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Abstract 

A very small proportion (often cited as <1%) of the total microbial diversity in nature can be 

cultivated in the laboratory. The vast majority of them cannot be isolated or are extremely 

difficult to grow in the laboratory. In recent years, impressive progress has been made in the 

field of bioinformatics by technological advances of genome sequencing to perform whole 

genome sequencing in thousands of individuals.  

The emerging field of metagenomics provides a series of technical innovations for culture-

independent scrutiny of microbial communities in the environment. It is a large-scale 

sequencing of the entire community, sampled directly from its natural environment. It 

provides new opportunities for gaining access to previously hidden phylogenetic, functional, 

metabolic, and ecological diversity of organisms and their community structure. While these 

technologies are constantly continued to offer increases in throughput, the time and cost of 

DNA sequencing continue to fall. Therefore, sequencing technologies are becoming 

applicable as a routine tool for diagnostic and public health microbiology. However, the 

complexity of the analysis and high-costs of the computational resources has encountered 

many challenges and obstacles to achieving this goal. 

One of the major challenges for metagenomics studies is the accurate identification of 

organisms present in complex environments. Although, a wide variety of assembling and 

alignment-based algorithms, software and computational analysis workflows have been 

subsequently developed, computational approaches for alignment-based identification of 

complex communities, without very extensive sequencing coverage are inadequate for even 

the most abundant members.  

In this research, we have proposed an alignment-free method and its appropriate pipelines 

and software for Real-time identification of species and strains from raw read sequencing 

data. The method tries to shortcut identification into a quick and accurate process in 

environmental and clinical sequencing samples, using parallel and distributed computing on 

commodity hardware for enhancing the applicability of the analysis as a routine process in 

the entire research community. 
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1.1 Motivation and Overview 

The number of bacterial cells (10
14

) inhabiting in an average healthy adult human body is 

estimated tenfold more than human cells (10
13

) [1][2] and the number of existing microbial 

species in the world is estimated at 10
7 

to 10
9
 [3][4][5]; therefore, they play a pivotal role not 

only in Human life but also the whole life on Earth. Over 99% of microorganisms in our 

planet are not cultivable in vitro or require a long and difficult cultivation period [6][7][8]; 

thus, how can we discover these unseen occupiers of our body and our planet? What is the 

appropriate solution for the rapid identification of these best Friends and the worst enemies? 

In 1983, Kary Mullis, a scientist at the Cetus Corporation, conceived of Polymerase Chain 

Reaction (PCR) as a method to synthesize unlimited copies of a small fragment of target 

DNA. Over the next two years, a team of Cetus scientists that recognized the impact of PCR 

on molecular biology could turn the theoretical process into reality [9]. 

Polymerase Chain Reaction (PCR) is a quick, easy, and inexpensive laboratory technique to 

amplify a single copy or a few copies of a small fragment of target DNA (the template) to 

unlimited copies. PCR can synthesize any particular piece of DNA [10]. PCR technique 

applies a series of 20-40 repeated temperature cycles. Each cycle consists of three stages: 

1- Denaturing: heating temperature to separate the double-stranded template DNA into 

two single strands. 

2- Annealing: cooling temperature to enable the DNA primer to attach to the template 

DNA and serve as a starting point to copy the DNA. 

3- Synthesis: raising the temperature and making the new strand of DNA by the Taq 

polymerase enzyme. 

The invention of the PCR technology provided a new era of studying uncultivable 

microorganisms, but there was still a long way ahead. PCR has some limitations. 

1- Amplification inhibitors such as detergents, antibiotics, enzymes, polysaccharides, 

fats, proteins, and salts can reduce the amplification efficiency [11] 
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2- PCR is a highly sensitive; any form of contamination of the sample can produce false 

positives or false negative results [12][13]. 

3- Another limitation of PCR is the length of the fragment that can be amplified. PCR 

works well over short stretches of DNA up to about 2 kbp
1
. 

4- PCR can only be used to identify the presence or absence of a known pathogen or 

gene [14]. 

5- PCR cannot be used to identify species in complex communities. 

Later with emerging the microarray approaches, identifying uncultivable microorganisms 

entered into a new stage. The microarray is the combination of a very large set of distinct 

probes attached to a solid structure (Glass slides). Probes are small fragments of sequences 

which are complementary to a pathogen-specific gene sequence [15]. According to the 

reports, microarray techniques bring the possibility of species identification or detecting and 

diagnosing of various bacterial samples at the same time with main advantages of high 

throughput, parallelism, miniaturization, speed, and automation. 

Microarray has been limited to a small set of functional genes such as 16S rRNA genes, and 

it is not a suitable approach to investigate the uncultivable majority of the species in the 

environment [15][16]. 

With respect to remarkable abilities of PCR and microarray approaches, they are not enough 

powerful for studying complex environmental and clinical samples which contain hundreds 

or thousands of different species. 

With the advancement of Next-generation sequencing (NGS) which is a combination of 

massively parallel sequencing technologies besides PCR and microarray techniques, 

considerable progress has occurred not only in the phylogenetic and functional analysis of 

microbial communities but also in their affiliated science, significantly. It is a culture-free 

method that enables analysis of the entire microbial community within a sample. It has the 

ability to combine many samples in a sequencing run.  

1-  bp: base pairs; it is a unit of length for the strands of DNA or RNA 
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The 16S ribosomal RNA (16S rRNA) gene with about 1,500 bp length is part of the bacterial 

DNA and generally contains nine “hypervariable regions” (V1 – V9) that represent 

considerable sequence diversity among different bacterial species and can be used for species 

identification [17]. 

16S rRNA is the most common standard culture-free approach which is currently used for 

taxonomic assignments, bacterial identification, and studying bacterial diversity in ecology 

and clinical microbiology [18][19]. It is also used to design the primers for Polymerase Chain 

Reaction (PCR) and probes for microarray studies [20]. There are a considerable number of 

publications about limitations of 16S rRNA gene. 

The major limitation is that the copy numbers of 16S rRNA per genome vary from 1 up to 15 

or more copies [18][21]. Therefore, the amount of 16S rRNA variants is estimated to be 2.5-

fold greater than the number of bacterial species [18][22]. Moreover, 16S sequences of the 

same species or even the same genome are often different [18]. 

The ambiguous and incorrect identity of species and also the artificial classification of an 

organism into more than one species can be led by divergent evolution of rRNA genes [23]. 

This problem can be solved in cultivable species by cloning rRNA genes from the pure 

culture of that species to identify the degree of variation [23]. As mentioned above, more than 

99% of species are culture-independent, therefore in a complex and mixed community of 

microorganisms, sequence heterogeneity of 16S rRNA within a single genome can lead 

overestimation of the microbial diversity [22]. 

Short reads as the output of the high-throughput sequencing technology are very noisy and 

partial, with too many missing parts [16]. As an example, in the first phase of the Global 

Ocean Sampling (GOS) expedition, only 4,125 distinct full length or partial 16S genes were 

identified from 7.7 million metagenomics reads [24][26]. According to another release of 

GOS, the total of 142,783 (1.4%) 16S genes from 80 GOS metagenomes were obtained 

[25][26]. 
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Moreover, most of the reads from recent NGS platforms are too short in length [22], thus de 

novo assembly is required in order to make longer sequences. It may represent an extra 

limitation to use 16S rRNA fragments for taxonomic assignments. It can be argued that in the 

case of reads with the short length, 16S rRNA is more efficient to identify a higher level of 

taxonomic assignments such as phyla, classes, orders, families, and genera, than species or 

strains [27]. As an example, Escherichia coli is a bacterial species with several strains. Some 

of these strains have nearly similar 16S rRNA-encoding genes but have very dissimilar 

functional capabilities [28][29]. 

The application of next-generation sequencing technologies has provided a set of technical 

innovations called “Metagenomics” as a culture-free method to study the genetic content of 

all organisms in a community obtained directly from their natural environment. Debility of 

16S rRNA to identify and especially rapid identification of microorganisms in the 

metagenomics reads is more visible. 

One of the key elements of the medicine of the future is to bring the applications of 

sequencing technologies and metagenomics techniques to the routine medical laboratories. 

The new generation of sequencing technologies, especially Whole Genome Sequencing 

(WGS) and Single Cell Sequencing has provided this opportunity, but analyzing the massive 

amount of data that these machines produce is still expensive and requires a high effort of 

ultra-specialized personnel and High-performance computing resources. 

The key contribution of this research is the development of an alternative fast and cost-

effective method to allow identifying species and strains from raw read metagenomics 

sequencing data, regardless of aforementioned limitations and without further processes such 

as assembling and alignment. The second contribution of this research has tended to develop 

the required applications with the automated process in order to enhance the applicability of 

the analysis as a routine process for the research community, particularly in medical 

laboratories. The proposed methods in this doctoral research involve software and pipelines 

along with parallel and distributed computing applications such as Hadoop and Hive in a 

cluster of low-cost nodes. 
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The motivation behind this research is developing alignment-free approaches, not only to 

shortcut identification into a quick and accurate process using parallel and distributed 

computing on commodity hardware, but also for other purposes in bioinformatics and 

metagenomics studies such as the accurate estimation of microbial community composition 

based on metagenomics sequencing data, the alignment and assembly of short reads, and 

other Next-generation sequencing analysis. 

 

1.2 Description of this Thesis Outline 

This thesis is organized as follow.  

Chapter 2 is intended to provide a brief summary of the basic biological concepts and 

methodology used in this research. Chapter 3 gives a background of the relative computer 

science concepts and methodology used in this research. 

The aim of Chapter 4 is to outline the research approach, design and methods used in this 

research to find the best solutions for the following three primary questions that are the major 

computational challenges of high-throughput sequencing and metagenomics data analytics. 

1. What is the proper alignment-free method for rapidly identifying the species and 

strains from raw read sequencing data? 

2. What is the proper method of finding DNA signatures from genome databases? 

3. What is the proper method to use less computational resources? 

The initial section of this chapter proposes an alternative alignment-free method for real-time 

identification of species and pathogens from raw read sequencing data. The next section 

provides an overview of the state-of-the-art methods and discusses the challenges and 

limitations of these methods in comparison with our proposed method of using DNA 

signature as a solution for the first question. 
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The rest of the chapter describes a novel method of searching DNA signatures among target 

databases. In addition, we addressed the resources of the data used in this research and 

explained how to prepare the data for use in the proposed method. 

The goal of Chapter 5 is to address the following questions: 

1. What is the proper method for searching DNA signatures among the reads and 

matching with their related species? 

2. What is the proper method to use less computational resources? 

The chapter starts with the review of the more popular existing methods for short reads 

classification and discusses the challenges and limitations of the methods in comparison with 

our proposed methods of reads classification. 

We have developed two methods to answer the questions. The methods that are presented in 

this chapter explained two different ways of matching the DNA signatures with the reads in 

metagenomics sequencing reads. The first method uses Bitmap Indexes and NoSQL and the 

second method uses a novel pipeline named SRIdent. Hadoop and Hive are used for both 

methods. In addition, we addressed the resources of the data used in this research and 

explained how to prepare the data for use in the proposed methods. Chapter 6 elaborates the 

results and discussion of the 3 methods explained in Chapters 4 and 5. 

Chapter 7 as the concluding chapter is intended to summarize the main contributions of the 

research presented in this doctoral thesis. The methods and analysis developed to achieve the 

proposed objectives are presented in a much-summarized way and the main conclusions 

derived from the results are presented. Finally, the future research lines that give continuity to 

the presented work are listed. 
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2.1 Next-Generation Sequencing (NGS) 

The first DNA sequences were obtained in the early 1970s. Frederick Sanger, the pioneer of 

developing a rapid DNA sequencing published a reliable and reproducible method (chain 

termination) for DNA sequencing in 1977 [30]. A decade later, several new methods for 

DNA sequencing were developed and "first-generation" sequencing automated instruments 

were invented. The appearance of next-generation sequencing (NGS) technologies is indebted 

to the invention of massively parallel sequencing techniques in 2000 [31]. 

The recent technologies have revolutionized sequencing capabilities. They allow us to 

sequence DNA and RNA much more quickly and cheaply than the previous sequencing 

methods. As an example, the first human genome, finished in 2003[32][33], required 13 years 

to sequence and cost nearly 3 billion dollars. In contrast, new sequencing technologies can 

sequence over 45 human genomes in a single day for approximately $1000 each (Illumina 

documents that is addressed in Figure 2.1 caption). Figure 2.1 shows a dramatic increase in 

the volume and concurrent decreasing the cost of sequencing data since 2000. 

 

Figure 2.1. Sequencing Cost and Data Output Since 2000. The Y-axes on both sides of the 

graph is logarithmic.  

Source: https://www.illumina.com/content/dam/illumina-
marketing/documents/products/illumina_sequencing_introduction.pdf 
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Next generation sequencing technology offers a wide range of options for sequencing, such 

as 454 Life Sciences (Roche), Illumina, Ion Torrent (Life Technologies), Applied Biosystems 

(Life Technologies), and Pacific Biosciences among others. Each platform offers different 

coverage and reads length and the cost per base of sequencing is likely to become more 

affordable with the rapid advances in this field. Along with the ability to generate community 

sequence data, the price of DNA sequencing continues to fall. It allows the microbial 

community to be investigated at a much greater scale and detail than before. 

Today's sequencing technologies generate an enormous amount of sequencing data (1.8 

terabases) in a single run. Ever-increasing and complexity of generated sequences have large 

implications for the analysis of this data. Therefore, developing fast and cost-effective means 

and applications to accelerate sequencing analysis is necessarily required. The first question 

after obtaining raw sequencing data is “who's there?” 

 

2.2 Short Reads 

Reads generated by sequencing technology are short fragments of a longer DNA molecule 

present in the sequencing sample. The length of a short-read is normally less than 1,000 base 

pairs [34]. 

The sequencing read length depends on sequencing technology and chemistry methods used. 

The major limitation of Next-generation sequencing (NGS) methods is the short length of 

reads [35]. 

Repetitive sequences limit the capability of the short reads to assemble complex regions of 

the genome [36], and it requires de novo assembly before most genome analysis. When the 

reads are longer, there is more overlap between reads and more overlap with the reference 

genome.  
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Recent progress in long-read DNA sequencing, so called the Third-generation sequencing 

allows direct sequencing of single DNA molecules to produce longer reads than second 

generation sequencing [37].  

The term "Raw sequencing reads" that is used in the title and several pages of this 

dissertation refers to the primary output of sequencing technologies (short reads) without any 

pre-processing. 

 

2.3 Metagenomics 

The increase of the sequencing capacities from the emergence of NGS technologies has 

opened a new way not only to taxonomic analysis but also to obtain a complete catalog of 

genes that an organism can express at any point in its life cycle. Hence, the NGS has had a 

great impact in many fields of the current modern biology allowing the simultaneous study of 

several microorganisms of interest. 

Metagenomics, a high-throughput culture-independent technique has provided the ability to 

investigate the entire community of microorganisms of an environment with analyzing their 

genetic content obtained directly from their natural residence. The method does not have to 

worry about problems such as culture-negative, gram-negative, gram-positive, and so on. 

This promising ability has led to growing the integration of different fields of science, along 

with sequencing technology and computational approaches to investigate the mysteries of the 

hidden world of microbes and to reveal the secrets of these invisible and unknown inhabitants 

of our planet. It allows scientists to gain a more comprehensive picture of the diversity and 

function of microbial communities. 

The appearance of metagenomics techniques, as we know it today was first reported by Stein 

et al., who revealed the presence of two unknown genes in archaea with sequencing 40-kb 

archaeal genome fragment in a metagenomics library [38]. The term "metagenomics" was 

first used by Jo Handelsman in 1998 [39]. Since then, many metagenomics projects have 
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been organized from ecology, environmental sciences, human health (e.g., the human gut 

microbiome), and chemical industry [40]. 

According to the definition of the GOLD database (Genomes Online Database), there are 

three types of ecosystems for obtaining Biosamples: Environmental ecosystems (e.g. water 

samples taken from deep ocean), host-associated ecosystems (e.g. samples taken from 

human, animals, and plants), and engineered ecosystems (e.g. Bioreactors). 

The first step in a metagenomic study is to obtain the sample. Long DNA molecules extracted 

from the sample are broken into smaller pieces by special fragmentation and cloning 

techniques. Then, these small pieces are fed into the sequencer for determining the order of 

nucleotides in short fragments of DNA [41]. Sequencing output for a metagenomics sample is 

enormous data sets containing the short reads of hundreds to thousands of known and 

unknown organisms. The DNA extracted should be representative of all cells present in the 

sample and sufficient amounts of high-quality nucleic acids must be obtained for subsequent 

library production and sequencing [41] [42]. Figure 2.2 details the steps involved in a typical 

sequence-based metagenomics project. 
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Figure 2.2. A typical metagenomics project. 

 

There are two basic types of metagenomics studies: function based metagenomics and 

sequence-based metagenomics. Functional analysis of metagenomics data provides valuable 

insight into the kind of biological functions that are performed by organisms in a given 

environment. It involves searching for a particular function or activity. Sequence-based 

metagenomics involves sequencing and analysis of DNA obtained from the samples. It can be 

used to assemble genomes, phylogeny reconstruction and taxonomic assignments, identify 

genes, and compare organisms of different communities. 

The term metagenomics can also be classified into two distinct methods: shotgun 

metagenomics and targeted metagenomics. 

Shotgun metagenomics also named whole metagenomics usually refers to extracting and 

sequencing the entire genomic content of a sample from the complex community. This 

sequencing approach provides an accurate and deep understanding of both taxonomic and 
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functional diversity of microbial communities. Due to the complexity and the size of the data, 

shotgun metagenomics is still very expensive and the informatics data analysis is a 

challenging issue [43]. 

Targeted metagenomics, [44][45] or amplicon-based metagenomics is an approach for 

constructing gene collections which are useful for studying the composition of gene clusters 

in microbial communities and the adaptive evolution of enzymes toward environmental 

changes. In compare with shotgun metagenomics, the amplification of the gene regions 

before sequencing reduces the amount of data in the targeted metagenomics. Since, 

sequencing and analyzing the data are easier, faster, and cheaper, it can be integrated into the 

routine processes of laboratories. 

 

2.3.1 Challenges of Metagenomics Approaches 

Metagenomics as a newbie and immature field of science involves with too many challenges 

from sampling to sequence assembly, data annotation, and functional analysis. Metagenome 

samples come from complex communities of microorganisms, sometimes containing more 

than 10,000 species [46]. Due to the diversity of the microbial communities, most genomes 

are not completely represented by short reads. 

Managing, mining, and analyzing of the massive amount of metagenomics data poses great 

challenges and it requires the use of specialized bioinformatics tools. The sequence-only 

method is comparatively less time-consuming than the alternative, which is the construction 

of metagenomics libraries and subsequent function and or sequence-based screening to 

identify gene products encoded by the target microbial partners [47]. 

Having efficient implementations to facilitate the analysis is urgently required in both 

biological and computational parts of any metagenomics project. 

Currently, the traditional culture-based and biochemical testing techniques are the majority of 

diagnostics assays in clinical laboratories. Along with the fact that these techniques are time-
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consuming and labor intensive, also failing the isolation of disease-causing organism is 

unavoidable [48]. The dramatic drop in the price of sequencing is going to be a great 

opportunity in clinical laboratories to apply culture-independent metagenomics techniques for 

clinical diagnostics assays [49][50]. 

Well-established standard molecular biology protocols for sequencing of the metagenomics 

samples are available to most research and clinical laboratories. However, they are often 

limited by computational resources and methods to analyze these data and it is still far from 

being standardized [51]. 

 

2.4 Sequence-Based Identification 

After sequencing of the genetic material, phylogenetic assignment and taxonomic affiliation 

of the species is the first thing that should be considered so that we can look into the 

mysterious world of the DNA sequences in order to figure out who is there. 

There are several methods of species identification that are commonly used. The most 

popular methods are identification based on morphological characteristics of the species and 

sequence-based identification to distinguish species. 

 The traditional identification methods based on morphological, physiological (nutrient need), 

and structural (differences in membrane lipids) characteristics are unable to study culture-

negative microorganisms, especially in complex microbial communities. For all of them, 

cultivation was an essential prerequisite, but the current means of cultivation did not allow 

even a small part of existing microorganisms to be cultivated (for various reasons such as 

lack of knowledge of the required nutrients, atmospheric conditions, etc.). Therefore, species 

identification has to shift towards genetic identification regarding the advances in sequencing 

technology. Sequence-based identification includes two different categories of alignment-

based and alignment-free approaches. 
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2.4.1 Alignment-Based Identification 

Since the origin of bioinformatics, sequence analysis has been the forefront of the biological 

research. The very first approaches for sequence analysis were based on sequence alignment. 

It is the procedure of comparing two (pairwise alignment) or more (multiple alignments) 

sequences to find the most significant similarities. There are two common computational 

approaches for sequence alignment: local alignment and global alignment. [52]. 

Local alignment searches regions of similarity between substrings of the query sequence and 

the target sequence. The Smith-Waterman algorithm [53] is the most commonly used for local 

alignments. Instead of searching the whole sequence, the algorithm compares segments of all possible 

lengths and optimizes the similarity measure. 

Global alignment performs an end to end alignment over the entire length of two or more 

sequences as the query and the target sequences. The sequences are assumed to be 

homologous along their entire length. Needleman and Wunsch algorithm [54] is an efficient 

algorithm to perform the global alignment. Figure 2.3 illustrates examples of local and global 

alignment. 

 

Figure 2.3. Examples of local and global alignments. 

Source: http://www.majordifferences.com/2016/05/difference-between-global-and-
local.html#.WVdT-4SGPIU 

 

 



CHAPTER 2: Basic Biological Concepts and related challenges 
   

17 

 

2.4.1.1. The Limits of Alignment-Based Identification Methods 

The applications of sequence alignment are limited to apply for closely related sequences, but 

when the sequences are divergent, the results cannot be reliable. Alignment-based approaches 

are computationally complex, expensive, and time-consuming and therefore aligning large-

scale sequence data is another limitation [55]. 

The exponential growth of next-generation sequencing (NGS) data has resulted in the 

generation of a huge amount of data. This causes several challenges on alignment-based 

algorithms. 

Raw reads as the output of NGS technology are short, partial, and large in volume with lots 

of errors and missing parts [16][41]. About 50% of the reads generated in one run cannot be 

perfectly mapped to the reference sequences [56]. Since the assembly of sequence data is 

based on the overlapping of the reads, assembly of the less diverse members of a community 

may require additional sequencing [57]. Alignment and assembly methods are inadequate 

when two reads from the same gene do not overlap [58][59]. If reads do overlap, there is no 

guarantee that they are from the same genomes [60][61]. 

These limitations and challenges cause incapability of alignment-based approaches or they 

make the mapping process, assembly, annotation, and the alignment-based identification as a 

prolonged, complex, and expensive process. This inability becomes more visible when the 

data comes from metagenomics sequencing, which is the sequencing of multiple species at 

the same time. Sequence reads come from different regions of various genomes and their 

alignment may not be possible. 

 

2.4.2 Alignment-Free Identification 

Since alignment-free methods could overcome various difficulties of traditional sequence 

alignment approaches, they are increasingly used in NGS sequence analysis, such as 

searching sequence similarity, clustering, classification of sequences, and more recently in 
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phylogeny reconstruction and taxonomic assignments [62][63]. Moreover, they are much 

faster than alignment-based methods that mostly run in linear time. 

One of the most popular alignment-free methods is based on k-mer/word frequency. In this 

method small fragments of sequence called k-mers are used to search the frequency of all 

possible k-mers (words) in the entire sequence or in a database and then use statistical 

approaches and distance measurement based on these frequency vectors. "k" is a fixed length 

of the oligonucleotide to represent the sequence fragment [64][65][66]. 

There are some other alignment-free approaches:  

 Methods based on substrings that search similarity and differences of substrings in a 

pair of sequences. 

 Methods based on information theory that includes global and local characterization 

of DNA, RNA and proteins and region classification 

 Methods based on graphical representation that uses for sequence comparison and 

characterization 

In this research, k-mers/words frequency is considered to propose the methods of 

identification.  

 

2.5 k-mers or Words Frequency 

In computational genomics, counting k-mers (words of size k) refers to search the occurrence 

of all the possible substrings of length k in genome sequence data. It is an essential 

component of many alignment-free methods, including genome and transcriptome de novo 

assembly, sequencing coverage estimation, error correction of sequence reads, and 

metagenomics sequencing analysis. It can be used as a first stage analysis before alignment, 

assembly, and an early identification of the species in metagenomics samples. Comparing the 

frequency of k-mers in metagenomics sequences is computationally easier than sequence 

alignment and it is an important alignment-free method of sequence analysis [67][68]. 
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Using k-mer spectra as a reference-free technique for analyzing next-generation sequencing 

data can reveal lower sensitivity to the depth of coverage, errors rate, the probability of reads 

contamination, the size of sequenced data, and estimating the level of repetitive elements of 

the sequence data. The key factor of using k-mers is directly analyzing of raw reads without 

the need for assembly. 

 

2.6 De Bruijn Graph 

It is an efficient way to represent all the possible k-mers (subsequences of length k) of a 

sequence. These types of graphs are important because of their usefulness in the 

reconstruction of genomic sequences and are used in most of the applications of de novo 

assembly of the short reads. The n-dimensional Bruijn graph of „m‟ characters is a directed 

graph representing overlaps between sequences of characters. The graph has m
n vertices 

consisting of all possible k-mers of the given sequence of characters present in the reads 

sequence. For example, given the alphabet comprising A, T, G and C, there are 4
3 = 64 

nucleotides of length k=3 [69][70]. 

In a string with length S, The amount of all possible k-mers is {S – k + 1}. As an example in 

Figure 2.4 the length of the sequence is S = 17, therefore the amount of all the possibilities of 

k=7 are: 

 S – k + 1 = 17 – 7 + 1 = 11 
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Figure 2.4. An example of de Bruijn graph.                                                                             

Source: http://www.homolog.us/Tutorials/index.php?p=2.1&s=1 

    

In our proposed pipelines explained in Chapters 4 and 5 of this thesis, there are two software 

called GkmerG and RkmerG that have been designed for generating all the possibilities of k-

mers of the genomes and short reads. The method of generating k-mers of the two software is 

inspired from de Bruijn graph. 

 

2.7 DNA Signature 

DNA signature is a short k-mer oligonucleotide fragment with an arbitrary length k, which is 

unique or specific to a particular group of species selected from a target genome database. 

There are two categories of unique and common signatures according to the purpose of 

usage. The presence of a unique DNA signature in any volume of sequences and genetic 

materials represents the existence of the corresponding species[71][72][73]. Therefore, 

signature discovery is the action of finding specific fragments of the genome in a database. 

Any pipeline, application, or algorithm that is designed for DNA signature discovery has to 
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detect an entire database or multiple databases recursively. The procedure varies according to 

the purpose of using DNA signatures. 

There exist methods for detecting signatures with different lengths of nucleotide for each 

species using k-mer frequencies and pattern comparison approaches. The number of DNA 

signatures for each species can differ from a few to millions of signatures. It depends on the 

number of species in the target database, the size of the genome, the length of the signature, 

and the similarity‟s degree of the genome with its relatives (strains) [71].  

Using DNA signatures in the isolated sample studies and Polymerase Chain Reaction (PCR) 

base detection is easy to perform, because of few number of targets. But in the metagenomics 

studies, it is much more complicated. Taking into account the number of signatures, short 

reads and organisms in the metagenomics samples, it is obvious that we are facing massive 

data sets. Using ordinary hardware and software tools is impossible since it takes a long time 

regardless of any failure during the process. 

DNA signature can help the identification process to be easier, cheaper, and faster. Using 

DNA signature can illuminate the dark part of sequencing to see who is there rapidly. It can 

be used as an application of early identification of the species from raw read sequencing data 

in metagenomics and next-generation sequencing (NGS) analysis. Unlike the alignment-

based methods, the DNA signature identification method does not depend on the type of 

sequencing technology, the level of sequence coverage and the amount of sequencing 

required to obtain complete coverage. It is not also a serious matter if reads are short or long. 

According to the literature, DNA signature is mostly used to design primers for Polymerase 

Chain Reaction (PCR) assays and probes for DNA microarray assays [71]. Despite the 

rapidly increasing of completed genomes and with respect to the importance of DNA 

signature for real-time identification of species in metagenomics and clinical diagnostic 

assays, the term DNA signature has not been well considered in this area.  

Despite the impact of the 16S rRNA on the microbial taxonomy, it is particularly useful for 

taxa above the rank of species. Because of sequence similarities, they are not sufficient to 

define bacterial species and strains [74]. 
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There are two types of unique and common DNA signature. The unique DNA signature is a 

k-mer that occurs once in the target database and plays the role of fingerprint for microbial 

species. The common DNA signature is a k-mer that occurs among multiple species or strains 

and it can be collected by searching the shared regions through pairwise alignments between 

the input genomes. It is used for the design of microarray and PCR-based pathogen 

diagnostic assays [71]. 

 

2.7.1 Advantages of Using DNA Signature 

A major advantage of the use of DNA signatures is the gene-independent and alignment-free 

nature of this approach [75]. As nucleotide signatures are generally pervasive across genomes 

[76][77], the requirement for the presence of conserved genes or motifs typically used for 

identification and classification of sequences is circumvented. DNA signature is an important 

method for classifying all genome sequence fragments independently of reference databases 

[77]. 

 The GC (Guanine and Cytosine) percentage of the genome fragments is widely used as a 

measure of nucleotide composition [77]. Although the GC% is relatively constant within 

species, it varies widely between species. Therefore, GC% is suitable for tracing the origins 

of genome fragments within the species [78]. They are not suitable for assigning genome 

fragments of metagenomics sequences. As another advantage of DNA signature is it‟s higher 

effectively than GC% for assigning of nucleotide composition [79]. 

DNA signatures are well suited to the analysis of the sequences with lacking a robust 

estimate of phylogenetic relationships and to the analysis of complex sequences such as 

metagenomics sequences that alignment-based methods often perform poorly 

[77][80][81][82][83][84]. 

Sequence analysis of high-throughput technologies with DNA signature is easier than the 

other methods. The amount of DNA signatures and their specificity increase with adding the 

length of signature. It causes a wide flexibility of using the method [71]. 
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Relative abundance estimation of microorganisms from the sequence reads in diverse 

communities, and searching for genetic variations that are known as genetic polymorphisms 

in eukaryotes are another potentially advantages of DNA signatures. Regarding a large 

number of DNA signatures in different species and the possibility to choose arbitrary lengths 

of them for identification, this approach is suitable, not only for PCR and microarray-based 

assays but also has great potential for next-generation sequencing analysis. 

The flexibility to choose targeted and non-targeted databases and an arbitrary length of 

signatures are other advantages that allow reducing the cost of sequencing by performing 

lower-coverage sequencing. Since the length of signatures is short, the size of the reads does 

not a serious matter. 

Detecting horizontally transferred DNA [79][85][86], reconstruct phylogenetic relationships 

[87], and infer lifestyles of bacteriophage [88] are among other advantages mentioned in the 

literature. 

 

2.7.2 Disadvantages of Using DNA Signature 

Although, it facilitates the analysis of sequence reads, searching and finding DNA signature 

itself in targeted databases is computationally intensive. Especial resources and applications 

are required. While adding the length of signature increases the specificity and the amount of 

DNA signatures, it increases also the difficulties and the use of more computational 

resources. Any change or update in the completed genome databases that are used as the 

target for finding DNA signature can change the amount of DNA signatures of a species in 

the database [71]. 
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During the last decades, molecular biology has been revolutionized not only the development 

of increasingly rapid DNA sequencing techniques but also the computer technologies used to 

store, manipulate, distribute, and analyze huge amounts of biological information. It can be 

said that bioinformatics is the application of computer technology for managing and 

analyzing biological data. Bioinformatics is an area of interdisciplinary research that acts as a 

bridge between the biological sciences and computational sciences. The objective of the 

bioinformatics is to discover the important information that is hidden within huge volumes of 

data and get a clear view of the biology of organisms. Data mining that is the process of 

extracting significant information from large databases plays a significant role in 

bioinformatics. Data Mining is an interdisciplinary sub-field of  computer science, involving 

methods at the intersection of statistics, machine learning, artificial intelligence, database 

technology, data visualization, pattern mining, and pattern recognition [89]. It includes the 

analysis of large data sets (e.g. genomics data sets) and the search for relationships among 

variables, through computationally intensive methods. 

Mining such large high-dimensional and complex datasets in bioinformatics need intensive 

computational resources and applications. Parallel and distributed systems and computational 

methods have a pivotal role to overcome the challenges in bioinformatics analysis. 

 

3.1 Distributed Systems 

The development of distributed systems began around 1980 with the advent of Local Area 

Networks (LANs.). Distributed systems consist of a (possibly very large) network of stand-

alone computers with different system software that communicate with each other, using a 

distribution middleware as illustrated in figure 3.1. Another definition is as follows: "A 

distributed system consists of a collection of computers that do not Share neither their 

physical memories nor their clocks" [90]. On the other hand, each computer of a distributed 

system has its own processor, local memory, and physical clock. In order to set up the 
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distributed system, different network technologies are used as well. An important motivation 

for the development of distributed systems is the sharing of resources [91].  

 

Figure 3.1. A distributed system organized as middleware. The middleware layer extends 

over multiple machines.  

Source: http://www.ejbtutorial.com/distributed-systems/introduction-to-distributed-systems 

 

The goals of distributed systems are making resources available, distribution transparency, 

openness (interact with services from other open systems, regardless of the underlying 

environment), fault-tolerant (In case of failure of one or more components, a fault-tolerant 

design allows a system to continue its function properly at a reduced level, rather than failing 

completely.), and scalability. A distributed system is more scalable than a single computer 

since the performance can easily increase by adding additional computers [92]. From the 

user’s point of view, distributed system appears as a single coherent system, regardless of 

where and when interaction takes place and the communication components are mostly 

hidden from the users. 

Distributed systems are the backbone of many applications such as World Wide Web, 

industrial control applications, ATM (cash machine) distributed databases, network 

computing, global positioning systems, air-traffic control, enterprise computing, office 

automation, and big data management and analytics. With the advent of mobile 

http://www.ejbtutorial.com/distributed-systems/introduction-to-distributed-systems
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communication networks and mobile systems, distributed systems are experiencing an 

intensive development in recent years.  

3.2 Types of Distributed Systems: 

3.2.1 Distributed Computing Systems  

Distributed computing is designed to solve massive computing problems using a large 

number of computers organized in clusters that are embedded in a distributed 

telecommunications infrastructure. In distributed computing, components of a software 

system are shared among multiple computers to solve large problems with splitting them to 

the smaller problems in order to improve the efficiency and performance [93]. Grid, Cluster, 

and Cloud computing are the most common types of distributed computing systems. 

 

3.2.2 Distributed Information Systems  

An information system (IS) is a tool for gathering and communicating information for the 

purpose of meeting the needs of its users. An IS supports enterprise activities by providing 

the information it needs or by automating the activities associated with the activities. It 

includes all the resources available for gathering, managing, using, and distributing 

information within the organization. Typical applications for information systems can be 

found in almost all commercial and many technical fields; for example reservation systems, 

banking systems, telephone companies, and engineering applications [94]. They have become 

an important factor in successful economic development and competitiveness of the 

businesses, both in the domestic and foreign markets [95].  

 

3.2.3 Distributed Pervasive /Embedded Systems  

Distributed pervasive systems try to bring the flexibility of information technology to entire 

aspect of daily life. Pervasive computing is a growing trend in connection with the Internet of 
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Things. More and more microprocessors are being implemented in everyday objects so they 

can communicate information. Thus, computing is everywhere and ubiquitous. Devices for 

pervasive computing are always connected and permanently available. This technology has 

focused on wireless technologies, advanced electronic devices, and the Internet. The goal of 

the researchers in the area of pervasive computing is to create intelligent products that are 

connected to the Internet and their generated data are easily available [96][97]. 

 

3.3 Parallel and Distributed Computing 

Parallel computing is a form of processing that allows many computing devices to work 

simultaneously to solve a problem [98][99]. 

Traditionally, parallelism has been used in supercomputing centers to solve large problems, 

but in recent years, distributed systems have become increasingly important because of 

improvements in computer networks and the spread of multi-core processors. Clusters, 

Clouds, and Grids made possible the availability of distributed computing platforms at low 

cost. It is no longer exclusive to specialized environments and high-performance computing 

centers [100].  

Efficient development of distributed and parallel applications is of crucial importance, 

because most of the systems currently being developed are distributed and parallel. 

Many classification schemes have been proposed, but the most popular is the taxonomy of 

Flynn proposed by Michael J. Flynn [101], which is based on the way the data flow and 

instructions are organized. The central idea is based on the analysis of the flow of instructions 

and data, which can be simple or multiple, giving rise to the appearance of 4 types of 

machines. This classification is based on the number of flows of instructions and 

simultaneous data that can be handled by the system during the execution of a program. A 

flow of instruction is a sequence of instructions transmitted from a control unit to one or more 

processors [102].  
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The possible categories based on Flynn classifications are as follows: 

3.3.1 Single Instruction Stream, Single Data Stream (SISD) 

This represents the classic Von-Neumann machine, in which a single program is executed 

using a set of data specific to it. It is composed of a central memory where the data and 

programs are stored and a processor. It is shown in figure 3.2. This Platform can only give a 

kind of virtual parallelism through the paradigm of multitasking, in which the processor time 

is shared between different programs. Thus, more than parallelism, what this platform 

supports is a type of concurrency [103][104]. 

 

Figure 3.2. SISD Architecture. A single computer that has one control unit, one processor 

unit, and one memory unit.  

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main121.html 

 

3.3.2 Single Instruction Stream, Multiple Data Stream (SIMD) 

It is a class of parallel computers in which the array of processing elements executes the same 

operation on multiple data points at the same time. Processor arrays are typical examples of 

this kind of architecture. In these architectures, a controller receives and decodes sequences 

of instructions to execute, and then send them to multiple processors slaves. The processors 

are connected through a network. The data can be processed in a memory space which is 

common to all processors or in a memory space of each unit. Figure 3.3 illustrates SIMD 

architecture. All processors work with perfect synchronization. In this class, each processor is 

simply an arithmetic-logic unit and has a single unit of control. All processors execute each 

received operation at the same time, whereby each of them executes the same instruction on 

different data [105].  
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Figure 3.3. SIMD Architecture. Performing an operation on multiple data.                             

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main121.html 

 

This type of computing platform has been developed due to the large number of scientific and 

engineering applications that are well adapted to this class such as image processing, particle 

simulation, finite elements, molecular systems, etc. In this class there is a simple sequence of 

operations, operating at the same time on a set of data.  

 

3.3.3 Multiple Instructions Stream, Single Data Stream (MISD) 

It is a system with multiple instructions that operate on a single data stream [106]. All 

processors receive instructions individually from their own control unit and operate on a 

single data flow in accordance with the instructions they have received from their respective 

control units. These processors operate simultaneously. This architecture is known as a 

systolic array or array of processors for pipeline execution of special algorithms. An MISD 

computer is similar to a segmented superstructure, in which each processor performs a part of 

the operation on the data flow. MISS computers contain multiple control units, multiple 

processing units, and a shared memory unit, as it is shown in Figure 3.4. 
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Figure 3.4. MISD Architecture. Performing multiple operations on a single data flow 

(assigned to processors from 1 to n). 

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main121.html 

 

3.3.4 Multiple Instructions Stream, Multiple Data Stream (MIMD) 

It is the most general model of parallelism and because of its flexibility, a wide variety of 

parallelism can be exploited. The basic idea is that multiple heterogeneous tasks can be 

executed on multiple data at the same time and each processor operates independently with 

occasional synchronizations with others [107]. It is composed of a set of processing elements 

where each one performs a task independent or not, with respect to the other processors. The 

form of programming usually used is a concurrent type, in which multiple tasks can be 

executed simultaneously. Many multiprocessor systems and multi-computer systems fall into 

this category. The MIMDs can be classified into two types of distributed memory and shared 

memory [108]. Figure 3.5 is a type of MIMD system with shared memory. 
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Figure 3.5. MIMD architecture with a shared memory (assigned to processors from 1 to n). 

Source: https://edux.pjwstk.edu.pl/mat/264/lec/main121.html 

 

3.4 Parallel Programming 

Parallel computing is a programming technique in which many instructions are executed 

simultaneously. It is based on the principle that large problems can be divided into smaller 

parts that can be solved concurrently and in parallel. It focuses on the distribution of data in 

parallel among the different computational nodes. Parallelization often leads to perform 

similar sequences of operations (not necessarily identical) or functions that are performed on 

the elements of a large data structure [109][110].  

The computational needs of many applications require the development of efficient and 

secure software for multiprocessor platforms. Since the rise of multi-core processors and 

computer networks has increased; parallel programming is required to use parallel and/or 

distributed systems efficiently. Parallel software programs are more difficult to write than 

sequential ones [111].  
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Hadoop, a parallel and distributed processing infrastructure and MapReduce programming 

models are typical examples of parallel and distributed computing. 

 

3.5 The Apache Hadoop  

The dramatic increase in the amount of data in various fields of science revealed the 

inadequacy of existing ordinary computers for big data analytics. It has prompted the 

developers to compose tools and applications using parallel and distributed computing that 

could be applicable on commodity hardware. Big Data defines the set of new technologies 

and business applications for the management of massive data in large structured and 

unstructured databases. The Apache Hadoop project has been designed as an open source and 

Java-based software framework for parallel and distributed computing on large datasets using 

commodity hardware. Hadoop allows running simple programming models on large 

structured and unstructured datasets across an arbitrary number of nodes in a cluster. From 

the user’s point of view, it looks like a single computer [112][113][114]. 

A Hadoop cluster has a single master and several slave nodes (Data-nodes) that are connected 

to each other through Secure Shell. It can run on a single node or multi-node cluster with 

thousands of nodes. Hadoop separates and distributes the files that contain the data 

automatically, as well as splitting the job into smaller tasks and executing them in a 

distributed way and recovering from failures automatically and transparently to the user. 

Although, the function of Hadoop is defined as a distributed system with multi-computer 

nodes, the ability of Apache Hadoop to use MapReduce for parallel processing of large data 

sets is an extra power to let even a single-node run program on the large data sets, larger than 

its memory and CPU capacity. Hadoop handles any types of data from structured, 

unstructured, text files, log files, images, audio files, communications records, etc. The 

Hadoop core has two primary components: Hadoop Distributed File System (HDFS) and 

MapReduce.  
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3.5.1 Hadoop Distributed File System (HDFS) 

HDFS [115] is the data storage part of Hadoop. It is designed to store and high-throughput 

access of large datasets across multi-nodes of clusters. HDFS breaks down the data into small 

block-sized chunks, which are stored as independent units. HDFS provides input data storage 

for the MapReduce framework. It is a highly fault-tolerant distributed file system designed 

for use on low-cost hardware. 

HDFS has three main components [41][116]:  

1. Name-Node: HDFS has master/slave architecture. The cluster consists of a single 

Name-Node; it is the master of the file system. It is responsible for managing the 

blocks in Data-Nodes and maintains the metadata and indexes of the blocks, but not 

the data itself.  

2. Data-Nodes: They are the workhorses of the file system. Name-Node breaks down 

data into block-sized chunks, which are stored as independent units in Data-Nod. 

3. Secondary Name-Node: It keeps a copy of the merged namespace image, which can 

be used in case of any failure for the Name-Node. 

 

3.5.2 MapReduce 

MapReduce [117] is a programming model for parallel and distributed processing. 

MapReduce works by breaking the processing into two phases: the map phase and the 

reduce phase. The Map phase processes a set of data in parallel and returns it as an 

intermediate result and then the Reduce phase reduces it to a smaller set of data. Each 

Map and Reduce works independently. The process is illustrated in Figure 3.6. In fact, 

MapReduce decreases the input large amount of raw data into useful data [118][71].  

In a Hadoop cluster, the input data is in the form of a file or directory and is stored in the 

Hadoop file system (HDFS). The MapReduce paradigm sends the computational process to 

the data-node where the data will be processed.  When a MapReduce process is launched, the 
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tasks distributed among the different servers in the cluster. The input file is passed to the map 

function line by line. The mapper processes the data and creates several small pieces of data. 

The reduce stage processes the intermediate values coming from the map to produce the final 

output of MapReduce. The Hadoop framework itself manages the sending and receiving of 

data between nodes. Most of the computation happens at data-nodes (where the data is 

placed) in order to minimize network traffic. Once all the data has been processed, the user 

receives the result of the cluster.  The two main components of MapReduce are:  

1. JobTracker: As the Master of the system, it is responsible for managing the map and 

reducing tasks.  

2. TaskTracker: As the slave, it receives the mapper and reducer task from JobTracker 

and returns the results to the JobTracker after execution. 

Hadoop is highly faulted tolerant. In order to prevent any failure in the process, HDFS creates 

multiple copies of data through the blocks, 3 copies by default. Name-Node can detect any 

failure in Data-Nodes or blocks and JobTracker also can detect any failure of TaskTrackers 

and will replace them [41]. 

 

Figure 3.6. An example of the overall MapReduce WordCount process.  

The original image was made by Trifork.  

Source: https://cs.calvin.edu/courses/cs/374/exercises/12/lab/ 
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3.5.3 Hadoop YARN (Yet Another Resource Negotiator) 

As another component of the second-generation Hadoop 2 released by the Apache software 

foundation, YARN (Yet Another Resource Negotiator) was added in order to upgrade 

scheduling, resource management, and execution in Hadoop. YARN is a cluster management 

technology. It consists of a central resource manager and a manager for each node, which 

handles controlling a single node [119][120]. 

YARN has two main components shown in Figure 3.7: a central resource manager that 

monitor how applications use the Hadoop system resources and several node managers (one 

for each node) that monitor the processing operations of individual nodes in the cluster. 

Separating HDFS from MapReduce with YARN makes the Hadoop environment more 

suitable for operational applications that cannot wait for batch jobs to be completed [121]. 

 

Figure 3.7. YARN architecture.                                                                                              

Source: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html 
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3.5.4 Hive   

The Apache Hive [122][123][124] is a data warehouse infrastructure on the top of the 

Hadoop MapReduce framework. It is designed to query a large dataset that is stored in the 

HDFS using an SQL-like language called HiveQL. Hive is designed to write once and read 

several times. Real-time queries and row-level update are not possible. Facebook Data 

Infrastructure Team started to create Hive in January 2007 to bring the familiar concepts of 

tables, columns, partitions, and a subset of SQL to the unstructured world of Hadoop and it 

was open sourced in August 2008 [125]. Traditional relational databases require the data to 

be in a structured format, while Hive can handle both structured and unstructured 

information. It lets the user process large datasets with relatively little effort and in a 

reasonably short time. Hive can handle querying on billions of rows in a table or multiple 

tables. 

 

3.5.5 NoSQL  

"NoSQL" Stands for Not Only SQL. The term "NoSQL" was used by Carlo Strozzi for the 

first time in 1998 [126]. It is a non-relational database. One of the aspects of NoSQL is its 

ability to handle database analytics of big data sets in parallel and distributed platforms like 

Hadoop on commodity hardware. Hive and Hbase are types of NoSQL applications on top of 

the Apache Hadoop file system. NoSQL databases can handle unstructured data such as text 

files, log files, email, social media, and multimedia. Horizontal scaling is one of the most 

important features of NoSQL databases and allows us to add more nodes to our distributed 

system. Vertical scaling only allows increasing the power of existing machine 

[41][127][128]. 
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The aim of this chapter is to outline the research approach, design, and methods used in this 

study to find the best solutions for the following three primary questions that are the major 

computational challenges of high-throughput sequencing and metagenomics data analytics. 

1. What is the proper alignment-free method for rapidly identifying the species and 

strains from raw read sequencing data? 

2. What is the proper method of finding DNA signatures from genome databases? 

3. What is the proper method to use less computational resources? 

The initial section of this chapter proposes an alternative alignment-free method for real-time 

identification of species and pathogens from raw read sequencing data. The next section 

provides an overview of the state-of-the-art methods and discusses the challenges and 

limitations of these methods in comparison with our proposed method of using DNA 

signature as a solution for the first question. 

The rest of the chapter describes a novel method of searching DNA signatures among 

targeted databases and non-targeted databases. In addition, we addressed the resources of the 

data used in this research and explained how to prepare the data for using in the proposed 

method.  

 

4.1 Proposed Alternative Method of Identification 

In Chapters 1 and 2, we discussed the importance of real-time identification of species and 

pathogens from raw read sequencing data, particularly the metagenomics data, which comes 

from sequencing of very diverse and complex microbial communities. Since the traditional 

identification of species based on morphological, physiological, and structural characteristics 

are unable to identify culture-negative species, identification and taxonomy of organisms 

would no longer depend on morphological characteristics (visible characters), but only on 

DNA sequences. We discussed the two common types of sequence-based identification 

methods, the alignment-based and the alignment-free methods. The inability of alignment-
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based approaches for rapid identification purposes caused a necessity for shifting into the 

alignment-free approaches as an alternative method.  

Among the alignment-free approaches, the most popular options are to use marker genes such 

as the 16S rRNA gene. For many years, 16S rRNA was used as the primary tool for 

taxonomic assignment of bacterial species. 16S rRNA enables identification of a few 

numbers of targeted species using PCR or targeted metagenomics techniques. Although the 

progress of the next-generation sequencing has greatly increased the depth of sequencing 

coverage, the length of the reads is very short. The shortness of the reads, along with other 

limitations caused by sequencing technologies (mentioned in Chapters 1 and 2), reveals the 

fact that 16S rRNA genes are inefficient agents for many of real-time analysis of short reads 

generated from high-throughput sequencing tools; De novo assembly is required to obtain 

longer sequences from the reads. 

The exponential increase in the number of completed genomes in last two decades represents 

a growth of more than 100-fold for each decade. There were only two completed bacterial 

genome sequences in 1995 [129]. A decade later, the number of completed genomes 

increased to 300 and only two metagenomics projects were published in 2006 [130]. Based 

on NCBI
1
 genome database, the number of sequenced bacterial genomes increased to more 

than 30,000 and thousands of metagenomics projects were published according to the 

GOLD
2
 database by the end of 2014 [129]. 

The completion of numerous whole genome projects and availability of completed genome 

databases in recent years has provided a novel opportunity, in order to find alternative 

taxonomic solutions than using 16S rRNA gene. Due to the complex sequences from diverse 

communities of microbes, 16S rRNA gene comparison has to be replaced by more 

comprehensive approaches. 

 

1- The National Center for Biotechnology Information 

2- Genomes Online Database 
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As defined in Chapter 2, DNA signature is a short k-mer oligonucleotide fragment with an 

arbitrary length k which is unique or specific to a particular group of species selected from a 

target genome database. There are two categories of unique and common signatures 

according to the purpose of usage. The presence of a unique DNA signature in any volume of 

sequences and genetic materials represents the existence of the corresponding species. 

Therefore, signature discovery is the action of finding specific fragments of the genome in a 

database [131].  

Any pipeline, application or algorithm which is designed for DNA signature discovery, has to 

detect an entire database or multiple databases recursively. The procedure varies according to 

the purpose of using DNA signatures.  

It was previously used to design primers and probes for PCR and microarray assays. 

However, the completion of tens of thousands of bacterial genomes in recent years has 

provided the opportunity to use DNA signature for rigorous analysis of metagenomics 

sequences. 

The primary goal of this research is proposing an alternative fast and cost-effective method to 

allow a rapid identifying the species and the strains from raw read metagenomics sequencing 

data, regardless of aforementioned limitations. In this research, we have proposed to use 

DNA signature as a tool to facilitate and speed up the taxonomic assignment of 

microorganisms in high-throughput sequencing analysis and metagenomics. 

 

4.2 Overview of the Related State-of-the-Art Methods 

Several tools and algorithms of DNA signature discovery have been proposed in the literature 

in order to facilitate the design of microbial and pathogen-based diagnostic assays; notable 

instances are discussed next.  

TOFI [1132] is designed to identify DNA fingerprints of a single genome as suitable probes 

for microarray-based diagnostic assays. It utilizes the whole genome of the pathogen instead 

of the special gene (such as 16s rRNA) or special regions of the genome for designing probes 
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[133]. In order to design DNA microarray probes, TOFI reduces the solution space by 

discarding DNA sequences that are common to the target sequence and one or more 

phylogenetically close sequences. Then, each extracted DNA microarray probe is compared 

with all DNA sequences from the chosen reference database [132]. 

TOPSI [134] is a pipeline for real-time PCR signature discovery. TOPSI detects common 

signatures among multiple strains of bacterial genomes by collecting the shared regions 

through pairwise alignments between the input genomes. It is an extended version of TOFI 

[134][135]. 

Insignia [136] provides unique signatures that can be used to design primers for PCR and 

probes for microarray assays. It has two main components: the web interface and the 

computational pipeline. The computational pipeline uses grid computing and an algorithm to 

perform pairwise alignment of every pair of target genomes and background genomes for 

their comparison. Insignia provides signatures which are unique to the background genome 

database (BLAST database) [137]. In fact, when a user adjusts the desired options in the 

Insignia web interface, a query runs on the database that contains the results of DNA 

signature discovery which has already been provided.  

TOFI, TOPSI and Insignia use the open source software MUMmer [138] that implements a 

suffix tree-based algorithm for comparing genomic sequences [132][134][136]. It is a 

package for the alignment of very large DNA and amino acid sequences. Furthermore, these 

three pipelines use BLAST for the evaluation of signatures regarding specificity. 

CaSSiS [139] is an algorithm for detecting signatures with maximal group coverage within a 

user-defined specificity range for designing primers and probes. It provides signatures for 

single or group organisms in hierarchically-clustered sequence datasets. This algorithm 

calculates the Hamming-distance between a signature candidate and its matched targets.  

CaSSiS uses the rRNA sequences provided by the SILVA database to create a signature 

collection for designing primers and probes. 
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The Consecutive Multiple Discovery (CMD) algorithm [140] is an iterative method including 

the parallel and incremental signature discovery (PISD) method as a kernel routine to 

discover implicit DNA signatures. PISD is a combination of the Hamming-distance-based 

algorithm, the IMUS approach [141] and Zheng's method (UO) [142] in terms of using the 

corresponding incremental and parallel computing techniques. PISD uses a mismatch 

tolerance and previously discovered signatures of specific lengths as candidates to find 

shorter signatures instead of scanning the whole database. CMD and PISD can find unique 

signatures for single sequences, but cannot search for signatures that are specific for groups 

[141]; they are designed to find signatures of sequences from Expressed Sequence Tags 

(ESTs)
 1

 databases. 

The internal-memory-based unique signature discovery algorithm IMUS [141] is an 

improvement of Zheng's method [142] which is based on the Hamming-distance for detecting 

unique signatures. IMUS tries to discard similar substrings of a sequence in order to obtain 

the DNA signatures as unique fragments. PIMUS [143] is the improved version of IMUS. 

Both algorithms load the complete DNA database into the main memory to find unique 

signatures in ESTs datasets. 

DDCSD (Distributed Divide-and- Conquer-based Signature Discovery) [144] applies a 

divide-and-conquer strategy for detecting DNA signatures. When the dataset is large and 

cannot be loaded into the memory all at once, the algorithm splits it into smaller segments 

which parts are loaded and processed one by one. The discovery node and the discovery 

routine are the main components of this algorithm. When the size of the dataset is larger than 

the available memory, the discovery routine splits the dataset into multiple parts which are 

processed one at a time by the discovery nodes. This algorithm is based on searching for 

similarities and mismatches in the patterns. Similarly to CMD, PISD, IMUS, and PIMUS, 

this algorithm is designed to search ESTs datasets, but it can process larger databases such as 

the human whole-genome ESTs database, as well.  

1- Short fragments of mRNA sequences obtained by single sequencing of randomly selected 

cDNA clones. ESTs are mostly used to either identify gene transcripts or as an alternative 

cheap method of gene discovery and gene sequence determination 
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Jeliyfish [145] is an algorithm to count the k-mers in parallel. This algorithm implements 

lock-free hash table optimization for counting k-mers up to 31 bases in length. 

There are other approaches to find signatures or probe sequences, such as PROBESEL [146], 

OligoArray [147], OligoWiz [148], YODA [149], PRIMROSE [150], and ARB-ProbeDesign 

[151]. All of them are limited to one selected target or single sequence in each run, thus, they 

are not applicable for large datasets [139]. Table 4.1 contains a comparison of the more 

popular DNA signature discovery methods. 

 

Table 4.1. A comparison of signature discovery algorithms according to the data format, 

computational resources, and ability to process single or multiple sequences. 

Name Data 

Format 

Adopted platform according to the 

publication 

BLAST 

specificity 

Ability 

for single 

sequence 

Ability for 

multiple 

sequences 

TOFI FASTA 
64 x 1.5 GHz Itanium 2 processors with 

64 GB of shared memory 
✓ ✓ ✕ 

TOPSI FASTA 98-cores Linux cluster ✓ ✓ ✓ 

Insignia FASTA 192-node Linux cluster ✓ ✓ ✓ 

CaSSiS rRNA 
Intel Core i7 CPU (4 cores, 2.67 GHz) 
with 24 GB of RAM 

✕ ✓ ✓ 

CMD and 

PISD 
ESTs 

Dell PowerEdge R900 server with two 

Intel Xeon E7430 2.13 GHz quad-core 

CPUs, 12 GB RAM 

✕ ✓ ✕ 

IMUS ESTs Intel 2.93GHz CPU ✕ ✓ ✕ 

PIMUS ESTs 
Intel Core i7 870 2.93GHz quad-core 

CPU and 16 GB RAM  
✕ ✓ ✕ 

DDCSD ESTs 

A Master Node: Intel Core i7 CPU 870 

at 2.93 GHz and 16 GB  RAM, 10 Slave 

nodes: Intel Core i7 CPU 3770 K at 3.50 

GHz and 32 GB of RAM for each one  

✕ ✓ ✓ 

 

In practice, despite the respected efforts of above mentioned and other methods, there are still 

a number of limitations for DNA signature discovery.  

Since most existing methods of DNA signature discovery require significant computational 

resources, they are not applicable to the entire research community. Due to the size of 

genome databases, the large amount of RAM and CPU capacity requirements and long 

execution times are major limitations of most of the above methods that are based on pattern 
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comparison and pairwise alignment of the genomes. The determination of the mismatch 

tolerance level as a discovery condition also influences the results.  

In some cases, it is necessary to load the whole dataset into the main memory for searching 

for unique or common signatures. When the size of the data exceeds the available memory, 

the execution will fail. For instance, in IMUS, PIMUS, and Zheng's method, the entire 

database has to be loaded into the memory [144]. Thus, for such sequential algorithms like 

IMUS, increasing the number of CPU cores does not increase the discovery efficiency of the 

algorithm [143]. Another limitation for most of the above methods is the lack of efficiency to 

find both unique and common signatures simultaneously. Most of them are capable of finding 

only DNA signatures of a single genome. Another limitation of some of these methods is the 

lack of the possibility to select an arbitrary length (k) for the signatures.  

The additional challenge as another major limitation for DNA signature discovery methods is 

the lack of option in the choice of target and non-target genome databases. TOFI, TOPSI, and 

Insignia use BLAST databases (such as nt and nr databases) as the background or non-target 

genomes for specificity evaluation of signatures and there is no option for the user to choose 

other target and non-target genome databases. As an example, in the Insignia web interface, 

the user receives a quick response without special requirements on local computational 

resources. However, this privilege comes with the restriction that there is no option to use 

other sequences as the target and background genomes because they are part of the Insignia 

database [71][144]. With the advancements in the sequencing technologies and the increasing 

number of completed genomes, whole genome shotgun sequences, and draft genomes, it is 

obvious that some of these signatures will not be unique later using BLAST specificity 

evaluation. This issue is a challenge not only for DNA signatures but also for all the 

sequence-based identification methods. 

Geographical distribution and diversity of the species, ecological and chemical status, host 

and environmental factors, isolation or complexity of the samples, and many other factors can 

have a great impact on the selection of target and non-target genome databases for DNA 

signature discovery. When the absence of a considerable number of species in the sample is 
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evident, it seems quite questionable that we eliminate a large number of useful DNA 

signatures through their assessment and specificity evaluation against the entire background 

sequence databases such as BLAST. For instance, when we sure that in the sample there is 

nothing from Zebrafish, Muse, Chimpanzee, Black cottonwood, Macaca Fascicularis, etc. we 

do not need to check the uniqueness of our DNA signatures against their genome. Otherwise, 

we will lose a significant number of signatures.  

Expressed sequence tags (ESTs) are short fragments of mRNA sequences obtained by single 

sequencing of randomly selected cDNA clones. ESTs are mostly used to either identify gene 

transcripts or as an alternative cheap method of gene discovery and gene sequence 

determination [152]. 

IMUS, PIMUS, CMD, PISD, and DDCSD are designed to scan ESTs sequences for the 

unique signatures. However, the ESTs represent only fragments of genes, not complete 

coding sequences [153]; therefore, many signatures are missed. 

 

4.3 Proposed Method of DNA Signature Discovery 

To overcome the aforementioned challenges of DNA signature discovery, we proposed our 

method as a powerful pipeline. The pipeline HTSFinder (High-Throughput Signature Finder) 

has been designed in order to enhance the usability of DNA signatures for massively high-

throughput sequencing analysis. 

The pipeline HTSFinder has significant advantages compared with the DNA signature 

discovery pipelines and algorithms described above. 

• First, HTSFinder is capable of detecting all unique, common, and maximal group 

coverage signatures of the entire database or multiple databases simultaneously.  

• Second, it becomes possible to select target and non-target genome databases, based 

on user requirements. For instance, we have the ability to use both forward and 

reverse-complement genome sequences of a database for detecting DNA signatures.  
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• Third, the pipeline can consider either a cluster of low-cost computer nodes that are 

commonly available in research facilities or a high-performance computer (HPC).  

• Finally, the flexibility of the different phases of the pipeline makes it suitable for 

other bioinformatics and metagenomics studies such as Next-Generation Sequencing 

(NGS) analysis.  

HTSFinder is very efficient and powerful with high accuracy for both unique and group-

specific signatures without discarding even a single signature from the database, except those 

ones that contain IUPAC (International Union of Pure and Applied Chemistry) nucleotide 

codes such as K, M, N, R,  S, W,  Y, etc. Our GkmerG (Genome k-mer Generator) 

component will remove any k-mer containing IUPAC nucleotide codes after generating the k-

mers. In this pipeline, there is nothing to worry about the mismatch tolerance and complexity 

of comparison and pairwise alignment search methods. 

 

4.3.1 Description of the HTSFinder Pipeline 

HTSFinder consists of three computational phases as shown in Figure 4.1. This pipeline 

generates all the possibilities of k-mers for every genome individually and then determines 

their frequency in the entire database. Finally, DNA signatures of every species or strain are 

obtained in the database or multiple databases that have been involved in the pipeline. 

HTSFinder implements the parallel and distributed computational tool Hadoop for the second 

and third phases. 
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Figure 4.1. The three main phases of HTSFinder for detecting DNA signatures. We can 

repeat the second phase with the obtained results if required. 

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016.  
 

4.3.2 Data Preparation 

The first phase of the pipeline is carried out by GkmerG that is designed to obtain all the 

possibilities of k-mers of genome sequences with FASTA format
1
 (*.fna or *.fa). The method 

of generating k-mers in this software is inspired from De Bruijn graph
2
. 

This software tool removes the remarks of the genome and splits it to the specific length k. 

Then, it eliminates the k-mers that contain IUPAC nucleotide codes and every subsequence 

of length less than k which has remained from the end of the sequence after splitting. Figure 

4.2 illustrates the split of the genome by GkmerG. Concatenating the files, sorting k-mers and 

removing all duplicates except one are the last steps of GkmerG. For the species with 

multiple chromosomes and some bacterial genomes that are comprised of multiple 

chromosomes [154] and plasmids, GkmerG concatenates them into a single file before 

sorting at the end of the first phase.  

1- It is a text-based format for representing nucleotide sequences using single-letter codes. 

2- Explained in Chapter 2. 
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GkmerG copies the original database into another directory as the reference database with 

appending a number to the beginning of every species name in it, to simplify future data 

management. Once we get the output of the first phase for a database, we can keep it forever. 

In the case of any update in the database, we need only to repeat this phase for the updated or 

new genomes, not for the whole database. The output of GkmerG is the input for the second 

phase in the pipeline described in the next section. 

 

Figure 4.2. Splitting of the genome by GkmerG for k = 18 to get all the possibilities of 18-

mers. Generating k-mers for a single genome with GkmerG includes purgation, splitting, 

concatenation, cleaning, sorting, and removing duplicate except one. The output of GkmerG 

is a file containing k-mers of a genome in a single column. The labels above the file numbers 

in this figure represent the beginning of four k-mers in the head of files. 

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016.  
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In this research, we used the Hadoop framework and WordCount program to calculate the 

frequency of k-mers in very large genome datasets. In Hadoop 1.2.1 and earlier releases, the 

JAR (Java Archive) file of WordCount is also included.  

4.3.3 Pipeline Implementation 

In the second phase of the pipeline, we copy all the output files of the first phase to the HDFS 

(Hadoop Distributed Filesystem) and run the WordCount program. 

The result of this phase is a large file containing sorted and a non-duplicate list of k-mers 

obtained from the files generated in the first phase in one column and another column 

containing the frequencies of k-mers among genomes of the database. A k-mer with a 

frequency value 1 means that this k-mer is a unique substring, so appeared only in one of the 

species in the database. These occurrences are primarily what we are looking for as unique 

DNA signatures. The value in front of a k-mer indicates the number of genomes (species) that 

contain the given k-mer. Table 4.2 shows a portion of the Hadoop and WordCount output. 

For instance, the 18-mer with frequency=8 in the first row of Table 4.2 means that this 18-

mer occurs in 8 genomes among the 2,773 bacterial ones, while the 18-mer in the fourth row 

is a unique signature in the database. In the second phase of the pipeline, we can extract all 

unique signatures or group-specific signatures due to the frequency, but we cannot determine 

the owner of the signatures. 

Table 4.2. An example of Hadoop and WordCount results in the second phase. 

Signatures or 18-mers Frequency in the database 

AAAAAAAAAAAAAAAGAG  

AAAAAAAAAAAAAAAGAT  

AAAAAAAAAAAAAAAGCA  

AAAAAAAAAAAAAAAGCC  

AAAAAAAAAAAAAAAGCG  

AAAAAAAAAAAAAAAGCT  

AAAAAAAAAAAAAAAGGA  

AAAAAAAAAAAAAAAGGC  

AAAAAAAAAAAAAAAGGG  

AAAAAAAAAAAAAAAGGT  
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Once we execute the second phase for a database we can use the results in the future until the 

next update of the database. However, as a difference from the updatable first phase, in the 

case of any update in the database, we have to repeat the second phase for the entire database.  

When there are multiple target and non-target databases, it is possible to merge all of them in 

the pipeline, but as the input grows larger, it requires far more computational resources. As a 

suggestion, it is better to implement the first and second phases for every database, 

separately. With respect to the WordCount function that discards repeated k-mers and keeps 

only one in the output, we can reduce the size of output files and also the execution time. 

Then, we can merge the output of the second phase for all the databases and repeat the second 

phase with WordCount in Hadoop, one more time. In this case, we have a shorter process. 

Moreover, for the future execution, we can select the output files of the second phase as the 

candidate of their corresponding databases. In this case, we will not need to perform the first 

phase of the pipeline for the previously processed databases and we can repeat the second 

phase for target and non-target databases with merging the smaller files. For instance, the 

output of the first phase for the bacterial genome database resulted in a file with 177.35 GB 

of 18-mers. However, in the second phase, the size of this file was reduced to 103.03 GB that 

contained all the candidates of 18-mers in the database without any repeat. We can use this 

file as the candidate of bacterial genome database for further processing. Figure 4.3 illustrates 

the process of finding DNA signatures of the target database among non-target databases. 
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Figure 4.3. The recommended process for detecting unique DNA signatures of a target-database 

against non-target databases.  

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016.  

 

In step 2 of the figure, the frequency number of k-mers varies from 1 to n, where n is the total 

number of the databases that are used in the pipeline. Since there are four databases in this 

figure, the frequency of k-mers in step 2 is from 1 to 4. In step 3, there are two input files 

with the list of non-repeated k-mers; therefore, the frequency of k-mers in the output is 1 or 2. 

Hence, k-mers with frequency 2 that are common in both input files are the unique signatures 

of database 1 against all databases. 

The input for the third phase of the pipeline is the output of the first and second phases. The 

proper steps of the third phase are described in the next section. 

The Apache Hive lets the user process large datasets with relatively little effort and in a 

reasonably short time. This research proves the efficiency of Hive to handle querying on 

billions of rows in a table or multiple tables. With HiveQL we can extract whatever we need 

from the results of the second phase of the pipeline. We can extract all the unique signatures 
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of a specific species in the database or extract group-specific signatures which are common 

between 2, 3, 4, etc. Due to the flexibility of querying in Hive, there are various ways to 

create the tables and design the queries in the third phase. Optimization techniques are very 

effective for reducing the time-consumption and computational resource usage in a Hadoop 

cluster. Running time, CPU usage, memory usage, and speed of disk reading of the nodes are 

the subjects of optimization in a Hadoop cluster. Managing the maps according to the size of 

data and memory is critical. To get a better and faster operation, optimizing the 

configurations and parameters of Hadoop is also required in order to reduce the data transfer 

and communication between nodes of the cluster [155]. Moreover, query optimization and 

designing the tables in Hive for preventing a repetition of queries are very important.  

After loading data into the tables created with Hive, we can use queries such as SELECT and 

JOIN to extract relationships. We should create two tables with Hive: one for the output of 

the first phase and another one for the complete or a special part of the output of the second 

phase. With considering the ability of Hive to query very large tables and in order to prevent 

repeating the queries, we added a column containing the reference number to the files from 

the first phase. For example file 1 contains 18-mers from the first species in the database, so 

we inserted a column containing reference index 1 before all 18-mers in this file. Then, we 

merged all the 2,773 files in a single large one (220.35 GB) with two columns of k-mers and 

their related reference numbers. The reference number indicates the number that has been 

appended to the name of species by GkmerG in the first phase. 

There are several options to create the table from the output of the second phase: one is to 

create the table without making any changes in the output. Another one is to break down the 

output to smaller groups according to the targeted signature. For example, if we are looking 

for the unique signatures, it would be better to extract only 18-mers with frequency=1. 

However, if we are looking for a common signature, then it would be better to extract the 18-

mers with a specific frequency number such as 2, 3, 4, etc. In order to have a faster and easier 

implementation with Hive and later steps, we recommend the second option.  
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4.4 Selected Sequence Databases 

4.4.1 Bacterial Genome Database  

To prove the efficiency of our proposed method, the bacterial genome database with 2,773 

completed genomes in FASTA format (*.fna) were downloaded from the NCBI database. 

The size of this database is 9.7 GB after decompression.  

 

4.4.2 The Reverse-Complement Bacterial Genome Database 

Another database that we used in this research was the Reverse-Complement Bacterial 

Genome Database. The revcom.pl 1.2 [available at http://code.google.com/p/nash-

bioinformatics-codelets/] is a Perl program written by John Nash [Copyright (c) Government 

of Canada, 2000-2012]. We used this program to provide the Reverse-Complement 

sequences for the whole bacterial genome database.  

 

4.4.3 Human Genome Database 

The whole Human Genome is another database used in this research. The Homo sapiens hs-

ref-GRCh38 sequences in FASTA format (*.fa.gz) were downloaded from the NCBI 

database. The size of the genome was 2.9 GB after decompression. 
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The goal of this chapter is to address the following questions: 

1. What is the proper method for searching DNA signatures among the reads and 

matching with their related species? 

2. What is the proper method to use less computational resources? 

We have developed two methods to answer the questions. These methods that are presented 

in this chapter explained two different ways of matching the DNA signatures with the raw 

reads in metagenomics sequencing data. The first method uses Bitmap Indexes and NoSQL 

and the second method uses a novel pipeline named SRIdent.  Hadoop and Hive are used for 

both methods. In addition, we addressed the resources of the data used in this research and 

explained how to prepare the data for use in the proposed methods. 

Notably, we had to check the effectiveness of DNA signature before proposing a method to 

find it; therefore, we have done these two methods before proposing the HTSFinder pipeline 

(presented in Chapter 4) and DNA signatures that are used in these methods are obtained 

from existing databases (Insignia database). 

 

5.1 Overview of the Related State-of-the-Art Methods 

Listed below are the three more popular and newer metagenomics reads classifiers that work 

based on the k-mers frequency search methods and comparing genomic k-mers of the reads to 

find the matches. These methods are closer to our method for short reads classification with 

matching the DNA signatures, reads and their related species. 

Kaiju [156], is a metagenomics reads classifier which finds the maximum (in-)exact matches 

on the protein level using the Burrows–Wheeler transform of the protein database. Kaiju 

translates metagenomics sequencing reads into the six possible reading frames and searches 

for maximum exact matches of amino acid sequences in a given database of annotated 

proteins from microbial reference genomes.  
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Kraken [157] uses an alignment of k-mers to classify small subsets of metagenomics data. 

Kraken makes an index of all k-mers found in the reference genomes (e.g. bacterial genomes) 

and matches the k-mers found in the reads to this index and then assigns the read to the taxon 

with most matching k-mers by following a path from the root in the evolutionary tree. 

CLARK [158] can classify metagenomics reads based on reduced sets of k-mers. CLARK 

builds a large index containing the k-mers of all targets sequences. Then it removes any 

common k-mers between target sequences. In fact the remaining k-mers are the unique k-

mers in the target sequences. Then it searches the matches of the k-mers of the reads with the 

highest number of indexed k-mers. 

These reads classifiers are mostly attempting to speed up the process of matching k-mers with 

reads and they did not explain too much about the methods of collecting DNA signatures. For 

most of them, an external tool such as BLAST or MEGABLAST is required. Kaiju, Kraken, 

and CLARK use BLAST databases (such as nt and nr databases) for their specificity 

evaluation. Table 5.1 contains some more details on the algorithms and applications 

described above. 

 

Table 5.1. A comparison of metagenomics reads classifiers according to the data format, 

computational resources, and ability to process single or multiple sequences. 

Name Data 

Format 

Adopted platform according to the 

publication 

BLAST 

specificity 

Ability for 

single 

sequence 

Ability for 

multiple 

sequences 

Kaiju FASTA 

HP Apollo 6000 System ProLiant 

XL230a Gen9 Server, with two 64-bit 

Intel Xeon E5-2683 2 GHz CPUs (14 

cores each), 128 GB DDR4 memory  

✓ ✓ ✓ 

Kraken FASTA 

48 AMD Opteron 6172 2.1 GHz CPUs 

and 252 GB of RAM, running Red Hat 

Enterprise Linux 5. 

✓ ✓ ✓ 

CLARK FASTA 

Dell PowerEdge T710 server, dual Intel 

Xeon X5660 2.8 GHz, 12 cores, 192 GB 

of RAM 

✓ ✓ ✓ 
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Using expensive computational resources is the other important issue regarding these 

methods. As an example: CLARK needs a maximum 165 GB of RAM [158]  and the 

construction of Kaiju’s index from the protein sequence database needs peak memory usage 

of 24 GB using 25 threads, Kraken 165 GB,  and Clark 152 GB [156]. 

 

5.2 The First Proposed Reads Classifier Based on Bitmap Indexes 

and NoSQL 

Using DNA signatures in the isolated sample studies and Polymerase Chain Reaction (PCR) 

base detection is easy to perform, because of the low number of targets. But in the 

metagenomics studies, it is much more complicated. Taking into account the number of 

signatures, short reads, and organisms in the metagenomics samples, it is obvious that we are 

facing massive data sets. Using ordinary hardware and software tools is impossible since it 

takes a long time regardless of any failure during the process. The proposed method in this 

section shows how parallel and distributed computing and Bitmap Indexing technique can 

solve this problem. 

In this method, we use optimization techniques borrowed from database technology, namely 

bitmap indexes. They are used to speed up searching and matching of billions of DNA 

signatures in the short reads of thousands of different microorganisms, using commodity 

High-performance computing, such as Hadoop MapReduce and Hive. 

Bitmap Index [159][160] is an efficient way to speed up the queries and improve 

performance in data warehouse environments, which contain tables with low cardinality 

columns. As the example given in Table 5.2, we index the values of the column Grade having 

low cardinality. In this case, our index has the same number of rows and the number of 

columns is equal to the number of distinct values in column Grade. In Table 5.2, the 

cardinality of the column Grade is 4 because we have 4 different values in it. 
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Table 5.2. An example of a bitmap index defined on Grade column. 

RID Name Nationality Grade  RID A B C D 

1 John FRANCE B  1 0 1 0 0 

2 Sara USA D  2 0 0 0 1 

3 Piter RUSSIA C  3 0 0 1 0 

4 David ENGLAND A  4 1 0 0 0 

5 Tania GERMANY B  5 0 1 0 0 

6 Daniel POLAND A  6 1 0 0 0 

7 Tom CANADA C  7 0 0 1 0 

8 Robert ITALY C  8 0 0 1 0 

9 Jain FRANCE D  9 0 0 0 1 

 

We downloaded DNA signatures of 100 bacteria from the insignia database. Insignia 

(introduced in Chapter 4) is a pipeline to generate unique DNA signatures and it is also a 

database and web application for obtaining DNA signatures. It detects signatures for 

designing primers in Polymerase Chain Reaction (PCR) and probes in microarray 

technologies. The signatures can also be used for real-time identification of species in 

microbial and viral assays. As we are in the testing process, we just downloaded the 

signatures with the length of 18 bp. Table 5.3 is an example of Acholeplasma laidlawii DNA 

signatures downloaded from the Insignia database. 
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Table 5.3. A partial view of unique DNA signatures (18-mers), downloaded from the 

Insignia database. 

Insignia V0.7 

Signatures calculated: Thu Mar  6 2014 05:55:14 

Reference Organism: 

Acholeplasma laidlawii PG-8A 

Target Organism(s): 

Signatures: 

Index                Start                 Stop               Strand Sequence 

1  14151  14168  TATCAACAGGAGACATGG 

2  1283370 1283387 GTACTACGACAACAATCG 

3  406523 406540 TTGGTATTGGTTGGGTAG 

4  1161523 1161540 TAAGCCACCTTCACCATT 

5  631946 631963 GTGACCAAATCAGTGATG 

6  1297841 1297858 CTTGGCCATCAAAACCAG 

7  587419 587436 AGCAACTGATGCAGATGA 

8  457243 457260 TGCTGCACCAGATCTATC 

9  60205  60222  TGATGCTGCAGCAGGTGC 

10  602186 602203 TCAAGGTTATGGTGGTGT 

 

5.2.1 Short Read Simulator Application 

Metasim [161][162] is a short read simulator application for genomics and metagenomics 

studies. It can be a great help to develop and improve metagenomics tools, and for planning 

metagenomics projects. Metasim can simulate the short reads of Roches 454 pyrosequencing, 

Sanger sequencing, and Empirical sequencing technology. Roches 454 pyrosequencing 

simulation is used for this study. The output of Metasim is a compressed file containing the 

short reads of a bacterial chromosome or its Plasmids begins with their header information as 

illustrated in Figure 5.1. 
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Figure 5.1. A partial view of Metasim reads. 

Source: Karimi R. et al : Lecture Notes in Computer Science, ͚͙͘͜. 
 

 

We chose 100 bacterial genomes for simulating the short reads. We divided the bacteria with 

signatures into two groups of 50. The first group is common in 100 chosen bacterial 

genomes. There are no any common bacteria from the second group. 

Before any implementation, some pre-processing is needed. We need to attach the short reads 

from all bacterial chromosomes and Plasmids as one file, remove the breaks between lines of 

the short reads and keep each of them in a single line. From the signatures, we need just the 

signatures of every bacterium as a single file. We should remove all extra information, in 

order to have smaller data size and shorter execution time. The pre-processing is done with 

bash script programming in Linux. 

 

5.2.2 The Use of the Bitmap Index  

Bitmap index techniques are used to create the index table by searching the existence of 

signatures in short reads. '1' represents the existence of the signature in the short reads and '0' 

represents non-existence. This process is done with Java programming.  

As it is shown in Table 5.4, the index table can be created in two ways. The first is to keep 

every single signature as a column and put '0' and '1' depending on the existence of this 

signature in short reads. In this case, considering the number of signatures and reads, huge 

storage is needed. 
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Table 5.4. An example for our index tables; each column of these tables is kept as a single 

file. 

 

RID 

 

Reads 

 

b1 

 

b2 

 

b3 

 

b4 

 

b5 

  

RID 

 

Reads 

b1 

s1 s2 s3 s4 s5 s6 s7 

1 R1 0 0 0 1 0 1 R1 0 0 0 0 0 0 0 

2 R2 1 0 0 0 0 2 R2 0 0 0 0 0 0 1 

3 R3 0 0 0 1 0 3 R3 0 0 0 0 0 0 0 

4 R4 0 0 0 0 0 4 R4 0 0 0 0 0 0 0 

5 R5 0 0 1 0 0 5 R5 0 0 0 0 0 0 0 

6 R6 0 0 0 0 1 6 R6 0 0 0 0 0 0 0 

7 R7 1 0 0 0 0 7 R7 0 0 0 1 0 0 0 

8 R8 0 0 0 0 0 8 R8 0 0 0 0 0 0 0 

9 R9 0 0 0 0 0 9 R9 0 0 0 0 0 0 0 

10 R10 1 0 0 0 0 10 R10 0 0 1 0 0 0 0 

 

Another way is to keep every bacterium as a column. We store '1' if any signature of the 

bacteria exists in a short read, '0' if not. In this case, the table is much smaller. The number of 

columns is equal to the number of bacteria plus two more columns, one for row identification 

and the other for short reads. The number of rows is equal to the number of short reads. We 

can easily use Linux command to put all the files together as a single file. As an example, in 

Table 5.5 we have 6 files. One file contains the reads and their identification numbers and the 

other five contain '0' and '1' for five bacteria. 

Table 5.5. An example of input table for Hive, that is created by merging files to a single file. 

       

1 R1 0 0 0 1 0 

2 R2 1 0 0 0 0 

3 R3 0 0 0 1 0 

4 R4 0 0 0 0 0 

5 R5 0 0 1 0 0 

6 R6 0 0 0 0 1 

7 R7 1 0 0 0 0 

8 R8 0 0 0 0 0 

9 R9 0 0 0 0 0 

10 R10 1 0 0 0 0 
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Creating the tables and executing the Hive queries are the next step to get the results. It is 

explained in details in the related paper [41]. 

 

5.3 The Second Proposed Reads Classifier Based on SRIdent Pipeline 

In the method based on using Bitmap indexes, although the running time of the queries is 

very short, constructing the index files for each bacterium is time-consuming. This problem 

becomes more visible when a large number of bacterial species are considered (such as the 

real metagenomics samples). Therefore, we were motivated by the need to make an extra 

effort to come up with better and more creative solutions to address this problem and it 

resulted in the creation of the pipeline, named SRIdent (Short Read Identifier) [163] that is 

explained in this section. 

This pipeline is based on generating k-mers from the short reads and searching the existence 

of DNA signatures in the Reads k-mers, by using Apache Hive data warehousing. RkmerG 

(Read k-mers Generator) is a software program presented in this study, for producing k-mers 

of the short reads, in order to use in the pipeline. The purpose of this study is to identify the 

species in a sample, directly from the raw reads without assembling and alignment. 

 

5.3.1 Pipeline Description  

The SRIdent pipeline consists of two computational stages. Data preparation is the first stage. 

DNA signatures with specific length (k) of every individual known species and short reads 

generated by sequencing technologies are two types of data that are used in this pipeline. 

According to the length of DNA signature that we use in the pipeline, we should produce the 

same length of k-mers from the short reads. RkmerG (Read k-mer Generator) is designed to 

generate all the possibilities of k-mers of the short reads with any pre-defined length of k. 

The method of generating k-mers in this software is inspired from De Bruijn graph.  
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Figure 5.2 shows the RkmerG function. This software removes the information line of the 

reads and changes each read to a single line, and then copies each line (read) for k times and 

splits these k lines as illustrated in figure 5.2. It splits the first line as the complete read to k-

mers, then eliminates the characters in red color from the rest of lines and splits again, in 

order to get all the possibilities of k-mers. 

 

Figure 5.2. An example of RkmerG procedure to get all the possibilities of k-mers (k=19) 

Source: Karimi R. et al : IEEE Engineering in Medicine and Biology Society, ͚͙͘͝. 
 

RkmerG generates two files from the original read’s file. One is the reference with a line 

number that considers as the identification number and another is a temporary file for 

facilitating the process. According to the line number of each read in the reference, RkmerG 

appends a number to the beginning of each k-mer in a separate column, as the identification 
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number. This number is equal for all the k-mers of every individual read. The output of this 

software is a file with 2 columns of id-numbers and k-mers. This file will be loaded into a 

table that is created with Hive, in the second stage of the pipeline. Figure 5.3 described the 

algorithm of RkmerG. 

 

Figure 5.3. RkmerG algorithm. (r=Short read, n=Total number of reads, k=Length of mers, 

i=each of the lines (reads) that is copied from a single short read for k times, illustrated in 

figure 5.2.)   Source: Karimi R. et al : IEEE Engineering in Medicine and Biology Society, ͚͙͘͝. 
 

 

Same with the previous method, Metasim was used as the read simulator to simulate the short 

reads of Roche 454 sequencing technology. DNA signatures of this research were also 

obtained from the Insignia database. We downloaded DNA signatures of k=19 for 50 

bacterial species, chosen randomly from 200 samples. We downloaded also DNA signatures 

of another 50 bacterial species that were not common to 200 sample bacterial genomes, for 
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testing the accuracy of the pipeline. In order to prepare the DNA signatures for using in Hive 

table, we should remove all information from the file that contains signatures of a single 

species and keep the signatures of a specific length in a column, then append a number as the 

reference in a separate column, for identifying the owner of these signatures. The reference 

number can be the alphabetic order of species in the database. All signatures of a species get 

the same reference number. After appending the reference numbers to the signatures, the 

result will be a file with 2 columns of reference numbers and signatures for each species. We 

concatenated all of these files into a single file which will be loaded into the Hive table in the 

second stage of the pipeline. 
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This chapter elaborates the results and discussion of the 3 aforementioned methods explained 

in Chapters 4 and 5. 

6.1 The Results of HTSFinder Pipeline  

6.1.1 Results for the Bacterial Genome Database 

GkmerG has generated 2,773 files with a total size of 177.35 GB containing all the 

possibilities of 18-mers from individual bacterial genomes in the first phase of the pipeline. 

After copying the results of the first phase into the HDFS, we ran the WordCount program 

using Hadoop in order to determine the frequencies of the 18-mers in the 2,773 files. The 

result of this execution was a 103.03 GB file with two columns. The first column contained 

the 18-mers or signatures, while the second one contains the frequency number of each 18-

mer. Frequency 1 in this file represents the uniqueness of the related signature in the entire 

database. In other words, an 18-mer with frequency 1 is a unique signature among 2,773 

bacterial genomes and an 18-mer with frequency 2 is a common signature which is presented 

in two genomes among 2,773 bacterial genomes. Table 6.1 represents the quantity of 10 least 

common and 10 most common 18-mers with their frequencies in the bacterial genome 

databases. This table shows that 3,552,866,254 of signatures are unique in the database and 

there is one subsequence (18-mer) that is repeated in 2,125 bacterial genomes.  

Table 6.1. A total number of 10 least and 10 most common signatures in the bacterial 

genome database. 

Frequency 

ȋLeast commonȌ 

Number of signatures  
in the database 

Frequency 

ȋMost commonȌ 

Number of  
ͳͺ-mers 

in the database ͳ ͵,ͷͷʹ,ͺ͸͸,ʹͷͶ ʹͲͶͲ ͳ ʹ ͸ͺͻ,͹ͻͲ,͹ͻͺ ʹͲͶʹ ͳ ͵ ʹͶͷ,ͳͲͻ,͹ͻͶ ʹͲͶͶ ͳ Ͷ ͳͳͶ,ʹ͵Ͷ,͵ͻͺ ʹͲ͹Ͷ ʹ ͷ ͸ͺ,͵ͻͷ,͸Ͷͷ ʹͲ͹ͷ ͳ ͸ Ͷͺ,ͳͲ͹,Ͷ͸͹ ʹͳͲʹ ͳ ͹ ͵ͳ,ͷͶͶ,ʹ͹ͳ ʹͳͳʹ ͳ ͺ ʹ͸,ͳ͸Ͷ,ͷͳͳ ʹͳͳ͵ ʹ ͻ ʹ͵,͸ͷͲ,ͺʹͳ ʹͳͳͶ ʹ ͳͲ ͳ͸,ͳͷ͸,ͷͶͳ ʹͳʹͷ ͳ 
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In the third phase, we have created tables in Hive and loaded files from the first and second 

phases. The table with the reference numbers and k-mers (220.35 GB) and the table with the 

list of unique signatures (67.5 GB) are used to run the query in Hive in order to specify the 

species and strains as the owners of the unique signatures. We have repeated the query on the 

table containing the list of signatures with frequency 2 instead of the unique signature’s table 

to find every pair of species with a common signature. For other frequencies, the same 

implementation is required.  

As shown in Table 6.2, the output of the third phase was a file with two columns containing 

the following: the signature and the reference number that indicates its corresponding 

bacterial genome in the reference database created by GkmerG in the first phase.  

 

Table 6.2. An example of the output for the third phase (2 columns in the left side of the 

table). The reference numbers in this table indicate the numbers appended by GkmerG for 

easier tracking of data in the pipeline. 

Signature Genome 
reference 
number 

Name of the bacterial genome that owned the 
signature AAAAACGCTCTGATATGA ͳͲͷͻ Eubacterium_rectale_ATCC_͹͹ͼͻͼ_uidͻͿͷͼͿ AAAAACGCTCTGCCACCA ͳͷʹͲ Methanobacterium_SWAN_ͷ_uidͼͽ͹ͻͿ AAAAACGCTCTGGGAATT ͹Ͳͷ Chromohalobacter_salexigens_DSM_͹Ͷͺ͹_uidͼ͸Ϳ͸ͷ AAAAACGCTCTTTTATTT Ͷ͹ʹ Campylobacter_hominis_ATCC_BAA_͹;ͷ_uidͻ;Ϳ;ͷ AAAAACGCTGAAACGCCT ʹ͸Ͷͻ Tolumonas_auensis_DSM_Ϳͷ;ͽ_uidͻͿ͹Ϳͻ AAAAACGCTGAAATCCGC ʹͲͳ͵ Rahnella_YͿͼͶ͸_uidͼ͸ͽͷͻ AAAAACGCTGAATGAAGC ͵ͻ Acinetobacter_ADPͷ_uidͼͷͻͿͽ AAAAACGCTGACAATAAA ͳ͵͵͹ Lactobacillus_brevis_KB͸ͿͶ_uidͷͿͻͻͼͶ AAAAACGCTGACCTTCTA     ͳ Acaryochloris_marina_MBICͷͷͶͷͽ_uidͻ;ͷͼͽ AAAAACGCTGACGGAAGT ʹͳʹ͸ Ruminococcus_albus_ͽ_uidͻͷͽ͸ͷ 

 

The following examples are parts of the results obtained by HTSFinder to show the efficiency 

of this pipeline. No unique DNA signatures with k = 18 were found for 30 of the bacterial 

genomes in the database.  

The number of unique DNA signatures in 475 genomes was less than 10,000. Chlamydia as a 

genus of bacteria with 83 species and strains in the bacterial genome database has the lowest 



CHAPTER 6: Results and Discussion 

  

70 

 

number of unique DNA signatures of 18-mers. The number of the unique signatures of 18-

mers in 75 of them was less than 10,000 and in 57 it was less than 1,000. We have located 13 

Chlamydia bacteria without unique signatures with k = 18. Top 10 bacterial genomes with the 

highest number of unique DNA signatures in the bacterial genome database are shown in 

Figure 6.1. 

 

Figure 6.1. Top 10 bacterial genomes with the highest number of unique DNA signatures in 

the bacterial genome database. 

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016. 

 

Burkholderia mallei and Burkholderia pseudomallei are two closely related pathogens that 

are very difficult cases for PCR assays. These two bacteria are the causative agents of 

glanders and melioidosis diseases in human and animals [134][164][165]. Due to the 

phenotypic and genotypic similarity of them, until a few years ago, they were considered to 

have the same species status. Concerning the literature, only one PCR signature was reported 

to be unique to B. mallei [134][164]. The HTSFinder pipeline could detect a considerable 
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number of DNA signatures for B. mallei and B. pseudomallei. Although these signatures are 

just unique in the bacterial genome database, due to the notable number of signatures listed in 

Table 6.3, it is evident that under different circumstances it would be better to have an 

alternative opportunity to define the uniqueness of the DNA signatures and to select the target 

databases according to the requirements. Moreover, it should be noted that much more DNA 

signatures could be found by increasing the length of k-mers. 

 

Table 6.3. B. mallei and B. pseudomallei strains with their number of unique DNA signatures 

of 18-mers in the bacterial genome database. 

The reference number and name 

of the  Burkholderia genomes 

Number of unique 
DNA signatures 

Burkholderia_mallei_ATCC_͸͹͹ͺͺ_uidͻͽͽ͸ͻ ͻͲ,ʹ͹ͺ 

Burkholderia_mallei_NCTC_ͷͶ͸͸Ϳ_uidͻ;͹;͹ ʹͶ,ͺͷͺ 

Burkholderia_mallei_NCTC_ͷͶ͸ͺͽ_uidͻ;͹;ͻ ͳͻ,ͶͶʹ 

Burkholderia_mallei_SAVPͷ_uidͻ;͹;ͽ ͹,͸Ͷͻ 

Burkholderia_pseudomallei_ͷͶ͸ͼb_uidͷͼ͸ͻͷͷ ʹͺʹ,ͻͻʹ 

Burkholderia_pseudomallei_ͷͷͶͼa_uidͻ;ͻͷͻ ͳ͹͵,͸ͺͺ 

Burkholderia_pseudomallei_ͷͽͷͶb_uidͻ;͹Ϳͷ Ͷͳ,ͳͷ͵ 

Burkholderia_pseudomallei_ͼͼ;_uidͻ;͹;Ϳ ʹͳͺ,ͻͺͷ 

Burkholderia_pseudomallei_BPCͶͶͼ_uidͷͽͺͺͼͶ ͺͳ,͹͸ͺ 

Burkholderia_pseudomallei_KͿͼ͸ͺ͹_uidͻͽͽ͹͹ ͳͻͷ,͹ͳͳ 

Burkholderia_pseudomallei_MSHR͹Ͷͻ_uid͸ͷ͹͸͸ͽ ͵ʹͲ,ͳͻͺ 

Burkholderia_pseudomallei_MSHR͹ͺͼ_uidͻͻ͸ͻͿ ͳ͹ʹ,ͷͷͳ 

Burkholderia_pseudomallei_NCTC_ͷ͹ͷͽͿ_uid͸͸ͼͷͶͿ ͵ͺʹ,ͶͻͶ 

 

This pipeline detects the common signatures not only among a species and its strains but also 

in the entire database. Frequencies 2 and 3 have been considered as the samples to prove the 

efficiency of this pipeline for discovering common DNA signatures within the bacterial 

genome database. 

As an example, the following results were obtained for 

Acaryochloris_marina_MBIC11017_uid58167 that is the first bacteria in the database. A total of 

689,790,798 signatures of k = 18 with frequency 2 were found in the database, whereas 
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673,490 of them are shared between Acaryochloris_marina_MBIC11017_uid58167 and 

2,382 other species. 

There was not any signature of k = 18 with frequency 2 between 

Acaryochloris_marina_MBIC11017_uid58167 and 390 other bacterial genomes. Figure 6.2 

presents the highest number of signatures with frequency 2 which are common between 

Acaryochloris_marina_MBIC11017_uid58167 and 10 other bacterial genomes in the 

database. 

 

Figure 6.2. Ten bacterial genomes with the highest number of signatures common with 

Acaryochloris_marina_MBIC11017_uid58167 in the bacterial genomes database. This is an 

example of the results for common signatures with frequency 2 obtained by 

HTSFTSFTSFinder. 

Source: Karimi R. et al: Journal of Evolutionary bioinformatics 2016. 

 

The results of the executions for signatures with frequencies 2 and 3 showed that most of the 

signatures are shared among phylogenetically close species of the database. However, there 
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were also a lot of signatures that belonged to unrelated bacterial genera and families. Table 

6.4 shows a partial view of the results for frequencies 2 and 3. From 245,109,794 signatures 

of frequency 3 in the database, 160,264 of them are shared between 

Acaryochloris_marina_MBIC11017_uid58167 and two other species. 

 

Table 6.4. A portion of the results for signatures with frequencies 2 and 3 in the database. 

Concerning the reference numbers, most of the common signatures are shared among the 

phylogenetically close genomes. However, the number of common signatures among 

unrelated species is also notable. 

Signatures with 
frequency=ʹ 

Genome reference 
numbers 

Signatures with 
frequency=͵ 

Genome reference 
numbers AAAAAAAAAAGATAAATA ͵ͷͷ ͷͲͺ AAAAAAAAAAAAATATCG ͳ͹Ͳͻ ͳ͹Ͳͺ ʹ͸͹͹ AAAAAAAAACAGACACAA ʹͳͳͲ ʹͳͲͻ AAAAAAAAAAAACAGAAC ͳʹͶͻ ͳʹͷͷ ͳʹ͸͹ AAAAAAAAACAGCATTAA ʹʹͲͻ ʹʹͳͶ AAAAAAAAAATAAATACA ʹ͹ʹ͸ ʹ͹͵Ͷ ͷͶʹ AAAAAAAAACAGGCTTAC ͵ͻͶ ͳͶͻͻ AAAAAAAAAGAAACAAAG ͸ͺͳ ͸͹ͺ ͸͹ͻ AAAAAAAAACCGCCGAAC ͳͲͶ͸ ͳͲͶͺ AAAAAAAAAGATGTTAAT ͻ͸ͻ ʹ͵ͺͶ ʹͶ͹ AAAAAAAAACCGCTTTTA ͳͺ͹ͻ ͳʹ͸ͷ AAAAAAAAAGCAAAACAA ʹʹʹ͵ ͵ͷͷ ͳͲʹ AAAAAAAAACGAACAAAC ͳͲͳ ͳͺͳ͵ AAAAAAAAAGTAAATGCG ͳ͹ͻ͵ ʹ͹͵ͳ ʹ͹͵Ͳ AAAAAAAAACGATTCAGA ʹͳͲ͸ ʹͳͲ͹ AAAAAAAAATAGACAATG Ͷͻͺ ͷͲͲ ͹ͷͷ AAAAAAAAACTAATGCTT ͵Ͷͻ ͵ͷͷ AAAAAAAAATATTCATGC ͵ʹͳ ͺͻ͹ ͷ͸Ͳ AAAAAAAAACTAATTCTG ͳͶͲ͸ ͳͶͲͺ AAAAAAAAATTCAAAATT ͷ͸͹ ͷͲͷ ͵ʹͷ AAAAAAAAAGAACCAAAC ͷͶͶ ͷͶͷ AAAAAAAAATTTAGCGAT ʹ͹ͳͶ ͳͺͳͶ ͵ʹͳ AAAAAAAAAGACTGACTC ʹ͸ͻ͸ ͳͲ͸͸ AAAAAAAAATTTTTATAG ͹Ͳ͵ ͶͲʹ ͵ʹͶ AAAAAAAAAGATGTTGTA ͷͶͷ ͷͶͶ AAAAAAAACAAGAAGCGC ͳͶʹ͸ ͳͶʹ͹ ͳͶʹͺ AAAAAAAAAGGATTCGAA ͳͶʹͺ ͳͶʹ͹ AAAAAAAACAATTAGCGA ͳͳʹͺ ʹ͸͹͹ ʹͶͲͶ AAAAAAAAATAAAGACTC ͵Ͷͷ ͵Ͷ͵ AAAAAAAACAGATAGTGA ʹͳͳͷ ͳͲ͸ͳ ͳͷͲͺ AAAAAAAAATAGTGACGA ͳ͸ͺ͸ ͳ͸ͻ͵ AAAAAAAACAGCAGCACC ʹͷ͵ͷ ͳͷͺͶ ͳͲͷͺ 

 

A series of lengths k from 21 to 30 have been considered to evaluate the effect of increasing 

the length of the signature in the results and to compare the results of the odd and the even 

number of k. Table 6.5 contains the number of unique DNA signatures for the human genome 

and three chromosomes 1, x, and y, which represent large, medium, and small sequences in 

the human genome. This table shows that increasing the length of the signature causes 

increasing the number of unique signatures and there is not a meaningful difference between 

the odd and the even numbers. 
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Table 6.5. A number of unique DNA signatures in the human genome and its three 

chromosomes with different sequence sizes for a series of lengths of k-mers from 21 to 30. 

Length of 
signature 

The whole genome 

ȋʹ.ͻ GBȌ 

Chrͳ 

ȋʹʹʹ MBȌ 

Chrx 

ȋͳͶ͹ MBȌ 

Chry 

ȋͳͻ MBȌ 

k = ʹͳ ʹ.ʹͶʹͻ͹e+Ͳͻ ͳ͹͸,ͳ͵͹,ͲͲͶ ͳͲͻ,͸ͻͳ,ͳʹ͸ ͳͲ,ʹʹͳ,ʹͶͲ 

k = ʹʹ ʹ.ʹͺ͸ʹͶe+Ͳͻ ͳ͹ͻ,Ͷ͵͸,ͺ͹͸ ͳͳʹ,͵͹Ͳ,Ͳ͸ʹ ͳͲ,ͷͷͲ,Ͳ͹͸ 

k = ʹ͵ ʹ.͵ͳͻͷͶe+Ͳͻ ͳͺͳ,ͻͺʹ,ͳͳͷ ͳͳͶ,ͷͲͷ,͹ͶͶ ͳͲ,ͺʹͷ,͹͸ͳ 

k = ʹͶ ʹ.͵Ͷ͹ͻʹe+Ͳͻ ͳͺͶ,ͳͷ͹,͵͹ͳ ͳͳ͸,͵Ͷͻ,Ͳͳ͹ ͳͳ,Ͳ͹Ͳ,ͺ͹ͷ 

k = ʹͷ ʹ.͵͹͵͵͵e+Ͳͻ ͳͺ͸,ͳͲͺ,Ͷ͵ͳ ͳͳ͹,ͻͻͻ,ͷͺͲ ͳͳ,ʹͻͶ,Ͷ͵ͻ 

k = ʹ͸ ʹ.͵ͻ͸͸Ͷe+Ͳͻ ͳͺ͹,ͻͲͶ,ͺ͸͹ ͳͳͻ,ͷͲͶ,͹ʹͷ ͳͳ,ͷͲͳ,ͳ͵ͻ 

k = ʹ͹ ʹ.Ͷͳͺʹͻe+Ͳͻ ͳͺͻ,ͷͺͲ,͵ͺʹ ͳʹͲ,ͺͻͳ,Ͳ͵ͻ ͳͳ,͸ͻ͵,ͳͺͲ 

k = ʹͺ ʹ.Ͷ͵ͺͶͻe+Ͳͻ ͳͻͳ,ͳͷͲ,ͷ͵ͳ ͳʹʹ,ͳ͹ʹ,͹ʹͶ ͳͳ,ͺ͹ʹ,ʹͷͲ 

k = ʹͻ ʹ.Ͷͷ͹ͶͶe+Ͳͻ ͳͻʹ,͸ʹͻ,͵Ͷͷ ͳʹ͵,͵͸͵,͵ͻ͹ ͳʹ,Ͳ͵ͻ,͹͵Ͷ 

k = ͵Ͳ ʹ.Ͷ͹ͷʹͻe+Ͳͻ ͳͻͶ,Ͳʹ͹,ͻͳͳ ͳʹͶ,Ͷ͹ʹ,ͺʹͺ ͳʹ,ͳͻ͸,͹ͳͲ 

 

To compare the number of unique signatures against the within-species variability and the 

entire bacterial genome database, Bacillus species with 81 strains in the database was 

selected. The three phases of the pipeline were executed on these strains. Table 6.6 contains 

five strains of Bacillus with the highest number of unique signatures and five others with the 

lowest number within species and in the entire database. Although 

Bacillus_anthracis_A0248_uid59385 and Bacillus_anthracis_Ames_Ancestor_uid58083 have 

larger genome size, any unique signature of length 18 could not be found for them because of 

their high similarity with other Bacillus strains. 
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Table 6.6. A comparison of five Bacillus strains with the highest number of unique 

signatures and five others with the lowest number of signatures of length 18 within species 

and in the entire database. This table shows that within-species similarity and variability have 

more influence on the volume of signatures than the remainder of the database. 

Name of strains Within-

species  

In the entire 

database 

The original 

genome size 

Bacillus_megaterium_WSH_002_uid159841   4,860,315 4,012,591 5,0 MB 

Bacillus_infantis_NRRL_B_14911_uid222804       4,712,042 3,932,760 4,8 MB 

Bacillus_1NLA3E_uid81841           4,527,694 3,734,930 4,7 MB 

Bacillus_cellulosilyticus_DSM_2522_uid43329 4,441,938 3,688,824 4,6 MB 

Bacillus_clausii_KSM_K16_uid58237 4,177,156 3,576,848 4,2 MB 

Bacillus_subtilis_168_uid57675 248 205 4,1 MB 

Bacillus_amyloliquefaciens_CC178_uid226115 247 202 3,8 MB 

Bacillus_anthracis_A0248_uid59385 0 0 5,4 MB 

Bacillus_anthracis_A2012_uid54101 0 0 284 KB 

Bacillus_anthracis__Ames_Ancestor__uid58083 0 0 5,4 MB 

 

 

6.1.2 Results on Both Forward and Reverse-Complement Sequences of 

the Bacterial Genome Database.  

In the genome databases such as NCBI, only one strand of DNA sequence is provided. 

However, to design the primers, both forward and reverse-complement sequences should be 

considered. Moreover, depending on the sequencing technology, generated short reads can be 

from both strands. Therefore, the ability to obtain DNA signatures of both strands is 

potentially useful. 

For the reverse complement sequences, the size of the output files and the computational 

times of the first and second phases of the pipeline were the same as in the forward genome 

implementations. The output of the second phase for forward and reverse-complement 

genome databases resulted in a file of 103.03 GB for each. We have repeated WordCount on 

both of the databases one more time to determine the frequencies of k-mers as illustrated in 

Figure 4.3 (Chapter 4). The final result was a file of 52.53 GB for the forward and the same 

size for the reverse-complement genome database. On the one hand, it means that the volume 
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of data containing unique signatures for the forward database decreased from 67.5 to 52.53 

GB similarly to the reverse-complement genome database. On the other hand, the overall 

volume of DNA signatures that we could find for the species in the bacterial genome 

database increased from 67.5 GB containing signatures for a single strand to 105.06 GB for 

both strands of DNA. 

 

6.1.3 Results for the Forward and Reverse-Complement Bacterial 

Genome Database and the Human Genome Database. 

We have considered the forward bacterial genome as the target database. We have applied the 

method that is described in Figure 4.3 (Chapter 4) and found 50.28 GB of k-mers for the 

target genome database which is unique among the three databases. 

Table 6.7 presents the file size and numbers of unique DNA signatures of the target database 

against the non-target ones. 

 

Table 6.7. Number of unique DNA signatures for the forward bacterial genome database as 

the target and two other non-target databases. 

Databases File size Number of 

signatures Unique signatures of the Forward bacterial genome database  ͸͹.ͷ GB ͵,ͷͷʹ,ͺ͸͸,ʹͷͶ Forward + Reverse-Complement bacterial genome databases 

ͷʹ.ͷ͵ GB ʹ,͹͸Ͷ,͹ͷͻ,͹͵ͻ Forward + Reverse-Complement bacterial genome + (uman genome databases 

ͷͲ.ʹͺ GB 

 

ʹ,͸Ͷ͸,ͶͻͶ,ͻͶͷ 

 

 

6.1.4 Performance Evaluation and Computational Times.  

For this experiment, we have applied two different platforms. The first one was a single node 

with 12 processors of Intel Core i7-4930K CPU at 3.40 GHz and 55 GB of RAM and 6 TB of 

hard disk. The operating system was Ubuntu 12.04.5 LTS, Java SE Version “1.8.0–25”, 
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Hadoop Version 1.2.1, and Hive-0.12.0. We have installed this node as a single-node Hadoop 

cluster.  

Another platform was a multi-node cluster with seven nodes including the master node and 

six slave nodes. The master node was an Intel Core2 Quad CPU Q6600 at 2.40 GHz and 8 

GB of RAM and 3.2 TB of hard disk, while slaves had 4 GB of RAM, Intel Core i3-2100 

CPU at 3.10 GHz and 500 GB of hard disk, all with the desktop version of Ubuntu 14.04.1 

LTS 64-bit, Java Version “1.7.0–65” OpenJDK, Hadoop 12.1, and Hive-0.12.0. 

The first phase of the pipeline executed with GkmerG took 156 minutes with five nodes and 

780 minutes with a single node from the second platform to generate 18-mers from the 

original bacterial genome database (9.7 GB). As an output, we got 2,773 files containing 18-

mers with a total size of 177.35 GB. 

Table 6.8 contains the corresponding computational results and the size of the files in the 

second and third phases of the pipeline for both platforms. 

 

Table 6.8. A comparison of computational results of the first and second platforms in the 

second and third phases of the pipeline in order to find unique DNA signatures and their 

related species in the forward genome database (time in minutes). 

Phases File size 
ȋGBȌ 

Time for the first 
platform 

Single-node 

Time for the 
second platform 

Multi-node Copy k-mers generated by GkmerG to the (DFS ͳ͹͹.͵ͷ ͸Ͳ ͸͵ WordCount process ͳ͹͹.͵ͷ ͶͶ͹ ͳͳ͸ͻ Copy the result from (DFS to a local directory ͳͲ͵.Ͳ͵ ͵Ͷ  ʹ͹ Extracting unique signatures and creating tables in (ive 

͸͹.ͷ ͸Ͳ ͸Ͳ Loading unique signatures to the (ive table ͸͹.ͷ ʹ͵ ʹ͸ Loading k-mers and reference numbers to the (ive table 

ʹʹͲ.͵ͷ ͹ͻ ͺ͵ Executing the queries and copy the result to a local directory 

ͺ͵.ͺ͵ ͳͳʹͲ ͻͷͻ Total computational time ͳͺʹ͵ ʹ͵ͺ͹ 
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Although the whole computation on the second platform took about nine hours more than on 

the first one, comparing the RAM and CPU capacity of the two platforms confirms the ability 

of a cluster of low-cost computers that are commonly available with research facilities to 

accelerate big data analytics. 

Since the WordCount program uses a sorting algorithm, the platform with a larger amount of 

RAM is faster; therefore, the single-node platform is faster for the second phase of the 

pipeline. For the third phase of the pipeline, the running time of querying in the multi-node 

cluster is faster, because the process is linear; therefore, parallel computing in a distributed 

system can speed up the process. 

Table 6.9 compares the size of the files for frequencies 1–3 and the time of loading and 

processing the queries on the first platform. The file containing 220.35 GB data was used as 

the second table for all the implementations.  

 

Table 6.9. A comparison of loading and execution times of the frequencies 1–3 in the third 

phase. 

Frequency ͳ ʹ ͵ Size of the file containing signatures ȋGBȌ ͸͹.ͷ ͳ͵.ͳ Ͷ.͸͸ Time for loading file into the (ive table ȋminutesȌ ʹ͵ Ͷ ͳ Execution time and copy the result to local directory ȋminutesȌ ͳͳʹͲ ͸͸ͳ ͷͷ͹ 

 

6.2 The Results of the Method Based on Using Bitmap Indexes and 

NoSQL  

The output file of the method contains the Rowid (Row identification) numbers of the short 

reads (first column as the read id-number) and its related bacteria. As an example, for the 

bacteria b1 (first column of the indexes) in Table 6.10, we have 2,7,10 which means, the 

signatures of bacteria b1 are in these 3 short reads. Moreover, it means that we have bacteria 

b1 in the metagenomics sample.  
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Table 6.10. An example of input table for Hive, that is created by merging files to a single 

file. 

  b1 b2 b3 b4 b5 

1 R1 0 0 0 1 0 

2 R2 1 0 0 0 0 

3 R3 0 0 0 1 0 

4 R4 0 0 0 0 0 

5 R5 0 0 1 0 0 

6 R6 0 0 0 0 1 

7 R7 1 0 0 0 0 

8 R8 0 0 0 0 0 

9 R9 0 0 0 0 0 

10 R10 1 0 0 0 0 

       

 

In order to prevent repeating the queries or writing long commands and queries, we can add 

all bacterial files with '0' and '1' one after the other and create a single column in a single file. 

It can be done with scripting in the incremental order to add as much bacteria as we need at 

the end of each other. In this method, we need also to repeat short reads in a single column as 

much as the number of bacteria. For instance, if we have 500,000 short reads and 1000 

bacteria, then we should repeat short reads in one column and for1000 times. 

 In this case, we need to create a table with 3 columns Rowid, read string, and “0” or “1” as 

the indexing results; then run the query just once. The results will be in one column. We can 

easily extract the information with Rowid numbers. It leads to a larger table (6,635,250 rows) 

and files size, but a faster implementation. After getting the results, we can delete these large 

tables. More details can be found in the related paper [41]. 

Running time of querying on the first tables (52 columns, 132,706 rows, and the loaded file 

size of 44.6 MB) was 21.31 seconds in average for each bacterium.  1065.927 Seconds for 50 

bacteria. It would be much higher if we consider the time for changing and repeating the 

queries. Running time of querying on the second tables (3 columns and 6,635,250 rows and 

the loaded file size of 1.6 GB) was 59.9 seconds for the whole process. Although the second 

table was much larger in file size and 50 times more number of rows, the computational time 

of querying in compare with the first table is very short.  
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This implementation shows the speed and efficiency of Hive to search millions or billions of 

rows with Bitmap Index techniques.  

Since the nature of Hive is to write once and to read several times, updating the tables is not 

possible. There is a possibility of integrating Hive and Hbase. This feature allows Hive QL 

statements to access Hbase tables for both reads (SELECT) and write (INSERT). It is even 

possible to combine access to Hbase tables with native Hive tables via joins and unions. Real-

time reading and writing are possible in Hbase. These features help us updating and having a 

faster implementation. Query optimization can also help to have shorter running time. The 

next two queries on the same table are evident. 

File Size: 1.6 GB 

Time taken with SELECT* and GROUP BY query: 

Total MapReduce CPU Time Spent: 54 seconds 640 msec 

Time taken: 59.901 seconds 

 

Time taken with SELECT query which is faster: 

Total MapReduce CPU Time Spent: 43 seconds 630 msec 

Time taken: 44.452 seconds 

The implementation above was for the first group of 50 bacteria which are common in 100 

bacterial samples. As we expected, we could find some short reads containing the signatures 

for every bacteria. The number of short reads is a range between 1 for b16 to 812 for b4. As 

we expected, for the second group of 50 bacteria which differs by 100 samples, we could not 

find any short reads containing the signatures. The average time taken for the implementation 

was almost the same as the first group. 

This implementation shows that Bitmap Index techniques are very efficient to speed up the 

Hive queries, and Hive itself is powerful enough to search for very large tables with millions 

or billions of rows or columns in commodity hardware. Moreover, with this method, we 

could show that it is possible to identify species with DNA signatures from metagenomics 

samples without assembling and alignment and with any size of data. 
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6.3 The Results of the SRIdent Pipeline 

The first 200 species from the bacterial genome database were selected to simulate their short 

reads by Metasim. This application simulated 2,030,000 reads with Roche 454 sequencing 

model and default simulation parameter settings. The size of the original reads file was 

896.59 MB. RkmerG was used to generate all the possibilities of 19-mers for each short read, 

and to append the identification number (1 to 2,030,000) to the 19-mers. The result was an 

11.91 GB file containing 2 columns of identification numbers and k-mers. RkmerG finished 

this process within 144 minutes with a single computer of Intel Core i3-2100 CPU at 

3.10GHz, 4 GB of RAM, and 500 GB of hard disk. We created two tables in the hive. The 

file containing 19- mers and their identification numbers were loaded into one of them and 

the file containing the DNA signatures and their reference numbers into another. Then we ran 

SELECT and JOIN queries on both tables in order to select the k-mers of the reads, matching 

to the signatures. The result was a file containing 3 columns: the signature, the reference 

number of the signature and the identification number of k-mers that indicates their related 

short reads. Table 6.11 shows a small part of the Hive output file. 

 

Table 6.11. A sample of the results obtained from Hive. The genome reference number 

indicates the species that owns the signature and the identification number indicates the short 

read that contains the k-mer. 

Signature Genome reference 
number 

Read's  
identification number 

AAAACAAGCAATCGCCCGA 36 462891 

AAAACAAGCGAAGGTGCGG 1 373679 

AAAACAAGCGAAGGTGCGG 1 374030 

AAAACAGCTTTGCTTGACG 50 1468571 

AAAACAGCTTTGCTTGACG 50 1982597 

AAAACCAACACCGGCTTAT 13 339456 

AAAACCAACGTCTATGCGC 41 210636 

AAAACCAGCCGGCCGTGGC 49 1756507 

AAAACCATCGATAAACTCG 27 1594247 

AAAACCATGGAAGGTGTAG 20 166134 
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The first row of Table 6.11 says that the signature in this row belongs to the bacteria number 

36 and exists in the read number 462891. In the other word, it means bacteria number 36 is 

one of the species in the sample. This is what we were looking for, as the aim of this research 

to identify the species in a metagenomics sample, directly from the raw sequencing reads 

without assembling and alignment. There are too many repeated copies of the short reads 

produced by sequencing technologies. This is the reason that we see a considerable number 

of repeated signatures and reference numbers in the Hive output. For instance, in rows 4 and 

5 of Table 1, we can see the same signature of bacteria 50 in two short reads. On the one 

hand, it means these two short reads are overlapped in one part, on the other hand, it can be 

an error caused by sequencing technology or it can be a read belongs to unknown species that 

should be checked. This pipeline and presented software can be used to facilitate assembling, 

alignment, and mapping of the reads with searching the position of DNA signatures in the 

reference genome and checking whether the read containing the signature can be matched 

with the reference genome. Extracting the reads with same signatures and reference numbers 

from Hive output and checking whether they are overlapped is an easy and significant way 

for assembling and alignment of the reads from known species. Neither of the signatures of 

the species with reference numbers between 51 to 100 was found in the short reads. These 

signatures have been selected from 50 species apart from those 200 species as the sample in 

order to check the accuracy of the pipeline. 

 

6.3.1 Performance Evaluation and Computational Times  

In this experiment, we applied the second phase of the pipeline with two different platforms. 

The first one was a multi-node cluster with 5 nodes including the Master node and 4 Slave 

nodes. All with 4 GB of RAM, Intel Core i3- 2100 CPU at 3.10GHz and 500 GB of hard 

disk, the desktop version of Ubuntu 14.04.1 LTS 64-bit, Java version ”1.7.0- 65” OpenJDK, 

Hadoop 12.1 and Hive-0.12.0. The second platform was a single node with the same 

hardware and software setup. Table 6.12 shows computational time differences of two 

mentioned platforms. 
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Table 6.12. Computational times of two platforms (Time is measured in seconds). 

Platform Loading k-mers 

(11.91 GB) 

Loading signatures 

(80.14 MB) 

Query running time 

Single-node 206 1 2909 

Multi-node 231 1 585 

 

Since multi-node needs more communication between the nodes through a network, the 

loading time is longer. Running time of querying in the multi-node cluster is much faster, 

because the process is linear; therefore, parallel computing in a distributed system can speed 

up the process. 

The important goal of this research is providing a method for rapid identification of species 

directly from the raw short reads generated in Next-Generation Sequencing (NGS) and 

Whole-Genome Sequencing (WGS) technologies without considering the complicated 

processes such as assembling and alignment. The obtained results showed the ability of this 

method to reach the goals. Moreover, this pipeline and presented software can be used to 

facilitate assembling, alignment, and mapping of the reads according to the Hive output. 

Another goal of this research is using commodity hardware for the analysis in order to 

enhance the applicability of the analysis as a routine process for the entire research 

community and particularly medical laboratories. The computational resources that are used 

in the proposed pipelines prove the ability of parallel and distributed computing to reach the 

goal. 

It is notable that, the integration of the HTSFinder and SRIdent pipeline can speed up the 

process in the second phase of the SRIdent pipeline. DNA signature preparation (explained in 

Chapter 5) is not required and we can use the output of the third phase of HTSFinder in the 

second phase of SRIdent [166]. 
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6.4  Performance Comparison of Proposed Pipelines with an Existing 

State-of-the-Art Method 

In order to choose a method to compare the performance of the HTSFinder pipeline with the 

existing methods mentioned in Chapter 4, we have extended Table 4.1 with adding the 

resources of our pipeline in Table 6.13. 

Table 6.13. The extension of Table 4.1 for better comparison of the computational resources 

of HTSFinder with the existing methods. 

Name 
Data 

format 

Adopted platform according to the 

publication 

BLAST 

specificity 

Ability for 

a single 

sequence 

Ability for 

multiple 

sequences 

TOFI FASTA 
64 x 1.5 GHz Itanium 2 processors with 

64 GB of shared memory 
✓ ✓ ✕ 

TOPSI FASTA 98-cores Linux cluster ✓ ✓ ✓ 

Insignia FASTA 192-node Linux cluster ✓ ✓ ✓ 

CaSSiS rRNA 
Intel Core i7 CPU (4 cores, 2.67 GHz) 

with 24 GB of RAM 
✕ ✓ ✓ 

CMD and 

PISD 
ESTs 

Dell PowerEdge R900 server with two 

Intel Xeon E7430 2.13 GHz quad-core 

CPUs, 12 GB RAM 

✕ ✓ ✕ 

IMUS ESTs Intel 2.93GHz CPU ✕ ✓ ✕ 

PIMUS ESTs 
Intel Core i7 870 2.93GHz quad-core 

CPU and 16 GB RAM  
✕ ✓ ✕ 

DDCSD ESTs 

A Master Node: Intel Core i7 CPU 870 at 

2.93 GHz and 16 GB  RAM, 10 Slave 

nodes: Intel Core i7 CPU 3770 K at 3.50 

GHz and 32 GB of RAM for each one  

✕ ✓ ✓ 

HTSFinder FASTA 

The master node: Intel Core2 Quad CPU 

Q6600 at 2.40 GHz and 8 GB of RAM 

and 6 slaves Intel Core i3-2100 CPU at 

3.10 GHz with 4 GB of RAM for each one 

✕ ✓ ✓ 

 

Our pipeline is compatible with FASTA-formatted files. Although TOFI, TOPSI, and Insignia 

use FASTA format, they use BLAST specificity for checking the uniqueness of their 

signatures against the whole background genomes which is not the aim of this research. 

Moreover, they use a large cluster of computers with more than a hundred of nodes which are 

neither available for us, nor for many of other research communities. CaSSiSS uses rRNA 

database that is also not compatible with our pipeline. IMUS, PIMUS, CMD, PISD, and 

DDCSD use ESTs sequences that are not appropriate for our pipeline as well. Moreover, the 

download source of DDCSD that has provided in the related paper in BMC Bioinformatics 
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journal is not available. Furthermore, most of the applications and algorithms of DNA 

signature discovery that are introduced in Chapter 4 are suitable for a single sequence or a 

single targeted genome in a run. Hadoop and Hive are designed to handle large data analytics. 

Although they can process a small amount of data, regarding the time and computational 

resources it is not reasonable.  

Same with HTSFinder pipeline, Distributed Divide-and- Conquer-based Signature Discovery 

(DDCSD) uses a parallel and distributed computation system. The human whole-genome EST 

database that has approximately 2.46G bases is used in DDCSD for detecting unique 

signatures in this database. Since this database is derived from the human whole-genome 

database (2.9G bases) and DDCSD did not use BLAST specificity for checking the 

uniqueness of the signatures, it seems this is the only possible method for doing a 

comparison, although the computational resources are not the same. Table 6.14 contains a 

comparison of hardware setup and discovery time between HTSFinder and DDCSD for 

finding unique DNA signatures of the whole human genome database and human whole-

genome EST database.  

 

Table 6.14. Comparison of HTSFinder and DDCSD (d = mismatch tolerance for the DDCSD 

algorithm). 

Hardware and software 

information 

HTSFinder DDCSD 

Number of master nodes 1 1 

Master node information Intel Core2 Quad CPU 

Q6600  at 2.40GHz 

Intel Core i7 CPU 870 at 2.93 GHz 

Number of slave nodes 6 10 

Slave nodes information Intel Core  i3-2100 CPU  at 

3.10GHz 

Intel Core i7 CPU 3770 K at 3.50 

GHz 

RAM capacity of master node 8 GB 16 GB 

RAM capacity of slave nodes 4 GB (24 GB all together) 32 GB (320 GB all together) 

Master node disk space 3.25 TB 1.5 TB 

Slave nodes disk space 500 GB 1 TB 

Operation system Ubuntu 14.04.1 LTS 64-bit CentOS release 6.3 

Human genome size 2.9 GB  (hs-ref-GRCh38) 2.46 GB (Human genome ESTs) 

Length of signature (k) 24 24 

 

Discovery time (minutes) 

 

532 

196 d = 2 

873 d = 4 
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Comparing the hardware setup of the two clusters and their discovery time for detecting 

unique DNA signatures of the Human genome with k=24, we can state that HTSFinder is a 

fast and powerful method that uses ordinary hardware to find DNA signatures. Although the 

number of nodes and the total amount of RAM and CPU for the cluster that is used with the 

DDCSD algorithm is several times higher than for HTSFinder, the discovery time of 

HTSFinder is considerably small. Moreover, HTSFinder could find not only all the unique 

signatures but also other frequencies of k-mers in the whole human genome at the same time. 

HTSFinder detects all the possibilities of unique DNA signatures and other frequencies 

without discarding even one signature in the database, regardless of determining mismatch 

tolerance level. Meanwhile, it should also be noted that the discovery time which is 

calculated for HTSFinder includes the time for generating k-mers (65 minutes). Once we 

finish this process, we can keep the k-mers for other implementations. 

The read classifiers such as Kaiju, Kraken, and CLARK are used for taxonomic assignment 

of the short reads. The same with our method using SRIdent pipeline, they use data in FASTA 

format. These applications have focused on the speed of the running time of the process. 

They are trying to shortage the process using High-performance computation systems shown 

in Table 6.15.  

Table 6.15. A comparison of read classifier applications with SRIdent, according to the data 

format, computational resources and ability to process single or multiple sequences. 

Name 
Data 

Format 

Adopted Platform according to the 

publication 

BLAST 

specificity 

Ability for 

single 

sequence 

Ability for 

multiple 

sequences 

Kaiju FASTA 

HP Apollo 6000 System ProLiant 

XL230a Gen9 Server, with two 64-bit 

Intel Xeon E5-2683 2 GHz CPUs (14 

cores each), 128 GB DDR4 memory  

✓ ✓ ✓ 

Kraken FASTA 

48 AMD Opteron 6172 2.1 GHz CPUs 

and 252 GB of RAM, running Red Hat 

Enterprise Linux 5. 

✓ ✓ ✓ 

CLARK FASTA 

Dell PowerEdge T710 server, dual Intel 

Xeon X5660 2.8 GHz, 12 cores, 192 GB 

of RAM 

✓ ✓ ✓ 

SRIdent FASTA 

The Master node and 4 Slave nodes. All 

with 4 GB of RAM, Intel Core i3- 2100 

CPU at 3.10GHz 

✕ ✓ ✓ 
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Although SRIdent is also a read classifier, it is developed with the focus on the applicability 

of the pipeline for ordinary computers which are available everywhere, in order to utilize Big 

Data analysis as a routine process for the research community and in particular for the 

medical laboratories. In the publications related to the three mentioned applications in the 

above table, the source of collecting unique DNA signatures is not exactly determined, 

however, it is mentioned that they use BLAST specificity.  Along with the mentioned 

differences, unavailability of the resources for us is an extra reason for the inability to do the 

comparison. 



CHAPTER 7: Conclusion and Future Works 

 

 

88 

 

 

 

Chapter 7 

Conclusion and Future Works 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 7: Conclusion and Future Works 

 

 

89 

 

7.1 Summary and Conclusion 

 One of the key elements of the medicine of the future is to bring the applications of Next-

Generation Sequencing (NGS), Whole Genome Sequencing, and Single Cell Sequencing 

techniques as the routine tools for diagnostic and public health microbiology.  

The dramatic reduction in the cost of sequencing has resulted in the applicability of bacterial 

genome sequencing for a great number of labs; however, the explosive growth of data has 

resulted in a cost shift from sequencing to assembly, analysis, and managing of the 

sequencing data. Therefore, the computational analysis is likely to be a few years away. 

Due to the massive data volumes and complexity of the analysis, computational resources are 

expensive and time-consuming. Moreover, the complexity of the applications requires 

adequate knowledge of computer science. Hence, these problems are the barriers for the 

applicability of the analysis as a routine process for the entire research community. 

The overriding purpose of this research was to overcome the limitations in the computational 

analysis of rapid diagnostic identification and characterization of species and infectious 

pathogens from raw reads sequencing data, in particular, complex metagenomics data. This 

research has focused on 2 main primary goals: 

1- Reducing the cost and time-consumption of the computational resources by the use of 

parallel and distributed computing and related optimization techniques, in order to utilize 

ordinary desktop computers for Big Data analysis.  

2- Proposing a fast, flexible, and independent alignment-free method for real-time 

identification of microorganisms from High-throughput sequencing reads. 

In the earlier chapters of this doctoral thesis, especially in Chapters 1, 2, and 4, we discussed 

the critical importance of employing DNA signature as an alignment-free method for real-

time identification of species and pathogens in metagenomics data analysis and clinical 

diagnostics assays. Due to the large size of the datasets, the process is computationally 

intensive.  
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Chapter 4 of this thesis has introduced a powerful pipeline (HTSFinder) that we have 

developed for searching DNA signatures (small fragments of a genome that are specific for a 

species) among arbitrarily targeted genome databases, using Hadoop and MapReduce as the 

application of parallel and distributed computing in commodity hardware.  

HTSFinder consists of three phases: 

1- Generating all the possibilities of k-mers of genome sequences in FASTA format with 

GkmerG software. 

2- Extracting all unique signatures or group-specific signatures due to the frequency of 

k-mers. 

3- Determining the owners (species) of the signatures. 

Data obtained in this research using HTSFinder, clearly shows the efficiency of our proposed 

pipeline to find all possible DNA signatures of a target database. In this pipeline, we intended 

to overcome some limitations of the existing state-of-the-art methods for DNA signature 

discovery by focusing on efficiency issues to detect all the possibilities of unique and 

common DNA signatures in a database, regardless of the challenges such as pairwise 

alignment and mismatch tolerance. Another important feature of this pipeline is its ability to 

select a target and non-target databases. From the standpoint of this research, non-target 

genome database is not necessarily defined as the entire background genome databases such 

as BLAST for the assessment and specificity evaluation of DNA signatures. It can be 

determined due to the requirements. General applicability is another issue that is considered 

in the pipeline; it can be launched either in a cluster of low-cost nodes or in an HPC 

environment. Although the volumes of the datasets in this study are very large (e.g., 287.85 

GB in a single run), DNA signatures are detected very precisely and comprehensively in the 

target databases and the execution times are reasonably short. The proposed experiment is 

just the basic idea, and there is a great flexibility to design implementations for phases of this 

approach. Once the pipeline is implemented, the users will find how to manipulate their 

datasets according to the requirements.  
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After finding the DNA signatures of each species, the next challenge is how to match the 

signatures, the short reads (raw sequence data), and their related species. 

 In Chapter 5 we have proposed two methods for matching the signatures, the reads, and their 

related species.  

In the first method, we employed optimization techniques issued from databases to speed up 

searching and matching of DNA signatures in the short reads of hundreds (thousands) of 

different microorganisms deployed in Hive. We have adapted the concept of bitmap indexes, 

routinely used for indexing large database tables on the attributes with little cardinality. 

The results of this method show the efficiency of optimization and bitmap indexing 

techniques to speed up querying of large tables in Hive. However, constructing the index 

tables is a time-consuming process. Therefore, we attempted to develop a better solution. 

In the second method, we introduced SRIdent pipeline that consists of two computational 

stages:  

1- Generating the k-mers from the reads, where k is equal to the length of signatures. 

This stage is done by the software called “RkmerG”.   

2- Creating the related tables and using Hive queries to find the matches is the next 

stage.  

The results obtained from SRIdent pipeline prove the efficiency of this approach for real-time 

identification of species in Metagenomics and clinical diagnostic assays. 

The three presented methods in this doctoral thesis can be an efficient approach, not only for 

DNA signature discovery and real-time identification of species but also for other purposes in 

bioinformatics and metagenomic studies such as the alignment and assembly of short reads 

and next-generation sequencing analysis. They can facilitate assembling, alignment, and 

mapping of the reads according to the Hive output. Another advantage is the applicability of 

the methods on low-cost computers. 
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7.2 Future Work 

An important challenging issue discussed above is the high cost of computational resources 

and the complexity of the analysis and the applications that require adequate knowledge of 

computer science. These two parameters prevent the use of DNA signature and other 

classifier methods as a routine technique for High-throughput sequencing analysis. Thus, we 

were motivated to consider Hadoop as a model for developing integrated software called 

HTSFinder-alfa. 

The software is very easy to perform for everybody. We employed the divide and concur 

algorithm and parallel programming along with artificial intelligence and machine learning 

techniques to make an automated and powerful application for the whole process that we 

discussed in this doctoral thesis. 

According to the size of data and the amount of RAM and the number of CPU threads and 

cores, the software will decide how to break down the data into the smaller pieces and how to 

process the data in parallel and in an intelligent manner. This software is still under the 

development. 

In the final version of this software we can easily copy the target databases of DNA 

signatures in a specific folder and copy the short reads to another folder and run the software 

with a short command; the software search the DNA signatures (unique or common with 

arbitrary length), then it matches the signatures, the reads, and their related species 

automatically. 

We are trying to develop this software for distributed systems. The software can perform the 

process on a desktop computer with 4GB RAM in Linux system. 

There are several optimization issues that we recommend as the future work in the proposed 

pipelines, in order to enhance their capabilities. 

Running time, CPU usage, memory usage, speed of disk reading of the nodes, and managing 

the maps according to the size of data and memory are the subjects of optimization in a 
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Hadoop cluster. Optimizing the configurations and parameters of Hadoop is also required in 

order to reduce the data transfer and communication between nodes of the cluster. Moreover, 

query optimization and designing the tables in Hive for preventing a repetition of queries are 

very important. 
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Appendix 

Download sources and supplementary materials 

 

HTSFinder 

The software and supplementary material of HTSFinder pipeline are freely available at:  

1- https://drive.google.com/file/d/0B8ZRZRHhuPUfMmFNMTlRZTQxeWM/view?usp=sharing 
 

2- https://sourceforge.net/projects/htsfinder/ 

 
 
SRIdent 

 
The software and supplementary material of SRIdent pipeline are freely available at:  
 

1- https://sourceforge.net/projects/srident/ 
 

2- https://drive.google.com/file/d/0B8ZRZRHhuPUfd0E5dE5oejRhcGs/view?usp=sharing 

 

 

 

 


