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Abstract

Cyclodextrins are widely used excipients for increasing the bioavailability of poorly water-soluble drugs. Their effect on drug
absorption in the gastrointestinal tract is explained by their solubility- and permeability-enhancement. The aims of this
study were to investigate penetration properties of fluorescently labeled randomly methylated-beta-cyclodextrin (FITC-
RAMEB) on Caco-2 cell layer and examine the cellular entry of cyclodextrins on intestinal cells. The permeability of FITC-
RAMEB through Caco-2 monolayers was very limited. Using this compound in 0.05 mM concentration the permeability
coefficient was 3.3561.2961028 cm/s and its permeability did not change in the presence of 5 mM randomly methylated-
beta-cyclodextrin. Despite of the low permeability, cellular accumulation of FITC-RAMEB in cytoplasmic vesicles was
significant and showed strong time and concentration dependence, similar to the characteristics of the macropinocytosis
marker Lucifer Yellow. The internalization process was fully inhibited at 0uC and it was drastically reduced at 37uC applying
rottlerin, an inhibitor of macropinocytosis. Notably, FITC-RAMEB colocalized with the early endosome organizer Rab5a.
These results have revealed that FITC-RAMEB is able to enter intestinal epithelial cells by fluid-phase endocytosis from the
apical side. This mechanism can be an additional process which helps to overcome the intestinal barrier and contributes to
the bioavailability enhancement of cyclodextrins.
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Introduction

Cyclodextrins are water-soluble cyclic oligosaccharides with

hydrophilic outer surface and hydrophobic inner cavity. Their

chemical structure enables them to form inclusion complexes with

lipophilic molecules in aqueous solutions leading to the increment

of aqueous solubility of guest molecules. The complex formation

ability of cyclodextrins is utilized mainly in pharmaceutical

industry for the formulation of water insoluble or poorly soluble

drugs of Class II and Class IV of the Biopharmaceutics

Classification System (BCS). Solubility- and absorption-enhancing

effects of cyclodextrins lead to higher bioavailability of intestinal

formulations, and complex formation can increase the stability of

active substances [1] [2]. Several cyclodextrin derivatives were

synthesized to improve the complexation efficacy and decrease

toxicity. Lipophilic cyclodextrins such as methylated cyclodextrins

(e.g. randomly methylated b-cyclodextrin) and hydrophilic cyclo-

dextrins like hydroxypropyl derivatives (e.g. 2-hydroxypropyl-b-

cyclodextrin) are distinguished, even if their solubility in water is

high [3]. Besides the pharmaceutical applications, b-cyclodextrins
are also used in cell biology research for the removal of cholesterol

from cell membrane [4] and to study the role of cholesterol on

cellular functions. In the case of b-cyclodextrins a relationship

could be identified among the substituents of the cyclodextrin ring,

cholesterol solubilization, hemolytic activity and cytotoxicity [5].

Membrane cholesterol extraction can induce several cellular

effects. The activity of membrane transporters, such as P-

glycoprotein is sensitive to the presence of cholesterol [6,7,8].

The disruption of cholesterol rich membrane rafts alters the

integrity of tight junctions and barrier functions of cell layers

[9,10]. These effects can also increase the permeability and

absorption of drug molecules from the intestine. On the other

hand membrane cholesterol depletion with high cyclodextrin

concentration inhibits endocytotic processes [11,12] and increases

exocytosis [13].
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The chemical structure, number of hydrogen donors and

acceptors, relatively high molecular weight (.1000 Da) and the

hydrophilicity of cyclodextrins predict that these molecules are not

able to permeate biological membranes and have poor absorption

[14]; only lipophilic cyclodextrins are considered to be absorbed

from the gastrointestinal tract to some extent [3]. In general, only

the free form of drug, which dissociates from the cyclodextrin

complex, is thought to be absorbed. According to this mechanism

cyclodextrin delivers the drug to the surface of cell membrane, the

drug molecule penetrates into the lipophilic membrane, but after

delivery the cyclodextrin remains extracellular [3]. Interestingly

in vivo studies showed that relatively high amount of hydro-

xypropyl-b-cyclodextrin and dimethyl-b-cyclodextrin were ab-

sorbed via rectum of rats and excreted into the urine, suggesting

that not only the free form of drugs, but also cyclodextrin

complexes may be absorbable through the rectal mucosa [15].

Although cyclodextrins most likely cannot permeate the cell

membrane by diffusion, recent findings revealed that they are able

to enter cells. Methyl-b-cyclodextrin-dextran conjugates and

hydroxypropyl-b-cyclodextrin were found to enter cells by

endocytosis, as they reduced intracellular cholesterol accumulation

in Niemann-Pick type C mutant cells acting at the level of

endocytotic organelles inside the cells [16]. Intracellular accumu-

lation of the fluorescent mono-4-(N-6-deoxy-6-amino-b-cyclodex-
trin)-7-nitrobenzofuran (NBD-b-CD) was also detected in HepG2

and SK-MEL-24 cells, and endocytosis as a possible mechanism

for the transmembrane passage of NBD-b-CD was suggested [17].

Macropinocytosis of amphiphilic cationic cyclodextrin transfection

complexes were also observed in Caco-2 intestinal epithelial cells

[12], and clathrin-dependent endocytosis of a fluorescent methyl-

b-cyclodextrin by HeLa cells was demonstrated [18].

These results raise the possibility that cyclodextrin molecules not

only increase the solubility of poorly soluble drugs and act as

permeation enhancers in the intestine, but are able to enter

intestinal cells by the endocytotic pathway. This mechanism, the

intracellular route and fate of cyclodextrins have not been

investigated on intestinal epithelial cells yet, although transcytosis

is known in the case of intestinal epithelial Caco-2 cells [19]. There

is also limited information about the permeability of cyclodextrins

on Caco-2 monolayers.

In the present study our aim was to examine the interaction of

the fluorescently labeled randomly methylated b-cyclodextrin
(FITC-RAMEB) with Caco-2 colon cell layer and examine the

cellular uptake of cyclodextrins on intestinal epithelial cells.

Materials and Methods

Randomly-methylated b-cyclodextrin (RAMEB) was purchased

from Wacker Chemie (Munich, Germany). 6-monodeoxy-6-

mono[(5/6)-fluoresceinylthioureido]-RAMEB (FITC-RAMEB)

(DS= 1 for FITC, DS , 12 for methyl) was the product of

CycloLab Ltd(Budapest, Hungary). FITC-RAMEB was prepared

by reacting methylated amino-cyclodextrin with fluorescein-5(6)-

isothiocyanate as described elsewhere [18]. By this reaction FITC

was covalently coupled to RAMEB. CellMask Deep Red plasma

membrane stain and CellLightH Early Endosomes-RFP *BacMam

2.0* was from Invitrogen (Budapest, Hungary). All other reagents

were purchased from Sigma-Aldrich (Budapest, Hungary).

Caco-2 Cell Culture
Caco-2 cell line originates from the European Collection of Cell

Cultures (ECACC UK). Caco-2 cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% heat-

inactivated foetal bovine serum, 1% non essential amino acid and

1% penicillin-streptomycin solution at 37uC in an incubator

containing 5% CO2. The passage number of the cells was between

25 and 40.

For permeability experiments and release studies, Caco-2 cells

were seeded at density of 200,000 cells/well on TranswellH
(Corning Costar, USA) polycarbonate filters (pore size 0.4 mm,

surface area 1.12 cm2). Culture medium was replaced with fresh

medium every two or three days in the inserts. Monolayers were

used for the experiments between 20 and 35 days after seeding.

The formation of functional epithelial layers was monitored by the

development of transepithelial electrical resistance (TEER) and

measured with a Millicell–ERS voltohmmeter (Millipore, USA). In

permeability experiments TEER values were also measured at the

beginning and at the end of sampling to check monolayer integrity

and follow the effects of cyclodextrin treatments.

Transepithelial RAMEB Permeability Measurements
In permeability measurements two different cyclodextrin

solutions were used for the treatments: 0.05 mM FITC-RAMEB

(FR) solution and 5.0 mM RAMEB solution containing 0.05 mM

FITC-RAMEB (FRR). The solvent was Hank’s Balanced Salt

Solution (HBSS). Caco-2 monolayers were washed twice and pre-

incubated with HBSS for 20 minutes at 37uC and then incubated

apically with FR or FRR solutions for 2 hours at 37uC. Samples

were collected from the basolateral side at 60 and 120 minutes and

the volume was replenished with HBSS. The monolayers were

washed five times with HBSS and cells were lysed with 1% Triton

X-100 (TX-100) (Roche Diagnostics GmbH (Mannheim, Ger-

many). The permeated amount and the FITC-RAMEB content of

the cell lysates were determined by FLUOstar Optima microplate

reader (BMG LABTECH, Offenburg, Germany) at 492 nm

excitation and 520 nm emission wavelength.

FITC-RAMEB permeation rates across the monolayers were

determined from the concentration values. With the formula

below the apparent permeability coefficients were calculated:

Papp ~
dQ

dt
|

1

C0|A

Papp: apparent permeability coefficient (cm/s)

dQ/dt: permeability rate of substances (mol/s)

C0: initial concentration of the substances in the apical chamber

(mol/ml)

A: surface area of the membrane (cm2).

FITC-RAMEB Uptake Studies of Caco-2 Monolayers
In this experiment Caco-2 cells were seeded in black 96 well

plates at the density of 104 cells/well. After 7 days the cells were

washed twice with HBSS and incubated with FR or FRR solutions

at 37uC for 5-, 10-, 30-, 60- or 120 minutes. After the treatment

cells were washed four times with ice cold HBSS, kept on ice and

fixed with 3% paraformaldehyde solution (37uC, 15 min).

Fluorescence intensities of the samples were measured with

FLUOstar Optima microplate reader. After the measurement

49,6-diamidino-2-phenylindole dihydrochloride (DAPI), at

300 nM final concentration was added to each well and incubated

for further 15 minutes. DAPI was measured at 355 nm excitation

and 485 nm emission wavelengths. This dye was used to

normalize FITC-RAMEB for DAPI fluorescence intensities.

Cyclodextrin Enters Caco-2 Cells by Endocytosis
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FITC-RAMEB Release Studies on Caco-2 Monolayers
The first part of this experiment was the same like permeability

measurements, except that the apical chamber contained 0.5 mM

FITC-RAMEB solution. At the end of the 120 minutes long

incubation, inserts were washed five times with ice cold HBSS and

divided into two groups. The monolayers of the control group

were lysed with 1% Triton X-100 solution and FITC-RAMEB

contents were determined with FLUOstar Optima microplate

reader. The other group of the inserts was incubated in HBSS at

37uC for another 120 minutes. During the second incubation

samples were collected from apical and basolateral chambers at

10-, 30-, 60- and 120 minutes and the released amount of FITC-

RAMEB was measured. After incubation these monolayers were

also washed twice with HBSS, lysed and the FITC-RAMEB

content of the cell layers was determined. The rate of the release

was expressed as the percentage of FITC-RAMEB content of the

monolayers of control group.

Confocal Microscopy
For microscopic investigations 80,000 cells/well were seeded on

round glass cover-slips in 12-well plates. 24 hours later cells were

treated with CellLightH Early Endosomes-RFP *BacMam 2.0* at

density of 30 particles per cell and incubated for further 48 hours

in cell culture medium. Then samples were washed twice with

HBSS and treated with FR or FRR solutions for 30 minutes at

37uC. To completely remove FITC-RAMEB, cells were washed

eight times with ice cold HBSS and samples were stained with

1 mg/ml solution of CellMask Deep Red plasma membrane stain

for 5 minutes at 37uC. After washing cells twice with HBSS and

fixing them with 3% paraformaldehyde solution, cell nuclei were

stained with DAPI (300 nM). In some experiments Caco-2

monolayers were treated applying the same protocol for plasma

membrane and cell nucleus staining but in these samples Early

Endosomes-RFP was not used. In experiments performed in

TranswellH, the insert membranes were excised and placed on

slides. Confocal microscopy measurements and analyses were

carried out by a Zeiss LSM 510 META (Jena, Germany) confocal

microscope. To eliminate spectral cross talk samples were

illuminated with three different excitations subsequently using

multi-track mode (UV lines: 351.1 nm and 363.8 nm of an Ar-ion

laser, these two lines were used simultaneously; blue line: 488 nm

of another Ar-ion laser; and red line: 633 nm of a He-Ne laser).

Emissions above 420 nm, above 505 nm and above 650 nm were

detected subsequently in three channels with the META detector,

respectively. For confocal imaging pinhole size was set to 1 Airy

unit.

Flow Cytometry
Flow cytometric experiments were used to verify endocytosis of

FITC-RAMEB by Caco-2 cells. For these experiments cells were

trypsinized, washed twice with HBSS and resuspended at 16106

cells/ml concentration. Cells were incubated with FITC-RAMEB,

Lucifer Yellow (LY) or calcein AM solutions in different

concentrations for 30 minutes at 37uC or at 0uC. Dyes were used

in the following concentration ranges: FITC-RAMEB from 0 to

500 mM, calcein AM from 0 to 1 mM, and LY from 0 to 960 mM.

At the end of the treatments cells were washed three times with ice

cold HBSS and kept on ice until measurements. Propidium-iodide

was added to the cells at the concentration of 2 mg/ml to recognize

dead cells. In uptake inhibition experiments cells were pre-

incubated with 10 mM rottlerin for 45 minutes before adding

FITC-RAMEB or LY. Cells were analyzed by five-laser BD

FACSaria II flow cytometer (BD Biosciences, San Jose, CA). In the

case of FITC-RAMEB and calcein AM staining, cells were

illuminated with 488 nm laser line, while for LY staining with the

more optimal 445 nm. In all previous cases fluorescence emission

was detected via 502 nm long pass dichroic mirror and 530/

30 nm band pass filter. Single cell events were recognized using

both the area and width of the forward-scattered light and side-

scattered light signals. Viable cells were gated in according to their

low intensity propidium iodine fluorescence excited at 561 nm and

detected via 590 nm long pass filter.

Statistical Analysis
For statistical analysis SigmaStat softver (version 3.1; SPSS Inc.)

was used. Data are presented as means 6 SD. Comparison of two

groups was performed by unpaired or paired t-test, while

comparison of more than two groups was performed using

ANOVA. Differences were considered significant at p,0.05.

Results

Transepithelial FITC-RAMEB Permeability in Caco-2 Cell
Monolayers
In order to investigate the permeability of the fluorescent

derivative of RAMEB through the intestinal epithelial barrier we

applied Caco-2 monolayers. Two cyclodextrin solutions, 0.05 mM

FITC-RAMEB (FR) and 5.0 mM RAMEB solution containing

0.05 mM FITC-RAMEB (FRR) were used. The permeability of

FITC-RAMEB was determined in both cases and the results were

expressed in apparent permeability values (Papp). The apparent

permeability of FITC-RAMEB was very low both in FR and FRR

treatments, 3.3561.2961028 and 4.2361.4661028 cm/s, respec-

tively. There was no significant difference between these two

average permeability values (n = 9 for FR and n= 6 for FRR

treatments, p.0.05), indicating that 5 mM RAMEB co-treatment

had no effect on the permeability of FITC-RAMEB and the

integrity of the monolayer.

The integrity of monolayers was tested by measuring transepi-

thelial electrical resistance (TEER). The TEER values did not

decrease significantly after the cyclodextrin treatments (p.0.05)

(Fig. 1).

At the end of the permeability measurements cell layers were

washed thoroughly with HBSS and lysed with 1% TX-100. The

fluorescence of cell lysates were measured with FLUOstar Optima

microplate reader. The fluorescence of FR and FRR treated

samples were significantly higher than the untreated monolayers

(p,0.001), indicating, that Caco-2 cell layers accumulated

fluorescently-labeled RAMEB (Fig. 2). FRR, containing 5 mM

RAMEB did not change the accumulation of FITC-RAMEB in

the cell layers (p.0.05).

FITC-RAMEB Accumulation in Caco-2 Monolayers
The time dependence of FITC-RAMEB accumulation was

measured in 96-well plates with a microplate reader. Caco-2 cells

were treated with FR and FRR solutions for 5-, 10-, 30-, 60- or

120 minutes. No difference could be seen between FR and FRR

treatment up to 120 minutes. The accumulated amount of FITC-

RAMEB increased during the 120 minutes of the experiment. The

rate of uptake was fast during the first 5–10 minutes and slower in

the remaining period (Fig. 3).

Release of Accumulated FITC-RAMEB from Caco-2
Monolayers
In FITC-RAMEB release studies Caco-2 monolayers were

treated with 0.5 mM FITC-RAMEB solution for 120 minutes,

washed five times with ice-cold HBSS and the fluorescence of

Cyclodextrin Enters Caco-2 Cells by Endocytosis
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control group of monolayers was determined and considered as

100%. The second group of monolayers was kept for further 120

minutes in fresh HBSS at 37uC and the released amount of FITC-

RAMEB in apical and basal chambers was determined as a

function of time. FITC-RAMEB appeared rapidly in both

chambers. About 85% of initial fluorescence was released into

the apical chamber within the first hour, while only about 7.4% of

the accumulated FITC-RAMEB was released into the basal

chamber from monolayers after 2 hours of incubation (Fig. 4). At

the same time the fluorescence of the monolayers decreased

drastically, from 10068.8% to 8.961.5%.

FITC-RAMEB Internalization in Undifferentiated and
Differentiated Caco-2 Cells and Colocalization with Rab5a
Early Endosome Marker
The accumulation of FITC-RAMEB in Caco-2 cells and

monolayers was visualized by confocal laser scanning microscopy.

In undifferentiated Caco-2 cells, FITC-RAMEB could be detected

on CLSM images as small bright particles, located in the

cytoplasm (Fig. 5). In the mid-sections the cyclodextrin-loaded

granules were found under the cell membrane and near the cell

nuclei.

To examine the FITC-RAMEB uptake of differentiated Caco-2

cells, monolayers grown on TranswellH inserts were used. Fig. 6

shows that FITC-RAMEB is able to enter the Caco-2 monolayer

and it is localized in granules within the cytoplasm. There was no

Figure 1. Transepithelial electric resistance (TEER) of Caco-2 monolayers before and after 120 minutes permeability experiments.
Cell layers were treated with 0.05 mM FITC-RAMEB (FR) alone or in the presence of 5 mM RAMEB (FRR). Untreated monolayers were kept in HBSS.
Values are expressed as means 6 SD, n = 9 for FR, n = 6 for FRR treatment and n= 6 for untreated samples. There were no significant differences
between TEER values before and after the treatments (p.0.05) and among the groups (p.0.05).
doi:10.1371/journal.pone.0084856.g001

Figure 2. Accumulation of FITC-RAMEB in Caco-2 monolayers after 120 minutes permeability experiments. Caco-2 monolayers were
treated with 0.05 mM FITC-RAMEB (FR) alone or in combination with 5 mM RAMEB (FRR) for 120 minutes. Monolayers were washed and the
fluorescence intensity of the accumulated FITC-RAMEB was determined with FLUOstar Optima microplate reader. Presented values are means 6 SD,
n = 7 for FR, n = 4 for FRR treatment and n=5 for untreated samples. FR and FRR treatments increased significantly the fluorescence of monolayers
compared to the untreated control (p,0.001).
doi:10.1371/journal.pone.0084856.g002
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difference between cellular uptakes of FITC-RAMEB after FR or

FRR treatments on the confocal images.

These observations suggested that cyclodextrin molecules enter

the cells by endocytosis. To confirm this hypothesis, we

investigated the colocalization of FITC-RAMEB with the small

GTPase Rab5, which is a key determinant of early endosomes

[20]. Caco-2 cells were transiently transfected with a plasmid

coding for a red fluorescent protein tagged Rab5a GTPase fusion

protein (RFP-Rab5a) that was strongly expressed in the cell

membrane. As Fig. 7 shows, FITC-RAMEB colocalizes with RFP-

Rab5a. Colocalization is marked by yellow pixels. Pearson’s

correlation coefficients were calculated and they were between

0.55 and 0.78 after 30 minutes incubation, indicating that the

entry of RAMEB into the cytoplasm and the formation of early

endosomes are associated. High degree of colocalization could be

observed after 2 minutes of incubation, and after 30 minutes

colocalization could be still detected indicating, that endocytosis

functioned continously (see also Figure S1 and S2.).

Internalization of FITC-RAMEB and its Inhibition by the
Fluid Phase Endocytosis Inhibitor Rottlerin
Internalization of FITC-RAMEB was also investigated by flow

cytometry. Caco-2 cell suspensions were treated by FITC-

RAMEB, the macropinocytosis marker Lucifer Yellow and the

lipophilic membrane permeability marker calcein-AM, both at

37uC and 0uC. Major differences could be seen between the

uptake of hydrophilic and lipophilic molecules (Fig. 8). Intracel-

lular accumulation of calcein was dependent on dye concentration,

but was independent of temperature. At the same time, both

FITC-RAMEB and Lucifer Yellow uptake increased as a function

of the dye concentration, but it was inhibited at 0uC.

Figure 3. Kinetics of FITC-RAMEB uptake in Caco-2 monolayers. Cell monolayers were treated with 0.05 mM FITC-RAMEB (FR) alone or in
combination with 5 mM RAMEB (FRR) and in different time points the incubation was stopped. After washing cells were fixed with 3%
paraformaldehyde solution and the accumulated FITC-RAMEB was determined by microplate reader. Cell nuclei were labeled with DAPI and
fluorescence intensities of FITC-RAMEB were normalized for DAPI fluorescence intensities. Values are expressed as means 6 SD, n = 3 for FR and FRR
treatments.
doi:10.1371/journal.pone.0084856.g003

Figure 4. Release of FITC-RAMEB from Caco-2 monolayers. Treatment with 0.5 mM FITC-RAMEB was carried out on TranswellH inserts for 120
minutes, then the monolayers were washed and FITC-RAMEB release was followed in the apical and basolateral chambers during the next 120
minutes. FITC fluorescence intensities were determined in the control group of the samples after the first 120 minutes and considered as 100%
accumulation. The rate of release in the second group was compared to this value. Values are means 6 SD, n = 4.
doi:10.1371/journal.pone.0084856.g004

Cyclodextrin Enters Caco-2 Cells by Endocytosis

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e84856



Rottlerin, a macropinocytosis inhibitor decreased significantly

both FITC-RAMEB and Lucifer Yellow internalization in Caco-2

cells. Although the inhibition was not complete, the extent of

inhibition of FITC-RAMEB uptake was similar to that of Lucifer

Yellow (Fig. 9).

Discussion

In the present study we investigated the permeability and

cellular uptake of the fluorescent methyl-b-cyclodextrin in

intestinal Caco-2 cells. The available data regarding the absorp-

tion and oral bioavailability of cyclodextrins is very limited and

Figure 5. Confocal images of undifferentiated Caco-2 cells. Cells were treated with the solution of 0.05 mM FITC-RAMEB and 5 mM RAMEB
(FRR). FITC-RAMEB (green) is localized in small vesicles (white arrows) under the CellMask labeled cell membrane (red) or in larger vesicles near the
DAPI stained cell nucleus (light blue). Aggregated particles of FITC-RAMEB can be also seen outside the cell membrane (A). Nine consecutive confocal
sections of a cluster of cells were recorded (B). Each section is one and half micrometer thick. FITC-RAMEB (green) is located in cytoplasmic granules.
The granular bright particles are observed inside the cell membrane and outside of the cell nuclei.
doi:10.1371/journal.pone.0084856.g005

Figure 6. Cyclodextrin enters differentiated Caco-2 cells of a high resistance Caco-2 cell layer. A confluent layer was treated with
0.05 mM FITC-RAMEB and imaged by confocal microscope in twelve two-micrometer thick sections, of which six are demonstrated in the panels on
the left side (A–F). On the right, one middle section of the image shows the top view of the cell layer (H) at the level indicated by blue lines in side
sections. Upper (G) and right (I) side images are appropriate sections from perpendicular directions at green and at red lines. Crosshair (green and red
lines at the long white arrow) set to an intense FITC-RAMEB (green) granule (indicated by arrows), which is located at the nuclear (light blue DAPI
stain) level of cells. Several smaller FITC-RAMEB green granules can be seen below the cell membrane marked by CellMask (dark blue).
doi:10.1371/journal.pone.0084856.g006
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there are no Caco-2 permeability values in the literature. In early

studies of intestinal absorption of 14C-labelled b-cyclodextrin in

rats only 5% of the administered activity could be detected in the

blood. It was concluded that b-cyclodextrin was not absorbed from

the stomach and the small intestine, and the low absorption was

explained with the amylase action: only the open-chain dextrins

and the glucose formed from cyclodextrins were absorbed [21].

According to recent publications the oral bioavailability of

HPBCD is less, than 0.03% and it is approximately 0.3% for b-
cyclodextrin [22], while RAMEB has an oral bioavailability of

about 12% in rats, [23].

Our permeability results with FITC-RAMEB are in accordance

with the low intestinal absorption of cyclodextrins, as the Papp
values were 3.3561.2961028 and 4.2361.4661028 cm/s for FR

and FRR treatments, respectively. These data are also in

agreement with the permeability results of natural cyclodextrins

(a-, b-, and c-cyclodextrin) on pulmonary Calu-3 cell layers, which

were in the same order of magnitude [24].

Methylated cyclodextrins are also used for membrane choles-

terol depletion in 5–10 mM concentration [4,25] and can enhance

the penetration of drugs [10]. 0.05 mM cyclodextrin presumably

does not affect membrane cholesterol significantly, since it is 1/

100 of the usually applied concentration. At 5 mM RAMEB

concentration we did not observe cytotoxicity on Caco-2 cells

previously [5], therefore we investigated the effect of 5 mM

RAMEB on FITC-RAMEB permeability and the TEER of the

monolayers. No significant difference could be observed on

permeability and resistance values of FR and FRR treatments

(p.0.05), and 5 mM RAMEB had no effect on the permeability of

the monolayer.

Examining the fluorescence of the cells at the end of the

permeability experiments we found that a significant amount of

FITC-RAMEB accumulated in the cell layers. These cyclodextrins

could not be removed by extensive washing. We investigated the

time-dependence of FITC-RAMEB accumulation in the mono-

layers and as Fig. 3 shows Caco-2 cells successively accumulated

Figure 7. FITC-RAMEB colocalized with Rab5 proteins. RFP-Rab5a transfected Caco-2 cells were treated with 0.05 mM FITC-RAMEB (green) for
30 minutes. Colocalization is indicated by yellow pixels in the confocal microscopic images on the sections marked by the 18-micrometer and 21-
micrometer label. Figure shows nine subsequent, three-micrometer thick confocal sections giving altogether a twenty-four-micrometer cross layer of
a Caco-2 cell. CellMask (dark blue) was used for labeling membrane at the cell surface and nucleus was stained by DAPI (light blue). Rab5 proteins
(red) are visualized by transient transfection of a plasmid coding Red Fluorescent Protein (RFP) tagged Rab5.
doi:10.1371/journal.pone.0084856.g007
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both FR and FRR up to 120 min of the experiment. To reveal the

fate of the accumulated FITC-RAMEB we loaded the cells with

0.5 mM FITC-RAMEB solution, using 10 time higher concen-

tration than in permeability studies. This resulted in 10 time

higher accumulation, but the permeability of FITC-RAMEB did

not increase (2.2860.3461028 cm/s). After 120 minutes, the

release of the accumulated cyclodextrins was followed both in

apical and basolateral directions. Interestingly FITC-RAMEB

appeared in both the apical and basal chambers, but the majority

of the accumulated cyclodextrin was released to the apical

Figure 8. Cellular uptake of calcein-AM (A), FITC-RAMEB (B) and Lucifer Yellow (C) as a function of ligand concentration. Cells were
treated at 37uC and 0uC and the cellular fluorescence was determined by flow cytometry, after excluding dead cells with propidium iodide.(Graphs
show results of a representative experiment).
doi:10.1371/journal.pone.0084856.g008
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direction. Only 7.4% of the accumulated FITC-RAMEB reached

the basal chamber.

These results indicated that although the intestinal Caco-2

monolayer is an almost impermeable barrier for the cyclodextrin

molecules, the cells are able to take up cyclodextrins from solutions

with a mechanism different from simple diffusion. Studies on

Calu-3 monolayers suggested that cyclodextrins traverse these

monolayers by paracellular route, although transcytosis could not

be excluded [24]. Recent publications revealed that certain cell

types are able to internalize cyclodextrins by endocytosis

[16,17,18]; therefore we investigated the intracellular localization

of FITC-RAMEB by confocal microscopy. Fig. 5 and 6 show that

FITC-RAMEB is able to enter into the cytoplasm of both

undifferentiated and differentiated Caco-2 cells. Since the labeled

cyclodextrin was localized in vesicles in the cytoplasm, the

possibility of endocytosis was investigated hereafter. In the cell

membrane RFP-Rab5a fusion protein and FITC-RAMEB showed

colocalization. Rab5 is a key organizer of early endosomes, but it

cannot be detected in late endosomes [20]. In our confocal

microscopy images Rab5 and FITC-RAMEB did not exhibit

colocalization in vesicles in deeper layers. The colocalization of

RFP-Rab5a and FITC-RAMEB suggests that endosome forma-

tion is involved in the initiation of cyclodextrin internalization.

Endocytosis has two major routes, phagocytosis and pinocytosis

or fluid-phase uptake. Fluid-phase endocytosis, which requires the

cargo molecules to be dissolved, can be subdivided into

macropinocytosis, clathrin-mediated, caveolin-mediated and cla-

thrin- and caveolin-independent endocytosis [26]. The widely used

marker of macropinocytosis is Lucifer Yellow [27,28,29]. Flow

cytometry analyses revealed that in Caco-2 cells Lucifer Yellow

was internalized in a concentration dependent manner and its

uptake could be inhibited at 0uC [28,29]. FITC-RAMEB showed

similar cellular uptake: at 37uC accumulated in the cells as a

function of concentration, while at 0uC FITC-RAMEB uptake was

diminished. On the other hand lipophilic calcein AM showed the

same cellular accumulation at 0uC and 37uC, as it rapidly

permeated the lipid membrane [30], and the intracellular

accumulation was not inhibited by cooling. The macropinocytosis

inhibitor rottlerin [27] had similar inhibitory effect on FITC-

RAMEB and LY accumulation. These results indicate, that in

Caco-2 cells macropinocytosis is involved in the entry of FITC-

RAMEB. It also explains why the majority of the accumulated

FITC-RAMEB was released to the apical direction. It was

demonstrated in human epidermoid A431 cells, that macropino-

somes recycle their content to the cell surface [31]. It seems that

the same mechanism could be observed in Caco-2 cells, as the

mechanism of internalization was macropinocytosis, the majority

of accumulated cyclodextrin was guided to the apical cell surface.

Nevertheless, the total recycling of the internalized cyclodextrin

molecules took at least one hour, which means that this process

prolongs the contact between cylodextrins or cyclodextrin-drug

complexes and the membrane of macropinosomes. It is important

to note, that other endocytotic mechanisms should be also taken

into consideration. Previous studies implicated fluid-phase endo-

cytosis and clathrin-dependent endocytosis [16,17,18] for the

mechanism of cyclodextrin internalization. Nevertheless, phago-

cytosis could be also a possibility for cyclodextrin internalization in

concentrated cyclodextrin solutions. It is reported that at high

concentrations, natural b-cyclodextrin [32] and the fluorescent

tetraamino rhodaminyl hydroxypropyl-b-cyclodextrin [33] form

large, nano-sized aggregates in water. However, the substitution of

OH groups with methyl groups on the cyclodextrin ring inhibits

the aggregation of RAMEB and at 12 mM no aggregation was

observed [32]. In this study 0.05 mM FITC-RAMEB was applied

alone or in combination with 5 mM RAMEB, which is 40–240

times lower cyclodextrin concentration than what was found to

form aggregates above, thus phagocytosis can be excluded from

among the possible mechanisms of cyclodextrin uptake.

In summary, our results on Caco-2 cells are in accordance with

earlier findings, the cellular internalization of water soluble FITC-

RAMEB is governed by fluid phase endocytosis in intestinal Caco-

2 cells. It is hard to predict the quantitative importance of this

mechanism. Even if permeability data are suitable to value the

extent of absorption of cyclodextrins, it is difficult to quantify the

amount of continuously internalized and released cyclodextrins

with this setup of the model. The intestinal absorptive surface area

relative to the volume of the gut is much bigger than the surface

area of Caco-2 monolayers and on the other hand the peristaltic

movement should be also considered. Thus the extent of

internalization can be much higher in vivo, even if cyclodextrins

are released back to the lumen of the gut and as the process can be

continuous along the small intestine its efficiency can be much

higher.

Figure 9. Effect of 10 mM rottlerin on the cellular uptake of FITC-RAMEB and Lucifer Yellow. Caco-2 cells were pre-incubated for 45
minutes with rottlerin and the internalization of the fluorescent molecules was detected by flow cytometer. (n = 3, p,0.01).
doi:10.1371/journal.pone.0084856.g009
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Conclusions

Cyclodextrins are used to increase solubility, bioavailability and

stability of poorly water-soluble drugs. Our results demonstrate for

the first time that randomly methylated-b-cyclodextrins can enter

into intestinal epithelial cells by endocytosis. This process can

contribute to the enhancement of the intestinal delivery and

bioavailability of drugs by cyclodextrins in several ways. It can

help to overcome the intestinal membrane barrier, the endosome

formation increases the contact surface area between the

cyclodextrin-drug complexes and the cell membrane and prolongs

the retention time of cyclodextrins in the epithelial cells. Since this

study has demonstrated the role of macropinocytosis in the uptake

of methylated-b-cyclodextrin in intestinal cells, this mechanism

merits further investigations in connection with drug absorption

mediated by cyclodextrins.

Supporting Information

Figure S1 Colocalization of RFP-Rab5a with FITC-
RAMEB, cell nucleus and cell membrane. RAMEB shows

high degree of colocalization with Rab5a immediately below the

cell surface membrane of two connected cells at 2 minutes

incubation (R= 0.93). Caco2 cells attached to surface of coverslip

were transiently transfected by Rab5a (red) tagged by red

fluorescent protein (RFP), treated by Fitc-RAMEB (green) for 2

minutes, and fixed. Before imaging surface membrane and nuclei

were labeled by CellMask (dark blue) and DAPI (cyan),

respectively, for 5 minutes. Panel A shows colocalization of Fitc-

RAMEB and RFP-Rab5a; panel B indicates colocalization of

DAPI and RFP-Rab5a as negative control (R=20.39) and panel

C specifies colocalization of surface membrane (CellMask) and

RFP-Rab5a as positive control (R= 0.95) at a confocal image

section crossing RAMEB granules (white areas in panel A right

side, section thickness is 1.5 micrometer). Right panels show two

channel images of signals tested for colocalization (bar is 10

micrometer), while corresponding left panels show two parameter

histograms of signals of the two channels. White areas in right side

images were chosen by setting channel signals above thresholds

indicated by red signs on scales of corresponding left side two

parameter histograms. R indicates Pearson correlation coefficients

calculated in images at location of the white areas. In two

parameter histograms the highest colocalization between tested

channels would be indicated by a 45u diagonal line corresponding
to R=1 (in left panels of A and C R is close to this value), while a

135u diagonal line would indicate a negative correlation (left panel

of B).

(TIF)

Figure S2 Colocalization of FITC-RAMEB with RFP-
Rab5a in the function of the time. Colocalization of RAMEB

and Rab5a was monitored in time during the endocytosis process.

The highest average colocalization (0.7660.01) was measured at 2

minutes after initiation of the endocytosis at 37uC. In later time

points, at 5, 10, 20 and 30 minutes R was dropped to a lower but

still significant value (R=0.5–0.6). R, Pearson correlation

coefficient was measured in region of interests (ROI) set to those

locations where RAMEB granules were observed in confocal

sections (one section was 1.5 micrometer thick). Pattern of the

intracellular localization of colocalized molecules also changed in

time. At 2 minutes colocalization was either dispersed in the

surface membrane of cell or in the cytoplasm close to surface

membrane. At later time points RAMEB granules moved closer to

cell nuclei with lower, but still significant R for Rab5a

colocalization (means6SD).

(TIF)

Author Contributions

Conceived and designed the experiments: FF KRN ZB GS MV.

Performed the experiments: FF KRN ZB ZGT JV ZU PF IB. Analyzed

the data: FF KRN ZB. Contributed reagents/materials/analysis tools: MM
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