

Computational Methods and Applications for

Real-Time Identification of Species and

Pathogens from Raw Read Sequencing Data.

Egyetemi doktori (PhD) értekezés

Ramin Karimi

Témavezető: Dr. András Hajdu

DEBRECENI EGYETEM

Természettudományi Doktori Tanács

Informatikai Tudományok Doktori Iskola

Debrecen, 2017

\

I hereby declare that this submission is my own work and that, to the best of my knowledge

and belief it contains no material previously published or written by another person nor

material which has been accepted for the award of any other degree or diploma of the

university or other institute of higher learning, except where due acknowledgment has been

made in the text.

Hungary, Debrecen, June 2017

Ramin Karimi

This is to certify that the thesis entitled “Computational Methods and Applications for Real-

Time Identification of Species and Pathogens from Raw Read Sequencing Data." submitted

by Ramin Karimi to University of Debrecen for the award of the degree of Doctor of

Philosophy is a bona fide record of the research work carried out by him under my

supervision and guidance. The content of the thesis, in full or parts have not been submitted

to any other Institute or University for the award of any other degree or diploma.

Hungary, Debrecen, June 2017

Dr. András Hajdu

Computational Methods and Applications for

Real-Time Identification of Species and

Pathogens from Raw Read Sequencing Data.

Értekezés a doktori (Ph.D.) fokozat megszerzése érdekében
a informatika tudományágban

Írta: Ramin Karimi okleveles informatikus

Készült a Debreceni Egyetem Informatikai Tudományok doktori iskolája
(Diszkrét matematika, adatfeldolgozás és vizualizáció programja) keretében

Témavezető: Dr. András Hajdu

A doktori szigorlati bizottság:

elnök: Prof. Halász Gábor

tagok: Dr. Péter Balázs

Dr. Antal Bálint

A doktori szigorlat időpontja: 2015. November 19.

Az értekezés bírálói:

Dr.

Dr.

Dr.

A bírálóbizottság:

elnök: Dr.

tagok: Dr.

Dr.

Dr.

Dr.

Az értekezés védésének időpontja: 2017

i

Table of Contents

CHAPTER 1

Introduction …………………………………………………….…………………….

1.1 Motivation and Overview ……………………………………………………….

1.2 Description of this Thesis Outline ……………………………………………….

CHAPTER 2:

Basic Biological Concepts and Related Challenges …………………………….

2.1 Next-generation Sequencing (NGS) ……………………………………………

2.2 Short Reads ……………………………………………………………………..

2.3 Metagenomics …………………………………………………………………..

2.3.1 Challenges of Metagenomics Approaches ………………………………

2.4 Sequence-Based Identification ………………………………………………….

2.4.1 Alignment-Based Identification …………………………………………

2.4.1.1 The Limits of Alignment-Based Identification Methods………

2.4.2 Alignment-Free Identification …………………………………………..

2.5 k-mers or Words Frequency …………………………………………………….

2.6 De Bruijn Graph …………………………………………………………………

2.7 DNA Signature ………………………………………………………………….

2.7.1 Advantages of Using DNA Signature …………………………………..

2.7.2 Disadvantages of Using DNA Signature ……………………………….

CHAPTER 3

Basic Computational Concepts ……………………………………………………..

3.1 Distributed Systems ……………………………………………………………..

3.2 Types of Distributed Systems ……………………………………………………

3.2.1 Distributed Computing Systems …………………………………………

3.2.2 Distributed Information Systems ………………………………………..

3.2.3 Distributed Pervasive /Embedded Systems ……………………………..

3.3 Parallel and Distributed Computing …………………………………………….

3.3.1 Single Instruction Stream, Single Data Stream (SISD) ………………….

1

2

6

8

9

10

11

14

15

16

17

17

18

19

20

22

23

24

25

27

27

27

27

28

29

ii

3.3.2 Single Instruction Stream, Multiple Data Stream (SIMD) ……………...

3.3.3 Multiple Instructions Stream, Single Data Stream (MISD) …………….

3.3.4 Multiple Instructions Stream, Multiple Data Stream (MIMD) …………

3.4 Parallel Programming ……………………………………………………………

3.5 The Apache Hadoop ……………………………………………………………

3.5.1 Hadoop Distributed File System (HDFS) ………………………………

3.5.2 MapReduce ………………………………………………………………

3.5.3 Hadoop YARN (Yet Another Resource Negotiator) ……………………

3.5.4 Hive ……………………………………………………………………...

3.5.5 NoSQL …………………………………………………………………..

CHAPTER 4

Proposed Methods of Identification and DNA Signature Discovery..………….

4.1 Proposed Alternative Method of Identification …………………………………

4.2 Overview of the Related State-of-the-Art Methods …………………………….

4.3 Proposed Method of DNA Signature Discovery …………………..…………….

4.3.1 Description of the HTSFindr Pipeline……………………………………

4.3.2 Data Preparation …………………………………………………………

4.3.3 Pipeline Implementation ……………………….………………………..

4.4 Selected Sequence Databases ……………………………………………………

4.4.1 Bacterial Genome Database …………………………………………….

4.4.2 The Reverse-Complement Bacterial Genome Database ………………..

4.4.3 Human Genome Database ……………………………………………….

CHAPTER 5

Proposed Methods of Short Read Classification………………………………….

5.1 Overview of the Related State-of-the-Art Methods……………………………..

5.2 The First Proposed Reads Classifier Based on Bitmap Indexes and NoSQL……

5.2.1 Short Read Simulator Application ………………………………………

5.2.2 The Use of the Bitmap Index ……………………………………………

5.3 The Second Proposed Reads Classifier Based on SRIdent Pipeline…………….

5.3.1 Pipeline Description ……………………………………………………..

29

30

31

32

33

34

34

36

37

37

38

39

41

46

47

48

50

54

54

54

54

55

56

58

60

61

63

63

iii

CHAPTER 6

Results and Discussion ………………………………………………………………

6.1 The Results of HTSFinder Pipeline…..…………………………………………..

6.1.1 Results for the Bacterial Genome Database ……………………………..

6.1.2 Results on Both Forward and Reverse-Complement Sequences of

Bacterial Genome Database………………………………………………

6.1.3 Results for the Forward and Reverse-Complement Bacterial Genome

Database and the Human Genome Database …………………………….

6.1.4 Performance Evaluation and Computational Times ……………………..

6.2 The Results of the Method Based on Using Bitmap Indexes and NoSQL ……..

6.3 The Results of SRIdent Pipeline ……….………………………………………..

6.3.1 Performance Evaluation and Computational Times ……………………..

6.4 Performance Comparison of Proposed Pipelines with an Existing State-of-the-

Art Method……………………………………………………………………….

CHAPTER 7

Conclusion and Future Work ……………………………………………………….

7.1 Summary and Conclusions ………………………………………………………

7.2 Future Work ……………………………………………………………………..

REFERENCES …………………………………………………………………………..

APPENDIX

Download sources and supplementary materials……………………………….

67

68

68

75

76

76

78

81

82

84

88

89

92

94

108

iv

List of Figures

Figure 2.1. Sequencing Cost and Data Output Since 2000. The Y-axes on both sides of the

graph is logarithmic…………………………………………………………………………..

Figure 2.2. A typical metagenomics project…………………………………………………

Figure 2.3. Examples of local and global alignments……………………………………….

Figure 2.4. An example of de Bruijn graph…………………………………………………

Figure 3.1. A distributed system organized as middleware. The middleware layer extends

over multiple machines……………………………………………………………………….

Figure 3.2. SISD Architecture. A single computer that has one control unit, one processor

unit……………………………………………………………………………………………

Figure 3.3. SIMD Architecture. Performing an operation on multiple data…………………

Figure 3.4. MISD Architecture. Performing multiple operations on a single data flow

(assigned to processors from 1 to n)…………………………………………………………

Figure 3.5. MIMD architecture with a shared memory (assigned to processors from 1 to

n)……………………………………………………………………………………………..

Figure 3.6. An example of the overall MapReduce WordCount process. The original image

was made by Trifork………………………………………………………………………….

Figure 3.7. YARN architecture………………………………………………………………

Figure 4.1. The three main phases of HTSFinder for detecting DNA signatures. We can

repeat the second phase with the obtained results if required………………………………..

Figure 4.2. Splitting of the genome by GkmerG for k = 18 to get all the possibilities of 18-

mers. Generating k-mers for a single genome with GkmerG includes purgation, splitting,

concatenation, cleaning, sorting, and removing duplicate except one. The output of

GkmerG is a file containing k-mers of a genome in a single column. The labels above the

file numbers in this figure represent the beginning of four k-mers in the head of files……...

Figure 4.3. The recommended process for detecting unique DNA signatures of a target

database against nontarget databases. ……………………………………………………….

Figure 5.1. A partial view of Metasim reads………………………………………………..

Figure 5.2. An example of RkmerG procedure to get all the possibilities of k-mers

(k=19)…………………………………………………………………………………………

9

13

16

20

26

29

30

31

32

35

36

48

49

52

61

64

v

Figure 5.3. RkmerG algorithm. (r=Short read, n=Total number of reads, k=Length of mers,

i=each of the lines (reads) that is copied from a single short read for k times, illustrated in

Figure 5.2)………………………………………………………………………………….

Figure 6.1. Top 10 bacterial genomes with the highest number of unique DNA signatures

in the bacterial genome database……………………………………………………………

Figure 6.2. Ten bacterial genomes with the highest number of signatures common with

Acaryochloris_marina_MBIC11017_uid58167 in the bacterial genomes database. This is

an example of the results for common signatures with frequency 2 obtained by

HTSFTSFTSFinder…………………………………………………………………………..

65

70

72

vi

List of Tables

Table 4.1. A comparison of signature discovery algorithms and metagenomics reads classifiers

according to the data format, computational resources, and ability to process single or multiple

sequences…………………………………………………………………………………………

Table 4.2. An example of Hadoop and WordCount results…………………………….............

Table 5.1. A comparison of metagenomics reads classifiers according to the data format,

computational resources, and ability to process single or multiple sequences…………………..

Table 5.2. An example of a bitmap index defined on Grade column……………………………

Table 5.3. A partial view of unique DNA signatures (18-mers), downloaded from the Insignia

database………………………………………………………………………………………….

Table 5.4. An example for our index tables; each column of these tables is kept as a single

file………………………………………………………………………………………………...

Table 5.5. An example of input table for Hive, that is created by merging files to a single

file………………………………………………………………………………………………..

Table 6.1. A total number of 10 least and 10 most common signatures in the bacterial genome

database…………………………………………………………………………………………..

Table 6.2. An example of the output for the third phase (the right side of the table). The

reference numbers in this table indicate the numbers appended by GkmerG for easier tracking

of data in the pipeline…………………………………………………………………………….

Table 6.3. B. mallei and B. pseudomallei genomes with their number of unique DNA

signatures of 18-mers in the bacterial genome database…………………………………………

Table 6.4. A portion of results for signatures with frequencies 2 and 3 in the database.

Concerning the reference numbers, most of the common signatures are shared among the

phylogenetically close genomes. However, the number of common signatures among unrelated

species is also notable…………………………………………………………………………..

Table 6.5. A number of unique DNA signatures in the human genome and its three

chromosomes with different sequence sizes for a series of lengths of k-mers from 21 to 30….

Table 6.6. A comparison of five Bacillus strains with the highest number of unique signatures

and five others with the lowest number of signatures of length 18 within species and in the

entire database. This table shows that within-species similarity and variability have more

influence on the volume of signatures than the remainder of the database……………………..

44

50

57

59

60

62

62

68

69

71

73

74

75

vii

Table 6.7. Number of unique DNA signatures for the forward bacterial genome database as

the target and two other non-target databases……………………………………………………

Table 6.8. A comparison of computational results of the first and second platforms in the

second and third phases of the pipeline in order to find unique DNA signatures and their

related species in the forward genome database (time in minutes)……………………………..

Table 6.9. A comparison of loading and execution times of the frequencies 1–3 in the third

phase……………………………………………………………………………………………...

Table 6.10. An example of input table for Hive, that is created by merging files to a single

file………………………………………………………………………………………………...

Table 6.11. A sample of the results obtained from Hive. The reference number indicates the

species that owns the signature and the identification number indicates the short read that

contains the k-mer………………………………………………………………………………..

Table 6.12. Computational times of two platforms (Time is measured in seconds)…………….

Table 6.13. The extension of Table 4.1 for better comparison of the computational resources

of HTSFinder with the existing methods………………………………………………………..

Table 6.14. Comparison of HTSFinder and DDCSD (d = mismatch tolerance for the DDCSD

algorithm)………………………………………………………………………………………...

Table 6.15. A comparison of read classifier applications with SRIdent, according to the data

format, computational resources and ability to process single or multiple sequences…………..

76

77

78

79

81

83

84

85

86

viii

Acknowledgments

First and foremost I would like to express my sincere gratitude to my advisor Dr. András

Hajdu for the continuous support of my Ph.D. study and related research, for your patience,

motivation, and immense knowledge. Your guidance helped me in all the time of research

and writing of this thesis. I could not have imagined having a better advisor and mentor for

my Ph.D. study. You have set an example of excellence as a researcher, mentor, and

instructor.

Besides my advisor, I would like to thank my thesis committee members, Professor János

Sztrik, Dr. Tamás Bérczes, and Dr. Gábor Szũcs, for all your guidance, insightful comments,

and encouragement through this process. Your discussion, ideas, and feedback have been

absolutely invaluable.

I would like to dedicate this thesis to my lovely wife Samira Sajjadian for her endless love,

understanding, tolerance, and sacrifices. Words cannot express my gratitude for her patience,

continual source of support with strong encouragement at every stage, and cope with living

far away from our family throughout the journey of the research. She is not only my lovely

wife but also my best friend who gives me wise and timely advice when I need it.

 I am deeply indebted to my family for their love, support, and encouragement. Without

them, this thesis would never have been written. Words cannot express how grateful I am to

my parents, my parents-in-law, my brothers, my brothers-in-law, my sister, and my sister-in-

law for all of the supports, and sacrifices that they have made on my behalf.

My sincere thanks also go to Professor Ladjel Bellatreche, Professor Patrick Girard, and Dr.

Brigitte Vannier, who provided me an opportunity to join their team at Poitiers University in

France, and for their precious support during a year, I was there as an exchange member.

Special thanks also to Dr. Edéné Rutkovszky, Dr. Zsuzsanna Bokor, Dr. Marianna Zichar for

their kind help and consideration.

Special thanks to the Faculty of Informatics, Department of Computer Graphics and Image

Processing, and the Doctoral School of Informatics at the University of Debrecen for

providing this research opportunity and providing the computational resources for this

research.

Special thanks to Mr. József Akai and his family, my dear Hungarian friends, for making me

and my wife feel part of their family in the years of our stay in Hungary. We will never forget

their kindness, hospitality, and friendship.

Finally, special thanks to all my friends for their support and sharing the happiness and great

moments we had during last few years.

ix

Abstract

A very small proportion (often cited as <1%) of the total microbial diversity in nature can be

cultivated in the laboratory. The vast majority of them cannot be isolated or are extremely

difficult to grow in the laboratory. In recent years, impressive progress has been made in the

field of bioinformatics by technological advances of genome sequencing to perform whole

genome sequencing in thousands of individuals.

The emerging field of metagenomics provides a series of technical innovations for culture-

independent scrutiny of microbial communities in the environment. It is a large-scale

sequencing of the entire community, sampled directly from its natural environment. It

provides new opportunities for gaining access to previously hidden phylogenetic, functional,

metabolic, and ecological diversity of organisms and their community structure. While these

technologies are constantly continued to offer increases in throughput, the time and cost of

DNA sequencing continue to fall. Therefore, sequencing technologies are becoming

applicable as a routine tool for diagnostic and public health microbiology. However, the

complexity of the analysis and high-costs of the computational resources has encountered

many challenges and obstacles to achieving this goal.

One of the major challenges for metagenomics studies is the accurate identification of

organisms present in complex environments. Although, a wide variety of assembling and

alignment-based algorithms, software and computational analysis workflows have been

subsequently developed, computational approaches for alignment-based identification of

complex communities, without very extensive sequencing coverage are inadequate for even

the most abundant members.

In this research, we have proposed an alignment-free method and its appropriate pipelines

and software for Real-time identification of species and strains from raw read sequencing

data. The method tries to shortcut identification into a quick and accurate process in

environmental and clinical sequencing samples, using parallel and distributed computing on

commodity hardware for enhancing the applicability of the analysis as a routine process in

the entire research community.

CHAPTER 1: Introduction

1

Chapter 1

Introduction

CHAPTER 1: Introduction

2

1.1 Motivation and Overview

The number of bacterial cells (10
14

) inhabiting in an average healthy adult human body is

estimated tenfold more than human cells (10
13

) [1][2] and the number of existing microbial

species in the world is estimated at 10
7

to 10
9
 [3][4][5]; therefore, they play a pivotal role not

only in Human life but also the whole life on Earth. Over 99% of microorganisms in our

planet are not cultivable in vitro or require a long and difficult cultivation period [6][7][8];

thus, how can we discover these unseen occupiers of our body and our planet? What is the

appropriate solution for the rapid identification of these best Friends and the worst enemies?

In 1983, Kary Mullis, a scientist at the Cetus Corporation, conceived of Polymerase Chain

Reaction (PCR) as a method to synthesize unlimited copies of a small fragment of target

DNA. Over the next two years, a team of Cetus scientists that recognized the impact of PCR

on molecular biology could turn the theoretical process into reality [9].

Polymerase Chain Reaction (PCR) is a quick, easy, and inexpensive laboratory technique to

amplify a single copy or a few copies of a small fragment of target DNA (the template) to

unlimited copies. PCR can synthesize any particular piece of DNA [10]. PCR technique

applies a series of 20-40 repeated temperature cycles. Each cycle consists of three stages:

1- Denaturing: heating temperature to separate the double-stranded template DNA into

two single strands.

2- Annealing: cooling temperature to enable the DNA primer to attach to the template

DNA and serve as a starting point to copy the DNA.

3- Synthesis: raising the temperature and making the new strand of DNA by the Taq

polymerase enzyme.

The invention of the PCR technology provided a new era of studying uncultivable

microorganisms, but there was still a long way ahead. PCR has some limitations.

1- Amplification inhibitors such as detergents, antibiotics, enzymes, polysaccharides,

fats, proteins, and salts can reduce the amplification efficiency [11]

CHAPTER 1: Introduction

3

2- PCR is a highly sensitive; any form of contamination of the sample can produce false

positives or false negative results [12][13].

3- Another limitation of PCR is the length of the fragment that can be amplified. PCR

works well over short stretches of DNA up to about 2 kbp
1
.

4- PCR can only be used to identify the presence or absence of a known pathogen or

gene [14].

5- PCR cannot be used to identify species in complex communities.

Later with emerging the microarray approaches, identifying uncultivable microorganisms

entered into a new stage. The microarray is the combination of a very large set of distinct

probes attached to a solid structure (Glass slides). Probes are small fragments of sequences

which are complementary to a pathogen-specific gene sequence [15]. According to the

reports, microarray techniques bring the possibility of species identification or detecting and

diagnosing of various bacterial samples at the same time with main advantages of high

throughput, parallelism, miniaturization, speed, and automation.

Microarray has been limited to a small set of functional genes such as 16S rRNA genes, and

it is not a suitable approach to investigate the uncultivable majority of the species in the

environment [15][16].

With respect to remarkable abilities of PCR and microarray approaches, they are not enough

powerful for studying complex environmental and clinical samples which contain hundreds

or thousands of different species.

With the advancement of Next-generation sequencing (NGS) which is a combination of

massively parallel sequencing technologies besides PCR and microarray techniques,

considerable progress has occurred not only in the phylogenetic and functional analysis of

microbial communities but also in their affiliated science, significantly. It is a culture-free

method that enables analysis of the entire microbial community within a sample. It has the

ability to combine many samples in a sequencing run.

1- bp: base pairs; it is a unit of length for the strands of DNA or RNA

CHAPTER 1: Introduction

4

The 16S ribosomal RNA (16S rRNA) gene with about 1,500 bp length is part of the bacterial

DNA and generally contains nine “hypervariable regions” (V1 – V9) that represent

considerable sequence diversity among different bacterial species and can be used for species

identification [17].

16S rRNA is the most common standard culture-free approach which is currently used for

taxonomic assignments, bacterial identification, and studying bacterial diversity in ecology

and clinical microbiology [18][19]. It is also used to design the primers for Polymerase Chain

Reaction (PCR) and probes for microarray studies [20]. There are a considerable number of

publications about limitations of 16S rRNA gene.

The major limitation is that the copy numbers of 16S rRNA per genome vary from 1 up to 15

or more copies [18][21]. Therefore, the amount of 16S rRNA variants is estimated to be 2.5-

fold greater than the number of bacterial species [18][22]. Moreover, 16S sequences of the

same species or even the same genome are often different [18].

The ambiguous and incorrect identity of species and also the artificial classification of an

organism into more than one species can be led by divergent evolution of rRNA genes [23].

This problem can be solved in cultivable species by cloning rRNA genes from the pure

culture of that species to identify the degree of variation [23]. As mentioned above, more than

99% of species are culture-independent, therefore in a complex and mixed community of

microorganisms, sequence heterogeneity of 16S rRNA within a single genome can lead

overestimation of the microbial diversity [22].

Short reads as the output of the high-throughput sequencing technology are very noisy and

partial, with too many missing parts [16]. As an example, in the first phase of the Global

Ocean Sampling (GOS) expedition, only 4,125 distinct full length or partial 16S genes were

identified from 7.7 million metagenomics reads [24][26]. According to another release of

GOS, the total of 142,783 (1.4%) 16S genes from 80 GOS metagenomes were obtained

[25][26].

CHAPTER 1: Introduction

5

Moreover, most of the reads from recent NGS platforms are too short in length [22], thus de

novo assembly is required in order to make longer sequences. It may represent an extra

limitation to use 16S rRNA fragments for taxonomic assignments. It can be argued that in the

case of reads with the short length, 16S rRNA is more efficient to identify a higher level of

taxonomic assignments such as phyla, classes, orders, families, and genera, than species or

strains [27]. As an example, Escherichia coli is a bacterial species with several strains. Some

of these strains have nearly similar 16S rRNA-encoding genes but have very dissimilar

functional capabilities [28][29].

The application of next-generation sequencing technologies has provided a set of technical

innovations called “Metagenomics” as a culture-free method to study the genetic content of

all organisms in a community obtained directly from their natural environment. Debility of

16S rRNA to identify and especially rapid identification of microorganisms in the

metagenomics reads is more visible.

One of the key elements of the medicine of the future is to bring the applications of

sequencing technologies and metagenomics techniques to the routine medical laboratories.

The new generation of sequencing technologies, especially Whole Genome Sequencing

(WGS) and Single Cell Sequencing has provided this opportunity, but analyzing the massive

amount of data that these machines produce is still expensive and requires a high effort of

ultra-specialized personnel and High-performance computing resources.

The key contribution of this research is the development of an alternative fast and cost-

effective method to allow identifying species and strains from raw read metagenomics

sequencing data, regardless of aforementioned limitations and without further processes such

as assembling and alignment. The second contribution of this research has tended to develop

the required applications with the automated process in order to enhance the applicability of

the analysis as a routine process for the research community, particularly in medical

laboratories. The proposed methods in this doctoral research involve software and pipelines

along with parallel and distributed computing applications such as Hadoop and Hive in a

cluster of low-cost nodes.

CHAPTER 1: Introduction

6

The motivation behind this research is developing alignment-free approaches, not only to

shortcut identification into a quick and accurate process using parallel and distributed

computing on commodity hardware, but also for other purposes in bioinformatics and

metagenomics studies such as the accurate estimation of microbial community composition

based on metagenomics sequencing data, the alignment and assembly of short reads, and

other Next-generation sequencing analysis.

1.2 Description of this Thesis Outline

This thesis is organized as follow.

Chapter 2 is intended to provide a brief summary of the basic biological concepts and

methodology used in this research. Chapter 3 gives a background of the relative computer

science concepts and methodology used in this research.

The aim of Chapter 4 is to outline the research approach, design and methods used in this

research to find the best solutions for the following three primary questions that are the major

computational challenges of high-throughput sequencing and metagenomics data analytics.

1. What is the proper alignment-free method for rapidly identifying the species and

strains from raw read sequencing data?

2. What is the proper method of finding DNA signatures from genome databases?

3. What is the proper method to use less computational resources?

The initial section of this chapter proposes an alternative alignment-free method for real-time

identification of species and pathogens from raw read sequencing data. The next section

provides an overview of the state-of-the-art methods and discusses the challenges and

limitations of these methods in comparison with our proposed method of using DNA

signature as a solution for the first question.

CHAPTER 1: Introduction

7

The rest of the chapter describes a novel method of searching DNA signatures among target

databases. In addition, we addressed the resources of the data used in this research and

explained how to prepare the data for use in the proposed method.

The goal of Chapter 5 is to address the following questions:

1. What is the proper method for searching DNA signatures among the reads and

matching with their related species?

2. What is the proper method to use less computational resources?

The chapter starts with the review of the more popular existing methods for short reads

classification and discusses the challenges and limitations of the methods in comparison with

our proposed methods of reads classification.

We have developed two methods to answer the questions. The methods that are presented in

this chapter explained two different ways of matching the DNA signatures with the reads in

metagenomics sequencing reads. The first method uses Bitmap Indexes and NoSQL and the

second method uses a novel pipeline named SRIdent. Hadoop and Hive are used for both

methods. In addition, we addressed the resources of the data used in this research and

explained how to prepare the data for use in the proposed methods. Chapter 6 elaborates the

results and discussion of the 3 methods explained in Chapters 4 and 5.

Chapter 7 as the concluding chapter is intended to summarize the main contributions of the

research presented in this doctoral thesis. The methods and analysis developed to achieve the

proposed objectives are presented in a much-summarized way and the main conclusions

derived from the results are presented. Finally, the future research lines that give continuity to

the presented work are listed.

CHAPTER 2: Basic Biological Concepts and related challenges

8

Chapter 2

Basic Biological Concepts and

Related Challenges

CHAPTER 2: Basic Biological Concepts and related challenges

9

2.1 Next-Generation Sequencing (NGS)

The first DNA sequences were obtained in the early 1970s. Frederick Sanger, the pioneer of

developing a rapid DNA sequencing published a reliable and reproducible method (chain

termination) for DNA sequencing in 1977 [30]. A decade later, several new methods for

DNA sequencing were developed and "first-generation" sequencing automated instruments

were invented. The appearance of next-generation sequencing (NGS) technologies is indebted

to the invention of massively parallel sequencing techniques in 2000 [31].

The recent technologies have revolutionized sequencing capabilities. They allow us to

sequence DNA and RNA much more quickly and cheaply than the previous sequencing

methods. As an example, the first human genome, finished in 2003[32][33], required 13 years

to sequence and cost nearly 3 billion dollars. In contrast, new sequencing technologies can

sequence over 45 human genomes in a single day for approximately $1000 each (Illumina

documents that is addressed in Figure 2.1 caption). Figure 2.1 shows a dramatic increase in

the volume and concurrent decreasing the cost of sequencing data since 2000.

Figure 2.1. Sequencing Cost and Data Output Since 2000. The Y-axes on both sides of the

graph is logarithmic.

Source: https://www.illumina.com/content/dam/illumina-
marketing/documents/products/illumina_sequencing_introduction.pdf

CHAPTER 2: Basic Biological Concepts and related challenges

10

Next generation sequencing technology offers a wide range of options for sequencing, such

as 454 Life Sciences (Roche), Illumina, Ion Torrent (Life Technologies), Applied Biosystems

(Life Technologies), and Pacific Biosciences among others. Each platform offers different

coverage and reads length and the cost per base of sequencing is likely to become more

affordable with the rapid advances in this field. Along with the ability to generate community

sequence data, the price of DNA sequencing continues to fall. It allows the microbial

community to be investigated at a much greater scale and detail than before.

Today's sequencing technologies generate an enormous amount of sequencing data (1.8

terabases) in a single run. Ever-increasing and complexity of generated sequences have large

implications for the analysis of this data. Therefore, developing fast and cost-effective means

and applications to accelerate sequencing analysis is necessarily required. The first question

after obtaining raw sequencing data is “who's there?”

2.2 Short Reads

Reads generated by sequencing technology are short fragments of a longer DNA molecule

present in the sequencing sample. The length of a short-read is normally less than 1,000 base

pairs [34].

The sequencing read length depends on sequencing technology and chemistry methods used.

The major limitation of Next-generation sequencing (NGS) methods is the short length of

reads [35].

Repetitive sequences limit the capability of the short reads to assemble complex regions of

the genome [36], and it requires de novo assembly before most genome analysis. When the

reads are longer, there is more overlap between reads and more overlap with the reference

genome.

CHAPTER 2: Basic Biological Concepts and related challenges

11

Recent progress in long-read DNA sequencing, so called the Third-generation sequencing

allows direct sequencing of single DNA molecules to produce longer reads than second

generation sequencing [37].

The term "Raw sequencing reads" that is used in the title and several pages of this

dissertation refers to the primary output of sequencing technologies (short reads) without any

pre-processing.

2.3 Metagenomics

The increase of the sequencing capacities from the emergence of NGS technologies has

opened a new way not only to taxonomic analysis but also to obtain a complete catalog of

genes that an organism can express at any point in its life cycle. Hence, the NGS has had a

great impact in many fields of the current modern biology allowing the simultaneous study of

several microorganisms of interest.

Metagenomics, a high-throughput culture-independent technique has provided the ability to

investigate the entire community of microorganisms of an environment with analyzing their

genetic content obtained directly from their natural residence. The method does not have to

worry about problems such as culture-negative, gram-negative, gram-positive, and so on.

This promising ability has led to growing the integration of different fields of science, along

with sequencing technology and computational approaches to investigate the mysteries of the

hidden world of microbes and to reveal the secrets of these invisible and unknown inhabitants

of our planet. It allows scientists to gain a more comprehensive picture of the diversity and

function of microbial communities.

The appearance of metagenomics techniques, as we know it today was first reported by Stein

et al., who revealed the presence of two unknown genes in archaea with sequencing 40-kb

archaeal genome fragment in a metagenomics library [38]. The term "metagenomics" was

first used by Jo Handelsman in 1998 [39]. Since then, many metagenomics projects have

CHAPTER 2: Basic Biological Concepts and related challenges

12

been organized from ecology, environmental sciences, human health (e.g., the human gut

microbiome), and chemical industry [40].

According to the definition of the GOLD database (Genomes Online Database), there are

three types of ecosystems for obtaining Biosamples: Environmental ecosystems (e.g. water

samples taken from deep ocean), host-associated ecosystems (e.g. samples taken from

human, animals, and plants), and engineered ecosystems (e.g. Bioreactors).

The first step in a metagenomic study is to obtain the sample. Long DNA molecules extracted

from the sample are broken into smaller pieces by special fragmentation and cloning

techniques. Then, these small pieces are fed into the sequencer for determining the order of

nucleotides in short fragments of DNA [41]. Sequencing output for a metagenomics sample is

enormous data sets containing the short reads of hundreds to thousands of known and

unknown organisms. The DNA extracted should be representative of all cells present in the

sample and sufficient amounts of high-quality nucleic acids must be obtained for subsequent

library production and sequencing [41] [42]. Figure 2.2 details the steps involved in a typical

sequence-based metagenomics project.

CHAPTER 2: Basic Biological Concepts and related challenges

13

Figure 2.2. A typical metagenomics project.

There are two basic types of metagenomics studies: function based metagenomics and

sequence-based metagenomics. Functional analysis of metagenomics data provides valuable

insight into the kind of biological functions that are performed by organisms in a given

environment. It involves searching for a particular function or activity. Sequence-based

metagenomics involves sequencing and analysis of DNA obtained from the samples. It can be

used to assemble genomes, phylogeny reconstruction and taxonomic assignments, identify

genes, and compare organisms of different communities.

The term metagenomics can also be classified into two distinct methods: shotgun

metagenomics and targeted metagenomics.

Shotgun metagenomics also named whole metagenomics usually refers to extracting and

sequencing the entire genomic content of a sample from the complex community. This

sequencing approach provides an accurate and deep understanding of both taxonomic and

CHAPTER 2: Basic Biological Concepts and related challenges

14

functional diversity of microbial communities. Due to the complexity and the size of the data,

shotgun metagenomics is still very expensive and the informatics data analysis is a

challenging issue [43].

Targeted metagenomics, [44][45] or amplicon-based metagenomics is an approach for

constructing gene collections which are useful for studying the composition of gene clusters

in microbial communities and the adaptive evolution of enzymes toward environmental

changes. In compare with shotgun metagenomics, the amplification of the gene regions

before sequencing reduces the amount of data in the targeted metagenomics. Since,

sequencing and analyzing the data are easier, faster, and cheaper, it can be integrated into the

routine processes of laboratories.

2.3.1 Challenges of Metagenomics Approaches

Metagenomics as a newbie and immature field of science involves with too many challenges

from sampling to sequence assembly, data annotation, and functional analysis. Metagenome

samples come from complex communities of microorganisms, sometimes containing more

than 10,000 species [46]. Due to the diversity of the microbial communities, most genomes

are not completely represented by short reads.

Managing, mining, and analyzing of the massive amount of metagenomics data poses great

challenges and it requires the use of specialized bioinformatics tools. The sequence-only

method is comparatively less time-consuming than the alternative, which is the construction

of metagenomics libraries and subsequent function and or sequence-based screening to

identify gene products encoded by the target microbial partners [47].

Having efficient implementations to facilitate the analysis is urgently required in both

biological and computational parts of any metagenomics project.

Currently, the traditional culture-based and biochemical testing techniques are the majority of

diagnostics assays in clinical laboratories. Along with the fact that these techniques are time-

CHAPTER 2: Basic Biological Concepts and related challenges

15

consuming and labor intensive, also failing the isolation of disease-causing organism is

unavoidable [48]. The dramatic drop in the price of sequencing is going to be a great

opportunity in clinical laboratories to apply culture-independent metagenomics techniques for

clinical diagnostics assays [49][50].

Well-established standard molecular biology protocols for sequencing of the metagenomics

samples are available to most research and clinical laboratories. However, they are often

limited by computational resources and methods to analyze these data and it is still far from

being standardized [51].

2.4 Sequence-Based Identification

After sequencing of the genetic material, phylogenetic assignment and taxonomic affiliation

of the species is the first thing that should be considered so that we can look into the

mysterious world of the DNA sequences in order to figure out who is there.

There are several methods of species identification that are commonly used. The most

popular methods are identification based on morphological characteristics of the species and

sequence-based identification to distinguish species.

 The traditional identification methods based on morphological, physiological (nutrient need),

and structural (differences in membrane lipids) characteristics are unable to study culture-

negative microorganisms, especially in complex microbial communities. For all of them,

cultivation was an essential prerequisite, but the current means of cultivation did not allow

even a small part of existing microorganisms to be cultivated (for various reasons such as

lack of knowledge of the required nutrients, atmospheric conditions, etc.). Therefore, species

identification has to shift towards genetic identification regarding the advances in sequencing

technology. Sequence-based identification includes two different categories of alignment-

based and alignment-free approaches.

CHAPTER 2: Basic Biological Concepts and related challenges

16

2.4.1 Alignment-Based Identification

Since the origin of bioinformatics, sequence analysis has been the forefront of the biological

research. The very first approaches for sequence analysis were based on sequence alignment.

It is the procedure of comparing two (pairwise alignment) or more (multiple alignments)

sequences to find the most significant similarities. There are two common computational

approaches for sequence alignment: local alignment and global alignment. [52].

Local alignment searches regions of similarity between substrings of the query sequence and

the target sequence. The Smith-Waterman algorithm [53] is the most commonly used for local

alignments. Instead of searching the whole sequence, the algorithm compares segments of all possible

lengths and optimizes the similarity measure.

Global alignment performs an end to end alignment over the entire length of two or more

sequences as the query and the target sequences. The sequences are assumed to be

homologous along their entire length. Needleman and Wunsch algorithm [54] is an efficient

algorithm to perform the global alignment. Figure 2.3 illustrates examples of local and global

alignment.

Figure 2.3. Examples of local and global alignments.

Source: http://www.majordifferences.com/2016/05/difference-between-global-and-
local.html#.WVdT-4SGPIU

CHAPTER 2: Basic Biological Concepts and related challenges

17

2.4.1.1. The Limits of Alignment-Based Identification Methods

The applications of sequence alignment are limited to apply for closely related sequences, but

when the sequences are divergent, the results cannot be reliable. Alignment-based approaches

are computationally complex, expensive, and time-consuming and therefore aligning large-

scale sequence data is another limitation [55].

The exponential growth of next-generation sequencing (NGS) data has resulted in the

generation of a huge amount of data. This causes several challenges on alignment-based

algorithms.

Raw reads as the output of NGS technology are short, partial, and large in volume with lots

of errors and missing parts [16][41]. About 50% of the reads generated in one run cannot be

perfectly mapped to the reference sequences [56]. Since the assembly of sequence data is

based on the overlapping of the reads, assembly of the less diverse members of a community

may require additional sequencing [57]. Alignment and assembly methods are inadequate

when two reads from the same gene do not overlap [58][59]. If reads do overlap, there is no

guarantee that they are from the same genomes [60][61].

These limitations and challenges cause incapability of alignment-based approaches or they

make the mapping process, assembly, annotation, and the alignment-based identification as a

prolonged, complex, and expensive process. This inability becomes more visible when the

data comes from metagenomics sequencing, which is the sequencing of multiple species at

the same time. Sequence reads come from different regions of various genomes and their

alignment may not be possible.

2.4.2 Alignment-Free Identification

Since alignment-free methods could overcome various difficulties of traditional sequence

alignment approaches, they are increasingly used in NGS sequence analysis, such as

searching sequence similarity, clustering, classification of sequences, and more recently in

CHAPTER 2: Basic Biological Concepts and related challenges

18

phylogeny reconstruction and taxonomic assignments [62][63]. Moreover, they are much

faster than alignment-based methods that mostly run in linear time.

One of the most popular alignment-free methods is based on k-mer/word frequency. In this

method small fragments of sequence called k-mers are used to search the frequency of all

possible k-mers (words) in the entire sequence or in a database and then use statistical

approaches and distance measurement based on these frequency vectors. "k" is a fixed length

of the oligonucleotide to represent the sequence fragment [64][65][66].

There are some other alignment-free approaches:

 Methods based on substrings that search similarity and differences of substrings in a

pair of sequences.

 Methods based on information theory that includes global and local characterization

of DNA, RNA and proteins and region classification

 Methods based on graphical representation that uses for sequence comparison and

characterization

In this research, k-mers/words frequency is considered to propose the methods of

identification.

2.5 k-mers or Words Frequency

In computational genomics, counting k-mers (words of size k) refers to search the occurrence

of all the possible substrings of length k in genome sequence data. It is an essential

component of many alignment-free methods, including genome and transcriptome de novo

assembly, sequencing coverage estimation, error correction of sequence reads, and

metagenomics sequencing analysis. It can be used as a first stage analysis before alignment,

assembly, and an early identification of the species in metagenomics samples. Comparing the

frequency of k-mers in metagenomics sequences is computationally easier than sequence

alignment and it is an important alignment-free method of sequence analysis [67][68].

CHAPTER 2: Basic Biological Concepts and related challenges

19

Using k-mer spectra as a reference-free technique for analyzing next-generation sequencing

data can reveal lower sensitivity to the depth of coverage, errors rate, the probability of reads

contamination, the size of sequenced data, and estimating the level of repetitive elements of

the sequence data. The key factor of using k-mers is directly analyzing of raw reads without

the need for assembly.

2.6 De Bruijn Graph

It is an efficient way to represent all the possible k-mers (subsequences of length k) of a

sequence. These types of graphs are important because of their usefulness in the

reconstruction of genomic sequences and are used in most of the applications of de novo

assembly of the short reads. The n-dimensional Bruijn graph of „m‟ characters is a directed

graph representing overlaps between sequences of characters. The graph has m
n vertices

consisting of all possible k-mers of the given sequence of characters present in the reads

sequence. For example, given the alphabet comprising A, T, G and C, there are 4
3 = 64

nucleotides of length k=3 [69][70].

In a string with length S, The amount of all possible k-mers is {S – k + 1}. As an example in

Figure 2.4 the length of the sequence is S = 17, therefore the amount of all the possibilities of

k=7 are:

 S – k + 1 = 17 – 7 + 1 = 11

CHAPTER 2: Basic Biological Concepts and related challenges

20

Figure 2.4. An example of de Bruijn graph.

Source: http://www.homolog.us/Tutorials/index.php?p=2.1&s=1

In our proposed pipelines explained in Chapters 4 and 5 of this thesis, there are two software

called GkmerG and RkmerG that have been designed for generating all the possibilities of k-

mers of the genomes and short reads. The method of generating k-mers of the two software is

inspired from de Bruijn graph.

2.7 DNA Signature

DNA signature is a short k-mer oligonucleotide fragment with an arbitrary length k, which is

unique or specific to a particular group of species selected from a target genome database.

There are two categories of unique and common signatures according to the purpose of

usage. The presence of a unique DNA signature in any volume of sequences and genetic

materials represents the existence of the corresponding species[71][72][73]. Therefore,

signature discovery is the action of finding specific fragments of the genome in a database.

Any pipeline, application, or algorithm that is designed for DNA signature discovery has to

CHAPTER 2: Basic Biological Concepts and related challenges

21

detect an entire database or multiple databases recursively. The procedure varies according to

the purpose of using DNA signatures.

There exist methods for detecting signatures with different lengths of nucleotide for each

species using k-mer frequencies and pattern comparison approaches. The number of DNA

signatures for each species can differ from a few to millions of signatures. It depends on the

number of species in the target database, the size of the genome, the length of the signature,

and the similarity‟s degree of the genome with its relatives (strains) [71].

Using DNA signatures in the isolated sample studies and Polymerase Chain Reaction (PCR)

base detection is easy to perform, because of few number of targets. But in the metagenomics

studies, it is much more complicated. Taking into account the number of signatures, short

reads and organisms in the metagenomics samples, it is obvious that we are facing massive

data sets. Using ordinary hardware and software tools is impossible since it takes a long time

regardless of any failure during the process.

DNA signature can help the identification process to be easier, cheaper, and faster. Using

DNA signature can illuminate the dark part of sequencing to see who is there rapidly. It can

be used as an application of early identification of the species from raw read sequencing data

in metagenomics and next-generation sequencing (NGS) analysis. Unlike the alignment-

based methods, the DNA signature identification method does not depend on the type of

sequencing technology, the level of sequence coverage and the amount of sequencing

required to obtain complete coverage. It is not also a serious matter if reads are short or long.

According to the literature, DNA signature is mostly used to design primers for Polymerase

Chain Reaction (PCR) assays and probes for DNA microarray assays [71]. Despite the

rapidly increasing of completed genomes and with respect to the importance of DNA

signature for real-time identification of species in metagenomics and clinical diagnostic

assays, the term DNA signature has not been well considered in this area.

Despite the impact of the 16S rRNA on the microbial taxonomy, it is particularly useful for

taxa above the rank of species. Because of sequence similarities, they are not sufficient to

define bacterial species and strains [74].

CHAPTER 2: Basic Biological Concepts and related challenges

22

There are two types of unique and common DNA signature. The unique DNA signature is a

k-mer that occurs once in the target database and plays the role of fingerprint for microbial

species. The common DNA signature is a k-mer that occurs among multiple species or strains

and it can be collected by searching the shared regions through pairwise alignments between

the input genomes. It is used for the design of microarray and PCR-based pathogen

diagnostic assays [71].

2.7.1 Advantages of Using DNA Signature

A major advantage of the use of DNA signatures is the gene-independent and alignment-free

nature of this approach [75]. As nucleotide signatures are generally pervasive across genomes

[76][77], the requirement for the presence of conserved genes or motifs typically used for

identification and classification of sequences is circumvented. DNA signature is an important

method for classifying all genome sequence fragments independently of reference databases

[77].

 The GC (Guanine and Cytosine) percentage of the genome fragments is widely used as a

measure of nucleotide composition [77]. Although the GC% is relatively constant within

species, it varies widely between species. Therefore, GC% is suitable for tracing the origins

of genome fragments within the species [78]. They are not suitable for assigning genome

fragments of metagenomics sequences. As another advantage of DNA signature is it‟s higher

effectively than GC% for assigning of nucleotide composition [79].

DNA signatures are well suited to the analysis of the sequences with lacking a robust

estimate of phylogenetic relationships and to the analysis of complex sequences such as

metagenomics sequences that alignment-based methods often perform poorly

[77][80][81][82][83][84].

Sequence analysis of high-throughput technologies with DNA signature is easier than the

other methods. The amount of DNA signatures and their specificity increase with adding the

length of signature. It causes a wide flexibility of using the method [71].

CHAPTER 2: Basic Biological Concepts and related challenges

23

Relative abundance estimation of microorganisms from the sequence reads in diverse

communities, and searching for genetic variations that are known as genetic polymorphisms

in eukaryotes are another potentially advantages of DNA signatures. Regarding a large

number of DNA signatures in different species and the possibility to choose arbitrary lengths

of them for identification, this approach is suitable, not only for PCR and microarray-based

assays but also has great potential for next-generation sequencing analysis.

The flexibility to choose targeted and non-targeted databases and an arbitrary length of

signatures are other advantages that allow reducing the cost of sequencing by performing

lower-coverage sequencing. Since the length of signatures is short, the size of the reads does

not a serious matter.

Detecting horizontally transferred DNA [79][85][86], reconstruct phylogenetic relationships

[87], and infer lifestyles of bacteriophage [88] are among other advantages mentioned in the

literature.

2.7.2 Disadvantages of Using DNA Signature

Although, it facilitates the analysis of sequence reads, searching and finding DNA signature

itself in targeted databases is computationally intensive. Especial resources and applications

are required. While adding the length of signature increases the specificity and the amount of

DNA signatures, it increases also the difficulties and the use of more computational

resources. Any change or update in the completed genome databases that are used as the

target for finding DNA signature can change the amount of DNA signatures of a species in

the database [71].

CHAPTER 3: Basic Computational Concepts

24

Chapter 3

Basic Computational Concepts

CHAPTER 3: Basic Computational Concepts

25

During the last decades, molecular biology has been revolutionized not only the development

of increasingly rapid DNA sequencing techniques but also the computer technologies used to

store, manipulate, distribute, and analyze huge amounts of biological information. It can be

said that bioinformatics is the application of computer technology for managing and

analyzing biological data. Bioinformatics is an area of interdisciplinary research that acts as a

bridge between the biological sciences and computational sciences. The objective of the

bioinformatics is to discover the important information that is hidden within huge volumes of

data and get a clear view of the biology of organisms. Data mining that is the process of

extracting significant information from large databases plays a significant role in

bioinformatics. Data Mining is an interdisciplinary sub-field of computer science, involving

methods at the intersection of statistics, machine learning, artificial intelligence, database

technology, data visualization, pattern mining, and pattern recognition [89]. It includes the

analysis of large data sets (e.g. genomics data sets) and the search for relationships among

variables, through computationally intensive methods.

Mining such large high-dimensional and complex datasets in bioinformatics need intensive

computational resources and applications. Parallel and distributed systems and computational

methods have a pivotal role to overcome the challenges in bioinformatics analysis.

3.1 Distributed Systems

The development of distributed systems began around 1980 with the advent of Local Area

Networks (LANs.). Distributed systems consist of a (possibly very large) network of stand-

alone computers with different system software that communicate with each other, using a

distribution middleware as illustrated in figure 3.1. Another definition is as follows: "A

distributed system consists of a collection of computers that do not Share neither their

physical memories nor their clocks" [90]. On the other hand, each computer of a distributed

system has its own processor, local memory, and physical clock. In order to set up the

CHAPTER 3: Basic Computational Concepts

26

distributed system, different network technologies are used as well. An important motivation

for the development of distributed systems is the sharing of resources [91].

Figure 3.1. A distributed system organized as middleware. The middleware layer extends

over multiple machines.

Source: http://www.ejbtutorial.com/distributed-systems/introduction-to-distributed-systems

The goals of distributed systems are making resources available, distribution transparency,

openness (interact with services from other open systems, regardless of the underlying

environment), fault-tolerant (In case of failure of one or more components, a fault-tolerant

design allows a system to continue its function properly at a reduced level, rather than failing

completely.), and scalability. A distributed system is more scalable than a single computer

since the performance can easily increase by adding additional computers [92]. From the

user’s point of view, distributed system appears as a single coherent system, regardless of

where and when interaction takes place and the communication components are mostly

hidden from the users.

Distributed systems are the backbone of many applications such as World Wide Web,

industrial control applications, ATM (cash machine) distributed databases, network

computing, global positioning systems, air-traffic control, enterprise computing, office

automation, and big data management and analytics. With the advent of mobile

http://www.ejbtutorial.com/distributed-systems/introduction-to-distributed-systems

CHAPTER 3: Basic Computational Concepts

27

communication networks and mobile systems, distributed systems are experiencing an

intensive development in recent years.

3.2 Types of Distributed Systems:

3.2.1 Distributed Computing Systems

Distributed computing is designed to solve massive computing problems using a large

number of computers organized in clusters that are embedded in a distributed

telecommunications infrastructure. In distributed computing, components of a software

system are shared among multiple computers to solve large problems with splitting them to

the smaller problems in order to improve the efficiency and performance [93]. Grid, Cluster,

and Cloud computing are the most common types of distributed computing systems.

3.2.2 Distributed Information Systems

An information system (IS) is a tool for gathering and communicating information for the

purpose of meeting the needs of its users. An IS supports enterprise activities by providing

the information it needs or by automating the activities associated with the activities. It

includes all the resources available for gathering, managing, using, and distributing

information within the organization. Typical applications for information systems can be

found in almost all commercial and many technical fields; for example reservation systems,

banking systems, telephone companies, and engineering applications [94]. They have become

an important factor in successful economic development and competitiveness of the

businesses, both in the domestic and foreign markets [95].

3.2.3 Distributed Pervasive /Embedded Systems

Distributed pervasive systems try to bring the flexibility of information technology to entire

aspect of daily life. Pervasive computing is a growing trend in connection with the Internet of

CHAPTER 3: Basic Computational Concepts

28

Things. More and more microprocessors are being implemented in everyday objects so they

can communicate information. Thus, computing is everywhere and ubiquitous. Devices for

pervasive computing are always connected and permanently available. This technology has

focused on wireless technologies, advanced electronic devices, and the Internet. The goal of

the researchers in the area of pervasive computing is to create intelligent products that are

connected to the Internet and their generated data are easily available [96][97].

3.3 Parallel and Distributed Computing

Parallel computing is a form of processing that allows many computing devices to work

simultaneously to solve a problem [98][99].

Traditionally, parallelism has been used in supercomputing centers to solve large problems,

but in recent years, distributed systems have become increasingly important because of

improvements in computer networks and the spread of multi-core processors. Clusters,

Clouds, and Grids made possible the availability of distributed computing platforms at low

cost. It is no longer exclusive to specialized environments and high-performance computing

centers [100].

Efficient development of distributed and parallel applications is of crucial importance,

because most of the systems currently being developed are distributed and parallel.

Many classification schemes have been proposed, but the most popular is the taxonomy of

Flynn proposed by Michael J. Flynn [101], which is based on the way the data flow and

instructions are organized. The central idea is based on the analysis of the flow of instructions

and data, which can be simple or multiple, giving rise to the appearance of 4 types of

machines. This classification is based on the number of flows of instructions and

simultaneous data that can be handled by the system during the execution of a program. A

flow of instruction is a sequence of instructions transmitted from a control unit to one or more

processors [102].

CHAPTER 3: Basic Computational Concepts

29

The possible categories based on Flynn classifications are as follows:

3.3.1 Single Instruction Stream, Single Data Stream (SISD)

This represents the classic Von-Neumann machine, in which a single program is executed

using a set of data specific to it. It is composed of a central memory where the data and

programs are stored and a processor. It is shown in figure 3.2. This Platform can only give a

kind of virtual parallelism through the paradigm of multitasking, in which the processor time

is shared between different programs. Thus, more than parallelism, what this platform

supports is a type of concurrency [103][104].

Figure 3.2. SISD Architecture. A single computer that has one control unit, one processor

unit, and one memory unit.

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main121.html

3.3.2 Single Instruction Stream, Multiple Data Stream (SIMD)

It is a class of parallel computers in which the array of processing elements executes the same

operation on multiple data points at the same time. Processor arrays are typical examples of

this kind of architecture. In these architectures, a controller receives and decodes sequences

of instructions to execute, and then send them to multiple processors slaves. The processors

are connected through a network. The data can be processed in a memory space which is

common to all processors or in a memory space of each unit. Figure 3.3 illustrates SIMD

architecture. All processors work with perfect synchronization. In this class, each processor is

simply an arithmetic-logic unit and has a single unit of control. All processors execute each

received operation at the same time, whereby each of them executes the same instruction on

different data [105].

CHAPTER 3: Basic Computational Concepts

30

Figure 3.3. SIMD Architecture. Performing an operation on multiple data.

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main121.html

This type of computing platform has been developed due to the large number of scientific and

engineering applications that are well adapted to this class such as image processing, particle

simulation, finite elements, molecular systems, etc. In this class there is a simple sequence of

operations, operating at the same time on a set of data.

3.3.3 Multiple Instructions Stream, Single Data Stream (MISD)

It is a system with multiple instructions that operate on a single data stream [106]. All

processors receive instructions individually from their own control unit and operate on a

single data flow in accordance with the instructions they have received from their respective

control units. These processors operate simultaneously. This architecture is known as a

systolic array or array of processors for pipeline execution of special algorithms. An MISD

computer is similar to a segmented superstructure, in which each processor performs a part of

the operation on the data flow. MISS computers contain multiple control units, multiple

processing units, and a shared memory unit, as it is shown in Figure 3.4.

CHAPTER 3: Basic Computational Concepts

31

Figure 3.4. MISD Architecture. Performing multiple operations on a single data flow

(assigned to processors from 1 to n).

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main121.html

3.3.4 Multiple Instructions Stream, Multiple Data Stream (MIMD)

It is the most general model of parallelism and because of its flexibility, a wide variety of

parallelism can be exploited. The basic idea is that multiple heterogeneous tasks can be

executed on multiple data at the same time and each processor operates independently with

occasional synchronizations with others [107]. It is composed of a set of processing elements

where each one performs a task independent or not, with respect to the other processors. The

form of programming usually used is a concurrent type, in which multiple tasks can be

executed simultaneously. Many multiprocessor systems and multi-computer systems fall into

this category. The MIMDs can be classified into two types of distributed memory and shared

memory [108]. Figure 3.5 is a type of MIMD system with shared memory.

CHAPTER 3: Basic Computational Concepts

32

Figure 3.5. MIMD architecture with a shared memory (assigned to processors from 1 to n).

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main121.html

3.4 Parallel Programming

Parallel computing is a programming technique in which many instructions are executed

simultaneously. It is based on the principle that large problems can be divided into smaller

parts that can be solved concurrently and in parallel. It focuses on the distribution of data in

parallel among the different computational nodes. Parallelization often leads to perform

similar sequences of operations (not necessarily identical) or functions that are performed on

the elements of a large data structure [109][110].

The computational needs of many applications require the development of efficient and

secure software for multiprocessor platforms. Since the rise of multi-core processors and

computer networks has increased; parallel programming is required to use parallel and/or

distributed systems efficiently. Parallel software programs are more difficult to write than

sequential ones [111].

CHAPTER 3: Basic Computational Concepts

33

Hadoop, a parallel and distributed processing infrastructure and MapReduce programming

models are typical examples of parallel and distributed computing.

3.5 The Apache Hadoop

The dramatic increase in the amount of data in various fields of science revealed the

inadequacy of existing ordinary computers for big data analytics. It has prompted the

developers to compose tools and applications using parallel and distributed computing that

could be applicable on commodity hardware. Big Data defines the set of new technologies

and business applications for the management of massive data in large structured and

unstructured databases. The Apache Hadoop project has been designed as an open source and

Java-based software framework for parallel and distributed computing on large datasets using

commodity hardware. Hadoop allows running simple programming models on large

structured and unstructured datasets across an arbitrary number of nodes in a cluster. From

the user’s point of view, it looks like a single computer [112][113][114].

A Hadoop cluster has a single master and several slave nodes (Data-nodes) that are connected

to each other through Secure Shell. It can run on a single node or multi-node cluster with

thousands of nodes. Hadoop separates and distributes the files that contain the data

automatically, as well as splitting the job into smaller tasks and executing them in a

distributed way and recovering from failures automatically and transparently to the user.

Although, the function of Hadoop is defined as a distributed system with multi-computer

nodes, the ability of Apache Hadoop to use MapReduce for parallel processing of large data

sets is an extra power to let even a single-node run program on the large data sets, larger than

its memory and CPU capacity. Hadoop handles any types of data from structured,

unstructured, text files, log files, images, audio files, communications records, etc. The

Hadoop core has two primary components: Hadoop Distributed File System (HDFS) and

MapReduce.

CHAPTER 3: Basic Computational Concepts

34

3.5.1 Hadoop Distributed File System (HDFS)

HDFS [115] is the data storage part of Hadoop. It is designed to store and high-throughput

access of large datasets across multi-nodes of clusters. HDFS breaks down the data into small

block-sized chunks, which are stored as independent units. HDFS provides input data storage

for the MapReduce framework. It is a highly fault-tolerant distributed file system designed

for use on low-cost hardware.

HDFS has three main components [41][116]:

1. Name-Node: HDFS has master/slave architecture. The cluster consists of a single

Name-Node; it is the master of the file system. It is responsible for managing the

blocks in Data-Nodes and maintains the metadata and indexes of the blocks, but not

the data itself.

2. Data-Nodes: They are the workhorses of the file system. Name-Node breaks down

data into block-sized chunks, which are stored as independent units in Data-Nod.

3. Secondary Name-Node: It keeps a copy of the merged namespace image, which can

be used in case of any failure for the Name-Node.

3.5.2 MapReduce

MapReduce [117] is a programming model for parallel and distributed processing.

MapReduce works by breaking the processing into two phases: the map phase and the

reduce phase. The Map phase processes a set of data in parallel and returns it as an

intermediate result and then the Reduce phase reduces it to a smaller set of data. Each

Map and Reduce works independently. The process is illustrated in Figure 3.6. In fact,

MapReduce decreases the input large amount of raw data into useful data [118][71].

In a Hadoop cluster, the input data is in the form of a file or directory and is stored in the

Hadoop file system (HDFS). The MapReduce paradigm sends the computational process to

the data-node where the data will be processed. When a MapReduce process is launched, the

CHAPTER 3: Basic Computational Concepts

35

tasks distributed among the different servers in the cluster. The input file is passed to the map

function line by line. The mapper processes the data and creates several small pieces of data.

The reduce stage processes the intermediate values coming from the map to produce the final

output of MapReduce. The Hadoop framework itself manages the sending and receiving of

data between nodes. Most of the computation happens at data-nodes (where the data is

placed) in order to minimize network traffic. Once all the data has been processed, the user

receives the result of the cluster. The two main components of MapReduce are:

1. JobTracker: As the Master of the system, it is responsible for managing the map and

reducing tasks.

2. TaskTracker: As the slave, it receives the mapper and reducer task from JobTracker

and returns the results to the JobTracker after execution.

Hadoop is highly faulted tolerant. In order to prevent any failure in the process, HDFS creates

multiple copies of data through the blocks, 3 copies by default. Name-Node can detect any

failure in Data-Nodes or blocks and JobTracker also can detect any failure of TaskTrackers

and will replace them [41].

Figure 3.6. An example of the overall MapReduce WordCount process.

The original image was made by Trifork.

Source: https://cs.calvin.edu/courses/cs/374/exercises/12/lab/

CHAPTER 3: Basic Computational Concepts

36

3.5.3 Hadoop YARN (Yet Another Resource Negotiator)

As another component of the second-generation Hadoop 2 released by the Apache software

foundation, YARN (Yet Another Resource Negotiator) was added in order to upgrade

scheduling, resource management, and execution in Hadoop. YARN is a cluster management

technology. It consists of a central resource manager and a manager for each node, which

handles controlling a single node [119][120].

YARN has two main components shown in Figure 3.7: a central resource manager that

monitor how applications use the Hadoop system resources and several node managers (one

for each node) that monitor the processing operations of individual nodes in the cluster.

Separating HDFS from MapReduce with YARN makes the Hadoop environment more

suitable for operational applications that cannot wait for batch jobs to be completed [121].

Figure 3.7. YARN architecture.

Source: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

CHAPTER 3: Basic Computational Concepts

37

3.5.4 Hive

The Apache Hive [122][123][124] is a data warehouse infrastructure on the top of the

Hadoop MapReduce framework. It is designed to query a large dataset that is stored in the

HDFS using an SQL-like language called HiveQL. Hive is designed to write once and read

several times. Real-time queries and row-level update are not possible. Facebook Data

Infrastructure Team started to create Hive in January 2007 to bring the familiar concepts of

tables, columns, partitions, and a subset of SQL to the unstructured world of Hadoop and it

was open sourced in August 2008 [125]. Traditional relational databases require the data to

be in a structured format, while Hive can handle both structured and unstructured

information. It lets the user process large datasets with relatively little effort and in a

reasonably short time. Hive can handle querying on billions of rows in a table or multiple

tables.

3.5.5 NoSQL

"NoSQL" Stands for Not Only SQL. The term "NoSQL" was used by Carlo Strozzi for the

first time in 1998 [126]. It is a non-relational database. One of the aspects of NoSQL is its

ability to handle database analytics of big data sets in parallel and distributed platforms like

Hadoop on commodity hardware. Hive and Hbase are types of NoSQL applications on top of

the Apache Hadoop file system. NoSQL databases can handle unstructured data such as text

files, log files, email, social media, and multimedia. Horizontal scaling is one of the most

important features of NoSQL databases and allows us to add more nodes to our distributed

system. Vertical scaling only allows increasing the power of existing machine

[41][127][128].

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

38

Chapter 4

Proposed Method of DNA

Signature Discovery

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

39

The aim of this chapter is to outline the research approach, design, and methods used in this

study to find the best solutions for the following three primary questions that are the major

computational challenges of high-throughput sequencing and metagenomics data analytics.

1. What is the proper alignment-free method for rapidly identifying the species and

strains from raw read sequencing data?

2. What is the proper method of finding DNA signatures from genome databases?

3. What is the proper method to use less computational resources?

The initial section of this chapter proposes an alternative alignment-free method for real-time

identification of species and pathogens from raw read sequencing data. The next section

provides an overview of the state-of-the-art methods and discusses the challenges and

limitations of these methods in comparison with our proposed method of using DNA

signature as a solution for the first question.

The rest of the chapter describes a novel method of searching DNA signatures among

targeted databases and non-targeted databases. In addition, we addressed the resources of the

data used in this research and explained how to prepare the data for using in the proposed

method.

4.1 Proposed Alternative Method of Identification

In Chapters 1 and 2, we discussed the importance of real-time identification of species and

pathogens from raw read sequencing data, particularly the metagenomics data, which comes

from sequencing of very diverse and complex microbial communities. Since the traditional

identification of species based on morphological, physiological, and structural characteristics

are unable to identify culture-negative species, identification and taxonomy of organisms

would no longer depend on morphological characteristics (visible characters), but only on

DNA sequences. We discussed the two common types of sequence-based identification

methods, the alignment-based and the alignment-free methods. The inability of alignment-

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

40

based approaches for rapid identification purposes caused a necessity for shifting into the

alignment-free approaches as an alternative method.

Among the alignment-free approaches, the most popular options are to use marker genes such

as the 16S rRNA gene. For many years, 16S rRNA was used as the primary tool for

taxonomic assignment of bacterial species. 16S rRNA enables identification of a few

numbers of targeted species using PCR or targeted metagenomics techniques. Although the

progress of the next-generation sequencing has greatly increased the depth of sequencing

coverage, the length of the reads is very short. The shortness of the reads, along with other

limitations caused by sequencing technologies (mentioned in Chapters 1 and 2), reveals the

fact that 16S rRNA genes are inefficient agents for many of real-time analysis of short reads

generated from high-throughput sequencing tools; De novo assembly is required to obtain

longer sequences from the reads.

The exponential increase in the number of completed genomes in last two decades represents

a growth of more than 100-fold for each decade. There were only two completed bacterial

genome sequences in 1995 [129]. A decade later, the number of completed genomes

increased to 300 and only two metagenomics projects were published in 2006 [130]. Based

on NCBI
1
 genome database, the number of sequenced bacterial genomes increased to more

than 30,000 and thousands of metagenomics projects were published according to the

GOLD
2
 database by the end of 2014 [129].

The completion of numerous whole genome projects and availability of completed genome

databases in recent years has provided a novel opportunity, in order to find alternative

taxonomic solutions than using 16S rRNA gene. Due to the complex sequences from diverse

communities of microbes, 16S rRNA gene comparison has to be replaced by more

comprehensive approaches.

1- The National Center for Biotechnology Information

2- Genomes Online Database

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

41

As defined in Chapter 2, DNA signature is a short k-mer oligonucleotide fragment with an

arbitrary length k which is unique or specific to a particular group of species selected from a

target genome database. There are two categories of unique and common signatures

according to the purpose of usage. The presence of a unique DNA signature in any volume of

sequences and genetic materials represents the existence of the corresponding species.

Therefore, signature discovery is the action of finding specific fragments of the genome in a

database [131].

Any pipeline, application or algorithm which is designed for DNA signature discovery, has to

detect an entire database or multiple databases recursively. The procedure varies according to

the purpose of using DNA signatures.

It was previously used to design primers and probes for PCR and microarray assays.

However, the completion of tens of thousands of bacterial genomes in recent years has

provided the opportunity to use DNA signature for rigorous analysis of metagenomics

sequences.

The primary goal of this research is proposing an alternative fast and cost-effective method to

allow a rapid identifying the species and the strains from raw read metagenomics sequencing

data, regardless of aforementioned limitations. In this research, we have proposed to use

DNA signature as a tool to facilitate and speed up the taxonomic assignment of

microorganisms in high-throughput sequencing analysis and metagenomics.

4.2 Overview of the Related State-of-the-Art Methods

Several tools and algorithms of DNA signature discovery have been proposed in the literature

in order to facilitate the design of microbial and pathogen-based diagnostic assays; notable

instances are discussed next.

TOFI [1132] is designed to identify DNA fingerprints of a single genome as suitable probes

for microarray-based diagnostic assays. It utilizes the whole genome of the pathogen instead

of the special gene (such as 16s rRNA) or special regions of the genome for designing probes

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

42

[133]. In order to design DNA microarray probes, TOFI reduces the solution space by

discarding DNA sequences that are common to the target sequence and one or more

phylogenetically close sequences. Then, each extracted DNA microarray probe is compared

with all DNA sequences from the chosen reference database [132].

TOPSI [134] is a pipeline for real-time PCR signature discovery. TOPSI detects common

signatures among multiple strains of bacterial genomes by collecting the shared regions

through pairwise alignments between the input genomes. It is an extended version of TOFI

[134][135].

Insignia [136] provides unique signatures that can be used to design primers for PCR and

probes for microarray assays. It has two main components: the web interface and the

computational pipeline. The computational pipeline uses grid computing and an algorithm to

perform pairwise alignment of every pair of target genomes and background genomes for

their comparison. Insignia provides signatures which are unique to the background genome

database (BLAST database) [137]. In fact, when a user adjusts the desired options in the

Insignia web interface, a query runs on the database that contains the results of DNA

signature discovery which has already been provided.

TOFI, TOPSI and Insignia use the open source software MUMmer [138] that implements a

suffix tree-based algorithm for comparing genomic sequences [132][134][136]. It is a

package for the alignment of very large DNA and amino acid sequences. Furthermore, these

three pipelines use BLAST for the evaluation of signatures regarding specificity.

CaSSiS [139] is an algorithm for detecting signatures with maximal group coverage within a

user-defined specificity range for designing primers and probes. It provides signatures for

single or group organisms in hierarchically-clustered sequence datasets. This algorithm

calculates the Hamming-distance between a signature candidate and its matched targets.

CaSSiS uses the rRNA sequences provided by the SILVA database to create a signature

collection for designing primers and probes.

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

43

The Consecutive Multiple Discovery (CMD) algorithm [140] is an iterative method including

the parallel and incremental signature discovery (PISD) method as a kernel routine to

discover implicit DNA signatures. PISD is a combination of the Hamming-distance-based

algorithm, the IMUS approach [141] and Zheng's method (UO) [142] in terms of using the

corresponding incremental and parallel computing techniques. PISD uses a mismatch

tolerance and previously discovered signatures of specific lengths as candidates to find

shorter signatures instead of scanning the whole database. CMD and PISD can find unique

signatures for single sequences, but cannot search for signatures that are specific for groups

[141]; they are designed to find signatures of sequences from Expressed Sequence Tags

(ESTs)
 1

 databases.

The internal-memory-based unique signature discovery algorithm IMUS [141] is an

improvement of Zheng's method [142] which is based on the Hamming-distance for detecting

unique signatures. IMUS tries to discard similar substrings of a sequence in order to obtain

the DNA signatures as unique fragments. PIMUS [143] is the improved version of IMUS.

Both algorithms load the complete DNA database into the main memory to find unique

signatures in ESTs datasets.

DDCSD (Distributed Divide-and- Conquer-based Signature Discovery) [144] applies a

divide-and-conquer strategy for detecting DNA signatures. When the dataset is large and

cannot be loaded into the memory all at once, the algorithm splits it into smaller segments

which parts are loaded and processed one by one. The discovery node and the discovery

routine are the main components of this algorithm. When the size of the dataset is larger than

the available memory, the discovery routine splits the dataset into multiple parts which are

processed one at a time by the discovery nodes. This algorithm is based on searching for

similarities and mismatches in the patterns. Similarly to CMD, PISD, IMUS, and PIMUS,

this algorithm is designed to search ESTs datasets, but it can process larger databases such as

the human whole-genome ESTs database, as well.

1- Short fragments of mRNA sequences obtained by single sequencing of randomly selected

cDNA clones. ESTs are mostly used to either identify gene transcripts or as an alternative

cheap method of gene discovery and gene sequence determination

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

44

Jeliyfish [145] is an algorithm to count the k-mers in parallel. This algorithm implements

lock-free hash table optimization for counting k-mers up to 31 bases in length.

There are other approaches to find signatures or probe sequences, such as PROBESEL [146],

OligoArray [147], OligoWiz [148], YODA [149], PRIMROSE [150], and ARB-ProbeDesign

[151]. All of them are limited to one selected target or single sequence in each run, thus, they

are not applicable for large datasets [139]. Table 4.1 contains a comparison of the more

popular DNA signature discovery methods.

Table 4.1. A comparison of signature discovery algorithms according to the data format,

computational resources, and ability to process single or multiple sequences.

Name Data

Format

Adopted platform according to the

publication

BLAST

specificity

Ability

for single

sequence

Ability for

multiple

sequences

TOFI FASTA
64 x 1.5 GHz Itanium 2 processors with

64 GB of shared memory
✓ ✓ ✕

TOPSI FASTA 98-cores Linux cluster ✓ ✓ ✓

Insignia FASTA 192-node Linux cluster ✓ ✓ ✓

CaSSiS rRNA
Intel Core i7 CPU (4 cores, 2.67 GHz)
with 24 GB of RAM

✕ ✓ ✓

CMD and

PISD
ESTs

Dell PowerEdge R900 server with two

Intel Xeon E7430 2.13 GHz quad-core

CPUs, 12 GB RAM

✕ ✓ ✕

IMUS ESTs Intel 2.93GHz CPU ✕ ✓ ✕

PIMUS ESTs
Intel Core i7 870 2.93GHz quad-core

CPU and 16 GB RAM
✕ ✓ ✕

DDCSD ESTs

A Master Node: Intel Core i7 CPU 870

at 2.93 GHz and 16 GB RAM, 10 Slave

nodes: Intel Core i7 CPU 3770 K at 3.50

GHz and 32 GB of RAM for each one

✕ ✓ ✓

In practice, despite the respected efforts of above mentioned and other methods, there are still

a number of limitations for DNA signature discovery.

Since most existing methods of DNA signature discovery require significant computational

resources, they are not applicable to the entire research community. Due to the size of

genome databases, the large amount of RAM and CPU capacity requirements and long

execution times are major limitations of most of the above methods that are based on pattern

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

45

comparison and pairwise alignment of the genomes. The determination of the mismatch

tolerance level as a discovery condition also influences the results.

In some cases, it is necessary to load the whole dataset into the main memory for searching

for unique or common signatures. When the size of the data exceeds the available memory,

the execution will fail. For instance, in IMUS, PIMUS, and Zheng's method, the entire

database has to be loaded into the memory [144]. Thus, for such sequential algorithms like

IMUS, increasing the number of CPU cores does not increase the discovery efficiency of the

algorithm [143]. Another limitation for most of the above methods is the lack of efficiency to

find both unique and common signatures simultaneously. Most of them are capable of finding

only DNA signatures of a single genome. Another limitation of some of these methods is the

lack of the possibility to select an arbitrary length (k) for the signatures.

The additional challenge as another major limitation for DNA signature discovery methods is

the lack of option in the choice of target and non-target genome databases. TOFI, TOPSI, and

Insignia use BLAST databases (such as nt and nr databases) as the background or non-target

genomes for specificity evaluation of signatures and there is no option for the user to choose

other target and non-target genome databases. As an example, in the Insignia web interface,

the user receives a quick response without special requirements on local computational

resources. However, this privilege comes with the restriction that there is no option to use

other sequences as the target and background genomes because they are part of the Insignia

database [71][144]. With the advancements in the sequencing technologies and the increasing

number of completed genomes, whole genome shotgun sequences, and draft genomes, it is

obvious that some of these signatures will not be unique later using BLAST specificity

evaluation. This issue is a challenge not only for DNA signatures but also for all the

sequence-based identification methods.

Geographical distribution and diversity of the species, ecological and chemical status, host

and environmental factors, isolation or complexity of the samples, and many other factors can

have a great impact on the selection of target and non-target genome databases for DNA

signature discovery. When the absence of a considerable number of species in the sample is

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

46

evident, it seems quite questionable that we eliminate a large number of useful DNA

signatures through their assessment and specificity evaluation against the entire background

sequence databases such as BLAST. For instance, when we sure that in the sample there is

nothing from Zebrafish, Muse, Chimpanzee, Black cottonwood, Macaca Fascicularis, etc. we

do not need to check the uniqueness of our DNA signatures against their genome. Otherwise,

we will lose a significant number of signatures.

Expressed sequence tags (ESTs) are short fragments of mRNA sequences obtained by single

sequencing of randomly selected cDNA clones. ESTs are mostly used to either identify gene

transcripts or as an alternative cheap method of gene discovery and gene sequence

determination [152].

IMUS, PIMUS, CMD, PISD, and DDCSD are designed to scan ESTs sequences for the

unique signatures. However, the ESTs represent only fragments of genes, not complete

coding sequences [153]; therefore, many signatures are missed.

4.3 Proposed Method of DNA Signature Discovery

To overcome the aforementioned challenges of DNA signature discovery, we proposed our

method as a powerful pipeline. The pipeline HTSFinder (High-Throughput Signature Finder)

has been designed in order to enhance the usability of DNA signatures for massively high-

throughput sequencing analysis.

The pipeline HTSFinder has significant advantages compared with the DNA signature

discovery pipelines and algorithms described above.

• First, HTSFinder is capable of detecting all unique, common, and maximal group

coverage signatures of the entire database or multiple databases simultaneously.

• Second, it becomes possible to select target and non-target genome databases, based

on user requirements. For instance, we have the ability to use both forward and

reverse-complement genome sequences of a database for detecting DNA signatures.

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

47

• Third, the pipeline can consider either a cluster of low-cost computer nodes that are

commonly available in research facilities or a high-performance computer (HPC).

• Finally, the flexibility of the different phases of the pipeline makes it suitable for

other bioinformatics and metagenomics studies such as Next-Generation Sequencing

(NGS) analysis.

HTSFinder is very efficient and powerful with high accuracy for both unique and group-

specific signatures without discarding even a single signature from the database, except those

ones that contain IUPAC (International Union of Pure and Applied Chemistry) nucleotide

codes such as K, M, N, R, S, W, Y, etc. Our GkmerG (Genome k-mer Generator)

component will remove any k-mer containing IUPAC nucleotide codes after generating the k-

mers. In this pipeline, there is nothing to worry about the mismatch tolerance and complexity

of comparison and pairwise alignment search methods.

4.3.1 Description of the HTSFinder Pipeline

HTSFinder consists of three computational phases as shown in Figure 4.1. This pipeline

generates all the possibilities of k-mers for every genome individually and then determines

their frequency in the entire database. Finally, DNA signatures of every species or strain are

obtained in the database or multiple databases that have been involved in the pipeline.

HTSFinder implements the parallel and distributed computational tool Hadoop for the second

and third phases.

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

48

Figure 4.1. The three main phases of HTSFinder for detecting DNA signatures. We can

repeat the second phase with the obtained results if required.

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016.

4.3.2 Data Preparation

The first phase of the pipeline is carried out by GkmerG that is designed to obtain all the

possibilities of k-mers of genome sequences with FASTA format
1
 (*.fna or *.fa). The method

of generating k-mers in this software is inspired from De Bruijn graph
2
.

This software tool removes the remarks of the genome and splits it to the specific length k.

Then, it eliminates the k-mers that contain IUPAC nucleotide codes and every subsequence

of length less than k which has remained from the end of the sequence after splitting. Figure

4.2 illustrates the split of the genome by GkmerG. Concatenating the files, sorting k-mers and

removing all duplicates except one are the last steps of GkmerG. For the species with

multiple chromosomes and some bacterial genomes that are comprised of multiple

chromosomes [154] and plasmids, GkmerG concatenates them into a single file before

sorting at the end of the first phase.

1- It is a text-based format for representing nucleotide sequences using single-letter codes.

2- Explained in Chapter 2.

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

49

GkmerG copies the original database into another directory as the reference database with

appending a number to the beginning of every species name in it, to simplify future data

management. Once we get the output of the first phase for a database, we can keep it forever.

In the case of any update in the database, we need only to repeat this phase for the updated or

new genomes, not for the whole database. The output of GkmerG is the input for the second

phase in the pipeline described in the next section.

Figure 4.2. Splitting of the genome by GkmerG for k = 18 to get all the possibilities of 18-

mers. Generating k-mers for a single genome with GkmerG includes purgation, splitting,

concatenation, cleaning, sorting, and removing duplicate except one. The output of GkmerG

is a file containing k-mers of a genome in a single column. The labels above the file numbers

in this figure represent the beginning of four k-mers in the head of files.

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016.

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

50

In this research, we used the Hadoop framework and WordCount program to calculate the

frequency of k-mers in very large genome datasets. In Hadoop 1.2.1 and earlier releases, the

JAR (Java Archive) file of WordCount is also included.

4.3.3 Pipeline Implementation

In the second phase of the pipeline, we copy all the output files of the first phase to the HDFS

(Hadoop Distributed Filesystem) and run the WordCount program.

The result of this phase is a large file containing sorted and a non-duplicate list of k-mers

obtained from the files generated in the first phase in one column and another column

containing the frequencies of k-mers among genomes of the database. A k-mer with a

frequency value 1 means that this k-mer is a unique substring, so appeared only in one of the

species in the database. These occurrences are primarily what we are looking for as unique

DNA signatures. The value in front of a k-mer indicates the number of genomes (species) that

contain the given k-mer. Table 4.2 shows a portion of the Hadoop and WordCount output.

For instance, the 18-mer with frequency=8 in the first row of Table 4.2 means that this 18-

mer occurs in 8 genomes among the 2,773 bacterial ones, while the 18-mer in the fourth row

is a unique signature in the database. In the second phase of the pipeline, we can extract all

unique signatures or group-specific signatures due to the frequency, but we cannot determine

the owner of the signatures.

Table 4.2. An example of Hadoop and WordCount results in the second phase.

Signatures or 18-mers Frequency in the database

AAAAAAAAAAAAAAAGAG

AAAAAAAAAAAAAAAGAT

AAAAAAAAAAAAAAAGCA

AAAAAAAAAAAAAAAGCC

AAAAAAAAAAAAAAAGCG

AAAAAAAAAAAAAAAGCT

AAAAAAAAAAAAAAAGGA

AAAAAAAAAAAAAAAGGC

AAAAAAAAAAAAAAAGGG

AAAAAAAAAAAAAAAGGT

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

51

Once we execute the second phase for a database we can use the results in the future until the

next update of the database. However, as a difference from the updatable first phase, in the

case of any update in the database, we have to repeat the second phase for the entire database.

When there are multiple target and non-target databases, it is possible to merge all of them in

the pipeline, but as the input grows larger, it requires far more computational resources. As a

suggestion, it is better to implement the first and second phases for every database,

separately. With respect to the WordCount function that discards repeated k-mers and keeps

only one in the output, we can reduce the size of output files and also the execution time.

Then, we can merge the output of the second phase for all the databases and repeat the second

phase with WordCount in Hadoop, one more time. In this case, we have a shorter process.

Moreover, for the future execution, we can select the output files of the second phase as the

candidate of their corresponding databases. In this case, we will not need to perform the first

phase of the pipeline for the previously processed databases and we can repeat the second

phase for target and non-target databases with merging the smaller files. For instance, the

output of the first phase for the bacterial genome database resulted in a file with 177.35 GB

of 18-mers. However, in the second phase, the size of this file was reduced to 103.03 GB that

contained all the candidates of 18-mers in the database without any repeat. We can use this

file as the candidate of bacterial genome database for further processing. Figure 4.3 illustrates

the process of finding DNA signatures of the target database among non-target databases.

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

52

Figure 4.3. The recommended process for detecting unique DNA signatures of a target-database

against non-target databases.

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016.

In step 2 of the figure, the frequency number of k-mers varies from 1 to n, where n is the total

number of the databases that are used in the pipeline. Since there are four databases in this

figure, the frequency of k-mers in step 2 is from 1 to 4. In step 3, there are two input files

with the list of non-repeated k-mers; therefore, the frequency of k-mers in the output is 1 or 2.

Hence, k-mers with frequency 2 that are common in both input files are the unique signatures

of database 1 against all databases.

The input for the third phase of the pipeline is the output of the first and second phases. The

proper steps of the third phase are described in the next section.

The Apache Hive lets the user process large datasets with relatively little effort and in a

reasonably short time. This research proves the efficiency of Hive to handle querying on

billions of rows in a table or multiple tables. With HiveQL we can extract whatever we need

from the results of the second phase of the pipeline. We can extract all the unique signatures

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

53

of a specific species in the database or extract group-specific signatures which are common

between 2, 3, 4, etc. Due to the flexibility of querying in Hive, there are various ways to

create the tables and design the queries in the third phase. Optimization techniques are very

effective for reducing the time-consumption and computational resource usage in a Hadoop

cluster. Running time, CPU usage, memory usage, and speed of disk reading of the nodes are

the subjects of optimization in a Hadoop cluster. Managing the maps according to the size of

data and memory is critical. To get a better and faster operation, optimizing the

configurations and parameters of Hadoop is also required in order to reduce the data transfer

and communication between nodes of the cluster [155]. Moreover, query optimization and

designing the tables in Hive for preventing a repetition of queries are very important.

After loading data into the tables created with Hive, we can use queries such as SELECT and

JOIN to extract relationships. We should create two tables with Hive: one for the output of

the first phase and another one for the complete or a special part of the output of the second

phase. With considering the ability of Hive to query very large tables and in order to prevent

repeating the queries, we added a column containing the reference number to the files from

the first phase. For example file 1 contains 18-mers from the first species in the database, so

we inserted a column containing reference index 1 before all 18-mers in this file. Then, we

merged all the 2,773 files in a single large one (220.35 GB) with two columns of k-mers and

their related reference numbers. The reference number indicates the number that has been

appended to the name of species by GkmerG in the first phase.

There are several options to create the table from the output of the second phase: one is to

create the table without making any changes in the output. Another one is to break down the

output to smaller groups according to the targeted signature. For example, if we are looking

for the unique signatures, it would be better to extract only 18-mers with frequency=1.

However, if we are looking for a common signature, then it would be better to extract the 18-

mers with a specific frequency number such as 2, 3, 4, etc. In order to have a faster and easier

implementation with Hive and later steps, we recommend the second option.

CHAPTER 4: Proposed Methods of Identification and DNA Signature Discovery

54

4.4 Selected Sequence Databases

4.4.1 Bacterial Genome Database

To prove the efficiency of our proposed method, the bacterial genome database with 2,773

completed genomes in FASTA format (*.fna) were downloaded from the NCBI database.

The size of this database is 9.7 GB after decompression.

4.4.2 The Reverse-Complement Bacterial Genome Database

Another database that we used in this research was the Reverse-Complement Bacterial

Genome Database. The revcom.pl 1.2 [available at http://code.google.com/p/nash-

bioinformatics-codelets/] is a Perl program written by John Nash [Copyright (c) Government

of Canada, 2000-2012]. We used this program to provide the Reverse-Complement

sequences for the whole bacterial genome database.

4.4.3 Human Genome Database

The whole Human Genome is another database used in this research. The Homo sapiens hs-

ref-GRCh38 sequences in FASTA format (*.fa.gz) were downloaded from the NCBI

database. The size of the genome was 2.9 GB after decompression.

CHAPTER 5: Proposed Methods of Short Reads Classification

55

Chapter 5

Proposed Methods of Short Reads

Classification

CHAPTER 5: Proposed Methods of Short Reads Classification

56

The goal of this chapter is to address the following questions:

1. What is the proper method for searching DNA signatures among the reads and

matching with their related species?

2. What is the proper method to use less computational resources?

We have developed two methods to answer the questions. These methods that are presented

in this chapter explained two different ways of matching the DNA signatures with the raw

reads in metagenomics sequencing data. The first method uses Bitmap Indexes and NoSQL

and the second method uses a novel pipeline named SRIdent. Hadoop and Hive are used for

both methods. In addition, we addressed the resources of the data used in this research and

explained how to prepare the data for use in the proposed methods.

Notably, we had to check the effectiveness of DNA signature before proposing a method to

find it; therefore, we have done these two methods before proposing the HTSFinder pipeline

(presented in Chapter 4) and DNA signatures that are used in these methods are obtained

from existing databases (Insignia database).

5.1 Overview of the Related State-of-the-Art Methods

Listed below are the three more popular and newer metagenomics reads classifiers that work

based on the k-mers frequency search methods and comparing genomic k-mers of the reads to

find the matches. These methods are closer to our method for short reads classification with

matching the DNA signatures, reads and their related species.

Kaiju [156], is a metagenomics reads classifier which finds the maximum (in-)exact matches

on the protein level using the Burrows–Wheeler transform of the protein database. Kaiju

translates metagenomics sequencing reads into the six possible reading frames and searches

for maximum exact matches of amino acid sequences in a given database of annotated

proteins from microbial reference genomes.

CHAPTER 5: Proposed Methods of Short Reads Classification

57

Kraken [157] uses an alignment of k-mers to classify small subsets of metagenomics data.

Kraken makes an index of all k-mers found in the reference genomes (e.g. bacterial genomes)

and matches the k-mers found in the reads to this index and then assigns the read to the taxon

with most matching k-mers by following a path from the root in the evolutionary tree.

CLARK [158] can classify metagenomics reads based on reduced sets of k-mers. CLARK

builds a large index containing the k-mers of all targets sequences. Then it removes any

common k-mers between target sequences. In fact the remaining k-mers are the unique k-

mers in the target sequences. Then it searches the matches of the k-mers of the reads with the

highest number of indexed k-mers.

These reads classifiers are mostly attempting to speed up the process of matching k-mers with

reads and they did not explain too much about the methods of collecting DNA signatures. For

most of them, an external tool such as BLAST or MEGABLAST is required. Kaiju, Kraken,

and CLARK use BLAST databases (such as nt and nr databases) for their specificity

evaluation. Table 5.1 contains some more details on the algorithms and applications

described above.

Table 5.1. A comparison of metagenomics reads classifiers according to the data format,

computational resources, and ability to process single or multiple sequences.

Name Data

Format

Adopted platform according to the

publication

BLAST

specificity

Ability for

single

sequence

Ability for

multiple

sequences

Kaiju FASTA

HP Apollo 6000 System ProLiant

XL230a Gen9 Server, with two 64-bit

Intel Xeon E5-2683 2 GHz CPUs (14

cores each), 128 GB DDR4 memory

✓ ✓ ✓

Kraken FASTA

48 AMD Opteron 6172 2.1 GHz CPUs

and 252 GB of RAM, running Red Hat

Enterprise Linux 5.

✓ ✓ ✓

CLARK FASTA

Dell PowerEdge T710 server, dual Intel

Xeon X5660 2.8 GHz, 12 cores, 192 GB

of RAM

✓ ✓ ✓

CHAPTER 5: Proposed Methods of Short Reads Classification

58

Using expensive computational resources is the other important issue regarding these

methods. As an example: CLARK needs a maximum 165 GB of RAM [158] and the

construction of Kaiju’s index from the protein sequence database needs peak memory usage

of 24 GB using 25 threads, Kraken 165 GB, and Clark 152 GB [156].

5.2 The First Proposed Reads Classifier Based on Bitmap Indexes

and NoSQL

Using DNA signatures in the isolated sample studies and Polymerase Chain Reaction (PCR)

base detection is easy to perform, because of the low number of targets. But in the

metagenomics studies, it is much more complicated. Taking into account the number of

signatures, short reads, and organisms in the metagenomics samples, it is obvious that we are

facing massive data sets. Using ordinary hardware and software tools is impossible since it

takes a long time regardless of any failure during the process. The proposed method in this

section shows how parallel and distributed computing and Bitmap Indexing technique can

solve this problem.

In this method, we use optimization techniques borrowed from database technology, namely

bitmap indexes. They are used to speed up searching and matching of billions of DNA

signatures in the short reads of thousands of different microorganisms, using commodity

High-performance computing, such as Hadoop MapReduce and Hive.

Bitmap Index [159][160] is an efficient way to speed up the queries and improve

performance in data warehouse environments, which contain tables with low cardinality

columns. As the example given in Table 5.2, we index the values of the column Grade having

low cardinality. In this case, our index has the same number of rows and the number of

columns is equal to the number of distinct values in column Grade. In Table 5.2, the

cardinality of the column Grade is 4 because we have 4 different values in it.

CHAPTER 5: Proposed Methods of Short Reads Classification

59

Table 5.2. An example of a bitmap index defined on Grade column.

RID Name Nationality Grade RID A B C D

1 John FRANCE B 1 0 1 0 0

2 Sara USA D 2 0 0 0 1

3 Piter RUSSIA C 3 0 0 1 0

4 David ENGLAND A 4 1 0 0 0

5 Tania GERMANY B 5 0 1 0 0

6 Daniel POLAND A 6 1 0 0 0

7 Tom CANADA C 7 0 0 1 0

8 Robert ITALY C 8 0 0 1 0

9 Jain FRANCE D 9 0 0 0 1

We downloaded DNA signatures of 100 bacteria from the insignia database. Insignia

(introduced in Chapter 4) is a pipeline to generate unique DNA signatures and it is also a

database and web application for obtaining DNA signatures. It detects signatures for

designing primers in Polymerase Chain Reaction (PCR) and probes in microarray

technologies. The signatures can also be used for real-time identification of species in

microbial and viral assays. As we are in the testing process, we just downloaded the

signatures with the length of 18 bp. Table 5.3 is an example of Acholeplasma laidlawii DNA

signatures downloaded from the Insignia database.

CHAPTER 5: Proposed Methods of Short Reads Classification

60

Table 5.3. A partial view of unique DNA signatures (18-mers), downloaded from the

Insignia database.

Insignia V0.7

Signatures calculated: Thu Mar 6 2014 05:55:14

Reference Organism:

Acholeplasma laidlawii PG-8A

Target Organism(s):

Signatures:

Index Start Stop Strand Sequence

1 14151 14168 TATCAACAGGAGACATGG

2 1283370 1283387 GTACTACGACAACAATCG

3 406523 406540 TTGGTATTGGTTGGGTAG

4 1161523 1161540 TAAGCCACCTTCACCATT

5 631946 631963 GTGACCAAATCAGTGATG

6 1297841 1297858 CTTGGCCATCAAAACCAG

7 587419 587436 AGCAACTGATGCAGATGA

8 457243 457260 TGCTGCACCAGATCTATC

9 60205 60222 TGATGCTGCAGCAGGTGC

10 602186 602203 TCAAGGTTATGGTGGTGT

5.2.1 Short Read Simulator Application

Metasim [161][162] is a short read simulator application for genomics and metagenomics

studies. It can be a great help to develop and improve metagenomics tools, and for planning

metagenomics projects. Metasim can simulate the short reads of Roches 454 pyrosequencing,

Sanger sequencing, and Empirical sequencing technology. Roches 454 pyrosequencing

simulation is used for this study. The output of Metasim is a compressed file containing the

short reads of a bacterial chromosome or its Plasmids begins with their header information as

illustrated in Figure 5.1.

CHAPTER 5: Proposed Methods of Short Reads Classification

61

Figure 5.1. A partial view of Metasim reads.

Source: Karimi R. et al : Lecture Notes in Computer Science, ͚͙͘͜.

We chose 100 bacterial genomes for simulating the short reads. We divided the bacteria with

signatures into two groups of 50. The first group is common in 100 chosen bacterial

genomes. There are no any common bacteria from the second group.

Before any implementation, some pre-processing is needed. We need to attach the short reads

from all bacterial chromosomes and Plasmids as one file, remove the breaks between lines of

the short reads and keep each of them in a single line. From the signatures, we need just the

signatures of every bacterium as a single file. We should remove all extra information, in

order to have smaller data size and shorter execution time. The pre-processing is done with

bash script programming in Linux.

5.2.2 The Use of the Bitmap Index

Bitmap index techniques are used to create the index table by searching the existence of

signatures in short reads. '1' represents the existence of the signature in the short reads and '0'

represents non-existence. This process is done with Java programming.

As it is shown in Table 5.4, the index table can be created in two ways. The first is to keep

every single signature as a column and put '0' and '1' depending on the existence of this

signature in short reads. In this case, considering the number of signatures and reads, huge

storage is needed.

CHAPTER 5: Proposed Methods of Short Reads Classification

62

Table 5.4. An example for our index tables; each column of these tables is kept as a single

file.

RID

Reads

b1

b2

b3

b4

b5

RID

Reads

b1

s1 s2 s3 s4 s5 s6 s7

1 R1 0 0 0 1 0 1 R1 0 0 0 0 0 0 0

2 R2 1 0 0 0 0 2 R2 0 0 0 0 0 0 1

3 R3 0 0 0 1 0 3 R3 0 0 0 0 0 0 0

4 R4 0 0 0 0 0 4 R4 0 0 0 0 0 0 0

5 R5 0 0 1 0 0 5 R5 0 0 0 0 0 0 0

6 R6 0 0 0 0 1 6 R6 0 0 0 0 0 0 0

7 R7 1 0 0 0 0 7 R7 0 0 0 1 0 0 0

8 R8 0 0 0 0 0 8 R8 0 0 0 0 0 0 0

9 R9 0 0 0 0 0 9 R9 0 0 0 0 0 0 0

10 R10 1 0 0 0 0 10 R10 0 0 1 0 0 0 0

Another way is to keep every bacterium as a column. We store '1' if any signature of the

bacteria exists in a short read, '0' if not. In this case, the table is much smaller. The number of

columns is equal to the number of bacteria plus two more columns, one for row identification

and the other for short reads. The number of rows is equal to the number of short reads. We

can easily use Linux command to put all the files together as a single file. As an example, in

Table 5.5 we have 6 files. One file contains the reads and their identification numbers and the

other five contain '0' and '1' for five bacteria.

Table 5.5. An example of input table for Hive, that is created by merging files to a single file.

1 R1 0 0 0 1 0

2 R2 1 0 0 0 0

3 R3 0 0 0 1 0

4 R4 0 0 0 0 0

5 R5 0 0 1 0 0

6 R6 0 0 0 0 1

7 R7 1 0 0 0 0

8 R8 0 0 0 0 0

9 R9 0 0 0 0 0

10 R10 1 0 0 0 0

CHAPTER 5: Proposed Methods of Short Reads Classification

63

Creating the tables and executing the Hive queries are the next step to get the results. It is

explained in details in the related paper [41].

5.3 The Second Proposed Reads Classifier Based on SRIdent Pipeline

In the method based on using Bitmap indexes, although the running time of the queries is

very short, constructing the index files for each bacterium is time-consuming. This problem

becomes more visible when a large number of bacterial species are considered (such as the

real metagenomics samples). Therefore, we were motivated by the need to make an extra

effort to come up with better and more creative solutions to address this problem and it

resulted in the creation of the pipeline, named SRIdent (Short Read Identifier) [163] that is

explained in this section.

This pipeline is based on generating k-mers from the short reads and searching the existence

of DNA signatures in the Reads k-mers, by using Apache Hive data warehousing. RkmerG

(Read k-mers Generator) is a software program presented in this study, for producing k-mers

of the short reads, in order to use in the pipeline. The purpose of this study is to identify the

species in a sample, directly from the raw reads without assembling and alignment.

5.3.1 Pipeline Description

The SRIdent pipeline consists of two computational stages. Data preparation is the first stage.

DNA signatures with specific length (k) of every individual known species and short reads

generated by sequencing technologies are two types of data that are used in this pipeline.

According to the length of DNA signature that we use in the pipeline, we should produce the

same length of k-mers from the short reads. RkmerG (Read k-mer Generator) is designed to

generate all the possibilities of k-mers of the short reads with any pre-defined length of k.

The method of generating k-mers in this software is inspired from De Bruijn graph.

CHAPTER 5: Proposed Methods of Short Reads Classification

64

Figure 5.2 shows the RkmerG function. This software removes the information line of the

reads and changes each read to a single line, and then copies each line (read) for k times and

splits these k lines as illustrated in figure 5.2. It splits the first line as the complete read to k-

mers, then eliminates the characters in red color from the rest of lines and splits again, in

order to get all the possibilities of k-mers.

Figure 5.2. An example of RkmerG procedure to get all the possibilities of k-mers (k=19)

Source: Karimi R. et al : IEEE Engineering in Medicine and Biology Society, ͚͙͘͝.

RkmerG generates two files from the original read’s file. One is the reference with a line

number that considers as the identification number and another is a temporary file for

facilitating the process. According to the line number of each read in the reference, RkmerG

appends a number to the beginning of each k-mer in a separate column, as the identification

CHAPTER 5: Proposed Methods of Short Reads Classification

65

number. This number is equal for all the k-mers of every individual read. The output of this

software is a file with 2 columns of id-numbers and k-mers. This file will be loaded into a

table that is created with Hive, in the second stage of the pipeline. Figure 5.3 described the

algorithm of RkmerG.

Figure 5.3. RkmerG algorithm. (r=Short read, n=Total number of reads, k=Length of mers,

i=each of the lines (reads) that is copied from a single short read for k times, illustrated in

figure 5.2.) Source: Karimi R. et al : IEEE Engineering in Medicine and Biology Society, ͚͙͘͝.

Same with the previous method, Metasim was used as the read simulator to simulate the short

reads of Roche 454 sequencing technology. DNA signatures of this research were also

obtained from the Insignia database. We downloaded DNA signatures of k=19 for 50

bacterial species, chosen randomly from 200 samples. We downloaded also DNA signatures

of another 50 bacterial species that were not common to 200 sample bacterial genomes, for

CHAPTER 5: Proposed Methods of Short Reads Classification

66

testing the accuracy of the pipeline. In order to prepare the DNA signatures for using in Hive

table, we should remove all information from the file that contains signatures of a single

species and keep the signatures of a specific length in a column, then append a number as the

reference in a separate column, for identifying the owner of these signatures. The reference

number can be the alphabetic order of species in the database. All signatures of a species get

the same reference number. After appending the reference numbers to the signatures, the

result will be a file with 2 columns of reference numbers and signatures for each species. We

concatenated all of these files into a single file which will be loaded into the Hive table in the

second stage of the pipeline.

CHAPTER 6: Results and Discussion

67

Chapter 6

Results and Discussion

CHAPTER 6: Results and Discussion

68

This chapter elaborates the results and discussion of the 3 aforementioned methods explained

in Chapters 4 and 5.

6.1 The Results of HTSFinder Pipeline

6.1.1 Results for the Bacterial Genome Database

GkmerG has generated 2,773 files with a total size of 177.35 GB containing all the

possibilities of 18-mers from individual bacterial genomes in the first phase of the pipeline.

After copying the results of the first phase into the HDFS, we ran the WordCount program

using Hadoop in order to determine the frequencies of the 18-mers in the 2,773 files. The

result of this execution was a 103.03 GB file with two columns. The first column contained

the 18-mers or signatures, while the second one contains the frequency number of each 18-

mer. Frequency 1 in this file represents the uniqueness of the related signature in the entire

database. In other words, an 18-mer with frequency 1 is a unique signature among 2,773

bacterial genomes and an 18-mer with frequency 2 is a common signature which is presented

in two genomes among 2,773 bacterial genomes. Table 6.1 represents the quantity of 10 least

common and 10 most common 18-mers with their frequencies in the bacterial genome

databases. This table shows that 3,552,866,254 of signatures are unique in the database and

there is one subsequence (18-mer) that is repeated in 2,125 bacterial genomes.

Table 6.1. A total number of 10 least and 10 most common signatures in the bacterial

genome database.

Frequency

ȋLeast commonȌ

Number of signatures
in the database

Frequency

ȋMost commonȌ

Number of
ͳͺ-mers

in the database ͳ ͵,ͷͷʹ,ͺ͸͸,ʹͷͶ ʹͲͶͲ ͳ ʹ ͸ͺͻ,͹ͻͲ,͹ͻͺ ʹͲͶʹ ͳ ͵ ʹͶͷ,ͳͲͻ,͹ͻͶ ʹͲͶͶ ͳ Ͷ ͳͳͶ,ʹ͵Ͷ,͵ͻͺ ʹͲ͹Ͷ ʹ ͷ ͸ͺ,͵ͻͷ,͸Ͷͷ ʹͲ͹ͷ ͳ ͸ Ͷͺ,ͳͲ͹,Ͷ͸͹ ʹͳͲʹ ͳ ͹ ͵ͳ,ͷͶͶ,ʹ͹ͳ ʹͳͳʹ ͳ ͺ ʹ͸,ͳ͸Ͷ,ͷͳͳ ʹͳͳ͵ ʹ ͻ ʹ͵,͸ͷͲ,ͺʹͳ ʹͳͳͶ ʹ ͳͲ ͳ͸,ͳͷ͸,ͷͶͳ ʹͳʹͷ ͳ

CHAPTER 6: Results and Discussion

69

In the third phase, we have created tables in Hive and loaded files from the first and second

phases. The table with the reference numbers and k-mers (220.35 GB) and the table with the

list of unique signatures (67.5 GB) are used to run the query in Hive in order to specify the

species and strains as the owners of the unique signatures. We have repeated the query on the

table containing the list of signatures with frequency 2 instead of the unique signature’s table

to find every pair of species with a common signature. For other frequencies, the same

implementation is required.

As shown in Table 6.2, the output of the third phase was a file with two columns containing

the following: the signature and the reference number that indicates its corresponding

bacterial genome in the reference database created by GkmerG in the first phase.

Table 6.2. An example of the output for the third phase (2 columns in the left side of the

table). The reference numbers in this table indicate the numbers appended by GkmerG for

easier tracking of data in the pipeline.

Signature Genome
reference
number

Name of the bacterial genome that owned the
signature AAAAACGCTCTGATATGA ͳͲͷͻ Eubacterium_rectale_ATCC_͹͹ͼͻͼ_uidͻͿͷͼͿ AAAAACGCTCTGCCACCA ͳͷʹͲ Methanobacterium_SWAN_ͷ_uidͼͽ͹ͻͿ AAAAACGCTCTGGGAATT ͹Ͳͷ Chromohalobacter_salexigens_DSM_͹Ͷͺ͹_uidͼ͸Ϳ͸ͷ AAAAACGCTCTTTTATTT Ͷ͹ʹ Campylobacter_hominis_ATCC_BAA_͹;ͷ_uidͻ;Ϳ;ͷ AAAAACGCTGAAACGCCT ʹ͸Ͷͻ Tolumonas_auensis_DSM_Ϳͷ;ͽ_uidͻͿ͹Ϳͻ AAAAACGCTGAAATCCGC ʹͲͳ͵ Rahnella_YͿͼͶ͸_uidͼ͸ͽͷͻ AAAAACGCTGAATGAAGC ͵ͻ Acinetobacter_ADPͷ_uidͼͷͻͿͽ AAAAACGCTGACAATAAA ͳ͵͵͹ Lactobacillus_brevis_KB͸ͿͶ_uidͷͿͻͻͼͶ AAAAACGCTGACCTTCTA ͳ Acaryochloris_marina_MBICͷͷͶͷͽ_uidͻ;ͷͼͽ AAAAACGCTGACGGAAGT ʹͳʹ͸ Ruminococcus_albus_ͽ_uidͻͷͽ͸ͷ

The following examples are parts of the results obtained by HTSFinder to show the efficiency

of this pipeline. No unique DNA signatures with k = 18 were found for 30 of the bacterial

genomes in the database.

The number of unique DNA signatures in 475 genomes was less than 10,000. Chlamydia as a

genus of bacteria with 83 species and strains in the bacterial genome database has the lowest

CHAPTER 6: Results and Discussion

70

number of unique DNA signatures of 18-mers. The number of the unique signatures of 18-

mers in 75 of them was less than 10,000 and in 57 it was less than 1,000. We have located 13

Chlamydia bacteria without unique signatures with k = 18. Top 10 bacterial genomes with the

highest number of unique DNA signatures in the bacterial genome database are shown in

Figure 6.1.

Figure 6.1. Top 10 bacterial genomes with the highest number of unique DNA signatures in

the bacterial genome database.

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016.

Burkholderia mallei and Burkholderia pseudomallei are two closely related pathogens that

are very difficult cases for PCR assays. These two bacteria are the causative agents of

glanders and melioidosis diseases in human and animals [134][164][165]. Due to the

phenotypic and genotypic similarity of them, until a few years ago, they were considered to

have the same species status. Concerning the literature, only one PCR signature was reported

to be unique to B. mallei [134][164]. The HTSFinder pipeline could detect a considerable

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

1 2 3 4 5 6 7 8 9 10

N
u
m

b
er

 o
f

u
n
iq

u
e

D
N

A
 s

ig
n
at

u
re

s
(M

il
li

o
n

s)

Niastella_koreensis_GR20_10_uid83125

Haliscomenobacter_hydrossis_DSM_110

0_uid66777
Singulisphaera_acidiphila_DSM_18658_u

id81777
Spirosoma_linguale_DSM_74_uid43413

Nostoc_punctiforme_PCC_73102_uid57

767
Candidatus_Solibacter_usitatus_Ellin607

6_uid58139
Rivularia_PCC_7116_uid182929

Acaryochloris_marina_MBIC11017_uid5

8167
Microcoleus_PCC_7113_uid183114

Microcoleus_PCC_7113_uid183115

Top 10 Bacterial genomes

CHAPTER 6: Results and Discussion

71

number of DNA signatures for B. mallei and B. pseudomallei. Although these signatures are

just unique in the bacterial genome database, due to the notable number of signatures listed in

Table 6.3, it is evident that under different circumstances it would be better to have an

alternative opportunity to define the uniqueness of the DNA signatures and to select the target

databases according to the requirements. Moreover, it should be noted that much more DNA

signatures could be found by increasing the length of k-mers.

Table 6.3. B. mallei and B. pseudomallei strains with their number of unique DNA signatures

of 18-mers in the bacterial genome database.

The reference number and name

of the Burkholderia genomes

Number of unique
DNA signatures

Burkholderia_mallei_ATCC_͸͹͹ͺͺ_uidͻͽͽ͸ͻ ͻͲ,ʹ͹ͺ

Burkholderia_mallei_NCTC_ͷͶ͸͸Ϳ_uidͻ;͹;͹ ʹͶ,ͺͷͺ

Burkholderia_mallei_NCTC_ͷͶ͸ͺͽ_uidͻ;͹;ͻ ͳͻ,ͶͶʹ

Burkholderia_mallei_SAVPͷ_uidͻ;͹;ͽ ͹,͸Ͷͻ

Burkholderia_pseudomallei_ͷͶ͸ͼb_uidͷͼ͸ͻͷͷ ʹͺʹ,ͻͻʹ

Burkholderia_pseudomallei_ͷͷͶͼa_uidͻ;ͻͷͻ ͳ͹͵,͸ͺͺ

Burkholderia_pseudomallei_ͷͽͷͶb_uidͻ;͹Ϳͷ Ͷͳ,ͳͷ͵

Burkholderia_pseudomallei_ͼͼ;_uidͻ;͹;Ϳ ʹͳͺ,ͻͺͷ

Burkholderia_pseudomallei_BPCͶͶͼ_uidͷͽͺͺͼͶ ͺͳ,͹͸ͺ

Burkholderia_pseudomallei_KͿͼ͸ͺ͹_uidͻͽͽ͹͹ ͳͻͷ,͹ͳͳ

Burkholderia_pseudomallei_MSHR͹Ͷͻ_uid͸ͷ͹͸͸ͽ ͵ʹͲ,ͳͻͺ

Burkholderia_pseudomallei_MSHR͹ͺͼ_uidͻͻ͸ͻͿ ͳ͹ʹ,ͷͷͳ

Burkholderia_pseudomallei_NCTC_ͷ͹ͷͽͿ_uid͸͸ͼͷͶͿ ͵ͺʹ,ͶͻͶ

This pipeline detects the common signatures not only among a species and its strains but also

in the entire database. Frequencies 2 and 3 have been considered as the samples to prove the

efficiency of this pipeline for discovering common DNA signatures within the bacterial

genome database.

As an example, the following results were obtained for

Acaryochloris_marina_MBIC11017_uid58167 that is the first bacteria in the database. A total of

689,790,798 signatures of k = 18 with frequency 2 were found in the database, whereas

CHAPTER 6: Results and Discussion

72

673,490 of them are shared between Acaryochloris_marina_MBIC11017_uid58167 and

2,382 other species.

There was not any signature of k = 18 with frequency 2 between

Acaryochloris_marina_MBIC11017_uid58167 and 390 other bacterial genomes. Figure 6.2

presents the highest number of signatures with frequency 2 which are common between

Acaryochloris_marina_MBIC11017_uid58167 and 10 other bacterial genomes in the

database.

Figure 6.2. Ten bacterial genomes with the highest number of signatures common with

Acaryochloris_marina_MBIC11017_uid58167 in the bacterial genomes database. This is an

example of the results for common signatures with frequency 2 obtained by

HTSFTSFTSFinder.

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016.

The results of the executions for signatures with frequencies 2 and 3 showed that most of the

signatures are shared among phylogenetically close species of the database. However, there

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

1 2 3 4 5 6 7 8 9 10

Cyanothece_PCC_7425_uid59435

Oscillatoria_acuminata_PCC_6304_

uid183003

Rivularia_PCC_7116_uid182929

Nostoc_punctiforme_PCC_73102_u

id57767

Oscillatoria_PCC_7112_uid183110

Calothrix_PCC_6303_uid183109

Cyanothece_PCC_7822_uid52547

Trichodesmium_erythraeum_IMS10

1_uid57925

Chroococcidiopsis_thermalis_PCC_

7203_uid183002

Chroococcidiopsis_thermalis_PCC_

7203_uid183003

N
u

m
b

er
 o

f
si

g
n

at
u

re
s

Top 10 bacterial genomes

CHAPTER 6: Results and Discussion

73

were also a lot of signatures that belonged to unrelated bacterial genera and families. Table

6.4 shows a partial view of the results for frequencies 2 and 3. From 245,109,794 signatures

of frequency 3 in the database, 160,264 of them are shared between

Acaryochloris_marina_MBIC11017_uid58167 and two other species.

Table 6.4. A portion of the results for signatures with frequencies 2 and 3 in the database.

Concerning the reference numbers, most of the common signatures are shared among the

phylogenetically close genomes. However, the number of common signatures among

unrelated species is also notable.

Signatures with
frequency=ʹ

Genome reference
numbers

Signatures with
frequency=͵

Genome reference
numbers AAAAAAAAAAGATAAATA ͵ͷͷ ͷͲͺ AAAAAAAAAAAAATATCG ͳ͹Ͳͻ ͳ͹Ͳͺ ʹ͸͹͹ AAAAAAAAACAGACACAA ʹͳͳͲ ʹͳͲͻ AAAAAAAAAAAACAGAAC ͳʹͶͻ ͳʹͷͷ ͳʹ͸͹ AAAAAAAAACAGCATTAA ʹʹͲͻ ʹʹͳͶ AAAAAAAAAATAAATACA ʹ͹ʹ͸ ʹ͹͵Ͷ ͷͶʹ AAAAAAAAACAGGCTTAC ͵ͻͶ ͳͶͻͻ AAAAAAAAAGAAACAAAG ͸ͺͳ ͸͹ͺ ͸͹ͻ AAAAAAAAACCGCCGAAC ͳͲͶ͸ ͳͲͶͺ AAAAAAAAAGATGTTAAT ͻ͸ͻ ʹ͵ͺͶ ʹͶ͹ AAAAAAAAACCGCTTTTA ͳͺ͹ͻ ͳʹ͸ͷ AAAAAAAAAGCAAAACAA ʹʹʹ͵ ͵ͷͷ ͳͲʹ AAAAAAAAACGAACAAAC ͳͲͳ ͳͺͳ͵ AAAAAAAAAGTAAATGCG ͳ͹ͻ͵ ʹ͹͵ͳ ʹ͹͵Ͳ AAAAAAAAACGATTCAGA ʹͳͲ͸ ʹͳͲ͹ AAAAAAAAATAGACAATG Ͷͻͺ ͷͲͲ ͹ͷͷ AAAAAAAAACTAATGCTT ͵Ͷͻ ͵ͷͷ AAAAAAAAATATTCATGC ͵ʹͳ ͺͻ͹ ͷ͸Ͳ AAAAAAAAACTAATTCTG ͳͶͲ͸ ͳͶͲͺ AAAAAAAAATTCAAAATT ͷ͸͹ ͷͲͷ ͵ʹͷ AAAAAAAAAGAACCAAAC ͷͶͶ ͷͶͷ AAAAAAAAATTTAGCGAT ʹ͹ͳͶ ͳͺͳͶ ͵ʹͳ AAAAAAAAAGACTGACTC ʹ͸ͻ͸ ͳͲ͸͸ AAAAAAAAATTTTTATAG ͹Ͳ͵ ͶͲʹ ͵ʹͶ AAAAAAAAAGATGTTGTA ͷͶͷ ͷͶͶ AAAAAAAACAAGAAGCGC ͳͶʹ͸ ͳͶʹ͹ ͳͶʹͺ AAAAAAAAAGGATTCGAA ͳͶʹͺ ͳͶʹ͹ AAAAAAAACAATTAGCGA ͳͳʹͺ ʹ͸͹͹ ʹͶͲͶ AAAAAAAAATAAAGACTC ͵Ͷͷ ͵Ͷ͵ AAAAAAAACAGATAGTGA ʹͳͳͷ ͳͲ͸ͳ ͳͷͲͺ AAAAAAAAATAGTGACGA ͳ͸ͺ͸ ͳ͸ͻ͵ AAAAAAAACAGCAGCACC ʹͷ͵ͷ ͳͷͺͶ ͳͲͷͺ

A series of lengths k from 21 to 30 have been considered to evaluate the effect of increasing

the length of the signature in the results and to compare the results of the odd and the even

number of k. Table 6.5 contains the number of unique DNA signatures for the human genome

and three chromosomes 1, x, and y, which represent large, medium, and small sequences in

the human genome. This table shows that increasing the length of the signature causes

increasing the number of unique signatures and there is not a meaningful difference between

the odd and the even numbers.

CHAPTER 6: Results and Discussion

74

Table 6.5. A number of unique DNA signatures in the human genome and its three

chromosomes with different sequence sizes for a series of lengths of k-mers from 21 to 30.

Length of
signature

The whole genome

ȋʹ.ͻ GBȌ

Chrͳ

ȋʹʹʹ MBȌ

Chrx

ȋͳͶ͹ MBȌ

Chry

ȋͳͻ MBȌ

k = ʹͳ ʹ.ʹͶʹͻ͹e+Ͳͻ ͳ͹͸,ͳ͵͹,ͲͲͶ ͳͲͻ,͸ͻͳ,ͳʹ͸ ͳͲ,ʹʹͳ,ʹͶͲ

k = ʹʹ ʹ.ʹͺ͸ʹͶe+Ͳͻ ͳ͹ͻ,Ͷ͵͸,ͺ͹͸ ͳͳʹ,͵͹Ͳ,Ͳ͸ʹ ͳͲ,ͷͷͲ,Ͳ͹͸

k = ʹ͵ ʹ.͵ͳͻͷͶe+Ͳͻ ͳͺͳ,ͻͺʹ,ͳͳͷ ͳͳͶ,ͷͲͷ,͹ͶͶ ͳͲ,ͺʹͷ,͹͸ͳ

k = ʹͶ ʹ.͵Ͷ͹ͻʹe+Ͳͻ ͳͺͶ,ͳͷ͹,͵͹ͳ ͳͳ͸,͵Ͷͻ,Ͳͳ͹ ͳͳ,Ͳ͹Ͳ,ͺ͹ͷ

k = ʹͷ ʹ.͵͹͵͵͵e+Ͳͻ ͳͺ͸,ͳͲͺ,Ͷ͵ͳ ͳͳ͹,ͻͻͻ,ͷͺͲ ͳͳ,ʹͻͶ,Ͷ͵ͻ

k = ʹ͸ ʹ.͵ͻ͸͸Ͷe+Ͳͻ ͳͺ͹,ͻͲͶ,ͺ͸͹ ͳͳͻ,ͷͲͶ,͹ʹͷ ͳͳ,ͷͲͳ,ͳ͵ͻ

k = ʹ͹ ʹ.Ͷͳͺʹͻe+Ͳͻ ͳͺͻ,ͷͺͲ,͵ͺʹ ͳʹͲ,ͺͻͳ,Ͳ͵ͻ ͳͳ,͸ͻ͵,ͳͺͲ

k = ʹͺ ʹ.Ͷ͵ͺͶͻe+Ͳͻ ͳͻͳ,ͳͷͲ,ͷ͵ͳ ͳʹʹ,ͳ͹ʹ,͹ʹͶ ͳͳ,ͺ͹ʹ,ʹͷͲ

k = ʹͻ ʹ.Ͷͷ͹ͶͶe+Ͳͻ ͳͻʹ,͸ʹͻ,͵Ͷͷ ͳʹ͵,͵͸͵,͵ͻ͹ ͳʹ,Ͳ͵ͻ,͹͵Ͷ

k = ͵Ͳ ʹ.Ͷ͹ͷʹͻe+Ͳͻ ͳͻͶ,Ͳʹ͹,ͻͳͳ ͳʹͶ,Ͷ͹ʹ,ͺʹͺ ͳʹ,ͳͻ͸,͹ͳͲ

To compare the number of unique signatures against the within-species variability and the

entire bacterial genome database, Bacillus species with 81 strains in the database was

selected. The three phases of the pipeline were executed on these strains. Table 6.6 contains

five strains of Bacillus with the highest number of unique signatures and five others with the

lowest number within species and in the entire database. Although

Bacillus_anthracis_A0248_uid59385 and Bacillus_anthracis_Ames_Ancestor_uid58083 have

larger genome size, any unique signature of length 18 could not be found for them because of

their high similarity with other Bacillus strains.

CHAPTER 6: Results and Discussion

75

Table 6.6. A comparison of five Bacillus strains with the highest number of unique

signatures and five others with the lowest number of signatures of length 18 within species

and in the entire database. This table shows that within-species similarity and variability have

more influence on the volume of signatures than the remainder of the database.

Name of strains Within-

species

In the entire

database

The original

genome size

Bacillus_megaterium_WSH_002_uid159841 4,860,315 4,012,591 5,0 MB

Bacillus_infantis_NRRL_B_14911_uid222804 4,712,042 3,932,760 4,8 MB

Bacillus_1NLA3E_uid81841 4,527,694 3,734,930 4,7 MB

Bacillus_cellulosilyticus_DSM_2522_uid43329 4,441,938 3,688,824 4,6 MB

Bacillus_clausii_KSM_K16_uid58237 4,177,156 3,576,848 4,2 MB

Bacillus_subtilis_168_uid57675 248 205 4,1 MB

Bacillus_amyloliquefaciens_CC178_uid226115 247 202 3,8 MB

Bacillus_anthracis_A0248_uid59385 0 0 5,4 MB

Bacillus_anthracis_A2012_uid54101 0 0 284 KB

Bacillus_anthracis__Ames_Ancestor__uid58083 0 0 5,4 MB

6.1.2 Results on Both Forward and Reverse-Complement Sequences of

the Bacterial Genome Database.

In the genome databases such as NCBI, only one strand of DNA sequence is provided.

However, to design the primers, both forward and reverse-complement sequences should be

considered. Moreover, depending on the sequencing technology, generated short reads can be

from both strands. Therefore, the ability to obtain DNA signatures of both strands is

potentially useful.

For the reverse complement sequences, the size of the output files and the computational

times of the first and second phases of the pipeline were the same as in the forward genome

implementations. The output of the second phase for forward and reverse-complement

genome databases resulted in a file of 103.03 GB for each. We have repeated WordCount on

both of the databases one more time to determine the frequencies of k-mers as illustrated in

Figure 4.3 (Chapter 4). The final result was a file of 52.53 GB for the forward and the same

size for the reverse-complement genome database. On the one hand, it means that the volume

CHAPTER 6: Results and Discussion

76

of data containing unique signatures for the forward database decreased from 67.5 to 52.53

GB similarly to the reverse-complement genome database. On the other hand, the overall

volume of DNA signatures that we could find for the species in the bacterial genome

database increased from 67.5 GB containing signatures for a single strand to 105.06 GB for

both strands of DNA.

6.1.3 Results for the Forward and Reverse-Complement Bacterial

Genome Database and the Human Genome Database.

We have considered the forward bacterial genome as the target database. We have applied the

method that is described in Figure 4.3 (Chapter 4) and found 50.28 GB of k-mers for the

target genome database which is unique among the three databases.

Table 6.7 presents the file size and numbers of unique DNA signatures of the target database

against the non-target ones.

Table 6.7. Number of unique DNA signatures for the forward bacterial genome database as

the target and two other non-target databases.

Databases File size Number of

signatures Unique signatures of the Forward bacterial genome database ͸͹.ͷ GB ͵,ͷͷʹ,ͺ͸͸,ʹͷͶ Forward + Reverse-Complement bacterial genome databases

ͷʹ.ͷ͵ GB ʹ,͹͸Ͷ,͹ͷͻ,͹͵ͻ Forward + Reverse-Complement bacterial genome + (uman genome databases

ͷͲ.ʹͺ GB

ʹ,͸Ͷ͸,ͶͻͶ,ͻͶͷ

6.1.4 Performance Evaluation and Computational Times.

For this experiment, we have applied two different platforms. The first one was a single node

with 12 processors of Intel Core i7-4930K CPU at 3.40 GHz and 55 GB of RAM and 6 TB of

hard disk. The operating system was Ubuntu 12.04.5 LTS, Java SE Version “1.8.0–25”,

CHAPTER 6: Results and Discussion

77

Hadoop Version 1.2.1, and Hive-0.12.0. We have installed this node as a single-node Hadoop

cluster.

Another platform was a multi-node cluster with seven nodes including the master node and

six slave nodes. The master node was an Intel Core2 Quad CPU Q6600 at 2.40 GHz and 8

GB of RAM and 3.2 TB of hard disk, while slaves had 4 GB of RAM, Intel Core i3-2100

CPU at 3.10 GHz and 500 GB of hard disk, all with the desktop version of Ubuntu 14.04.1

LTS 64-bit, Java Version “1.7.0–65” OpenJDK, Hadoop 12.1, and Hive-0.12.0.

The first phase of the pipeline executed with GkmerG took 156 minutes with five nodes and

780 minutes with a single node from the second platform to generate 18-mers from the

original bacterial genome database (9.7 GB). As an output, we got 2,773 files containing 18-

mers with a total size of 177.35 GB.

Table 6.8 contains the corresponding computational results and the size of the files in the

second and third phases of the pipeline for both platforms.

Table 6.8. A comparison of computational results of the first and second platforms in the

second and third phases of the pipeline in order to find unique DNA signatures and their

related species in the forward genome database (time in minutes).

Phases File size
ȋGBȌ

Time for the first
platform

Single-node

Time for the
second platform

Multi-node Copy k-mers generated by GkmerG to the (DFS ͳ͹͹.͵ͷ ͸Ͳ ͸͵ WordCount process ͳ͹͹.͵ͷ ͶͶ͹ ͳͳ͸ͻ Copy the result from (DFS to a local directory ͳͲ͵.Ͳ͵ ͵Ͷ ʹ͹ Extracting unique signatures and creating tables in (ive

͸͹.ͷ ͸Ͳ ͸Ͳ Loading unique signatures to the (ive table ͸͹.ͷ ʹ͵ ʹ͸ Loading k-mers and reference numbers to the (ive table

ʹʹͲ.͵ͷ ͹ͻ ͺ͵ Executing the queries and copy the result to a local directory

ͺ͵.ͺ͵ ͳͳʹͲ ͻͷͻ Total computational time ͳͺʹ͵ ʹ͵ͺ͹

CHAPTER 6: Results and Discussion

78

Although the whole computation on the second platform took about nine hours more than on

the first one, comparing the RAM and CPU capacity of the two platforms confirms the ability

of a cluster of low-cost computers that are commonly available with research facilities to

accelerate big data analytics.

Since the WordCount program uses a sorting algorithm, the platform with a larger amount of

RAM is faster; therefore, the single-node platform is faster for the second phase of the

pipeline. For the third phase of the pipeline, the running time of querying in the multi-node

cluster is faster, because the process is linear; therefore, parallel computing in a distributed

system can speed up the process.

Table 6.9 compares the size of the files for frequencies 1–3 and the time of loading and

processing the queries on the first platform. The file containing 220.35 GB data was used as

the second table for all the implementations.

Table 6.9. A comparison of loading and execution times of the frequencies 1–3 in the third

phase.

Frequency ͳ ʹ ͵ Size of the file containing signatures ȋGBȌ ͸͹.ͷ ͳ͵.ͳ Ͷ.͸͸ Time for loading file into the (ive table ȋminutesȌ ʹ͵ Ͷ ͳ Execution time and copy the result to local directory ȋminutesȌ ͳͳʹͲ ͸͸ͳ ͷͷ͹

6.2 The Results of the Method Based on Using Bitmap Indexes and

NoSQL

The output file of the method contains the Rowid (Row identification) numbers of the short

reads (first column as the read id-number) and its related bacteria. As an example, for the

bacteria b1 (first column of the indexes) in Table 6.10, we have 2,7,10 which means, the

signatures of bacteria b1 are in these 3 short reads. Moreover, it means that we have bacteria

b1 in the metagenomics sample.

CHAPTER 6: Results and Discussion

79

Table 6.10. An example of input table for Hive, that is created by merging files to a single

file.

 b1 b2 b3 b4 b5

1 R1 0 0 0 1 0

2 R2 1 0 0 0 0

3 R3 0 0 0 1 0

4 R4 0 0 0 0 0

5 R5 0 0 1 0 0

6 R6 0 0 0 0 1

7 R7 1 0 0 0 0

8 R8 0 0 0 0 0

9 R9 0 0 0 0 0

10 R10 1 0 0 0 0

In order to prevent repeating the queries or writing long commands and queries, we can add

all bacterial files with '0' and '1' one after the other and create a single column in a single file.

It can be done with scripting in the incremental order to add as much bacteria as we need at

the end of each other. In this method, we need also to repeat short reads in a single column as

much as the number of bacteria. For instance, if we have 500,000 short reads and 1000

bacteria, then we should repeat short reads in one column and for1000 times.

 In this case, we need to create a table with 3 columns Rowid, read string, and “0” or “1” as

the indexing results; then run the query just once. The results will be in one column. We can

easily extract the information with Rowid numbers. It leads to a larger table (6,635,250 rows)

and files size, but a faster implementation. After getting the results, we can delete these large

tables. More details can be found in the related paper [41].

Running time of querying on the first tables (52 columns, 132,706 rows, and the loaded file

size of 44.6 MB) was 21.31 seconds in average for each bacterium. 1065.927 Seconds for 50

bacteria. It would be much higher if we consider the time for changing and repeating the

queries. Running time of querying on the second tables (3 columns and 6,635,250 rows and

the loaded file size of 1.6 GB) was 59.9 seconds for the whole process. Although the second

table was much larger in file size and 50 times more number of rows, the computational time

of querying in compare with the first table is very short.

CHAPTER 6: Results and Discussion

80

This implementation shows the speed and efficiency of Hive to search millions or billions of

rows with Bitmap Index techniques.

Since the nature of Hive is to write once and to read several times, updating the tables is not

possible. There is a possibility of integrating Hive and Hbase. This feature allows Hive QL

statements to access Hbase tables for both reads (SELECT) and write (INSERT). It is even

possible to combine access to Hbase tables with native Hive tables via joins and unions. Real-

time reading and writing are possible in Hbase. These features help us updating and having a

faster implementation. Query optimization can also help to have shorter running time. The

next two queries on the same table are evident.

File Size: 1.6 GB

Time taken with SELECT* and GROUP BY query:

Total MapReduce CPU Time Spent: 54 seconds 640 msec

Time taken: 59.901 seconds

Time taken with SELECT query which is faster:

Total MapReduce CPU Time Spent: 43 seconds 630 msec

Time taken: 44.452 seconds

The implementation above was for the first group of 50 bacteria which are common in 100

bacterial samples. As we expected, we could find some short reads containing the signatures

for every bacteria. The number of short reads is a range between 1 for b16 to 812 for b4. As

we expected, for the second group of 50 bacteria which differs by 100 samples, we could not

find any short reads containing the signatures. The average time taken for the implementation

was almost the same as the first group.

This implementation shows that Bitmap Index techniques are very efficient to speed up the

Hive queries, and Hive itself is powerful enough to search for very large tables with millions

or billions of rows or columns in commodity hardware. Moreover, with this method, we

could show that it is possible to identify species with DNA signatures from metagenomics

samples without assembling and alignment and with any size of data.

CHAPTER 6: Results and Discussion

81

6.3 The Results of the SRIdent Pipeline

The first 200 species from the bacterial genome database were selected to simulate their short

reads by Metasim. This application simulated 2,030,000 reads with Roche 454 sequencing

model and default simulation parameter settings. The size of the original reads file was

896.59 MB. RkmerG was used to generate all the possibilities of 19-mers for each short read,

and to append the identification number (1 to 2,030,000) to the 19-mers. The result was an

11.91 GB file containing 2 columns of identification numbers and k-mers. RkmerG finished

this process within 144 minutes with a single computer of Intel Core i3-2100 CPU at

3.10GHz, 4 GB of RAM, and 500 GB of hard disk. We created two tables in the hive. The

file containing 19- mers and their identification numbers were loaded into one of them and

the file containing the DNA signatures and their reference numbers into another. Then we ran

SELECT and JOIN queries on both tables in order to select the k-mers of the reads, matching

to the signatures. The result was a file containing 3 columns: the signature, the reference

number of the signature and the identification number of k-mers that indicates their related

short reads. Table 6.11 shows a small part of the Hive output file.

Table 6.11. A sample of the results obtained from Hive. The genome reference number

indicates the species that owns the signature and the identification number indicates the short

read that contains the k-mer.

Signature Genome reference
number

Read's
identification number

AAAACAAGCAATCGCCCGA 36 462891

AAAACAAGCGAAGGTGCGG 1 373679

AAAACAAGCGAAGGTGCGG 1 374030

AAAACAGCTTTGCTTGACG 50 1468571

AAAACAGCTTTGCTTGACG 50 1982597

AAAACCAACACCGGCTTAT 13 339456

AAAACCAACGTCTATGCGC 41 210636

AAAACCAGCCGGCCGTGGC 49 1756507

AAAACCATCGATAAACTCG 27 1594247

AAAACCATGGAAGGTGTAG 20 166134

CHAPTER 6: Results and Discussion

82

The first row of Table 6.11 says that the signature in this row belongs to the bacteria number

36 and exists in the read number 462891. In the other word, it means bacteria number 36 is

one of the species in the sample. This is what we were looking for, as the aim of this research

to identify the species in a metagenomics sample, directly from the raw sequencing reads

without assembling and alignment. There are too many repeated copies of the short reads

produced by sequencing technologies. This is the reason that we see a considerable number

of repeated signatures and reference numbers in the Hive output. For instance, in rows 4 and

5 of Table 1, we can see the same signature of bacteria 50 in two short reads. On the one

hand, it means these two short reads are overlapped in one part, on the other hand, it can be

an error caused by sequencing technology or it can be a read belongs to unknown species that

should be checked. This pipeline and presented software can be used to facilitate assembling,

alignment, and mapping of the reads with searching the position of DNA signatures in the

reference genome and checking whether the read containing the signature can be matched

with the reference genome. Extracting the reads with same signatures and reference numbers

from Hive output and checking whether they are overlapped is an easy and significant way

for assembling and alignment of the reads from known species. Neither of the signatures of

the species with reference numbers between 51 to 100 was found in the short reads. These

signatures have been selected from 50 species apart from those 200 species as the sample in

order to check the accuracy of the pipeline.

6.3.1 Performance Evaluation and Computational Times

In this experiment, we applied the second phase of the pipeline with two different platforms.

The first one was a multi-node cluster with 5 nodes including the Master node and 4 Slave

nodes. All with 4 GB of RAM, Intel Core i3- 2100 CPU at 3.10GHz and 500 GB of hard

disk, the desktop version of Ubuntu 14.04.1 LTS 64-bit, Java version ”1.7.0- 65” OpenJDK,

Hadoop 12.1 and Hive-0.12.0. The second platform was a single node with the same

hardware and software setup. Table 6.12 shows computational time differences of two

mentioned platforms.

CHAPTER 6: Results and Discussion

83

Table 6.12. Computational times of two platforms (Time is measured in seconds).

Platform Loading k-mers

(11.91 GB)

Loading signatures

(80.14 MB)

Query running time

Single-node 206 1 2909

Multi-node 231 1 585

Since multi-node needs more communication between the nodes through a network, the

loading time is longer. Running time of querying in the multi-node cluster is much faster,

because the process is linear; therefore, parallel computing in a distributed system can speed

up the process.

The important goal of this research is providing a method for rapid identification of species

directly from the raw short reads generated in Next-Generation Sequencing (NGS) and

Whole-Genome Sequencing (WGS) technologies without considering the complicated

processes such as assembling and alignment. The obtained results showed the ability of this

method to reach the goals. Moreover, this pipeline and presented software can be used to

facilitate assembling, alignment, and mapping of the reads according to the Hive output.

Another goal of this research is using commodity hardware for the analysis in order to

enhance the applicability of the analysis as a routine process for the entire research

community and particularly medical laboratories. The computational resources that are used

in the proposed pipelines prove the ability of parallel and distributed computing to reach the

goal.

It is notable that, the integration of the HTSFinder and SRIdent pipeline can speed up the

process in the second phase of the SRIdent pipeline. DNA signature preparation (explained in

Chapter 5) is not required and we can use the output of the third phase of HTSFinder in the

second phase of SRIdent [166].

CHAPTER 6: Results and Discussion

84

6.4 Performance Comparison of Proposed Pipelines with an Existing

State-of-the-Art Method

In order to choose a method to compare the performance of the HTSFinder pipeline with the

existing methods mentioned in Chapter 4, we have extended Table 4.1 with adding the

resources of our pipeline in Table 6.13.

Table 6.13. The extension of Table 4.1 for better comparison of the computational resources

of HTSFinder with the existing methods.

Name
Data

format

Adopted platform according to the

publication

BLAST

specificity

Ability for

a single

sequence

Ability for

multiple

sequences

TOFI FASTA
64 x 1.5 GHz Itanium 2 processors with

64 GB of shared memory
✓ ✓ ✕

TOPSI FASTA 98-cores Linux cluster ✓ ✓ ✓

Insignia FASTA 192-node Linux cluster ✓ ✓ ✓

CaSSiS rRNA
Intel Core i7 CPU (4 cores, 2.67 GHz)

with 24 GB of RAM
✕ ✓ ✓

CMD and

PISD
ESTs

Dell PowerEdge R900 server with two

Intel Xeon E7430 2.13 GHz quad-core

CPUs, 12 GB RAM

✕ ✓ ✕

IMUS ESTs Intel 2.93GHz CPU ✕ ✓ ✕

PIMUS ESTs
Intel Core i7 870 2.93GHz quad-core

CPU and 16 GB RAM
✕ ✓ ✕

DDCSD ESTs

A Master Node: Intel Core i7 CPU 870 at

2.93 GHz and 16 GB RAM, 10 Slave

nodes: Intel Core i7 CPU 3770 K at 3.50

GHz and 32 GB of RAM for each one

✕ ✓ ✓

HTSFinder FASTA

The master node: Intel Core2 Quad CPU

Q6600 at 2.40 GHz and 8 GB of RAM

and 6 slaves Intel Core i3-2100 CPU at

3.10 GHz with 4 GB of RAM for each one

✕ ✓ ✓

Our pipeline is compatible with FASTA-formatted files. Although TOFI, TOPSI, and Insignia

use FASTA format, they use BLAST specificity for checking the uniqueness of their

signatures against the whole background genomes which is not the aim of this research.

Moreover, they use a large cluster of computers with more than a hundred of nodes which are

neither available for us, nor for many of other research communities. CaSSiSS uses rRNA

database that is also not compatible with our pipeline. IMUS, PIMUS, CMD, PISD, and

DDCSD use ESTs sequences that are not appropriate for our pipeline as well. Moreover, the

download source of DDCSD that has provided in the related paper in BMC Bioinformatics

CHAPTER 6: Results and Discussion

85

journal is not available. Furthermore, most of the applications and algorithms of DNA

signature discovery that are introduced in Chapter 4 are suitable for a single sequence or a

single targeted genome in a run. Hadoop and Hive are designed to handle large data analytics.

Although they can process a small amount of data, regarding the time and computational

resources it is not reasonable.

Same with HTSFinder pipeline, Distributed Divide-and- Conquer-based Signature Discovery

(DDCSD) uses a parallel and distributed computation system. The human whole-genome EST

database that has approximately 2.46G bases is used in DDCSD for detecting unique

signatures in this database. Since this database is derived from the human whole-genome

database (2.9G bases) and DDCSD did not use BLAST specificity for checking the

uniqueness of the signatures, it seems this is the only possible method for doing a

comparison, although the computational resources are not the same. Table 6.14 contains a

comparison of hardware setup and discovery time between HTSFinder and DDCSD for

finding unique DNA signatures of the whole human genome database and human whole-

genome EST database.

Table 6.14. Comparison of HTSFinder and DDCSD (d = mismatch tolerance for the DDCSD

algorithm).

Hardware and software

information

HTSFinder DDCSD

Number of master nodes 1 1

Master node information Intel Core2 Quad CPU

Q6600 at 2.40GHz

Intel Core i7 CPU 870 at 2.93 GHz

Number of slave nodes 6 10

Slave nodes information Intel Core i3-2100 CPU at

3.10GHz

Intel Core i7 CPU 3770 K at 3.50

GHz

RAM capacity of master node 8 GB 16 GB

RAM capacity of slave nodes 4 GB (24 GB all together) 32 GB (320 GB all together)

Master node disk space 3.25 TB 1.5 TB

Slave nodes disk space 500 GB 1 TB

Operation system Ubuntu 14.04.1 LTS 64-bit CentOS release 6.3

Human genome size 2.9 GB (hs-ref-GRCh38) 2.46 GB (Human genome ESTs)

Length of signature (k) 24 24

Discovery time (minutes)

532

196 d = 2

873 d = 4

CHAPTER 6: Results and Discussion

86

Comparing the hardware setup of the two clusters and their discovery time for detecting

unique DNA signatures of the Human genome with k=24, we can state that HTSFinder is a

fast and powerful method that uses ordinary hardware to find DNA signatures. Although the

number of nodes and the total amount of RAM and CPU for the cluster that is used with the

DDCSD algorithm is several times higher than for HTSFinder, the discovery time of

HTSFinder is considerably small. Moreover, HTSFinder could find not only all the unique

signatures but also other frequencies of k-mers in the whole human genome at the same time.

HTSFinder detects all the possibilities of unique DNA signatures and other frequencies

without discarding even one signature in the database, regardless of determining mismatch

tolerance level. Meanwhile, it should also be noted that the discovery time which is

calculated for HTSFinder includes the time for generating k-mers (65 minutes). Once we

finish this process, we can keep the k-mers for other implementations.

The read classifiers such as Kaiju, Kraken, and CLARK are used for taxonomic assignment

of the short reads. The same with our method using SRIdent pipeline, they use data in FASTA

format. These applications have focused on the speed of the running time of the process.

They are trying to shortage the process using High-performance computation systems shown

in Table 6.15.

Table 6.15. A comparison of read classifier applications with SRIdent, according to the data

format, computational resources and ability to process single or multiple sequences.

Name
Data

Format

Adopted Platform according to the

publication

BLAST

specificity

Ability for

single

sequence

Ability for

multiple

sequences

Kaiju FASTA

HP Apollo 6000 System ProLiant

XL230a Gen9 Server, with two 64-bit

Intel Xeon E5-2683 2 GHz CPUs (14

cores each), 128 GB DDR4 memory

✓ ✓ ✓

Kraken FASTA

48 AMD Opteron 6172 2.1 GHz CPUs

and 252 GB of RAM, running Red Hat

Enterprise Linux 5.

✓ ✓ ✓

CLARK FASTA

Dell PowerEdge T710 server, dual Intel

Xeon X5660 2.8 GHz, 12 cores, 192 GB

of RAM

✓ ✓ ✓

SRIdent FASTA

The Master node and 4 Slave nodes. All

with 4 GB of RAM, Intel Core i3- 2100

CPU at 3.10GHz

✕ ✓ ✓

CHAPTER 6: Results and Discussion

87

Although SRIdent is also a read classifier, it is developed with the focus on the applicability

of the pipeline for ordinary computers which are available everywhere, in order to utilize Big

Data analysis as a routine process for the research community and in particular for the

medical laboratories. In the publications related to the three mentioned applications in the

above table, the source of collecting unique DNA signatures is not exactly determined,

however, it is mentioned that they use BLAST specificity. Along with the mentioned

differences, unavailability of the resources for us is an extra reason for the inability to do the

comparison.

CHAPTER 7: Conclusion and Future Works

88

Chapter 7

Conclusion and Future Works

CHAPTER 7: Conclusion and Future Works

89

7.1 Summary and Conclusion

 One of the key elements of the medicine of the future is to bring the applications of Next-

Generation Sequencing (NGS), Whole Genome Sequencing, and Single Cell Sequencing

techniques as the routine tools for diagnostic and public health microbiology.

The dramatic reduction in the cost of sequencing has resulted in the applicability of bacterial

genome sequencing for a great number of labs; however, the explosive growth of data has

resulted in a cost shift from sequencing to assembly, analysis, and managing of the

sequencing data. Therefore, the computational analysis is likely to be a few years away.

Due to the massive data volumes and complexity of the analysis, computational resources are

expensive and time-consuming. Moreover, the complexity of the applications requires

adequate knowledge of computer science. Hence, these problems are the barriers for the

applicability of the analysis as a routine process for the entire research community.

The overriding purpose of this research was to overcome the limitations in the computational

analysis of rapid diagnostic identification and characterization of species and infectious

pathogens from raw reads sequencing data, in particular, complex metagenomics data. This

research has focused on 2 main primary goals:

1- Reducing the cost and time-consumption of the computational resources by the use of

parallel and distributed computing and related optimization techniques, in order to utilize

ordinary desktop computers for Big Data analysis.

2- Proposing a fast, flexible, and independent alignment-free method for real-time

identification of microorganisms from High-throughput sequencing reads.

In the earlier chapters of this doctoral thesis, especially in Chapters 1, 2, and 4, we discussed

the critical importance of employing DNA signature as an alignment-free method for real-

time identification of species and pathogens in metagenomics data analysis and clinical

diagnostics assays. Due to the large size of the datasets, the process is computationally

intensive.

CHAPTER 7: Conclusion and Future Works

90

Chapter 4 of this thesis has introduced a powerful pipeline (HTSFinder) that we have

developed for searching DNA signatures (small fragments of a genome that are specific for a

species) among arbitrarily targeted genome databases, using Hadoop and MapReduce as the

application of parallel and distributed computing in commodity hardware.

HTSFinder consists of three phases:

1- Generating all the possibilities of k-mers of genome sequences in FASTA format with

GkmerG software.

2- Extracting all unique signatures or group-specific signatures due to the frequency of

k-mers.

3- Determining the owners (species) of the signatures.

Data obtained in this research using HTSFinder, clearly shows the efficiency of our proposed

pipeline to find all possible DNA signatures of a target database. In this pipeline, we intended

to overcome some limitations of the existing state-of-the-art methods for DNA signature

discovery by focusing on efficiency issues to detect all the possibilities of unique and

common DNA signatures in a database, regardless of the challenges such as pairwise

alignment and mismatch tolerance. Another important feature of this pipeline is its ability to

select a target and non-target databases. From the standpoint of this research, non-target

genome database is not necessarily defined as the entire background genome databases such

as BLAST for the assessment and specificity evaluation of DNA signatures. It can be

determined due to the requirements. General applicability is another issue that is considered

in the pipeline; it can be launched either in a cluster of low-cost nodes or in an HPC

environment. Although the volumes of the datasets in this study are very large (e.g., 287.85

GB in a single run), DNA signatures are detected very precisely and comprehensively in the

target databases and the execution times are reasonably short. The proposed experiment is

just the basic idea, and there is a great flexibility to design implementations for phases of this

approach. Once the pipeline is implemented, the users will find how to manipulate their

datasets according to the requirements.

CHAPTER 7: Conclusion and Future Works

91

After finding the DNA signatures of each species, the next challenge is how to match the

signatures, the short reads (raw sequence data), and their related species.

 In Chapter 5 we have proposed two methods for matching the signatures, the reads, and their

related species.

In the first method, we employed optimization techniques issued from databases to speed up

searching and matching of DNA signatures in the short reads of hundreds (thousands) of

different microorganisms deployed in Hive. We have adapted the concept of bitmap indexes,

routinely used for indexing large database tables on the attributes with little cardinality.

The results of this method show the efficiency of optimization and bitmap indexing

techniques to speed up querying of large tables in Hive. However, constructing the index

tables is a time-consuming process. Therefore, we attempted to develop a better solution.

In the second method, we introduced SRIdent pipeline that consists of two computational

stages:

1- Generating the k-mers from the reads, where k is equal to the length of signatures.

This stage is done by the software called “RkmerG”.

2- Creating the related tables and using Hive queries to find the matches is the next

stage.

The results obtained from SRIdent pipeline prove the efficiency of this approach for real-time

identification of species in Metagenomics and clinical diagnostic assays.

The three presented methods in this doctoral thesis can be an efficient approach, not only for

DNA signature discovery and real-time identification of species but also for other purposes in

bioinformatics and metagenomic studies such as the alignment and assembly of short reads

and next-generation sequencing analysis. They can facilitate assembling, alignment, and

mapping of the reads according to the Hive output. Another advantage is the applicability of

the methods on low-cost computers.

CHAPTER 7: Conclusion and Future Works

92

7.2 Future Work

An important challenging issue discussed above is the high cost of computational resources

and the complexity of the analysis and the applications that require adequate knowledge of

computer science. These two parameters prevent the use of DNA signature and other

classifier methods as a routine technique for High-throughput sequencing analysis. Thus, we

were motivated to consider Hadoop as a model for developing integrated software called

HTSFinder-alfa.

The software is very easy to perform for everybody. We employed the divide and concur

algorithm and parallel programming along with artificial intelligence and machine learning

techniques to make an automated and powerful application for the whole process that we

discussed in this doctoral thesis.

According to the size of data and the amount of RAM and the number of CPU threads and

cores, the software will decide how to break down the data into the smaller pieces and how to

process the data in parallel and in an intelligent manner. This software is still under the

development.

In the final version of this software we can easily copy the target databases of DNA

signatures in a specific folder and copy the short reads to another folder and run the software

with a short command; the software search the DNA signatures (unique or common with

arbitrary length), then it matches the signatures, the reads, and their related species

automatically.

We are trying to develop this software for distributed systems. The software can perform the

process on a desktop computer with 4GB RAM in Linux system.

There are several optimization issues that we recommend as the future work in the proposed

pipelines, in order to enhance their capabilities.

Running time, CPU usage, memory usage, speed of disk reading of the nodes, and managing

the maps according to the size of data and memory are the subjects of optimization in a

CHAPTER 7: Conclusion and Future Works

93

Hadoop cluster. Optimizing the configurations and parameters of Hadoop is also required in

order to reduce the data transfer and communication between nodes of the cluster. Moreover,

query optimization and designing the tables in Hive for preventing a repetition of queries are

very important.

94

References

[1] Savage, Dwayne C. "Microbial ecology of the gastrointestinal tract." Annual Reviews
in Microbiology 31, no. 1 (1977): 107-133.

[2] Gerritsen, Jacoline, Hauke Smidt, Ger T. Rijkers, and Willem M. Vos. "Intestinal
microbiota in human health and disease: the impact of probiotics." Genes & nutrition
6, no. 3 (2011): 209.

[3] Curtis, Thomas P., William T. Sloan, and Jack W. Scannell. "Estimating prokaryotic
diversity and its limits." Proceedings of the National Academy of Sciences 99, no. 16
(2002): 10494-10499.

[4] Dykhuizen, Daniel E. "Santa Rosalia revisited: why are there so many species of
bacteria?." Antonie van Leeuwenhoek 73, no. 1 (1998): 25-33.

[5] Schloss, Patrick D., and Jo Handelsman. "Status of the microbial census."
Microbiology and Molecular Biology Reviews 68, no. 4 (2004): 686-691.

[6] Wagner, Michael, Rudolf Amann, Hilde Lemmer, and Karl-Heinz Schleifer. "Probing
activated sludge with oligonucleotides specific for proteobacteria: inadequacy of
culture-dependent methods for describing microbial community structure." Applied
and environmental microbiology 59, no. 5 (1993): 1520-1525.

[7] Amann, Rudolf I., Wolfgang Ludwig, and Karl-Heinz Schleifer. "Phylogenetic
identification and in situ detection of individual microbial cells without cultivation."
Microbiological reviews 59, no. 1 (1995): 143-169.

[8] Ben-Dov, Eitan, Esti Kramarsky-Winter, and Ariel Kushmaro. "An in situ method for
cultivating microorganisms using a double encapsulation technique." FEMS
microbiology ecology 68, no. 3 (2009): 363-371.

[9] Saiki, Randall K., Stephen Scharf, Fred Faloona, Kary B. Mullis, Glenn T. Horn,
Henry A. Erlich, and Norman Arnheim. "Enzymatic amplification of b-globin
genomic sequences and restriction site analysis for diagnosis of sickle cell anemia."
Science 230, no. 4732 (1985): 1350-1354.

[10] Powledge, Tabitha M. "The polymerase chain reaction." Advances in physiology
education 28.2 (2004): 44-50.

[11] Al-Soud, Waleed Abu, and Peter Rådström. "Capacity of nine thermostable DNA
polymerases to mediate DNA amplification in the presence of PCR-inhibiting
samples." Applied and environmental microbiology 64, no. 10 (1998): 3748-3753.

95

[12] Bolognia, Jean L., Dennis L. Cooper, and Earl J. Glusac. "Toxic erythema of
chemotherapy: a useful clinical term." Journal of the American Academy of
Dermatology 59, no. 3 (2008): 524-529.

[13] Smith, Cindy J., and A. Mark Osborn. "Advantages and limitations of quantitative
PCR (Q-PCR)-based approaches in microbial ecology." FEMS microbiology ecology
67, no. 1 (2009): 6-20.

[14] Garibyan, Lilit, and Nidhi Avashia. "Polymerase chain reaction." Journal of
Investigative Dermatology 133, no. 3 (2013): 1-4.

[15] Schrenzel, Jacques, Tanja Kostic, Levente Bodrossy, and Patrice Francois.
"Introduction to Microarray-Based Detection Methods." Detection of Highly
Dangerous Pathogens: Microarray Methods for BSL 3 and BSL 4 Agents (2009): 1-
34.

[16] Wooley, John C., Adam Godzik, and Iddo Friedberg. "A primer on metagenomics."
PLoS Comput Biol 6, no. 2 (2010): e1000667.

[17] Van de Peer, Yves, Sabine Chapelle, and Rupert De Wachter. "A quantitative map of
nucleotide substitution rates in bacterial rRNA." Nucleic acids research 24, no. 17
(1996): 3381-3391.

[18] Klindworth, Anna, Elmar Pruesse, Timmy Schweer, Jörg Peplies, Christian Quast,
Matthias Horn, and Frank Oliver Glöckner. "Evaluation of general 16S ribosomal
RNA gene PCR primers for classical and next-generation sequencing-based diversity
studies." Nucleic acids research 41, no. 1 (2013): e1-e1.

[19] Větrovský, Tomáš, and Petr Baldrian. "The variability of the 16S rRNA gene in
bacterial genomes and its consequences for bacterial community analyses." PloS one
8, no. 2 (2013): e57923.

[20] Reyes‐López, Miguel Ángel, Alfonso Méndez‐Tenorio, Rogelio Maldonado‐
Rodríguez, Mitchel J. Doktycz, James T. Fleming, and Kenneth L. Beattie.
"Fingerprinting of prokaryotic 16S rRNA genes using oligodeoxyribonucleotide
microarrays and virtual hybridization." Nucleic acids research 31, no. 2 (2003): 779-
789.

[21] Klappenbach, Joel A., Paul R. Saxman, James R. Cole, and Thomas M. Schmidt.
"rrndb: the ribosomal RNA operon copy number database." Nucleic acids research 29,
no. 1 (2001): 181-184.

[22] Acinas, Silvia G., Luisa A. Marcelino, Vanja Klepac-Ceraj, and Martin F. Polz.
"Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn
operons." Journal of bacteriology 186, no. 9 (2004): 2629-2635.

96

[23] Pei, Anna Y., William E. Oberdorf, Carlos W. Nossa, Ankush Agarwal, Pooja
Chokshi, Erika A. Gerz, Zhida Jin et al. "Diversity of 16S rRNA genes within
individual prokaryotic genomes." Applied and environmental microbiology 76, no. 12
(2010): 3886-3897.

[24] Rusch, Douglas B., Aaron L. Halpern, Granger Sutton, Karla B. Heidelberg, Shannon
Williamson, Shibu Yooseph, Dongying Wu et al. "The Sorcerer II global ocean
sampling expedition: northwest Atlantic through eastern tropical Pacific." PLoS
biology 5, no. 3 (2007): e77.

[25] Yilmaz, Pelin, Renzo Kottmann, Elmar Pruesse, Christian Quast, and Frank Oliver
Glöckner. "Analysis of 23S rRNA genes in metagenomes–A case study from the
Global Ocean Sampling Expedition." Systematic and applied microbiology 34, no. 6
(2011): 462-469.

[26] Logares, Ramiro, Shinichi Sunagawa, Guillem Salazar, Francisco M. Cornejo‐
Castillo, Isabel Ferrera, Hugo Sarmento, Pascal Hingamp et al. "Metagenomic 16S
rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore
diversity and structure of microbial communities." Environmental microbiology
(2013).

[27] Siqueira Jr, Jose F., Ashraf F. Fouad, and Isabela N. Roˆcas. "Pyrosequencing as a
tool for better understanding of human microbiomes." Journal of oral microbiology 4
(2012).

[28] Welch, R. A., V. Burland, G. Plunkett, P. Redford, P. Roesch, D. Rasko, E. L.
Buckles, S. R. Liou, A. Boutin, J. Hackett, D. Stroud, G. F. Mayhew, D. J. Rose, S.
Zhou, D. C. Schwartz, N. T. Perna, H. L. T. Mobley, M. S. Donnenberg, and F. R.
Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence
of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 99:17020-17024.

[29] Robinson, Courtney J., Brendan JM Bohannan, and Vincent B. Young. "From
structure to function: the ecology of host-associated microbial communities."
Microbiology and Molecular Biology Reviews 74, no. 3 (2010): 453-476.

[30] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating
inhibitors.PNAS 1977;74:5463-5467.

[31] Gene expression analysis by massively parallel signature sequencing (MPSS) on
microbead arrays Nature Biotechnology 18, 630 - 634 (2000).

[32] Venter, J. Craig, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J. Mural,
Granger G. Sutton, Hamilton O. Smith et al. "The sequence of the human genome."
science 291, no. 5507 (2001): 1304-1351.

97

[33] Lander, Eric S., Lauren M. Linton, Bruce Birren, Chad Nusbaum, Michael C. Zody,
Jennifer Baldwin, Keri Devon et al. "Initial sequencing and analysis of the human
genome." Nature 409, no. 6822 (2001): 860-921.

[34] Wheeler, David L., Tanya Barrett, Dennis A. Benson, Stephen H. Bryant, Kathi
Canese, Vyacheslav Chetvernin, Deanna M. Church et al. "Database resources of the
national center for biotechnology information." Nucleic acids research 36, no. suppl_1
(2008): D13-D21.

[35] Treangen, Todd J., and Steven L. Salzberg. "Repetitive DNA and next-generation
sequencing: computational challenges and solutions." Nature Reviews Genetics 13,
no. 1 (2012): 36-46.

[36] Alkan, Can, Saba Sajjadian, and Evan E. Eichler. "Limitations of next-generation
genome sequence assembly." Nature methods 8, no. 1 (2011): 61-65.

[37] Bleidorn, Christoph. "Third generation sequencing: technology and its potential
impact on evolutionary biodiversity research." Systematics and Biodiversity 14, no. 1
(2016): 1-8

[38] Stein, J., T. Marsh, K. Wu, H. Shizuya, and E. DeLong. 1996. Characterization of
uncultivated prokaryotes: isolation and analysis of a 40-kilobasepair genome fragment
from a planktonic marine archaeon. J. Bacteriol. 178:591–599

[39] Handelsman, Jo, Michelle R. Rondon, Sean F. Brady, Jon Clardy, and Robert M.
Goodman. "Molecular biological access to the chemistry of unknown soil microbes: a
new frontier for natural products." Chemistry & biology 5, no. 10 (1998): R245-R249.

[40] Robinson, Courtney J., Brendan JM Bohannan, and Vincent B. Young. "From
structure to function: the ecology of host-associated microbial communities."
Microbiology and Molecular Biology Reviews 74, no. 3 (2010): 453-476.

[41] Karimi, Ramin, Ladjel Bellatreche, Patrick Girard, Ahcene Boukorca, and Andras
Hajdu. "BINOS4DNA: Bitmap Indexes and NoSQL for Identifying Species with
DNA Signatures through Metagenomics Samples." In International Conference on
Information Technology in Bio-and Medical Informatics, pp. 1-14. Springer
International Publishing, 2014.

[42] Thomas, T., Gilbert, J., Meyer, F.: Metagenomics-a guide from sampling to data
analysis. Microb Inform Exp 2(3) (2012)

[43] Sharpton, Thomas J. "An introduction to the analysis of shotgun metagenomic data."
Frontiers in plant science 5 (2014): 209.

[44] Siegwald, Léa, Hélène Touzet, Yves Lemoine, David Hot, Christophe Audebert, and
Ségolène Caboche. "Assessment of Common and Emerging Bioinformatics Pipelines
for Targeted Metagenomics." PLoS One 12, no. 1 (2017): e0169563.

98

[45] Suenaga, Hikaru. "Targeted metagenomics unveils the molecular basis for adaptive
evolution of enzymes to their environment." Frontiers in microbiology 6 (2015).

[46] Sharma, Shrikant, Shashank Rana, and Raghvendar Singh. "A SHORT NOTE-
METAGENOMICS." International Journal of Biomedical Research 3, no. 4 (2012):
181-186.

[47] McLean, Robert JC, and Kavita S. Kakirde. "Enhancing metagenomics investigations
of microbial interactions with biofilm technology." International journal of molecular
sciences 14, no. 11 (2013): 22246-22257.

[48] Pallen, Mark J., Nicholas J. Loman, and Charles W. Penn. "High-throughput
sequencing and clinical microbiology: progress, opportunities and challenges."
Current opinion in microbiology 13, no. 5 (2010): 625-631.

[49] Loman, Nicholas J., Chrystala Constantinidou, Martin Christner, Holger Rohde,
Jacqueline Z-M. Chan, Joshua Quick, Jacqueline C. Weir et al. "A culture-
independent sequence-based metagenomics approach to the investigation of an
outbreak of Shiga-toxigenic Escherichia coli O104: H4." Jama 309, no. 14 (2013):
1502-1510.

[50] Mokili, John L., Forest Rohwer, and Bas E. Dutilh. "Metagenomics and future
perspectives in virus discovery." Current opinion in virology 2, no. 1 (2012): 63-77.

[51] Mulcahy-O’Grady, Heidi, and Matthew L. Workentine. "The challenge and potential
of metagenomics in the clinic." Frontiers in immunology 7 (2016).

[52] Xia, Xuhua. Bioinformatics and the cell: modern computational approaches in
genomics, proteomics and transcriptomics. Springer Science & Business Media, 2007.

[53] Smith, Temple F., and Michael S. Waterman. "Identification of common molecular
subsequences." Journal of molecular biology 147, no. 1 (1981): 195-197.

[54] Needleman, Saul B., and Christian D. Wunsch. "A general method applicable to the
search for similarities in the amino acid sequence of two proteins." Journal of
molecular biology 48, no. 3 (1970): 443-453.

[55] Kemena, Carsten, and Cedric Notredame. "Upcoming challenges for multiple
sequence alignment methods in the high-throughput era." Bioinformatics 25, no. 19
(2009): 2455-2465.

[56] Hillier, LaDeana W., Gabor T. Marth, Aaron R. Quinlan, David Dooling, Ginger
Fewell, Derek Barnett, Paul Fox et al. "Whole-genome sequencing and variant
discovery in C. elegans." Nature methods 5, no. 2 (2008): 183-188.

[57] Howe, Adina, and Patrick SG Chain. "Challenges and opportunities in understanding
microbial communities with metagenome assembly (accompanied by IPython
Notebook tutorial)." Frontiers in microbiology 6 (2015): 678.

99

[58] Schloss, Patrick D., and Jo Handelsman. "A statistical toolbox for metagenomics:
assessing functional diversity in microbial communities." BMC bioinformatics 9, no.
1 (2008): 34.

[59] Sharpton, Thomas J., Samantha J. Riesenfeld, Steven W. Kembel, Joshua Ladau,
James P. O'Dwyer, Jessica L. Green, Jonathan A. Eisen, and Katherine S. Pollard.
"PhylOTU: a high-throughput procedure quantifies microbial community diversity
and resolves novel taxa from metagenomic data." PLoS Comput Biol 7, no. 1 (2011):
e1001061.

[60] Mavromatis, Konstantinos, Natalia Ivanova, Kerrie Barry, Harris Shapiro, Eugene
Goltsman, Alice C. McHardy, Isidore Rigoutsos et al. "Use of simulated data sets to
evaluate the fidelity of metagenomic processing methods." Nature methods 4, no. 6
(2007): 495-500.

[61] Mende, Daniel R., Alison S. Waller, Shinichi Sunagawa, Aino I. Järvelin, Michelle
M. Chan, Manimozhiyan Arumugam, Jeroen Raes, and Peer Bork. "Assessment of
metagenomic assembly using simulated next generation sequencing data." PloS one 7,
no. 2 (2012): e31386.

[62] Domazet-Lošo, Mirjana, and Bernhard Haubold. "Alignment-free detection of local
similarity among viral and bacterial genomes." Bioinformatics 27, no. 11 (2011):
1466-1472.

[63] Chan, Cheong Xin, and Mark A. Ragan. "Next-generation phylogenomics." Biology
Direct 8, no. 1 (2013): 3.

[64] Chor, Benny, David Horn, Nick Goldman, Yaron Levy, and Tim Massingham.
"Genomic DNA k-mer spectra: models and modalities." Genome biology 10, no. 10
(2009): R108.

[65] Göke, Jonathan, Marcel H. Schulz, Julia Lasserre, and Martin Vingron. "Estimation of
pairwise sequence similarity of mammalian enhancers with word neighbourhood
counts." Bioinformatics 28, no. 5 (2012): 656-663.

[66] Michael, H., Isidore Rigoutsos, and Mark A. Ragan. "Pattern-Based Phylogenetic
Distance Estimation and Tree Reconstruction." Evolutionary Bioinformatics 2006, no.
2 (2007): 0-0.

[67] Vinga, S., Almeida, J.: Alignment-free sequence comparisona review. Bioinformatics
19(4) (2003) 513-523

[68] Srinivasan, S.M., Guda, C.: MetaID: A novel method for identification and quan- ti
cation of metagenomic samples. BMC Genomics 14(8) (2013) 1-12

[69] Rødland, Einar Andreas. "Compact representation of k-mer de Bruijn graphs for
genome read assembly." BMC bioinformatics 14, no. 1 (2013): 313.

100

[70] Compeau, Phillip EC, Pavel A. Pevzner, and Glenn Tesler. "How to apply de Bruijn
graphs to genome assembly." Nature biotechnology 29, no. 11 (2011): 987-991.

[71] Karimi, Ramin, and Andras Hajdu. "HTSFinder: Powerful Pipeline of DNA Signature
Discovery by Parallel and Distributed Computing." Evolutionary bioinformatics
online 12 (2016): 73.

[72] Kaderali, Lars, and Alexander Schliep. "Selecting signature oligonucleotides to
identify organisms using DNA arrays." Bioinformatics 18, no. 10 (2002): 1340-1349.

[73] Francois, Patrice, Yvan Charbonnier, Jean Jacquet, Dominic Utinger, Manuela Bento,
Daniel Lew, Gerhard M. Kresbach, Markus Ehrat, Werner Schlegel, and Jacques
Schrenzel. "Rapid bacterial identification using evanescent-waveguide
oligonucleotide microarray classification." Journal of microbiological methods 65, no.
3 (2006): 390-403.

[74] Coenye, Tom, and Peter Vandamme. "Use of the genomic signature in bacterial
classification and identification." Systematic and applied microbiology 27, no. 2
(2004): 175-185.

[75] Ogilvie, Lesley A., Lucas D. Bowler, Jonathan Caplin, Cinzia Dedi, David Diston,
Elizabeth Cheek, Huw Taylor, James E. Ebdon, and Brian V. Jones. "Genome
signature-based dissection of human gut metagenomes to extract subliminal viral
sequences." Nature communications 4 (2013).

[76] Pride, D. T., Wassenaar, T. M., Ghose, C. & Blaser, M. J. Evidence of host-virus co-
evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses.
BMC Genomics 7, 8 (2006).

[77] Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures.
Genome Biol. 10, R85 (2009).

[78] Lawrence, Jeffrey G., and Howard Ochman. "Molecular archaeology of the
Escherichia coli genome." Proceedings of the National Academy of Sciences 95, no.
16 (1998): 9413-9417.

[79] Sandberg, Rickard, Carl-Ivar Bränden, Ingemar Ernberg, and Joakim Cöster.
"Quantifying the species-specificity in genomic signatures, synonymous codon
choice, amino acid usage and G+ C content." Gene 311 (2003): 35-42.

[80] Duhaime, M. B., Wichels, A., Waldmann, J., Teeling, H. & Glöckner, F. O.
Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1.
ISME J. 5, 107–112 (2011).

[81] Saeed, I., Tang, S.-L. & Halgamuge, S. K. Unsupervised discovery of microbial
population structure within metagenomes using nucleotide base composition. Nucleic
Acid Res. 40, e34 (2011).

101

[82] Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. & Glöckner, F. O. Application of
tetranucleotide frequencies for the assignment of genomic fragments. Environ.
Microbiol. 6, 938–947 (2004).

[83] Ghai, R. et al. New abundant microbial groups in aquatic hypersaline environments.
Sci. Rep. 1, 135 (2011).

[84] Pignatelli, M. et al. Metagenomics reveals our incomplete knowledge of global
diversity. Bioinformatics 24, 2124–2125 (2008)]

[85] Scherer, Stewart, Mary Sara McPeek, and Terence P. Speed. "Atypical regions in
large genomic DNA sequences." Proceedings of the National Academy of Sciences
91, no. 15 (1994): 7134-7138.

[86] Dufraigne, Christine, Bernard Fertil, Sylvain Lespinats, Alain Giron, and Patrick
Deschavanne. "Detection and characterization of horizontal transfers in prokaryotes
using genomic signature." Nucleic Acids Research 33, no. 1 (2005): e6-e6.

[87] van Passel, Mark WJ, Eiko E. Kuramae, Angela CM Luyf, Aldert Bart, and Teun
Boekhout. "The reach of the genome signature in prokaryotes." BMC evolutionary
biology 6, no. 1 (2006): 84.

[88] Mrázek, Jan, and Samuel Karlin. "Distinctive features of large complex virus
genomes and proteomes." Proceedings of the National Academy of Sciences 104, no.
12 (2007): 5127-5132.

[89] Sumathi, S., and S. N. Sivanandam. "Introduction to data mining principles."
Introduction to Data Mining and its Applications (2006): 1-20.

[90] Silberschatz, Abraham, Peter B. Galvin, Greg Gagne, and A. Silberschatz. Operating
system concepts. Vol. 4. Reading: Addison-wesley, 1998.

[91] Coulouris, George F., Jean Dollimore, and Tim Kindberg. Distributed systems:
concepts and design. pearson education, 2005.

[92] Jia, Weijia, and Wanlei Zhou. Distributed network systems: from concepts to
implementations. Vol. 15. Springer Science & Business Media, 2004.

[93] Pike, Robert C., and Kenneth L. Thompson. "Distributed computing system." U.S.
Patent 5,623,666, issued April 22, 1997.

 [94] Tanenbaum, Andrew S., and Maarten Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[95] Davenport, Thomas H., and James E. Short. "The new industrial engineering:
information technology and business process redesign." (1990).

102

[96] Symonds, Judith, ed. Ubiquitous and Pervasive Computing: Concepts,
Methodologies, Tools, and Applications: Concepts, Methodologies, Tools, and
Applications. IGI Global, 2009.

[97] Loke, Seng. Context-aware pervasive systems: architectures for a new breed of
applications. CRC Press, 2006.

 [98] Pacheco, Peter. An introduction to parallel programming. Elsevier, 2011.

[99] Kumar, Vipin, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to
parallel computing: design and analysis of algorithms. Vol. 400. Redwood City, CA:
Benjamin/Cummings, 1994.

[100] Bloom, Kenneth, and Richard Gerber. "Report of the Snowmass 2013 Computing
Frontier Working Group on Distributed Computing and Facility Infrastructures."
arXiv preprint arXiv:1311.2208 (2013).

[101] Flynn, Michael J. "Some computer organizations and their effectiveness." IEEE
transactions on computers 100, no. 9 (1972): 948-960.

[102] Rajaraman, V. Elements of parallel computing. PHI Learning Pvt. Ltd., 2006.

[103] Irabashetti, Prabhudev S. "Parallel processing in processor organization."
International Journal of Advanced Research in Computer and Communication
Engineering 3, no. 1 (2014): 5150-5153.

[104] Tsuchiyama, Ryoji, Takashi Nakamura, Takuro Iizuka, and Akihiro Asahara.
"Jeongdo Son, and Satoshi Miki." The opencl programming book, Fixstars (2010).

[105] Wilkinson, Barry, and Michael Allen. Parallel Programing. Vol. 999. Upper Saddle
River, NJ: Prentice hall, 1999.

[106] Levinthal, Adam E., Thomas K. Porter, Thomas DS Duff, and Loren C. Carpenter.
"Selective operation of processing elements in a single instruction multiple data
stream (SIMD) computer system." U.S. Patent 5,045,995, issued September 3, 1991.

[107] Collins, Jamison, Perry Wang, Bernard Lint, Koichi Yamada, Asit Mallick, Richard
A. Hankins, and Gautham Chinya. "Enabling multiple instruction stream/multiple
data stream extensions on microprocessors." U.S. Patent 7,768,518, issued August 3,
2010.

[108] Chiappetta, Shawn JA. Non-overlapping domain decomposition parallel algorithms
for convection-diffusion problems. The University of Wisconsin-Milwaukee, 2009.

[109] Mattson, Timothy G., Beverly Sanders, and Berna Massingill. Patterns for parallel
programming. Pearson Education, 2004.

[110] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on
large clusters." Communications of the ACM 51, no. 1 (2008): 107-113.

103

[111] Patterson, David A., and John L. Hennessy. Computer organization and design: the
hardware/software interface. Newnes, 2013.

[112] Apache Hadoop. Available at: http://hadoop.apache.org/.

[113] White T. Hadoop: The Definitive Guide. O’Reilly Media, Inc.; 2012.

[114] Cloudera. Hadoop and Big Data. Available at: http://www.cloudera.com/content/
cloudera/en/about/hadoop-and-big-data.html.

[115] Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system.
In: Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium
On, pp. 1-10 (2010)

[116] Frampton, Michael. Big Data made easy: A working guide to the complete Hadoop
toolset. Apress, 2014.

[117] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107-113 (2008)

[118] McKenna, Aaron, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian
Cibulskis, Andrew Kernytsky, Kiran Garimella et al. "The Genome Analysis Toolkit:
a MapReduce framework for analyzing next-generation DNA sequencing data."
Genome research 20, no. 9 (2010): 1297-1303.

[119] Vavilapalli, Vinod Kumar, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves et al. "Apache hadoop yarn: Yet
another resource negotiator." In Proceedings of the 4th annual Symposium on Cloud
Computing, p. 5. ACM, 2013.

[120] Apache Hadoop NextGen MapReduce (YARN). Available at:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[121] Sriharsha, Ram, Tim Tully, Supreeth Rao, and Reynold Xin. "Spark satellite clusters
to hadoop data stores." U.S. Patent Application 14/470,704, filed August 27, 2014.

[122] Capriolo E, Wampler D, Rutherglen J. Programming Hive. O’Reilly Media, Inc.;
2012.

[123] Thusoo A, Sarma JS, Jain N, et al. Hive: a warehousing solution over a mapreduce
framework. Proceedings of the VLDB Endowment. 2009;2(2):1626–9.

[124] Apache Hive. Available at: https://hive.apache.org/.

[125] Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,
H., Murthy, R.: Hive-a petabyte scale data warehouse using hadoop. In: Data
Engineering (ICDE), 2010 IEEE 26th International Conference on, IEEE (2010) 996-
1005.

104

[126] NoSQL Relational Database Management System homepage http://www.
strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Home%20Page

[127] Michael, M., Moreira, J.E., Shiloach, D., Wisniewski, R.W.: Scale-up x scale-out: A
case study using nutch/lucene. In: Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International, IEEE (2007) 1-8.

[128] Bondi, A.B.: Characteristics of scalability and their impact on performance. In:
Proceedings of the 2nd international workshop on Software and performance, ACM
(2000) 195-203.

[129] Land, Miriam, Loren Hauser, Se-Ran Jun, Intawat Nookaew, Michael R. Leuze, Tae-
Hyuk Ahn, Tatiana Karpinets et al. "Insights from 20 years of bacterial genome
sequencing." Functional & integrative genomics 15, no. 2 (2015): 141.

[130] Binnewies, Tim T., Yair Motro, Peter F. Hallin, Ole Lund, David Dunn, Tom La,
David J. Hampson, Matthew Bellgard, Trudy M. Wassenaar, and David W. Ussery.
"Ten years of bacterial genome sequencing: comparative-genomics-based
discoveries." Functional & integrative genomics 6, no. 3 (2006): 165-185.

[131] Li, F., Stormo, G.D.: Selection of optimal dna oligos for gene expression arrays.
Bioinformatics 17(11),1067-1076 (2001).

[132] Tembe, W., Zavaljevski, N., Bode, E., Chase, C., Geyer, J., Wasieloski, L., Benson,
G., Reifman, J.: Oligonucleotide fingerprint identification for microarray-based
pathogen diagnostic assays. Bioinformatics 23(1), 5{13 (2007)

[133] Satya, R.V., Zavaljevski, N., Kumar, K., Reifman, J.: A high-throughput pipeline for
designing microarray-based pathogen diagnostic assays. BMC bioinformatics 9(1),
185 (2008)

[134] Satya, R.V., Kumar, K., Zavaljevski, N., Reifman, J.: A high-throughput pipeline for
the design of real-time pcr signatures. BMC bioinformatics 11(1), 340 (2010)

[135] Vijaya R Satya, Zavaljevski N, Kumar K, Bode E, Padilla S, Wasieloski L, Geyer J,
Reifman J: In silico microarray probe design for diagnosis of multiple pathogens.
BMC Genomics 2008, 9(1):496.

[136] Phillippy, A.M., Ayanbule, K., Edwards, N.J., Salzberg, S.L.: Insignia: a dna
signature search web server for diagnostic assay development. Nucleic acids research,
286 (2009)

[137] Insignia Database and Web Interface. http://insignia.cbcb.umd.edu/

[138] Kurtz, Stefan, Adam Phillippy, Arthur L. Delcher, Michael Smoot, Martin Shumway,
Corina Antonescu, and Steven L. Salzberg. "Versatile and open software for
comparing large genomes." Genome biology 5, no. 2 (2004): R12.

105

[139] Bader, K.C., Grothoff , C., Meier, H.: Comprehensive and relaxed search for
oligonucleotide signatures in hierarchically clustered sequence datasets.
Bioinformatics 27(11), 1546-1554 (2011)

[140] Lee, H.P., Sheu, T.-F., Tang, C.Y.: A parallel and incremental algorithm for efficient
unique signature discovery on dna databases. BMC bioinformatics 11(1), 132 (2010)

[141] Lee, H.P., Sheu, T.F., Tsai, Y.T.: Efficient discovery of unique signatures on whole-
genome est databases. In: Proceedings of the 2005 ACM Symposium on Applied
Computing, pp. 100-104 (2005)

[142] Zheng, J., Close, T.J., Jiang, T., Lonardi, S.: Efficient selection of unique and popular
oligos for large est databases. Bioinformatics 20(13), 2101-2112 (2004)

[143] Lee, H.P., Huang, Y.-H., Sheu, T.-F.: Rapid dna signature discovery using a novel
parallel algorithm. In: ICCGI 2012, The Seventh International Multi-Conference on
Computing in the Global Information Technology, pp. 83-88 (2012)

[144] Lee, H.P., Sheu, T.-F.: An algorithm of discovering signatures from dna databases on
a computer cluster. BMC bioinformatics 15(1), 339 (2014)

[145] Marcais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27(6), 764-770 (2011)

[146] Kaderali, Lars, and Alexander Schliep. "An algorithm to select target specific probes
for DNA chips." Bioinformatics 18, no. 10 (2002): 1340-1349.

[147] Rouillard, Jean‐Marie, Michael Zuker, and Erdogan Gulari. "OligoArray 2.0: design
of oligonucleotide probes for DNA microarrays using a thermodynamic approach."
Nucleic acids research 31, no. 12 (2003): 3057-3062.

[148] Wernersson, Rasmus, and Henrik Bjørn Nielsen. "OligoWiz 2.0—integrating
sequence feature annotation into the design of microarray probes." Nucleic acids
research 33, no. suppl 2 (2005): W611-W615.

[149] Nordberg, Eric K. "YODA: selecting signature oligonucleotides." Bioinformatics 21,
no. 8 (2005): 1365-1370.

[150] Ashelford, Kevin E., Andrew J. Weightman, and John C. Fry. "PRIMROSE: a
computer program for generating and estimating the phylogenetic range of 16S rRNA
oligonucleotide probes and primers in conjunction with the RDP‐II database." Nucleic
acids research 30, no. 15 (2002): 3481-3489.

[151] Ludwig, Wolfgang, Oliver Strunk, Ralf Westram, Lothar Richter, Harald Meier, Arno
Buchner, Tina Lai et al. "ARB: a software environment for sequence data." Nucleic
acids research 32, no. 4 (2004): 1363-1371.

106

[152] Adams, Mark D., and Jenny M. Kelley. "Complementary DNA sequencing: expressed
sequence tags and human genome project." Science 252, no. 5013 (1991): 1651.

[153] Baxevanis, Andreas D., and BF Francis Ouellette. Bioinformatics: a practical guide to
the analysis of genes and proteins. Vol. 43. John Wiley & Sons, 2004.

[154] Choudhary, M., Mackenzie, C., Nereng, K.S., Sodergren, E., Weinstock, G.M.,
Kaplan, S.: Multiple chromosomes in bacteria: structure and function of chromosome
ii of rhodobacter sphaeroides 2.4. 1t. Journal of bacteriology 176(24), 7694-7702
(1994).

[155] Tótha, A., Karimi, R. ―Optimization of Hadoop Cluster for Analyzing Large-scale
Sequence Data in Bioinformatics.‖ Journal of Annales Mathematicae et Informaticae
(submitted) 2017.

[156] Menzel, Peter, Kim Lee Ng, and Anders Krogh. "Fast and sensitive taxonomic
classification for metagenomics with Kaiju." Nature communications 7 (2016).

[157] Wood, Derrick E., and Steven L. Salzberg. "Kraken: ultrafast metagenomic sequence
classification using exact alignments." Genome biology 15, no. 3 (2014): R46.

[158] Ounit, Rachid, Steve Wanamaker, Timothy J. Close, and Stefano Lonardi. "CLARK:
fast and accurate classification of metagenomic and genomic sequences using
discriminative k-mers." BMC genomics 16, no. 1 (2015): 236.

 [159] Karande, N.D.: Efficient indexing technique using bitmap indices for data ware-
houses. International Journal 1(4) (2013).

[160] Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: A data mining approach for
selecting bitmap join indices. JCSE 1(2) (2007) 177-194.

[161] Metasim Homepage http://ab.inf.uni-tuebingen.de/software/metasim/

[162] Richter, D.C., Ott, F., Auch, A.F., Schmid, R., Huson, D.H.: Metasima sequencing
simulator for genomics and metagenomics. PloS one 3(10) (2008) e3373

[163] Karimi, R., and Hajdu, A., "SRIdent: A novel pipeline for real-time identification of
species from high-throughput sequencing reads in Metagenomics and clinical
diagnostic assays." In Engineering in Medicine and Biology Society (EMBC), 2015
37th Annual International Conference of the IEEE, pp. 6481-6484. IEEE, 2015.

[164] Ulrich, R.L., Ulrich, M.P., Schell, M.A., Kim, H.S., DeShazer, D.: Development of a
polymerase chain reaction assay for the specific identification of burkholderia mallei
and differentiation from burkholderia pseudomallei and other closely related
burkholderiaceae. Diagnostic microbiology and infectious disease 55(1), 37-45
(2006).

107

[165] Godoy, D., Randle, G., Simpson, A.J., Aanensen, D.M., Pitt, T.L., Kinoshita, R.,
Spratt, B.G.: Multilocus sequence typing and evolutionary relationships among the
causative agents of melioidosis and glanders, burkholderia pseudomallei and
burkholderia mallei. Journal of Clinical Microbiology 41(5), 2068-2079 (2003).

[166] Karimi, R., Hajdu, A. ―How Can Bring the Big Data Analysis of High-Throughput
Sequencing Technologies into the Routine Clinical Diagnostic Assays?‖ Journal of
Annales Mathematicae et Informaticae (submitted) 2017.

108

Appendix

Download sources and supplementary materials

HTSFinder

The software and supplementary material of HTSFinder pipeline are freely available at:

1- https://drive.google.com/file/d/0B8ZRZRHhuPUfMmFNMTlRZTQxeWM/view?usp=sharing

2- https://sourceforge.net/projects/htsfinder/

SRIdent

The software and supplementary material of SRIdent pipeline are freely available at:

1- https://sourceforge.net/projects/srident/

2- https://drive.google.com/file/d/0B8ZRZRHhuPUfd0E5dE5oejRhcGs/view?usp=sharing

