 

Given this situation, we may wonder about the nature of the connection established 

between lexical items in vector-space investigations. 

3 The distributional compatibility relation 

Kiefer (2007: 13-36) distinguishes three ways of describing meaning: 

- focusing on reference and denotation and using a logical calculus (in formal 

semantics), 

- factoring in the cognitive aspects of our experiencing the world (cognitive semantics), 

and 

- focusing on language-internal facts, attributing meaning to relations between linguistic 

expressions (structuralist semantics). 

Distributional studies collect statistical information about the use of words and try to measure 

the relatedness of lexical items; therefore, they belong to the realms of structuralist semantics. 

Technically, we can build a relation for any two words of a language. Consider Cruse’s 

proposal, the dogbananomy relation (Cruse 2011: 129), which connects banana and dog. This 

entertaining (and satirical) idea leaves us to wonder what kind of regularity lexical relations 

are supposed to capture. In general, Cruse argues that the following criteria must be met for a 

relation to be significant for semantic investigations (ibid.):  

- sense relations must recur and relate items in a way that expresses a generalization,  

- discrimination: relations must also exclude a number of pairs, 

- the “significance” of a relation should correspond to a concept that we can name. 

The distributional relation has a tendency to become very powerful: in the case study 

described in the previous section, the word kis showed a nonzero similarity value to 97% of 

the 15,000 target words – recurrence is not a problem. Discriminatory power depends on the 

choice of target words, vector weighting and vector comparison method: usually, a similarity 

value of 0 is rare. A distributional relation is very general and less specific than most lexical 

semantic relations. Notice, however, that this relation also returns a grade of relatedness. 

As far as significance is concerned, distributional similarity (the similarity of the contexts 

in which the words are found to occur) is a useful concept. For people working on real-world 

tasks such as finding a word/sentence/document similar to a query word/sentence or 

document (in applications involving information retrieval from a database or from the World 

Wide Web) there is no denying that such a relation is useful and is worth researching. Other 

applications will be listed in section 4. 

Let us accept the standpoint that our relation qualifies as a lexical relation and let me call this 

relation the distributional compatibility relation (DCR) for reasons clarified later in this paper. 
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3.1 From crisp to fuzzy relations  

A relation (including the relations of lexical semantics) usually represents the presence or 

absence of interconnectedness between the elements of two or more sets. In a simple binary 

relation we have two sets (X and Y), and the relation R(X,Y) will tell us whether an element 

of X is related to an element of Y.  

 

Mothers 

Sons 

Harry Oliver Jack 

Olivia 1 1 0 

Amelia 0 0 1 

Jessica 0 0 0 

Table 2: Mothers – sons relation represented in a table 

 

Consider the data in table 2 as an example. Olivia has two sons: Harry and Oliver; Amelia has 

one son: Jack; Jessica has no sons. The first set contains the mothers; the second set contains 

the sons. By introducing the mothers-sons relation on these two sets, we get ordered pairs that 

define the resulting mothers-sons set: {(Olivia, Harry), (Olivia, Oliver), (Amelia, Jack)}. 

In some cases, more than two sets are involved in a relation. More importantly for our 

purposes, we can also relate the elements of the same set using a relation; in lexical semantic 

relations, we have a single set of words, which contains the lexical items of a language. Let us 

suppose that we label this set of words using W. A lexical relation will be a subset of the 

Cartesian product W x W. By constructing the Cartesian product W x W, we create a set of all 

ordered pairs that contain two words of the language (e.g. (cold, cold), (cold, cool), (cold, 

hot), etc.) .
4 An important feature of these relations is that a pair is either an element of the 

result set (when the relation holds) or it is not. 

A striking, but poorly documented feature of vector-space comparisons is that they result 

in fuzzy sets. The members of a binary fuzzy set are pairs that belong to this set to a certain 

degree. The degree of membership (also known as the membership grade or membership 

value) is in the closed interval [0,1]. In general, an element with a membership of 1 will be the 

best representative (or one of the best representatives) of the fuzzy set (cf. prototype theory). 

Elements with a 0.9, 0.75, 0.0001 etc. membership values are also elements of the fuzzy set, 

whereas in a traditional “crisp” set, x is either a member of set X (xX) or not.  

The distributional relation is a fuzzy relation. The distributionally most similar pairs will 

have a higher degree of membership in the fuzzy set. We define this set by listing all R(W,W) 

pairs together with membership values, where the elements of set W are the target words of 

the experiment. For example, I have measured the compatibility of the words cool, hot and 

cold to be {0.318/(cool,cold), 0.259/(cool,hot), 0.321/(cold,hot)} in a vector space experiment 

using a 100 million word sample of Wikipedia, a 1+1 word context window, 8000 context 

words (the 8000 most frequent words of the corpus except for function words), pPMI 

weighting and cosine similarity measurement. Notice that the degree of membership values 

prefix the list of word pairs in this notation. A tabulated format is another convenient way of 

representing fuzzy relations, as shown in table 3: the columns and rows represent the target 

                                                 
4  Due to this ordering, (cold, cool) and (cool, cold), for instance, are different pairs. In the case of symmetric 

relations (see below), ordering becomes less obvious and semantically irrelevant, but it remains a formal 

issue and it is also an inherent feature of all relations, whether they are symmetric or not. 
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items and the entries in the table show the degree of membership of the corresponding pair in 

the fuzzy set created by the DCR. 

 

lexical items cool hot cold 

cool 1 0.259 0.318 

hot 0.259 1 0.321 

cold 0.318 0.321 1 

Table 3: Pairwise DCR values for all possible pairs that contain cool, hot and cold 

 

3.2 Reflexivity 

A traditional (“crisp”) relation R(X,X) is reflexive iff (if and only if) (x,x)R for each xR, 

i.e. each element is related to itself.  

In lexical semantics, synonymy is reflexive (e.g. book is a synonym of book). Antonymy is 

not reflexive (e.g. cold is not an antonym of cold). Hyperonymy, hyponymy and meronymy 

are not reflexive: they are built on the notion of inclusion rather than identity (using Cruse’s 

terminology), which requires a semantic difference to exist, and this difference will also 

function as a contrasting meaning element when we test for reflexivity (therefore, furniture 

cannot serve as a hyperonym of furniture, and leg cannot be a meronym of leg).  

Klir and Yuan (1995: 130) point out that reflexivity can be extended to fuzzy relations in 

the following way: R(X,X) is reflexive iff R(x,x)=1 for all xX, i.e. each element is 

maximally related to itself. The distributional compatibility relation is reflexive: the measured 

similarity of a vector to the same vector is maximal. From this perspective, DCR resembles 

synonymy, a relation expressing identity. 

3.3 Symmetry 

A crisp relation R(X,X) is symmetric iff from (x,y)R it follows that (y,x)R, where xX and 

yX. Klir and Yuan (1995: 130) argue that reflexivity should be extended to fuzzy relations 

in the following way: a fuzzy relation is symmetric iff R(x,y)=R(y,x) for all x,yX.  

Synonymy is symmetric since if (and only if) cool is a synonym of cold then cold is also a 

synonym of cool. Antonymy is symmetric, too. Hyponymy, hypernymy and meronymy are 

not symmetric. 

The distributional compatibility relation is symmetric: comparing cold to cool and 

comparing cool to cold result in the same degree of membership values. In this respect, DCR 

resembles synonymy and antonymy. 

3.4 Transitivity 

A crisp relation R(X,X) is transitive iff R(x,z)R whenever R(x,y)R and R(y,z)R for at 

least one y, where x,y,z X. In other words, if a transitive relation holds between x and y and 

also between y and z, then the relation also holds between x and z.  

I start with synonymy again. In a synonym dictionary, we find groups of words that 

contain synonymous items. Transitivity is supposed to hold together the entire group. If cold 

is a synonym of cool and cool is a synonym of icy then cold becomes a synonym of icy. These 



 

 

Ágoston Tóth: The Distributional Compatibility Relation 

Argumentum 10 (2014), 588-599 

Debreceni Egyetemi Kiadó 

595 

groupings (classes) have a special role in capturing meaning. In WordNet (a large, publicly 

available lexical database, a major resource for Natural Language Processing; see Fellbaum 

1998), the main organizing relation is synonymy, too: synonyms are grouped together into 

synonym sets or “synsets”. The compilers’ idea has been to represent senses by synonym sets; 

synonym sets are supposed to be the descriptions of word meaning. In WordNet, synonymy is 

a lexical relation (it holds between lexical items rather than concepts) and it is transitive: if x 

is synonymous with y and, at the same time, y is a synonym of z, then x,y and z will all be 

listed in the same synonym set, which also means that x and z are synonyms (and co-listing 

words in the same synonym set is the only way to make them synonymous). Both in the case 

of thesauri and WordNet, the transitivity of synonymy is part of their system design: in the 

former case, the user can find information by taking and considering the information found in 

the similarity classes, in the latter case, semantic relations are defined over synonym sets. 

This approach to synonymy does not automatically follow from the treatment of synonymy 

in the linguistic literature, however. A basic approach would be to treat synonymy as a 

relation between words that have the same meaning in some or all contexts (which is the 

approach most relevant to distributional studies, too). The next definition is from Cruse: 

synonyms are the “lexical items whose senses are identical in respect of ‘central’ semantic 

traits, but differ, if at all, only in respect of what we may provisionally describe as ‘minor’ or 

‘peripheral’ traits” (Cruse 1986: 267). In his 2011 book, Cruse highlights that synonyms have 

“construals whose semantic similarities are more salient than their differences” (Cruse 2011: 

142). Lyons (1981: 50-51) argues that synonymy can be full (if and only if all their meanings 

are identical), total (when they are synonymous in all contexts) and complete (if and only if 

they are identical in all relevant dimensions of meaning). Absolute synonyms are full, total 

and complete while partial synonyms satisfy one or any two of the above criteria. In 

distributional experiments, a DCR value of 1 would probably indicate total synonymy.  

Cruse (2011) uses the notion of normality in defining absolute synonymy: “for two lexical 

items X and Y, if they are to be recognized as absolute synonyms, in any context in which X 

is fully normal, Y is, too” (Cruse 2011: 142). Later he adds that “absolute synonyms are 

vanishingly rare, and do not form a significant feature of natural vocabularies” (Cruse 2011: 

143). Whether at least near synonymy holds is determined by the presence of semantic 

differences. Minor differences that do not destroy synonymy include (Cruse 2011: 145): 

- neighbouring values on a scale of degree, 

- adverbial specializations of verbs (e.g. drink – quaff), 

- aspectual differences, 

- differences in prototype (e.g. brave – physical vs. courageous – intellectual/moral). 

Transitivity is not guaranteed by the very nature of the synonymy relation: if x is synonymous 

with y, and y is a synonym of z, then x and z may or may not be evaluated as synonyms, 

because the difference between x and y will be combined with the difference between y and z, 

and the resulting distance between x and z may be beyond what we consider a ‘minor’ 

difference. 

Hyponymy is transitive as far as we treat it as a logical notion (if x is a hyponym of y and y 

is a hyponym of z then x is a hyponym of z), and it is also transitive in WordNet (where we 

can build is-a hierarchies by following hyponymy links). As far as natural language examples 

are concerned, transitivity is not guaranteed, however (Cruse 2011: 136): 

a) A hang-glider is a type of glider. 

b) A glider is a type of aeroplane.  

If hyponymy were transitive, it would follow from a) and b) that a hang-glider is an 

aeroplane, but we do not agree with that. Cruse suggests the following explanation: “for 
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informants to assent to statements like A is a type of B, it is sufficient that a prototypical A 

should fall within the category boundaries of B: it is not necessary that all As should be Bs” 

(Cruse 2011: 136). On this account, transitivity is absent because a hang-glider is not a 

prototypical aeroplane.  

We also expect meronymy to be transitive: if x is part of y, and y is part of z, then x should 

be part of z. Real-life examples are sobering again; the following is from Cruse (2011: 141): 

a) Fingers are parts of the hand. 

b) The hand is a part of an arm. 

It would be a logical conclusion that fingers are parts of an arm, too – but we would never say 

that. This breakdown of transitivity is connected to the notion of attachment: x (fingers) is 

immediately attached to y (hand), but not to z (arm) (Cruse 2011: 141).  

We can argue that antonymy is not transitive without much explanation: if x is an antonym 

of y, and y is an antonym of z, then we do not want to argue that x is an antonym of z by the 

nature of this relation. 

Let us return to the examination of the distributional compatibility relation. Transitivity is 

extended to fuzzy sets through the notion of “max-min transitivity”, which is based on max-

min compositions as shown in Klir and Yuan (1995: 125-130): the degree of membership 

produced by the fuzzy R(x,z) relation must be equal or greater than the degree of membership 

produced by R(x,y) or R(y,z), whichever is greater for all x,y,zX. The distributional 

compatibility relation is not (max-min) transitive. Let us just take a single example shown in 

table 3 above. Consider the 0.318/(cool,cold) element and the 0.321/(cold,hot) element of the 

DCR set. If DCR were transitive, a cool-hot relation would return a value greater than or 

equal to 0.321 – whereas the actual membership grade for (cool,hot) is 0.259. This situation 

can easily be repeated with other, randomly chosen words. 

3.5 Overview of properties 

Table 4 summarizes the properties of lexical relations (also including their WordNet versions) 

and those of the distributional compatibility relation (DCR). 

 

 type  reflexivity symmetry transitivity 

synonymy crisp / ?   x 

WN synonymy crisp    

antonymy crisp / ? x  x 

WN antonymy crisp x  x 

hyponymy/hyperonymy crisp / ? x x x 

WN hyponymy/hypernymy crisp x x  

meronymy crisp / ? x x x 

WN meronymy crisp x x  

DCR fuzzy   x 

Table 4: Properties of selected lexical relations 

 

Reflexive, symmetric and transitive relations, including WordNet’s crisp transitive synonymy 

relation, are “equivalence” relations. If distributional similarity resulted in a reflexive, 

symmetric and transitive fuzzy relation, it would be an equivalence relation, too, and we could 

call it a fuzzy “similarity” relation – a term reserved for fuzzy relations that exhibit all of the 
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above properties (cf. Klir & Yuan 1995: 133). DCR lacks transitivity, however, which also 

affects the classification of this relation: it belongs to the group of fuzzy compatibility 

relations.  

4 Conclusion 

The earliest vector-space models of representing semantic information were used for finding 

relevant documents in Information Retrieval (Salton 1971). Question answering (e.g. Tellex et 

al. 2003) and document clustering (e.g. Manning et al. 2008) may be implemented in a similar 

way. Systems designed around the distributional compatibility relation as portrayed in this 

paper are used for word clustering and disambiguation (Schütze 1998), thesaurus generation 

through automatized discovery and clustering of word senses (Crouch 1988, Pantel & Lin 

2002), named-entity recognition (Vyas & Pantel 2009), etc. Pennacchiotti et al. (2008) use 

Distributional Semantics in a cognitive semantic context: they propose a method for extending 

FrameNet’s scope by covering more (potentially: frame-evoking) lexical items through 

distributional lexical unit induction. It is also interesting to see that a vector-space tool can be 

better at solving a TOEFL test than humans are (Rapp 2003). All the above applications are 

based on the Distributional Compatibility Relation, although the authors do not identify and 

analyse the underlying lexical relation exploited for their computational needs. 

DCR is a very general relation and connects much more lexical items than lexical semantic 

relations usually do. As a fuzzy relation, DCR does so in a quantified manner, however. The 

type of (paradigmatic) distributional relation captured by DCR corresponds well to people’s 

intuitive notion of word similarity, too: human subjects’ decisions on the degree of word 

similarity correlate with the DCR values returned in vector-space experiments (see 

Rubenstein & Goodenough 1965, Miller & Charles 1991 for English data and Tóth 2013 for 

Hungarian results). In Tóth (2013) I argue that synonymy is a major factor of judging the 

degree of ’similarity’ in human experiments, while other types of association between words 

may also play a role in the absence of (near) synonymy. I also note that lexical ambiguity 

plays a role and decreases the average human similarity scores – the same phenomenon can 

also be seen in vector-space experiments. 

The lack of transitivity in the case of DCR has at least two consequences. A methodological 

consequence is that planning, interpretation and further processing require attention since 

nothing is granted about the R(x,z) DCR relation even when R(x,y) and R(y,z) are known. A 

terminological consequence is that the relation should be called a compatibility relation. 

Finally, as DCR is a fuzzy relation, calculations with it are more complex and demanding than 

operations with crisp relations. Klir and Yuan (1995) offer a solid mathematical background. 

Regrettably, linguistic research involving fuzzy relations is extremely rare while many natural 

language phenomena seem ideal targets for (re)interpretation in a fuzzy framework. 
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