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Abstract 

Malignant melanoma is the most aggressive form of skin cancer. The early detection of 

primary melanoma tumors and metastases using non-invasive PET imaging determines the 

outcome of this disease. Previous studies have shown that benzamide derivatives (e.g. 

procainamide) conjugated with PET radionuclides specifically bind to melanin pigment of 

melanoma tumors. 68Ga chelating agents can have high influence on physiological properties 

of 68Ga labeled bioactive molecules, as was experienced during the application of HBED-CC 

on PSMA ligand. The aim of this study was to assess this concept in the case of the melanin 

specific procaindamide (PCA) and to compare the melanin specificity of 68Ga-labeled PCA 

using HBED-CC and NODAGA chelators under in vitro and in vivo conditions. 

Procainamide (PCA) was conjugated with HBED-CC and NODAGA chelators and was 

labeled with Ga-68. The melanin specificity of 68Ga-HBED-CC-PCA and 68Ga-NODAGA-

PCA was investigated in vitro and in vivo using amelanotic (MELUR and A375) and melanin 

containing (B16-F10) melanoma cell lines. Tumor-bearing mice were prepared by 

subcutaneous injection of B16-F10, MELUR and A375 melanoma cells into C57BL/6 and 

SCID mice. 21±2 days after tumor cell inoculation and 90 min after intravenous injection of 

the 68Ga-labelled radiopharmacons whole body PET/MRI scans were performed. 

68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA were produced with excellent radiochemical 

purity (98%). In vitro experiments demonstrated that after 30 and 90 min incubation time 

68Ga-NODAGA-PCA uptake of B16-F10 cells was significantly (p0.01) higher than the 

68Ga-HBED-CC-conjugated PCA accumulation in the same cell line. Furthermore, significant 

difference (p0.01 and 0.05) was found between the uptake of melanin negative and positive 

cell lines using 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA. In vivo PET/MRI studies 

using tumor models revealed significantly (p0.01) higher 68Ga-NODAGA-PCA uptake 

(SUVmean: 0.46±0.05, SUVmax: 1.96±0.25, T/M ratio: 40.7±4.23) in B16-F10 tumors in 

contrast to 68Ga-HBED-CC-PCA where the SUVmean, SUVmax and T/M ratio were 

0.13±0.01, 0.56±0.11 and 11.43±1.24, respectively. 

Melanin specific PCA conjugated with NODAGA chelator showed higher specific binding 

properties than conjugated with HBED-CC. The chemical properties of the bifunctional 

chelators used for 68Ga-labeling of PCA determine the biological behaviour of the probes. 

Due to the high specificity and sensitivity 68Ga-labeled PCA molecules are promising 

radiotracers in melanoma imaging. 
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Abbreviations 

BFC   bifunctional chelator 

DIPEA   N,N-diisopropylethylamine 

EDAC N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 

HBED-CC N,N'-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-

diacetic acid 

MeCN   acetonitrile 

MRI   magnetic resonance imaging 

NODAGA  1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid 

PCA   procainamide (4-amino-N-(2-diethylaminoethyl)benzamide) 

PET   positron emission tomography 

PSMA   prostate-specific membrane antigen 

RT   room temperature 

TFA   triflouroacetic acid 

 

 

Keywords: 68Ga, HBED-CC; Melanoma; NODAGA; Positron Emission Tomography, 

Procainamide 
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1. Introduction 

 

Malignant melanoma is the most aggressive form of skin cancer and it is associated with high 

mortality [1]. The prognosis of patients with melanoma metastases is very poor. The five-year 

survival rate is between 5-19% when widespread metastatic lesions are present in several 

organs (e.g.: brain, liver, lung) largely reducing the length of patient survival [2]. Because of 

its high metastatic potential the early detection of small metastasis using high-resolution 

imaging techniques (e.g.: Positron Emission Tomography-PET; Magnetic Resonance 

Imaging-MRI) is critical in patient survival [3,4]. 

In routine clinical use 2-[18F] fluoro-2-deoxy-D-glucose (18FDG) is the most commonly used 

probe for PET imaging, however, 18FDG - as a biomarker of glucose metabolism - is not 

tumor- and hereby, not melanoma-specific [5]. Recently, several radiolabeled carrier 

molecules, such as melanoma-selective antibodies [6], α-MSH receptor ligands [7] and 

benzamide derivatives [8,9] have been tested for melanoma imaging and radiotherapy. As a 

potential target molecule melanin plays an important role in PET imaging of malignant 

melanoma. Due to its chemical structure polycyclic aromatic hydrocarbons and organic 

amines are capable of binding to melanin [10]. It has been shown that benzamide derivatives 

(e.g.: procainamide) specifically bind to melanin pigment, therefore several radiolabeled 

benzamide derivatives have been developed for molecular imaging of melanoma such as 

68Ga-SCN-DOTA-PCA, 68Ga-SCN-NOTA-BZA [8,9] or [18F]N-(2-diethylaminoethyl)-4-[2-

(2-(2-fluoroethoxy) ethoxy)ethoxy]benzamide ([18F]FPBZA) [11]. 

For monitoring malignancies or functional disorders, nuclear medicine applies different 

radionuclides. The most frequently used radionuclides for PET are cyclotron produced: 11C 

(t1/2 = 20 min), 13N (t1/2 = 10 min), 15O (t1/2 = 2 min), and 18F (t1/2 = 110 min). These non-

metallic radioisotopes are dominantly introduced into the biological carriers by means of 

covalent bonds. The other way for radiolabeling is the use of radiometals, such as 64Cu, 68Ga, 

and 86Y. Among these radiometals 68Ga (t1/2 = 68 min) is an outstanding radioisotope for 

molecular imaging due to its significant 89% positron yield. Moreover, 68Ga is easily obtained 

from 68Ge/68Ga generator without the establishment of expensive cyclotron and synthesis 

facility [12]. 

The most common way of radiolabeling with radiometals (e.g.: 68Ga) is the application of 

bifunctional chelators (BFCs) [13]. BFCs responsible for dual role, they have a reactive 

functional group to form stable covalent bond with the biological vector and they have a 

strong metal chelating property also. The first “universal” ligand for imaging applications was 
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the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and it became one of the 

most popular macrocyclic chelators for the complexation of radiometals during the last 

decades [14]. However, in 68Ga radiolabeling DOTA does not show ideal properties, for the 

effective complexation elevated temperature is essential. Triazacyclononane derivatives (e.g., 

1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and 1,4,7-triazacyclononane-1-glutaric 

acid-4,7-diacetic acid (NODAGA)) provide a smaller coordination pocket and grant higher 

thermodynamic stability for gallium-complexes [14,15] and with these structures the labeling 

at room temperature is also an option [16]. 

Furthermore, among the open chain chelators N,N'-bis-[2-hydroxy-5-

(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC) is a highly effective 

chelator for 68Ga-labeling, which has an extremely high thermodynamic stability constant 

[17]. The labeling conditions are mild due to the acyclic structure [18] and the given Ga-

complex has high kinetic inertness at physiological pH [19] which is essential for in vivo 

applications. Nevertheless, recently it has been shown that the chelator-systems can play also 

the role of the pharmacokinetic modifier, the application of different BFC can affect the 

accumulation pattern also of the entire molecule [20]. Therefore, the aim of this study is to 

investigate the effect of HBED-CC-conjugation to a low-molecular weight compound 

procainamide (PCA) and to compare its radiochemical and biological properties with our 

existing NODAGA-conjugated analogue. 

 

 

2. Materials and methods 

2.1 Chemicals 

For the 68Ga labeling procedures: ACS grade water for ultratrace analysis – Sigma-Aldrich 

Kft. (Budapest, Hungary) – Ultrapur HCl and Suprapur NaOH*H2O were purchased from 

Merck Kft. (Budapest, Hungary). HBED-CC-tris(tBu)ester was acquired from ABX GmbH 

(Germany, Radeberg). All other chemicals were the products of Sigma-Aldrich Kft. 

(Budapest, Hungary) and they were used without further purification. 

 

2.2 Synthesis of HBED-CC-tris(tBu) tetra-fluoro-phenyl ester 

70 mg (100 µmol) of N,N'-Bis[2-hydroxy-5-(carboxyethyl)-benzyl]ethylenediamine-N,N'-

diacetic acid, tris tert-butyl ester (HBED-CC-tris(tBu)ester) was dissolved in 1 ml acetonitrile 
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(MeCN) and 20 mg (120 µmol) of 2,3,5,6-tetrafluorophenol, 23 mg (120 µmol) of N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC) and 50 µl (286 µmol) of 

N,N-diisopropylethylamine (DIPEA) were added. The mixture was stirred for 2 hours and 

then it was evaporated. The crude product was re-dissolved in 0.75 ml ethyl acetate and it was 

transferred into a silica chromatographic column (3 g solid phase). The column was rinsed 

with a mixture of ethyl acetate/ methanol (10:1) and the product was recovered with a mixture 

of ethyl acetate/ methanol (4:1). The combined organic phases were evaporated to get 68.3 

mg of white solid (yield: 80.4%). The compound was reacted further as we received. Mw= 

849.42 [M+H]+. 

 

2.3 Conjugation reaction of 4-amino-N-(2-diethylaminoethyl)benzamide hydrochloride 

with HBED-CC-tris(tBu)ester 

13.6 mg (50 µmol) of 4-amino-N-(2-diethylaminoethyl)benzamide hydrochloride was 

dissolved in 1 ml of MeCN / 0.1 M sodium carbonate buffer (pH 9.5) 9:1 and 65 mg (75 

µmol) of tetrafluorophenyl ester of HBED-CC-tris(tBu)ester was added to the solution. The 

pH of this mixture was adjusted to time to time between 8.5 and 9 by means of 2% NaOH 

solution during the whole procedure (24 hours, room temperature). After the completion of 

the reaction the solvent was evaporated in vacuum and the mixture was dissolved in 4 ml of 

75% MeCN. For the cleavage of the -tBu protecting groups 2 ml of trifluoroacetic acid was 

added and the solution was stirred for 60 min and evaporated to dryness. The solid material 

was dissolved in water and was purified on a semi-preparative RP-HPLC. The collected 

fractions were lyophilized. Finally, a 3 mmol/dm3 of stock solution was prepared for the 

radiolabeling reactions. The product was characterized by ESI-MS (Shimadzu LCMS IT-TOF 

Mass Spectrometer, Shimadzu Corp., Tokyo, Japan) and 1H-NMR (Bruker WP 360 SY). 

 

2.4 Preparative and analytical RP-HPLC methods for the precursor 

In order to purify the precursor HBED-CC-PCA, a KNAUER HPLC system with semi-

preparative Supelco Discovery® Bio Wide Pore C18 column (150 mm x 10 mm; 10 µm 

diameters), and a flow rate of 4.4 ml/min was applied. The conditions of the separation were 

identical with the applied ones with NODAGA-PCA [21]. After a short isocratic period (3 

min) a linear gradient was used (3 min 0% B; 20 min 50% B) with eluent A (0.1% TFA in 
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water) and eluent B (0.1% TFA in MeCN-H2O (95:5, v/v), utilizing 254 nm for peak 

detection. For assessing the purity of the HBED-CC-PCA, a KNAUER HPLC was used. It 

was equipped with a Supelco Discovery® Bio Wide Pore C18 column (250 mm x 4.6 mm) 10 

µm diameters, and 1.2 ml/min flow rate was applied, with a gradient profile: 0 min 2% B, 6 

min 2% B; 30 min 40% B (mobile phases are identical than mentioned earlier). Signals were 

detected by UV detector (254 nm). 

 

2.5 Radiolabeling of NODAGA-PCA and HBED-CC-PCA with 68Ga 

The labeling protocol were published earlier by Kertész et al. [21]. Briefly, the 68Ga was 

eluted from the generator by using 0.1 M HCl, and fractional elution procedure was applied. 1 

ml from the highest activity aliquot was buffered with sodium-acetate (1 M; 0.15 ml, aq.) and 

the pH of the mixture was adjusted to ~ 4.5 by the addition of sodium-hydroxide (2 %, 

0.06 ml, aq.). Subsequently, 5 µl of a 3 mM NODAGA-PCA or HBED-CC-PCA stock-

solution was introduced to the mixture and the reaction was incubated for 5 min at 95ºC. After 

a short cooling period, the solution was transferred onto a preactivated Oasis HLB 1 cc 

cartridge, it was rinsed by 2 ml of water for injection. To eluate the activity from the column 

it was washed with 0.5 ml of isotonic NaCl solution/EtOH 2:1 mixture, and to decrease the 

alcohol content below 10% the solution was diluted further with 4 times more saline. Finally 

the solution was sterile filtered.  The specific activities of the productions vary between 13-17 

GBq/µmol. The radiochemical purity (%) of the final product was determined by application 

of an analytical RP-HPLC.  

 

2.6 Determination of the radiochemical purity of 68Ga-HBED-CC-PCA by analytical 

RP-HPLC  

For the quality control of the 68Ga-labelled radiopharmaceutical we used the identical system 

described as analytical HPLC, but equipped with a radiodetector. Signals were parallel 

detected by radiodetector and UV detector (254 nm). 

 

2.7 Determination of partition coefficient of 68Ga-HBED-CC-PCA 
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This protocol is based on the procedure described earlier [21]. Briefly, the partition coefficient 

was determined by mixing approximately 1.5 MBq of the 68Ga-HBED-CC-PCA complex (10 

μl) with a mixture of 500 µl  of 1-octanol and 500 µl  of PBS solution (pH 7.4) in a centrifuge 

tube. The mixture was shaken thoroughly for 20 minutes and then centrifuged at 20.000 

rpm/min for 5 min for complete separation of the layers. Aliquots (100 µl) were taken from 

them and the samples were loaded into test tubes; the radioactivity was determined with a 

Perkin-Elmer Packard Cobra gamma counter. 

 

2.8 Determination of in vitro stability of 68Ga-HBED-CC-PCA 

This protocol is based on the procedure described by Kertész et al. [21]. Shortly, the 

stability of 68Ga-HBED-CC-PCA was tested in rat serum at 37ºC. Approximately 8 MBq of 

68Ga-HBED-CC-PCA was introduced into mouse serum and was incubated.  50 µL aliquot 

from this mixture at different time points (0, 30, 60, 90 and 120 min) was combined with 50 

µl cold abs. EtOH. Precipitated fraction was pelleted by centrifugation at 20.000 rpm for 5 

min. The supernatant was collected, further diluted with water and the radiochemical purity of 

68Ga-HBED-CC-PCA was assessed by means of the analytical RP-HPLC. 

 

 

2.9 Cell culture 

Melanin-producing B16-F10 (mouse) and amelanotic A375 and MELUR (human) melanoma 

cell lines were purchased from the American Type Culture Collection (ATCC). B16-F10 cells 

were cultured in Dulbecco’s Modified Eagle’s medium (DMEM, GIBCO Life Technologies) 

supplemented with 1% (v/v) MEM Non Essential Amino Acid solution (Sigma-Aldrich), 1% 

MEM Vitamins solution (Sigma-Aldrich), 10% Fetal Bovine Serum (FBS, GIBCO Life 

technologies) and 1% Antibiotic and Antimicotic solution (Sigma-Aldrich). A375 and 

MELUR cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM, GIBCO Life 

Technologies) supplemented with 10% Fetal Bovine Serum (FBS, GIBCO Life technologies) 

and 1% Antibiotic and Antimicotic solution (SIGMA). All cell lines were cultured at regular 

conditions (5% CO2, 37 °C). For in vitro studies and tumor induction the cells were used at 

80% confluence and the viability of the cells was always higher than 90%, as assessed by the 

trypan blue exclusion test. 



10 
 

 

2.10 In vitro saturation binding studies 

For in vitro saturation binding studies melanotic B16-F10 cells were used. The cells were 

cultured in 24-well plates (5x104 per well) for 24 h. Different concentration (20-1600 nM) of 

68Ga-NODAGA-PCA or 68Ga-HBED-CC-PCA was added to each well in 200 µl volume. 

After 1 hour incubation time (in CO2 incubator at 37 oC) the medium was removed and the 

cells were washed twice with PBS, then washed twice with glycine (0.2 M) and lysed with 

NaOH (1M) for 10 min at 37 oC. 

 

2.11 Cellular uptake and efflux studies 

Method A: B16-F10, A375 and MELUR cells were grown as monolayer in tissue culture 

flasks (2x105 cells per T25 flask) for 24 h. 0.37 MBq of 68Ga-NODAGA-PCA or 68Ga-

HBED-CC-PCA was then added to each flask and cells were further incubated for 30 and 90 

min at 37 °C. After the incubation time cells were washed twice with PBS, trypsinized and the 

cell number was counted. The radioactivity was measured with gamma-counter (Cobra-II, 

Canberra Packard, USA) for 1 min within the 68Ga-sensitive energy window and decay-

corrected radiotracer uptake was expressed as counts min−1 (106 cells)−1 (cpm). The percent 

uptake (% uptake) was calculated as the percent of the total added radioactivity found in the 

pellet. For the determination of 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA efflux the 

cells growing in monolayer were first loaded with the radioligands (0.37 MBq at 37 °C for 30 

and 90 min) then washed twice with PBS. Afterwards, 5 ml DMEM was added to each culture 

flask and the adherent cells were further incubated for 10 min at 37 °C without radioligands. 

After the incubation time cells were washed twice with PBS, trypsinized and the cell number 

was counted. The radioactivity was measured with gamma-counter. 

Method B: B16-F10, A375 and MELUR cells were grown as monolayer for 24 h. 

Subsequently, cells were trypsinized, centrifuged and resuspended in DMEM and were 

aliquoted in test tubes at a cell concentration of 1x106 ml−1. Each tube was incubated for 30 

and 90 min in the presence of 0.37 MBq 68Ga-NODAGA-PCA or 68Ga-HBED-CC-PCA at 37 

°C. After the incubation time samples were washed 3 times with ice-cold PBS and the 

radioactivity was measured with gamma counter. For the efflux studies cells were first loaded 

with radioligands (0.37 MBq at 37 °C for 30 and 90 min). After the incubation time cells were 
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then washed PBS containing 1 mM glucose (gl-PBS) at room temperature. Subsequent 

centrifugation the supernatant was removed and the cells were resuspended in 2 ml gl-PBS 

and further incubated for 10 min at 37 °C without radioligands. The efflux was terminated by 

the addition of ice-cold PBS. The cells were then washed twice with ice cold PBS and the 

radioactivity was measured using gamma-counter. 

 

2.12 In vivo tumor models 

C57BL/6J and CB17 SCID mice were housed under sterile conditions at a temperature of 

26±2°C, with 50±10% humidity and artificial lighting with a circadian cycle of 12 h. Sterile 

semi-synthetic diet (Akronom Ltd., Budapest, Hungary) and sterile drinking water were 

available ad libitum to all the animals. Laboratory animals were kept and treated in 

compliance with all applicable sections of the Hungarian Laws and regulations of the 

European Union. For the induction of in vivo tumor models adult female CB17 SCID (n=30) 

and C57BL/6J (n=20) were used at 10 weeks of age. For the induction of amelanotic tumor 

models CB17 SCID mice were used; 1x105 amelanotic Melur or A375 tumor cells in 0.9% 

NaCl (100 µl) were injected into the left shoulder area. To generate melanotic melanoma 

tumors C57BL/6J mice were subcutaneously injected with B16-F10 tumor cells (1x105 in 100 

µl saline) into the left shoulder area. The tumor size was assessed by caliper measurements 

and was calculated as follows: (largest diameter x smallest diameter2)/2. In vivo and ex vivo 

experiments were carried out 21±2 days after subcutaneous injection of tumor cells at the 

tumor volume of 110±10 mm3. 

 

2.13 Animal PET/MRI imaging 

 

Control and tumor-bearing animals were injected with 10.3±0.3 MBq of 68Ga-NODAGA-

PCA or 68Ga-HBED-CC-PCA via the lateral tail vein. 90 min after radiotracer injection mice 

were anaesthetized by 3% isoflurane (Forane) with a dedicated small animal anesthesia device 

and whole body PET scans (20-min static PET scans) were acquired using the preclinical 

nanoScan PET/MRI system (Mediso Ltd., Hungary). To prevent movement, animals were 

fixed into a mouse chamber (MultiCell Imaging Chamber, Mediso Ltd., Hungary) and 

positioned in the center of field of view (FOV). For the determination of the anatomical 
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localization of the organs and tissues, T1-weighted MRI scans were performed (3D GRE EXT 

multi-FOV; TR/TE 15/2 ms; FOV 40 mm; NEX 2). PET volumes were reconstructed using a 

three-dimensional Ordered Subsets Expectation Maximization (3D-OSEM) algorithm (Tera-

Tomo, Mediso Ltd., Hungary). PET and MRI images were automatically co-registered by the 

acquisition software (Nucline) of nanoScan PET/MRI instrument. Images were analyzed with 

the InterView™ FUSION (MedisoLtd., Hungary) dedicated image analysis software. 

Radiotracer uptake was expressed in terms of standardized uptake values (SUVs). Ellipsoidal 

3-dimensional Volumes of Interest (VOI) were manually drawn around the edge of the tissue 

or organ activity by visual inspection using InterView™ FUSION multi-modal visualization 

and evaluation software (Mediso Ltd., Hungary). The standardized uptake value (SUV) was 

calculated as follows: SUV = [VOI activity (Bq/mL)]/[injected activity (Bq)/animal weight 

(g)], assuming a density of 1 g/mL. Tumor-to-muscle (T/M) ratios were computed as the ratio 

between the activity in the tumor VOI and in the background (muscle) VOI. 

 

2.14 Ex vivo biodistribution studies 

 

One day after in vivo PET/MRI imaging animals were injected intravenously with 10.3±0.3 

MBq of 68Ga-NODAGA-PCA or 68Ga-HBED-CC-PCA. Mice were euthanized 90 min after 

the injection of 68Ga-labeled tracers with 5% isoflurane. Tissue samples were taken from each 

organ and their weight and radioactivities were measured with gamma counter and DAR 

(Differential Absorption Ratio) values were calculated ([accumulated radioactivity/g tissue]/ 

[total injected radioactivity/body weight]). 

 

2.15 Statistical analysis 

 

Significance was calculated by by Mann-Whitney U-test and the significance level was set at 

p≤0.05 unless otherwise indicated. Data are presented as mean±SD of at least three 

independent experiments.
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3. Results 

3.1 Chemical and radiochemical synthesis 

HBED-CC-PCA was prepared by a conjugation of 4-amino-N-(2-

diethylaminoethyl)benzamide hydrochloride and HBED-CC-tris(tBu)-ester (Fig 1.) and a 

subsequent protecting group removal. The final product was purified by semi-preparative RP-

HPLC. The purity of HBED-CC-PCA was checked by analytical HPLC, and it proved to be 

better than 98%. The chemical structure of the product was assessed by 1H-NMR and ESI-

MS.  The purified product was identified by ESI-MS: Mw=750.37 [M+H]+. 1H-NMR (DMSO 

d-6) δ = (1-1.07 (t, 6H), 2.5-2.7 (m, 8H), 2.78-2.97 (m, 10H), (3.55-3.63 (m, 6H), 4.12-4.25 

(m, 4H), 6.7-6.75 (m, 2H), 6.8-6.85 (m, 2H), 6.95-7 (m, 4H), 7.65-7.75 (m, 2H). We have 

performed a manual protocol for radiolabeling and the overall reaction time of producing 

68Ga-HBED-CC-PCA was 15 min. including the reformulation step also. The decay corrected 

yield was 65.87±8.25% (n=7) and the radiochemical purity was at least 98%. The retention 

factor of the active compound was 9.5 min. The specific activity of the product was 

14.81±1.71 GBq/µmol. The quality control measurements demonstrated that in the final 

product all of the isomers exist in different ratios. 

3.2 Partition coefficient and in vitro stability of 68Ga-HBED-CC-PCA  

The partition coefficient (logP) of 68Ga-HBED-CC-PCA was determined to be -2.19 ± 0.12. 

In comparison with the 68Ga-NODAGA-PCA (-2.79±0.10; [21]) it means that the new 

compound has a bit higher lipophilicity, but the compound is still hydrophilic. Furthermore, in 

order to measure the stability of the newly labeled compound in mouse serum at 37 °C, 

analytical radio-HPLC was used. After 2 hours of incubation in mouse serum, approximately 

75% of the original compound was found intact. 

 

3.3 In vitro studies 

In vitro saturation binding studies showed a positive correlation between the concentration of 

68Ga-NODAGA-PCA and its binding using B16-F10 cells (Fig. 2A). Similar correlation was 

found using 68Ga-HBED-CC conjugated PCA, but significantly lower binding was observed 

(Fig. 2B). The melanin specificity of 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA was 

investigated using melanotic B16-F10 and amelanotic A375 and Melur cell lines. Cellular 
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uptake and efflux was investigated using melanoma cells in suspension and in monolayer (see 

Materials and methods: Method A and B in Cellular uptake and efflux studies). In suspension 

(using Method A) the accumulation of 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA in 

B16-F10 cells were significantly higher (p<0.05 and p<0.01) than in amelanotic A375 or 

Melur cells at each time point (Fig. 2C, D). In experiments where the cellular uptake of the 

two melanin specific radiotracer was compared, we found that 68Ga-NODAGA-PCA 

accumulation in B16-F10 cells was significantly higher (p<0.001) (1.56±0.39 at 30 min; 

2.58±0.69 at 90 min) than the accumulation of 68Ga-HBED-CC-PCA (0.06±0.017 at 30 min; 

0.17±0.03 at 90 min).  Similar results were found when plated cells were used (Method B) for 

the determination of the melanin specificity of the two radiolabeled compounds (Fig. 2E, F). 

When melanoma cells in monolayer were used for cellular uptake studies, we found 

significantly higher (p<0.01) 68Ga-NODAGA-PCA accumulation in melanin containing B16-

F10 cells (1.97±0.44 at 30 min; 3.61±0.46 at 90 min) than in amelanotic A375 (0.30±0.09 at 

30 min; 0.27±0.18 at 90 min) or Melur (0.18±0.07 at 30 min; 0.31±0.24 at 90 min) cells. In 

melanotic B16-F10 cells the 68Ga-NODAGA-PCA accumulation was approximately seven-

fold higher at each time point than the 68Ga-HBED-CC-PCA uptake confirming the higher 

melanin specificity of the NODAGA chelator containing radiotracer. In addition, relatively 

higher 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA accumulation was observed using 

melanoma cells in monolayer than in suspension. 

 

In washout (efflux) experiments cells were first loaded with 68Ga-NODAGA-PCA or 68Ga-

HBED-CC-PCA, and after extensive washing rounds the cells were further incubated for 10 

min without radioactivity. Using this method both in suspension and monolayer significant 

(p≤0.01) differences were found between the 68Ga-NODAGA-PCA accumulation of melanin 

positive and negative cell lines (Fig. 2C, E). Despite the lower uptake of 68Ga-HBED-CC-

PCA in melanoma cells, in efflux studies the melanin-containing B16-F10 cell line showed 

significantly (p≤0.05) higher 68Ga-HBED-CC-PCA content at each time point than the 

melanin negative A375 and Melur cell lines both in suspension (Fig. 2D) and in monolayer 

(Fig. 2F) confirming the melanin specificity of 68Ga-HBED-CC-PCA. 

 

3.4 Biodistribution studies in control mice 
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Whole body PET/MRI imaging and ex vivo organ distribution studies were performed 90 min 

after intravenous injection of 10.3±0.3 MBq 68Ga-NODAGA-PCA or 68Ga-HBED-CC-PCA 

using healthy C57BL/6 mice. Representative coronal PET/MRI images are shown in Fig. 3. 

By the qualitative analysis of PET images the urinary system (kidneys and urine) were clearly 

visualized. Low radiotracer accumulation was observed in the abdominal and thoracic regions 

using both radiotracers after 90 min incubation time (Fig. 3). 

In vivo PET/MRI organ distribution results correlated well with the ex vivo data shown in Fig. 

3C. For ex vivo distribution studies healthy control animals were sacrificed 90 min after 

radiotracer injection, and after dissection the accumulated activities of the organs and tissues 

were assessed by gamma counter. By the quantitative analysis no significant differences were 

found between the DAR values of organs and tissues when 68Ga-NODAGA-PCA and 68Ga-

HBED-CC-PCA uptake were compared (Fig 3C). Remarkable accumulation was observed in 

kidneys (approx. DAR: 0.2-0.5) and urine (approx. DAR: 44-55) using both radiotracers. In 

contrast, slight radiotracer uptake was measured with low DAR values in the brain 

(0.02±0.01), liver (0.05±0.02), intestines (0.04±0.01), spleen (0.03±0.01), lung (0.02±0.01) 

and muscle (0.01±0.008) using 68Ga-NODAGA-PCA. Relatively lower accumulation was 

found in the brain (0.01±0.007), liver (0.02±0.01), intestines (0.03±0.01), spleen 

(0.01±0.008), lung (0.01±0.008) and muscle (0.01±0.006) when the distribution of 68Ga-

HBED-CC-PCA was assessed. 

 

3.5 PET/MRI imaging and ex vivo biodistribution studies of tumor-bearing mice 

For the in vivo assessment of the melanin specificity of the Ga-68 labeled PCA tracers B16-

F10, A375 and MELUR tumor-bearing animals were injected intravenously with 10.3±0.3 

MBq of 68Ga-NODAGA-PCA or 68Ga-HBED-CC-PCA and after 90 min incubation time 

whole body PET scans were acquired using the preclinical PET/MRI system. Representative 

whole body coronal and axial PET/MRI image of B16-F10 melanoma tumors are shown in 

Fig. 4. By the qualitative analysis of the PET/MRI images the subcutaneously growing B16-

F10 tumors were clearly visualized with 68Ga-NODAGA-PCA 90 min after the tracer 

injection (Fig. 4A, red arrows). After the quantitative analysis of PET images significant 

differences (p≤0.01 level) were found between the 68Ga-NODAGA-PCA (SUVmean: 

0.46±0.05, SUVmax: 1.93±0.25) and 68Ga-HBED-CC-PCA (SUVmean: 0.13±0.01, SUVmax: 

0.56±0.11) accumulation in the melanin positive B16-F10 tumors (Fig. 4C). In addition, when 

the 68Ga-NODAGA-PCA uptake of B16-F10 tumors was compared to the muscle 
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(background) activity, we found that T/M SUVmean and T/M SUVmax were 40.7±4.23 and 

23.55±3.45, respectively. These T/M SUV values were approximately four-fold higher than 

that of the 68Ga-HBED-CC-PCA uptake ratios, where the T/M SUVmean and T/M SUVmax 

values were 11.43±1.24 and 6.82±0.96, respectively (Fig. 4D). 

 

In contrast, very low 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA uptake was observed 

when subcutaneous melanin negative tumors (MELUR, A375) were investigated using 

PET/MRI imaging system (Fig. 5). By the quantitative analysis of PET images we found that 

the SUV values (Fig. 5E) and tumor-to-muscle ratios (Fig. 5F) of negative tumors were 

significantly (p≤0.01) lower than of the B16-F10 tumors. Furthermore, no significant 

differences were found between the accumulation of 68Ga-NODAGA-PCA and 68Ga-HBED-

CC-PCA radiopharmaceuticals in MELUR and A375 tumors. 

 

For the investigation of melanin specificity of 68Ga-NODAGA-PCA and 68Ga-HBED-CC-

PCA ex vivo biodistribution studies were performed 90 min post injection using 

subcutaneously growing B16-F10 and amelanotic A375 and Melur tumors. Table 1 

demonstrates that the 68Ga-NODAGA-PCA uptake of B16-F10 tumor was significantly 

(p≤0.01(**)) higher than that of A375 or Melur tumors, confirming the melanin binding 

specificity of the 68Ga-NODAGA-PCA ex vivo. By analyzing the tumor-to-muscle ratios, the 

difference between the B16-F10 and amelanotic tumors was also significant at p≤0.01. 68Ga-

HBED-CC-PCA showed significantly (p≤0.05 (*)) higher uptake in melanin positive B16-F10 

tumors than in amelanotic tumors, however the accumulation of 68Ga-HBED-CC-PCA in 

melanoma cell lines was lower when DAR values were compared to DAR values of 68Ga-

NODAGA-PCA. 

 

4. Discussion 

The most aggressive form of skin cancer is malignant melanoma. Considering that this 

malignancy is associated with high mortality, furthermore the prognosis of patients with 

metastases is very poor, hence the early detection of small matastatic lesions using high-

resolution non-invasive imaging techniques (e.g.: PET) is critical in patient survival [11]. 

Among radionuclides used in PET, the cyclotron independent radionuclide 68Ga offers a well-

established chemistry for the labeling of small molar-weight biomolecules and peptides [22-
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24]. 68Ga-labeled procainamide shows great potential for diagnosis in a variety of melanomas 

producing melanin pigment. Here we described the radiosynthesis of the melanin specific 

68Ga-labeled HBED-CC-4-Amino-N-(2-diethylaminoethyl)benzamide (68Ga-HBED-CC-

PCA) and compared the preclinical evaluation of this product with our existing NODAGA-

conjugated analogue 68Ga-NODAGA-PCA [21]. 

The radiosynthesis of the melanin specific 68Ga-HBED-CC labeled PCA was very 

similar to our previously described radiotracer 68Ga-NODAGA-PCA [21]. The quality control 

measurements confirm that both of the compounds can be produced in the required 

radiochemical purity (98%), and due to the similar decay corrected yields (approx. 65-68) 

between the two melanin specific radiotracer the specific activities are also close together 

(approx. 13-17 GBq/µmol). The overall reaction time of producing 68Ga-HBED-CC-PCA was 

also 15 min. including the reformulation step. Therefore, this synthesis method enables us to 

produce the 68Ga-HBED-CC-PCA for preclinical applications fast and easily with high 

radiochemical purity and specific activity. Furthermore, after 2 hours of incubation in mouse 

serum, still 75% of the original compound was found intact. Interestingly, this finding does 

not support the experience of Eder et al. [25] that the application of HBED-CC- vs. 

NODAGA can increase the metabolic stability of the radiotracer but the current compound is 

still a highly stable molecule, suitable for biological experiments. 

For the investigation of the effect of using different chelators on the melanin 

specificity of 68Ga-labeled PCA probes melanin positive B16-F10 and melanin negative 

melanoma cell lines (MELUR, A375) were used both in monolayer and in suspension (Fig. 

2). Previous studies showed that transport processes (uptake/efflux) are different when cells 

are used in monolayer or in suspension for in vitro investigations [26,27]. We also found 

differences between the uptake of the melanin specific radiotracers when the suspension 

technique (Fig. 2C, D) was compared to the monolayer technique (Fig. 2E, F). Relatively 

higher 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA accumulation was found at each time 

point when melanoma cells were used as monolayer. From these in vitro data we concluded 

that monolayer form is more physiological for the adherent melanoma cells. When the uptake 

of 68Ga-HBED-CC-PCA was investigated using both in vitro methods (Fig. 2D, F), we found 

significantly (p≤0.05 and p≤0.01) higher accumulation in melanin producing B16-F10 cell 

than in melanin negative MELUR or A375 cells, furthermore, this accumulation increased 

with time and remained after 10 min efflux. Despite the low accumulation, these uptake 

results confirmed the melanin specificity of 68Ga-HBED-CC-PCA. Previous studies also 

showed [8,9], that 68Ga-labeled benzamide derivatives (68Ga-SCN-NOTA-BZA and 68Ga-
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SCN-DOTA-PCA) specifically bind to melanin in B16-F10 melanoma cells and this 

accumulation increased in a time-dependent manner. As our research group and others 

reported earlier [9, 21,28-30] the uptake of 68Ga-labeled procainamide is mediated by passive 

diffusion and the logP value of the labeled compounds plays an important role in this process. 

The logP of 68Ga-HBED-CC-PCA was -2.19±0.12. In comparison with the 68Ga-NODAGA-

PCA (logP -2.79±0.10) it means that the new compound has a bit stronger lipophilic 

character, but it is still highly hydrophilic. 

As it was expected from the logP value and from the size of the 68Ga-HBED-CC-PCA 

in biodistribution studies using healthy mice we found that 68Ga-HBED-CC-PCA – similarly 

to the NODAGA conjugated PCA [21] – mainly excreted from the urinary system and low 

accumulation was observed in other organs and tissues after 90 min incubation time (Fig. 3). 

These in vivo and ex vivo results correlated well with several studies [8,9,11,28,31] where the 

biodistribution of other radiolabeled (18F, 68Ga, 125I) benzamide derivatives were investigated. 

The melanoma specificity of 68Ga-HBED-CC-PCA was investigated by subcutaneous 

melanoma tumor-bearing mouse models and its biodistribution was compared with that of 

68Ga-NODAGA-PCA. Melanotic B16-F10 (in C57BL/6 mice) and amelanotic A375, Melur 

tumors (in SCID mice) were investigated 21±2 days after tumor cell inoculation and 20-min 

static PET/MRI images were obtained 90 min after the i.v. injection of the radiotracers. The 

melanin containing B16-F10 tumors were clearly visualized by PET/MRI imaging with low 

background accumulation using both radiotracers (Fig. 4A, B). In contrast, when amelanotic 

MELUR (Fig. 5A, B) and A375 (Fig. 5C, D) tumors were used for PET imaging, very low 

68Ga-HBED-CC-PCA and 68Ga-NODAGA-PCA accumulation was found confirming the 

melanin specificity of the radiotracers. After the quantitative SUV analysis of in vivo 

PET/MRI images and analyzing the ex vivo DAR (Table 1.) data, we found that 68Ga-HBED-

CC-PCA and 68Ga-NODAGA-PCA uptake in melanotic B16-F10 tumor (Fig. 4C, D) was 

significantly (p≤0.01) higher than in amelanotic MELUR or A375 tumors (Fig. 5E, F). Our in 

vivo and ex vivo data correlated well with other research papers, where 18F- and 68Ga-labeled 

melanin specific benzamide derivatives were investigated and relatively high accumulation 

was found in melanin containing B16 tumors with excellent tumor-to-background contrast 

[8,9,11,28,31]. Despite the moderate accumulation of 68Ga-HBED-CC-PCA (SUVmean: 

0.13±0.01, SUVmax: 0.56±0.11) and 68Ga-NODAGA-PCA (SUVmean: 0.46±0.06, SUVmax: 

1.93±0.25) in subcutaneously growing B16-F10 tumors, we found that the low activity of 

other tissues allows of high quality images with high contrast. In addition, our molecules 

produced higher tumor-to-muscle ratios (T/M SUVmean of 68Ga-NODAGA-PCA and 68Ga-
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HBED-CC-PCA was 40.7±4.23 and 11.43±1.24, respectively) than 68Ga-SCN-DOTA-PCA 

(9.47±2.36) with a similar chemical structure what was synthesized by [9]. 

In this paper significant differences were found between the in vitro, ex vivo and in 

vivo accumulation of 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA molecules. Overall, 

from our data we concluded that procainamide molecule is highly melanin specific, however, 

the properties of the used bifunctional chelator (BFC) determines the accumulation of the 

labeled compound in melanin postive melanoma cells and tumors. From an ideal BFC can 

expect the following properties: - fast complexation at a very low ion-concentration range, 

preferably at room temperature, - tolerance of a broad pH range, - and selectivity against the 

endogenous metal ions (Ca or Zn) or potential impurities originated from the production of 

the radionuclide (Fe or Al) [13,32]. The final radiolabeled compound should be resistant of 

the challenge of different endogenous ligands, such as transferrin or lactoferrin [33]. 

Therefore, the selection of the appropriate chelator is largely dependent on the applied 

isotope. A huge number of macrocyclic and open chain BFCs have been developed and tested 

in regard to satisfy the specific requirements mentioned earlier and several modifications were 

taken in geometries, donor atoms, pendant arms or coordination numbers [14,23,34]. The 

application of acyclic chelators (e.g. HBED-CC) usually grant fast complexation kinetics, but 

the kinetically inertness of these complexes usually not so high in comparison with the 

macrocyclic ones (e.g. NODAGA) [35,36]. Taking into account that the chelator-systems can 

play also the role of the pharmacokinetic modifier, the application of different BFC can affect 

the accumulation pattern also of the entire molecule, as the acyclic complexing agent HBED-

CC coupled into a PSMA (prostate-specific membrane antigen) inhibitor, can influence the 

biological properties of the adduct in a positive way. On the other hand a possible drawback 

in comparison with other clinically approved chelators (e.g. NODAGA) can be that HBED-

CC forms three diastereoisomers during gallium complexation. The ratio of the formed 

isomers depends on the temperature, the pH and the chelator concentration during the 

complexation reaction [33]. It was recently reported that during the standard labelling 

protocol, [68Ga]-PSMA-HBED-CC (pH~4, temperature 95°C) mainly the thermodynamically 

favored diastereoisomer was formed; but measurable amount of the other isomers - due to the 

problematic separation - can be found in the final formulation prepared for the patient [25]. 

This feature can be the main limitation factor before the extensive application of HBED-CC 

in preclinical practice, because it has big importance to determine the exact biological 

activities of the diastereoisomers [25]. Therefore one can conclude that for biological 

application the selection of BFC depends on a certain treshold of termodinamical stability and 
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kinetic inertness, but after reaching them the main ephasis shift to the ideal pharmacokinetic 

properties and the preferably uniform product.  

 

 

5. Conclusion 

In this present study, we compared the synthesis and biological properties of the melanin 

specific 68Ga-PCA molecule conjugated with HBED-CC and NODAGA chelators. It became 

clear that at this region of logP the hydrophilic-lipophilic balance will not predict correctly 

the transport of the radioligands across the cell membrane and the ligand-binding capacity of 

the melanin. Therefore, in the melanin producing experimental B16-F10 melanoma tumors 

the 68Ga-labeled-PCA conjugated with NODAGA chelator showed higher binding properties 

with excellent imaging contrast. In conclusion, the present preclinical data has demonstrated a 

significant difference in the influence of different chelators for 68Ga-PCA. This result should 

be taken into account during the development of 68Ga-labeled melanoma specific probes for 

PET imaging. 
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Fig. 1. The reaction scheme of the chemical synthesis of HBED-CC-PCA. A: N,N'-Bis[2-

hydroxy-5-(carboxyethyl)-benzyl]ethylenediamine-N,N'-diacetic acid, tris tert-butyl ester 

(HBED-CC-tris(tBu)ester); B: 2,3,5,6-tetrafluorophenol; C: HBED-CC-tris(tBu) tetra-fluoro-

phenyl ester; D: 4-amino-N-(2-diethylaminoethyl)benzamide hydrochloride; E: HBED-CC-

tris(tBu)ester-PCA; F: HBED-CC-PCA. 
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Fig. 2. Assessment of cellular binding, uptake and efflux studies of melanin specific 68Ga-

NODAGA-PCA and 68Ga-HBED-CC-PCA. In vitro saturation binding studies in B16-F10 

cells incubated with different concentrations of 68Ga-NODAGA-PCA (A) and 68Ga-HBED-

CC-PCA (B) at 37 °C for 1 h. Comparison of time dependent 68Ga-NODAGA-PCA (C, E) 

and 68Ga-HBED-CC-PCA (D, F) uptake and washout (efflux) results of B16-F10, A375 and 

Melur cells measured in suspension (C, D) and monolayer (E, F). Significance level: p≤0.05 
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(*), p≤0.01 (**). The data values shown are means ± SD of the results of at least three 

independent experiments, each performed in triplicate. ID%: Tracer accumulation in 106 cells 

was expressed as the percentage of the incubating dose. 

 

 

 

 

Fig. 3. In vivo and ex vivo biodistribution data for 68Ga-NODAGA-PCA. A: Representative 

coronal microPET/MRI image of healthy control C57BL/6 mouse 90 min after the radiotracer 

injection. Yellow arrow: liver; red arrows: kidneys; white arrow: bladder with urine. B: 

quantitative analysis of tracer uptake in control animals (n=5) 90 min after the injection of 

68Ga-NODAGA-PCA. DAR values are presented as mean±SD. 
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Fig. 4. Representative whole body coronal (A and B: upper row) and axial (A and B: lower 

row) nanoScan PET/MRI images of the same B16-F10 melanoma tumor-bearing C57BL/6J 

mouse 21 days after tumor cell inoculation and 90 min after intravenous injection of 68Ga-

NODAGA-PCA (A, red arrows) and 68Ga-HBED-CC-PCA (B, white arrows). Yellow arrows: 

kidney. Quantitative SUV analysis of 68Ga-NODAGA-PCA (n=10) and 68Ga-HBED-CC-PCA 

(n=10) accumulation in B16-F10 tumors (C) and tumor-to-muscle ratios (D). Significance 

level: p≤0.01 (**). SUV: standardized uptake value; T/M: tumor-to-muscle ratio. 
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Fig. 5. In vivo assessment of radiotracer accumulation in melanin negative tumors. 

Representative axial PET/MRI images of MELUR (A, B; white arrows) and A375 (C, D; 

yellow arrows) melanoma tumor-bearing SCID mice 23 days after tumor cell injection and 90 

min after intravenous injection of 68Ga-NODAGA-PCA (A, C) or 68Ga-HBED-CC-PCA (B, 

D). Quantitative SUV analysis of 68Ga-NODAGA-PCA (n=10) and 68Ga-HBED-CC-PCA 

(n=10) uptake in melanin-negative tumors (E) and tumor-to-muscle ratios (F). Significance 

level: p≤0.01 (**).SUV: standardized uptake value; T/M: tumor-to-muscle ratio. 
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Table 1: 68Ga-NODAGA-PCA and 68Ga-HBED-CC-PCA accumulation (DAR) in s.c. B16-

F10, A375 and MELUR tumors 90 min after tracer injection and 21±2 days after tumor cell 

inoculation. Significance level between melanotic B16-F10 and amelanotic (A375, MELUR) 

tumors using 68Ga-NODAGA-PCA: p≤0.01 (**) and 68Ga-HBED-CC-PCA: p≤0.05 (*) 

 

Tumor 68Ga-NODAGA-PCA  68Ga-HBED-CC-PCA 

B16-F10 tumor (n=5) 0.42 ± 0.07** 0.13 ± 0.03* 

B16-F10 tumor/muscle 23.64 ± 2.73** 8.05 ± 0.99* 

A375 tumor 0.06 ± 0.02 0.03 ± 0.01 

A375 tumor/muscle 1.85 ± 0.25 1.62 ± 0.18 

MELUR tumor 0.04 ± 0.01 0.02 ± 0.01 

MELUR tumor/muscle 1.32 ± 0.19 1.11 ± 0.09 

 


