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Abstract

Statistical post-processing techniques are now widely used to correct systematic biases and errors in calibra-

tion of ensemble forecasts obtained from multiple runs of numerical weather prediction models. A standard

approach is the ensemble model output statistics (EMOS) method resulting in a predictive distribution

given by a single parametric law with parameters depending on the ensemble members. In this article we

assess the merits of combining multiple EMOS models based on different parametric families. In four case

studies with wind speed and precipitation forecasts from two ensemble prediction systems we investigate

the performance of state of the art forecast combination methods and propose a computationally efficient

approach to determining linear pool combination weights. We study how forecast combination performs

compared to the theoretically superior but cumbersome estimation of a full mixture model and assess which

degree of flexibility of the forecast combination approach yields the best practical results for post-processing

applications.

Keywords: Combining forecasts, comparative studies, density forecasts, ensemble model output statistics,

precipitation, weather forecasting, wind speed.

1. Introduction

Nowadays, weather forecasts are typically based on the output of numerical weather prediction (NWP)

models which describe the physical behavior of the atmosphere through nonlinear partial differential equa-

tions. Single deterministic predictions produced by single runs of such models fail to account for uncertainties

in the initial conditions and the numerical model. Therefore, NWP models are nowadays typically run sev-

eral times with varying initial conditions and model physics, resulting in an ensemble of forecasts, see Palmer

(2002) and Gneiting & Raftery (2005) for reviews. Examples of ensemble prediction systems (EPSs) are the

51-member European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble (Molteni et al.,
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Day in October 2008
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Debrecen Airport, Hungary

Day in December 2010
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Figure 1: (a) Wind speed observations (blue line) and corresponding UWME forecasts (bars) for Newport Municipal Airport,

Oregon, USA, for the first two weeks of October 2008; (b) observed precipitation accumulation (blue line) and the corresponding

ALADIN-HUNEPS ensemble forecasts (bars) for Debrecen Airport, Hungary, for the first two weeks of December 2010.

1996), the eight-member University of Washington Mesoscale ensemble (UWME; Eckel & Mass, 2005), and

the 11-member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Pre-

diction System (ALADIN-HUNEPS; Horányi et al., 2006) of the Hungarian Meteorological Service (HMS).

The transition from single deterministic forecasts to ensemble predictions can be seen as an important step

towards probabilistic forecasting, however, ensemble forecasts are often underdispersive, that is, the spread

of the ensemble is too small to account for the full uncertainty, and subject to systematic bias. They thus

require some form of statistical post-processing. To illustrate the systematic errors of ensemble forecasts,

Figure 1(a) shows UWME wind speed forecasts for Newport Municipal Airport (OR) and the corresponding

observations for the first two weeks of October 2008, and Figure 1(b) shows ALADIN-HUNEPS forecasts of

precipitation accumulation at Debrecen Airport and the corresponding observations for the first two weeks

of December 2010. Both time series illustrate the lack of an appropriate representation of the forecast

uncertainty as the verifying observations frequently fall outside the range of the ensemble forecasts.

Over the past decade, various statistical post-processing methods have been proposed in the meteo-

rological literature. In the Bayesian model averaging (BMA; Raftery et al., 2005) approach the forecast

distribution is given by a weighted mixture of parametric densities, each of which depends on a single en-

semble member with mixture weights being determined by the performance of the ensemble members in the

training period. Within this article we build on the conceptually simpler ensemble model output statistics

(EMOS) approach proposed by Gneiting et al. (2005), where the conditional distribution of the weather

variable of interest given the ensemble predictions is modeled by a single parametric family. The parameters

of the forecast distribution are connected to the ensemble forecast through suitable link functions. For

example, the original EMOS approach models temperature with a Gaussian predictive distribution where

the mean is an affine function of the ensemble member forecasts and the variance is an affine function of the
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Figure 2: (a) Wind speed observations, the corresponding UWME forecasts and TN and LN EMOS predictive distributions for

Newport Municipal Airport (OR) for 2 October 2008; (b) observed precipitation accumulation, the corresponding ALADIN-

HUNEPS ensemble forecasts and CSG and GEV EMOS predictive distributions for Debrecen Airport for 12 December 2010.

Ensemble members: red bars; ensemble median: vertical red line; observation: vertical orange line; predictive PDFs: blue/green

lines; EMOS medians: vertical blue/green lines.

ensemble variance.

Over the last years the EMOS approach has been extended to other weather variables such as wind

speed (Thorarinsdottir & Gneiting, 2010; Lerch & Thorarinsdottir, 2013; Baran & Lerch, 2015; Scheuerer

& Möller, 2015), precipitation (Scheuerer, 2014; Scheuerer & Hamill, 2015; Baran & Nemoda, 2016), and

total cloud cover (Hemri et al., 2016). To illustrate the EMOS approach to post-processing Figure 2(a)

shows the observed wind speed, the corresponding UWME forecasts and truncated normal (TN) and log-

normal (LN) EMOS predictive distributions (for details see Section 3.1) for Newport Municipal Airport for 2

October 2008. A different situation is shown in Figure 2(b) where the observed precipitation accumulation,

the corresponding ALADIN-HUNEPS ensemble forecasts and estimated censored and shifted gamma (CSG)

and censored generalized extreme value (GEV) EMOS predictive distributions (see Section 3.2) for Debrecen

Airport for 12 December 2010 are plotted. In both examples, the spread of the ensemble forecasts is notably

smaller than the spread of the post-processed forecast distribution.

The success of statistical post-processing relies on finding appropriate parametric families for the weather

variable of interest. However, the choice of a suitable parametric model is a non-trivial task and often a

multitude of competing models is available. The relative performance of these models usually varies for

different data sets and applications.

Regime-switching combination models proposed by Lerch & Thorarinsdottir (2013) partly alleviate the

limited flexibility of single parametric family models by selecting one of several candidate models based on

covariate information. However, the applicability of this approach is subject to the availability of suitable

covariates. For some weather variables, full mixture EMOS models can be formulated where the parameters
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and weights of a mixture of two forecast distributions are jointly estimated (Baran & Lerch, 2016). However,

such approaches are limited to specific weather variables, and the estimation is computationally demanding.

In this article we investigate the feasibility of an alternative, more generally applicable route towards

improving the forecast performance that has recently received some interest, and has for example been

called for in Yang et al. (2017). Motivated by recent promising results of Möller & Groß (2016) and Bassetti

et al. (2017), we study whether combining predictive distributions from individual post-processing models

is able to significantly improve the forecast performance. In a first step, individual EMOS models based

on single parametric distributions are estimated. In a second step the forecast distributions are combined

utilizing state of the art forecast combination techniques such as the (spread-adjusted) linear pool, the

beta-transformed linear pool (Gneiting & Ranjan, 2013), and a recently proposed Bayesian, essentially non-

parametric calibration approach (Bassetti et al., 2017). Further, we propose a computationally efficient

’plug-in’ approach to determining combination weights in the linear pool that is specific to post-processing

applications.

The main contribution of this article is an empirical assessment of the merits of combining forecast

distributions from post-processing models. Specifically, we investigate how forecast combination performs

compared to the theoretically superior but cumbersome estimation of a full mixture model. Secondly, we

assess which degree of flexibility of the forecast combination approach yields the best practical results for

post-processing applications.

An alternative approach to post-processing that circumvents the problem of choosing suitable parametric

forecast distributions is the use of non-parametric methods, see for example Hamill & Whitaker (2006);

Flowerdew (2014), and Taillardat et al. (2016). However, these approaches suffer from the limitation that

the support of the forecast distribution is restricted to the range of observed values in the training sets.

Further, these methods require sufficiently long training periods, and generally lead to high computational

costs.

The remainder of this article is organized as follows. Section 2 contains a description of the ensemble

systems and the observation data. In Section 3, the EMOS method is reviewed, and the individual EMOS

models for wind speed and precipitation are introduced. Thereafter, Section 4 provides a description of the

forecast combination approaches and the application to post-processing. The various EMOS models and

forecast combination approaches are compared in four case studies in Section 5. The article concludes with

a discussion in Section 6.

2. Data

We consider two different weather variables, wind speed and precipitation accumulation, and two distinct

data sets of ensemble forecasts and corresponding validating observations for each weather quantity. The
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wind speed data sets are identical to data used in Baran & Lerch (2015, 2016), whereas the precipitation

data coincide with those studied in Baran & Nemoda (2016). For detailed descriptions of the ensemble

forecasts and corresponding observations we refer to these articles and references therein.

Ensemble members that are generated with the help of random perturbations of initial conditions are

statistically indistinguishable, and are referred to as exchangeable. The notion of exchangeability of ensemble

members is important for the formulation of post-processing models, see Section 3 for details.

2.1. University of Washington mesoscale ensemble

The UWME covers the Pacific Northwest region of North America with a horizontal resolution of 12 km

and consists of eight members generated from different runs of the fifth generation Pennsylvania State

University–National Center for Atmospheric Research mesoscale model (Grell et al., 1995). The initial and

boundary conditions of the model runs are provided by different sources, the individual ensemble members

can therefore be clearly distinguished and are considered to be non-exchangeable. The data set at hand

contains 48 h ahead forecasts and corresponding validating observations for 10 m maximal wind speed

(given in m/s) and 24 h precipitation accumulation (given in mm) for 152 stations in the Automated

Surface Observing Network (National Weather Service, 1998) in the U.S. states of Washington, Oregon,

Idaho, California and Nevada.

We focus on calendar year 2008 with additional forecasts and observations from the last months of

2007 used to allow for training periods of equal length for the model estimation. After removing days and

locations with missing predictions and/or observations, stations where data are available only on very few

days are also removed resulting in 101 stations with 27 481 individual forecast cases for wind speed and 75

stations with 20 448 individual forecast cases for precipitation.

2.2. ALADIN-HUNEPS ensemble

The ALADIN-HUNEPS system covers large parts of continental Europe on an 8 km grid. It is obtained

with dynamical downscaling of the global ARPEGE based PEARP system of Météo France (Horányi et al.,

2011; Descamps et al, 2015) and consists of 11 ensemble members, 10 of which are exchangeable forecasts

from perturbed initial conditions, and one of which is a control member from the unperturbed analysis.

We use ensembles of 42 h ahead forecasts of 10 m instantaneous wind speed (in m/s) and 24 h precipitation

accumulation (in mm) issued for 10 major cities in Hungary together with the corresponding validation

observations. Wind speed data are available for a one-year period from 1 April 2012 to 31 March 2013, and

precipitation data are available between 1 October 2010 and 25 March 2011. Days with missing forecasts

and/or observations are excluded from the analysis for both wind speed (6 days) and precipitation (2 days).
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3. Ensemble model output statistics

Successful statistical post-processing of ensemble forecasts relies on finding and estimating appropriate

parametric models for the conditional distribution of the weather variable of interest given the ensemble

predictions. In case of the EMOS approach, the forecast distribution is given by a single parametric law with

parameters depending on the ensemble forecast. While temperature can be modeled by a normal distribution

(Gneiting et al., 2005), the choice of a suitable parametric family is much less straightforward for weather

variables such as wind speed or precipitation. A multitude of post-processing approaches and modeling

strategies has been proposed over the last years. In the following short review, we focus on EMOS models

for wind speed and precipitation, and subsequently investigate methods to combine forecast distributions

from different models.

3.1. EMOS models for wind speed

Non-negative weather variables such as wind speed require skewed predictive distributions with non-

negative support like Weibull (Justus et al., 1978) or gamma distributions (Garcia et al., 1988). Recently

developed EMOS approaches utilize truncated normal (TN; Thorarinsdottir & Gneiting, 2010), gamma

(Scheuerer & Möller, 2015), generalized extreme value (GEV; Lerch & Thorarinsdottir, 2013) and log-

normal (LN; Baran & Lerch, 2015) distributions to model the conditional distribution of wind speed given

the ensemble predictions. Here, we focus on the truncated normal and log-normal models.

3.1.1. Truncated normal EMOS model

We denote by N0

(
µ, σ2

)
the TN distribution with location µ, scale σ > 0, and cut-off at zero with

probability density function (PDF)

g(x|µ, σ) :=
1
σϕ
(
(x− µ)/σ

)
Φ
(
µ/σ

) , if x ≥ 0, and g(x|µ, σ) := 0, otherwise,

where ϕ and Φ are the PDF and the cumulative distribution function (CDF) of the standard normal

distribution, respectively. The predictive distribution of the EMOS model proposed by Thorarinsdottir &

Gneiting (2010) is

N0

(
a0 + a1f1 + · · ·+ aKfK , b0 + b1S

2
)

with S2 :=
1

K−1

K∑
k=1

(
fk − f

)2
, (3.1)

where f1, f2, . . . , fK denote the ensemble of distinguishable forecasts of wind speed for a given location

and time, and f is the ensemble mean. Location parameters a0, a1, . . . , aK ∈ R and scale parameters

b0 ∈ R, b1 ≥ 0 of model (3.1) can be estimated from the training data, consisting of ensemble members

and verifying observations from the preceding n days, by optimizing an appropriate verification score, see

Section 3.3.
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However, most operational EPSs generate forecasts using random perturbations of the initial conditions

resulting in statistically indistinguishable ensemble members which are referred to as exchangeable. Exam-

ples include the 51-member ECMWF ensemble, as well as sub-ensembles of forecasts from single models that

form groups of exchangeable members within multi-model EPSs such as the THORPEX Interactive Grand

Global Ensemble (Swinbank et al., 2016) or the GLAMEPS ensemble (Iversen et al., 2011). To account for

the generation of the forecasts, ensemble members within a given group of exchangeable members should

share the same coefficients in the post-processing model (Fraley et al., 2010; Gneiting, 2014).

To formalize this notion, a generalized formulation of model (3.1) for the case of M ensemble members

divided into K groups, where the kth group contains Mk ≥ 1 exchangeable ensemble members

(
∑K
k=1Mk = M) introduced in Baran & Lerch (2015) is given by

N0

(
a0 + a1

M1∑
`1=1

f1,`1 + · · ·+ aK

MK∑
`K=1

fK,`K , b0 + b1S
2

)
.

Analogous concepts apply to all EMOS models discussed in the subsequent sections.

3.1.2. Log-normal EMOS model

As an alternative to the TN EMOS model, Baran & Lerch (2015) introduce an EMOS approach based

on log-normal forecast distributions where the mean m and variance v of the predictive distribution are

linked to the ensemble members as

m = α0 + α1f1 + · · ·+ αKfK and v = β0 + β1S
2. (3.2)

These quantities uniquely determine the location µ and shape σ > 0 of the underlying LN distribution

LN
(
µ, σ

)
with PDF

h(x|µ, σ) :=
1

xσ
ϕ
(
(log x− µ)/σ

)
, if x ≥ 0, and h(x|µ, σ) := 0, otherwise,

via transformations

µ = log

(
m2

√
v +m2

)
and σ =

√
log
(

1 +
v

m2

)
.

Similar to the TN EMOS model, estimates of parameters α0, α1, . . . , αK ∈ R and β0 ∈ R, β1 ≥ 0 are

obtained by optimizing the mean of an appropriate verification score over all forecast cases in the training

data.

3.1.3. Combination and mixture models

The TN and LN models described above model the conditional distribution of wind speed given the

ensemble predictions with a single parametric forecast distribution. This approach relies on the choice of a

suitable parametric family, and limits the flexibility of the model. For instance, it can be demonstrated that
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the heavier tails of the LN model are more appropriate for modeling higher wind speeds in the right tail of

the distribution, whereas the TN model is more appropriate for the bulk of the distribution, see Baran &

Lerch (2016) for details.

Therefore, different combination and mixture models have been proposed in the literature. In the regime-

switching combination approach (Lerch & Thorarinsdottir, 2013; Baran & Lerch, 2015) one of the candidate

models is selected based on covariate information with suitably adapted parameter estimation procedures.

For example, a TN model can be used if the median ensemble forecast is below a threshold η, and an

LN model is used in case of median ensemble forecasts exceeding this threshold. Such combination models

have been demonstrated to improve the predictive performance compared to the individual models, however,

they require the choice of a suitable covariate, and the threshold parameter η has to be determined by

repeating the model estimation over a grid of potential values, thereby limiting the flexibility and increasing

the computational cost of such approaches.

In order to flexibly combine the advantages of lighter and heavier-tailed distributions and to avoid these

problems in the process, Baran & Lerch (2016) propose a mixture model of the form

ψ(x|µTN , σTN ;µLN , σLN ;ω) := ωg(x|µTN , σTN ) + (1− ω)h(x|µLN , σLN ), (3.3)

where the parameters of the component distributions g and h depend on the ensemble forecasts as

specified in (3.1) and (3.2). The EMOS coefficients and the weight ω ∈ [0, 1] of the mixture model (3.3)

are estimated jointly using optimum score approaches. This mixture model approach results in significantly

improved calibration (Baran & Lerch, 2016), however, it is computationally demanding and hinders using

standard optimum score estimation based on the continuous ranked probability score due to the lack of an

analytic expression of the objective function, see Section 3.3 for details. Similar mixture models where the

different component distributions focus on specific regions of interest such as the bulk and the tail above a

threshold value have been tested, but models based on truncated normal and generalized Pareto distributions

result in worse predictive performance, see Baran & Lerch (2016).

In contrast to the joint estimation of all parameters in (3.3), the forecast combination approaches intro-

duced in Section 4 are two-step procedures where in a first step, EMOS models based on a single parametric

family are estimated, and in a second step, these models are combined as a weighted mixture by estimating

an appropriate weight. In Section 5 the full mixture model (3.3) is used as a benchmark, whereas the

regime-switching combination approach will not be considered any further.

3.2. EMOS models for precipitation

The discrete-continuous nature of precipitation accumulation requires a non-negative predictive distribu-

tion assigning positive mass to the event of zero precipitation. A popular choice is to consider a continuous

distribution that can take both positive and negative values and left-censor it at zero (Scheuerer, 2014;
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Scheuerer & Hamill, 2015; Baran & Nemoda, 2016), which thereby assigns the mass of negative values to

zero precipitation accumulation.

3.2.1. Censored and shifted gamma EMOS model

Let G(·|κ, θ) denote the CDF of the Γ(κ, θ) distribution with shape κ > 0 and scale θ > 0 and

let δ > 0. Then the CDF of the shifted gamma distribution left censored at zero (CSG) Γ0(κ, θ, δ) with

shape κ, scale θ and shift δ is given by

G0(x|κ, θ, δ) := G(x+ δ|κ, θ), if x ≥ 0, and G0(x|κ, θ, δ) := 0, otherwise, (3.4)

that is, mass G(δ|κ, θ) is assigned to the origin. In the CSG EMOS approach of Baran & Nemoda (2016)

the mean m = κθ and variance σ2 = κθ2 of the uncensored gamma distribution Γ(κ, θ) are affine

functions of the ensemble and ensemble mean, respectively, that is

m = a0 + a1f1 + · · ·+ aKfK and σ2 = b0 + b1f. (3.5)

3.2.2. Censored generalized extreme value EMOS model

The CDF of a GEV distribution GEV
(
µ, σ, ξ

)
with location µ, scale σ > 0 and shape ξ equals

H(x|µ, σ, ξ) :=

exp
(
−
[
1 + ξ(x−µσ )

]−1/ξ
)
, ξ 6= 0;

exp
(
− exp

(
− x−µ

σ

))
, ξ = 0,

if 1 + ξ(x− µ)/σ > 0,

and zero otherwise, which for −0.278 < ξ < 1 has a positive skewness and an existing mean

m =

µ+ σ Γ(1−ξ)−1
ξ , ξ 6= 0;

µ+ σγ, ξ = 0,

where γ denotes the Euler-Mascheroni constant.

The EMOS model for precipitation accumulation proposed by Scheuerer (2014) is based on a censored

GEV distribution GEV0

(
µ, σ, ξ

)
with CDF

H0(x|µ, σ, ξ) = H(x|µ, σ, ξ), if x ≥ 0, and H0(x|µ, σ, ξ) := 0, otherwise, (3.6)

where

m = α0 + α1f1 + · · ·+ αKfK + νp0 and σ = β0 + β1 MD(f), (3.7)

with

p0 :=
1

K

K∑
k=1

1{fk=0} and MD(f) :=
1

K2

K∑
k,`=1

∣∣fk − f`∣∣,
where 1A denotes the indicator function of the set A.
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3.2.3. Mixture models

Similar to wind speed, general mixture models with CSG and GEV component distributions of the form

%(x|κ, θ, δ;µ, σ, ξ;ω) := ωg0(x|κ, θ, δ) + (1− ω)h0(x|µ, σ, ξ), (3.8)

can be formulated, where g0(·|κ, θ, δ) and h0(·|µ, σ, ξ) denote the generalized PDFs of the CSG and

censored GEV distributions, respectively, and the dependence of parameters κ, θ and µ, σ on the ensemble

is given by (3.5) and (3.7).

However, joint optimum score estimation of the parameters is more involved than in the case of the TN-

LN mixture model (3.3) for wind speed due to the larger number of parameters and the discrete-continuous

nature of the forecast distribution %. As initial tests with the precipitation data sets introduced in Section

2 indicated problematic behavior of the numerical optimization algorithms potentially caused by the non-

smooth dependence of the objective functions on the parameters, we do not pursue this approach any

further and only consider the forecast combination approaches introduced in Section 4. Compared to jointly

estimating all parameters, these methods separate the estimation into two steps and thereby result in more

stable optimization problems.

3.3. Forecast evaluation and parameter estimation

In probabilistic forecasting the general aim is to maximize the sharpness of the predictive distribution

subject to calibration (Gneiting et al., 2007). Calibration refers to the statistical consistency between

the forecast and the observation, and given that the predictive distribution is calibrated, it should be as

concentrated (or sharp) as possible. Calibration and sharpness can be assessed simultaneously with the help

of proper scoring rules.

Proper scoring rules are loss functions that assign a numerical value to pairs of forecasts and observations.

In the atmospheric sciences the most popular scoring rules are the continuous ranked probability score

(CRPS; Matheson & Winkler, 1976; Gneiting & Raftery, 2007) and the logarithmic score (LogS; Good,

1952). Given a predictive CDF F (y) and an observation x, the CRPS is defined as

CRPS
(
F, x

)
:=

∫ ∞
−∞

(
F (y)− 1{y≥x}

)2
dy (3.9)

=

∫ x

−∞
F 2(y)dy +

∫ ∞
x

(
1− F (y)

)2
dy

= E|X − x| − 1

2
E|X −X ′|,

where X and X ′ are independent random variables with CDF F and finite first moment. The

last representation in (3.9) implies that the CRPS can be expressed in the same unit as the observation.

The logarithmic score is the negative logarithm of the predictive density f(y) evaluated at the verifying

observation, i.e.,

LogS(F, x) := − log(f(x)).
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Both CRPS and LogS are proper scoring rules (Gneiting & Raftery, 2007) which are negatively oriented,

that is, smaller scores indicate better forecasts.

Proper scoring rules provide valuable tools for the estimation of model parameters. Following the general

optimum score estimation approach of Gneiting & Raftery (2007), the parameters of a predictive distribution

can be determined by optimizing the average value of a proper scoring rule as a function of the parameters

over a suitably chosen training set. Optimum score estimation based on minimizing the LogS then corre-

sponds to classical maximum likelihood (ML) estimation. If closed form expressions of the integral in (3.9)

are available, minimum CRPS estimation, i.e. optimum score estimation based on minimizing the mean

CRPS, often provides a valuable, more robust alternative to ML estimation (see e.g. Gneiting et al., 2005).

Analytic expressions of the CRPS are available for all individual EMOS models for wind speed and pre-

cipitation introduced in Sections 3.1 and 3.2, thereby allowing for efficient parameter estimation procedures

by minimizing the mean CRPS over the forecast cases in the training periods. The closed form solutions are

provided in the corresponding articles (Thorarinsdottir & Gneiting, 2010; Baran & Lerch, 2015; Scheuerer,

2014; Scheuerer & Hamill, 2015). Implementations for the statistical programming language R (R Core

Team, 2017) are for example available in the scoringRules package (Jordan et al., 2017). The parameter

estimation for the EMOS models is performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm (Press et al., 2007, Section 10.9) implemented in the optim function in R. In the case of precipitation

we use a constrained version of the BFGS algorithm to ensure positivity of the EMOS coefficients. See

Section 5 for details on the selection of the training sets over which the parameters are estimated.

By contrast, the CRPS is not available in closed form for the mixture models (3.3) and (3.8), or any of the

forecast combination models introduced in Section 4. Therefore, each step of the optimization procedure

requires numerical integration resulting in high computational costs. In case of the mixture model (3.3)

for wind speed, we instead use ML estimation of the parameters. The forecast combination approaches

introduced below partly alleviate this issue by separating the parameter estimation into two steps rather

than estimating all parameters jointly.

4. Forecast combination methods and application to statistical post-processing

We now describe state of the art methods for combining predictive distributions, which we will employ in

a post-processing context. The combination approaches constitute two-step methods. The first step is given

by the estimation of component models in the form of EMOS models based on suitable single parametric

families. In a second step, the component models are combined by estimating the mixture weight and

possibly more combination parameters. Compared to the previously discussed mixture model (3.3), the

two-step approaches reduce the dimensionality of the optimization problem. Further, the combination

approaches can be flexibly applied to any weather variable of interest given that suitable component models
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are available, the model formulation is thus given in a general form.

Let G(x|f ; ν) and H(x|f ; θ) be predictive CDFs belonging to two different families of distributions

depending on the ensemble f via parameter vectors ν and θ, respectively. The EMOS models intro-

duced in Sections 3.1 and 3.2 are later used as component distributions for wind speed and precipitation,

respectively.

4.1. Linear pool and spread-adjusted linear pool

We start by introducing the linear and spread-adjusted linear pool of forecast distributions which have

been applied to post-processing ensemble forecasts by Möller & Groß (2016). The classical linear pool (LP)

employs a mixture model with a predictive CDF of the general form

FLP(x|f ; ν, θ, ω) := ωG(x|f ; ν) + (1− ω)H(x|f ; θ), ω ∈ [0, 1]. (4.1)

As a special case we also consider the equally weighted linear pool (EWLP) for which we simply set

ω = 1/2. Since this combination approach is virtually free of computational costs, it can serve as a

convenient benchmark.

As demonstrated by Gneiting & Ranjan (2013), linear pooling of predictive distributions increases the

dispersion of the forecasts. They propose spread-adjusted and beta-transformed linear pooling approaches

that allow to correct for this deficiency. The spread-adjusted linear pool (SLP) results in a predictive

distribution

F SLP(x|f ; ν, θ, ω) := ωG
(x
c

∣∣f ; ν
)

+ (1− ω)H
(x
c

∣∣f ; θ
)
, ω ∈ [0, 1] (4.2)

with spread adjustment parameter c > 0. The linear pool is obtained for c = 1.

As noted by Gneiting & Ranjan (2013), the forecasts of the Bayesian model averaging approach of

Raftery et al. (2005) take a similar functional form, but differ in that the combination parameters and the

parameters of the individual component distributions are estimated simultaneously. Further, the forecast

distributions of the mixture components in the BMA approach depend on a single ensemble member only,

whereas the EMOS predictive distributions used here depend on the entire ensemble through suitable link

functions with coefficients ν, θ.

The weight ω ∈ [0, 1] and the spread adjustment parameter c > 0 have to be estimated from

past forecast cases. Note that these need to be training samples where post-processed forecast distribu-

tions are available. Möller & Groß (2016) suggest to choose sets of candidate parameter values, e.g. ω ∈

{0, 0.05, . . . , 0.95, 1} and c ∈ {0.7, 0.75, . . . , 1.25, 1.3}, and to apply the combination formulas (4.1) and

(4.2) for all possible parameter combinations in order to select those parameter values corresponding to the

lowest mean CRPS in the training sample. The CRPS of the forecast distributions is thereby computed

using numerical integration. However, as tests indicated improvements in the predictive performance and

lower computational costs, we instead determine the optimal parameter values by numerical optimization
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with the CRPS as a target functional. To allow for a direct comparison with the component models, we use

forecast-observation pairs from the same training sets that were used to estimate the EMOS coefficients.

Various alternative approaches to estimate the combination weight in case of the linear pool have been pro-

posed in the literature, including approaches based on other scoring rules such as the LogS (Hall & Mitchell,

2007) or weighted scoring rules (Opschoor et al., 2017), as well as Bayesian approaches (Billio et al., 2013;

Del Negro et al, 2016).

4.1.1. A plug-in variant of the linear pool for post-processing applications

In the following we propose a simple plug-in variant to determine the weight parameter in the linear pool

that only requires a single numerical integration step rather than repeated numerical integration during the

optimization procedure. In tables and figures of Section 5, this approach is abbreviated by LP-PI.

Let G(x|f ; ν) and H(x|f ; θ) be predictive CDFs as above, and let (xk,fk), k = 1, 2, . . . , n, denote

the pairs of verifying observations and ensemble forecasts in the training data. The basic idea of the proposed

plug-in variant of the linear pool is to utilize the current EMOS parameters estimated for day n+ τ where

τ is the forecast horizon to compute the parameters of the corresponding component distributions over

the entire training sample. In contrast to utilizing the respective EMOS coefficient vectors (νk) and (θk)

for k = 1, 2, . . . , n, this reduces the number of required numerical integrations at the cost of not using the

specific parameter values estimated for those days in the training period. Since no spread adjustment is

applied, this approach shares the deficiencies of the standard linear pool described above.

As before, consider a linear pool mixture model with predictive CDF

FLP(x|f ; ν, θ, ω) := ωG(x|f ; ν) + (1− ω)H(x|f ; θ), ω ∈ [0, 1]. (4.3)

Short calculation based on the integral representation in the second line of (3.9) shows

CRPS
(
FLP(·|f ; ν, θ, ω), x

)
= ω2 CRPS

(
G(·|f ; ν), x

)
+ (1− ω)2 CRPS

(
H(·|f ; θ), x

)
+ 2ω(1− ω)

[∫ x

−∞
G(y|f ; ν)H(y|f ; θ)dy +

∫ ∞
x

(
1−G(y|f ; ν)

)(
1−H(y|f ; θ)

)
dy

]
.

Let ν◦ and θ◦ denote the optimal parameters of the individual models in the training set estimated

in the first step for day n+ τ , that is

ν◦ := arg min
ν

CRPS(G, ν) and θ◦ := arg min
θ

CRPS(H, θ),

where

CRPS(G, ν) :=
1

n

n∑
k=1

CRPS
(
G(·|fk; ν), xk

)
, CRPS(H, θ) :=

1

n

n∑
k=1

CRPS
(
H(·|fk; θ), xk

)
.
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We propose to use ν◦ and θ◦ as parameters of the mixture model (4.3) and then, in the modified

second step, to optimize

CRPS(FLP, ω) :=
1

n

n∑
i=1

CRPS
(
FLP(·|fk; ν◦, θ◦, ω), xk

)
as a function of ω. The minimum point of CRPS(FLP, ω) is

ω∗◦ =
CRPS(H, θ◦)−M(G,H, ν◦, θ◦)

CRPS(G, ν◦) + CRPS(H, θ◦)− 2M(G,H, ν◦, θ◦)
,

where

M(G,H, ν, θ) :=
1

n

n∑
k=1

[∫ xk

−∞
G(y|fk; ν)H(y|fk; θ)dy+

∫ ∞
xk

(
1−G(y|fk; ν)

)(
1−H(y|fk; θ)

)
dy

]
,

and short calculation shows

ω∗◦ =

∑n
k=1

∫∞
−∞H(y|fk; θ◦)

(
H(y|fk; θ◦)−G(y|fk; ν◦)

)
dy∑n

k=1

∫∞
−∞

(
H(y|fk; θ◦)−G(y|fk; ν◦)

)2
dy

−
∑n
k=1

∫∞
xk

(
H(y|fk; θ◦)−G(y|fk; ν◦)

)
dy∑n

k=1

∫∞
−∞

(
H(y|fk; θ◦)−G(y|fk; ν◦)

)2
dy
.

Now, as ω∗◦ might fall outside the unit interval [0, 1], we use

ω◦ := min
{

max {0, ω∗◦}, 1
}

as our final estimate of the weight. Finally, one can easily show that within the training sample

CRPS(FLP, ω◦) ≤ min
{

CRPS(G, ν◦),CRPS(H, θ◦)
}
, (4.4)

so the mean CRPS of the mixture model (4.3) with parameters (ν◦, θ◦, ω◦) cannot exceed the optimal

mean CRPS values of the components. However, (4.4) of course gives no guarantee that for a new out-of-

sample pair (x̃, f̃) the CRPS of the mixture CRPS
(
FLP(·| f̃ ; ν◦, θ◦, ω◦), x̃

)
does not exceed any of the

corresponding individual CRPS values.

The above method can be generalized to a convex combination of r different parametric families.

However, in this case the optimal weight vector is a coordinate-wise non-negative solution of a quadratic

optimization problem with a single linear constraint, where the main diagonal of the corresponding r × r

symmetric matrix consists of the mean CRPS values of the component models, whereas the other entries,

which are similar to M(G,H, ν, θ), can be expressed via integrals.

4.2. Beta-transformed linear pool

As an alternative to the spread-adjusted linear pool that allows for correcting for the lack of dispersion of

the linear pool, Gneiting & Ranjan (2013) propose the beta-transformed linear pool (BLP) with predictive

CDF

FBLP(x|f ; ν, θ, ω) := Bα,β (ωG(x|f ; ν) + (1− ω)H(x|f ; θ)) , ω ∈ [0, 1]. (4.5)
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Here, Bα,β denotes the CDF of the beta distribution with parameters α > 0 and β > 0.

Similar to the linear and spread-adjusted linear pool, the combination parameters α, β, ω have to

be estimated from suitably chosen training data. We proceed as before and estimate the parameters by

numerically optimizing the mean CRPS over the forecast cases that coincide with the training period used

to determine the coefficients of the EMOS models. Note that the representation in the second line of equation

(3.9) with lower bound 0 is beneficial to avoid numerical issues when computing the CRPS using numerical

integration, particularly for precipitation forecasts.

4.3. Bayesian non-parametric combination approach

Bassetti et al. (2017) recently proposed an extension of the BLP approach. Motivated by results on

mixture distributions from theoretical statistics, they propose a forecast aggregation method based on a

mixture of beta distributions. In case of a finite mixture with L components, the resulting predictive CDF

is

FBML(x|f ; ν, θ, ω) :=

L∑
`=1

w`Bα`,β`
(ωG(x|f ; ν) + (1− ω)H(x|f ; θ)) , ω ∈ [0, 1], (4.6)

where α` > 0, β` > 0, w` ≥ 0, ` = 1, 2, . . . , L, are the parameters of the beta mixture components. The

BLP approach in (4.5) arises as a special case for L = 1.

As the number L of components is usually unknown, Bassetti et al. (2017) propose a Bayesian inference

approach that allows to treat L as unbounded and random. This infinite beta mixture approach, referred

to as BMC approach in the following, has CDF

FBM∞(x|f ; ν, θ, ω) :=

∞∑
`=1

w`Bα`,β`
(ωG(x|f ; ν) + (1− ω)H(x|f ; θ)) , ω ∈ [0, 1]. (4.7)

Based on the slice sampling algorithm of Walker (2007) and Kalli et al. (2011) for infinite mixtures,

Bassetti et al. (2017) give an algorithm that results in samples from mixture parameters α`, β`, w` and ω,

allowing to generate draws from the predictive distribution (4.7). Note that the algorithm in fact deals with

finite mixtures, however, the number of components may differ from draw to draw. In order to obtain an

estimate of a verification score for a given location and time, we average over the predictive CDFs obtained

through iterations of the algorithm and compute the score for the mean CDF by discrete approximation of

the first integral of (3.9) over a dense grid. Note that this approach is in line with theoretical considerations

on forecast evaluation based on simulation output discussed in Krüger et al. (2016).

In a case study based on wind speed data from a single observation station in Bassetti et al. (2017),

the BMC method shows very promising results and substantially outperforms the linear pool. Here, we

apply the BMC method to larger data sets of ensemble forecasts of wind speed and precipitation at multiple

stations. Due to the point mass at zero precipitation in the forecast distributions, some minor adjustments

of the sampling algorithm described in Bassetti et al. (2017) are required. Specifically, in steps 4 and 5 of the
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Gibbs sampling algorithm described in Section S1.2 of the supplementary materials of Bassetti et al. (2017),

in case of zero observed precipitation, random values from the intervals between zero and the corresponding

probabilities of no precipitation are chosen as values of the component CSG and GEV predictive CDFs. We

found that without this adjustment, the marginal predictive CDF generally underestimates precipitation

accumulation substantially. The value of the resulting CDF at 0, i.e., FBM∞(0|f ; ν, θ, ω), is approximated

by linear interpolation of the values at the first two grid points.

5. Case studies

Here, we report the results of four case studies for the wind speed and precipitation data sets introduced

in Section 2. Note that BMC results for each forecast case are based on the forecast distribution given by the

mean of 50 predictive CDFs obtained from the post burn-in iterations of the sampling algorithm described

in Bassetti et al. (2017).

5.1. Wind speed

The post-processing models introduced in Section 3 are estimated using the optimum score estimation

approach described in Section 3.3. The TN and LN component models are estimated by minimizing the

mean CRPS over the training sets, whereas ML estimation is employed for the full mixture model (3.3). We

remark that ML estimation has also been tested for the TN and LN EMOS models, however this approach

results in slightly worse predictive performance. Following previous work (Baran & Lerch, 2015, 2016), we

use rolling training periods of length 30 days (UWME data) and 43 days (ALADIN-HUNEPS data), and

estimate the parameters regionally by combining forecast cases from all available observation stations to

form a single training set for all stations. Note that alternative similarity-based semilocal approaches to

selecting the training sets have been investigated in Lerch & Baran (2017).

Given the estimated coefficients of the component models, the combination parameters in the two-step

combination approaches are estimated over the corresponding rolling training periods as described in Section

4. For the UWME data, forecast cases from calendar year 2007 were also used to obtain training periods

of equal length for all models which are validated on the data of calendar year 2008. For the ALADIN-

HUNEPS data, the first 43 days are not included in the evaluation period (that ranges from 27 June 2012

to 31 March 2013) in order to compare all models over equal training periods.

Figure 3 graphically illustrates the resulting combination parameters for the LP, LP-PI, SLP and BLP

methods. Here, the BMC method is excluded as the parameters vary over the random draws of the algorithm

and do not allow for a straightforward summary. For both data sets, the estimated weight parameters are

generally very similar for all methods, with minor deviations for the LP-PI and BLP approaches. The

spread-adjustment parameter c in the SLP method does not vary much over time, whereas the α, β

parameters in the BLP approach fluctuate much more rapidly.
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Figure 3: Illustration of mixture weights and other combination parameters for the LP, LP-PI, SLP and BLP combination

methods over the corresponding verification periods for both wind speed data sets.
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Table 1: Mean CRPS for probabilistic wind speed forecasts of the raw ensemble, the TN, LN and TN-LN (ML) EMOS models,

and the forecast combination approaches.

Forecast UWME ALADIN-HUNEPS

Ensemble 1.353 0.804

TN 1.114 0.735

LN 1.113 0.740

TN-LN (ML) 1.100 0.731

EWLP 1.111 0.734

LP 1.111 0.735

LP-PI 1.111 0.735

SLP 1.111 0.737

BLP 1.110 0.738

BMC 1.106 0.738

Table 1 shows the mean CRPS values for all post-processing models and combination approaches for both

data sets. All post-processing and combination methods substantially improve the raw ensemble forecasts.

Among the post-processing models, the full TN-LN mixture model performs best, and the ranking of the

TN and LN model depends on the data set at hand. For the UWME data, forecast combination methods

outperform the individual TN and LN component models, but are unable to compete with the TN-LN

mixture model. The relative differences between the combination approaches are small, with the BLP and

BMC approaches showing slightly better results. By contrast, only the EWLP combination method is able

to perform a bit better than the TN EMOS model for the ALADIN-HUNEPS data, and the SLP, BLP and

BMC approaches result in slightly worse forecasts. Note that the BLP and SLP methods result in worse

forecasts compared to the LP approach even though the latter arises as a special case for α = β = 1 and

c = 1. A potential explanation for these observations is the danger of over-fitting in choosing the optimal

combination parameter values in the training sample that might not be optimal for the corresponding out

of sample evaluation set. Further, the ALADIN-HUNEPS data set is comprised of only 10 observation

stations. The training sets thus contain fewer forecast cases compared to the UWME data which might

favor combination methods with a lower number of parameters.

To assess the statistical significance of difference between the verification scores we utilize the Diebold-

Mariano (DM; Diebold & Mariano, 1995) test which allows to account for the temporal dependencies in

the forecast errors. For a pair of forecast methods F1, F2, denote the vector of CRPS differences by

(d1, d2, . . . , dn), with

di(F1, F2) = CRPS(F
(i)
1 , xi)− CRPS(F

(i)
2 , xi),
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Figure 4: Summary DM test results for both (a) wind speed and (b) precipitation data sets and all pair-wise comparisons of

forecasts. In both plots, the upper triangle contains results for the UWME data, and the lower triangle contains results for

the ALADIN-HUNEPS data. The entry in row i and column j contains the value of the DM test statistic tn for comparisons

of F1 and F2, where F1 is the forecast of the model in the i-th row, and F2 is the forecast of the model in the j-th column,

color-coded so that green (red) entries indicate superior performance of the model in the corresponding row (column).

where F
(i)
j denotes the forecast distribution Fj , j = 1, 2, for forecast case i = 1, 2, . . . , n in the evaluation

set, and xi denotes the corresponding observation.

DM tests are formal statistical tests of equal predictive performance based on the test statistic

tn =
√
n
d̄

σ̂d
,

where d̄ = 1
n

∑n
i=1 di and σ̂d is an estimator of the asymptotic variance of the score difference. Under

standard regularity conditions, tn is asymptotically standard normal under the null hypothesis of equal

predictive performance of F1 and F2. Negative values of tn indicate superior predictive performance of

F1, and F2 is preferred if tn is positive. As an estimator σ̂2
d , we use the sample autocovariance up to

lag τ − 1 in case of τ step ahead forecasts, see Baran & Lerch (2016) for details.

Figure 4(a) graphically summarizes the results of the pairwise DM tests for wind speed. For the UWME

data illustrated in the upper triangle the tests reveal a high level of significance of the score differences

between the component models and the forecast combination approaches. Similar results can be observed

for the ALADIN-HUNEPS data (lower triangle), where, however, the differences between the component

and combined models are generally smaller and less significant. Significant score differences can be observed

between BLP and the approaches based on the linear pool. Evaluation of the different post-processing

approaches using the mean logarithmic score results in a similar picture, we thus do not report the cor-
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Figure 5: Verification rank histogram of raw ensemble forecasts and PIT histograms for post-processed and combined forecast

distributions for the UWME data.
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responding values. A notable difference is that the TN-LN mixture model shows the worst predictive

performance for the ALADIN-HUNEPS data. However, note that using the logarithmic score generally

results in less significant score differences compared to the CRPS.

The improved predictive performance of the forecast combination approaches compared to the individual

EMOS models based on single parametric distributions can be partially explained by the improved calibration

of the predictive distributions that will be demonstrated in the following. Calibration of the raw ensemble

and the post-processed forecasts can be assessed graphically with the help of verification rank and probability

integral transform (PIT) histograms, respectively. The former is the histogram of ranks of the validating

observations with respect to the corresponding ensemble predictions computed for all forecast cases (see e.g.

Wilks, 2011, Section 7.7.2). For a calibrated ensemble, the observations and the ensemble forecasts should

be exchangeable, resulting in a uniform verification rank histogram. The PIT is the value of the predictive

CDF evaluated at the verifying observation (Raftery et al., 2005), PIT histograms can therefore be seen as

continuous counterparts of verification rank histograms. The visual inspection of deviations from the desired

uniform distribution of the verification ranks and PIT values allows to further detect possible reasons of

miscalibration (Gneiting et al., 2007).

A verification rank histogram of the raw ensemble forecast and PIT histograms of the post-processed and

combined forecast distributions for the UWME data are shown in Figure 5. Note that for the BMC forecasts

PIT values are calculated for all 50 predictive CDFs of a given forecast case. Compared to the U-shaped

verification rank histogram of the underdispersive raw ensemble forecasts where the observation takes too

many high and low ranks, all post-processing approaches are better calibrated which is indicated by smaller

deviations from the desired uniform distribution of the PIT values. The calibration of the individual TN

and LN component models is not perfect, with the TN model showing systematic over-predictions of high

wind speeds, and the LN model over-predicting low wind speed values. By contrast, all forecast combination

approaches are able to correct for these deficiencies and are well calibrated, similar to the full TN-LN mixture

model. The differences in calibration among the combination methods are small, as the PIT histograms

are virtually indistinguishable. The results for the ALADIN-HUNEPS data are qualitatively similar, the

corresponding Figure A.8 is shown in Appendix A.

5.2. Precipitation

Similar to wind speed, the post-processing models introduced in Section 3 are estimated using optimum

score estimation approaches. We again report the results corresponding to CSG and GEV EMOS parameters

minimizing the mean CRPS over the training data, as ML estimation of parameters in general yields models

with slightly poorer forecast skills. The coefficients of the EMOS models (3.4) and (3.6) based on single

CSG and GEV distributions are obtained using rolling training periods of lengths 70 (UWME) and 55 days

(ALADIN-HUNEPS), which ensures comparability with Baran & Nemoda (2016).

21



UWME

(a) combination weight (b) further parameters

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Day in evaluation set

W
ei

gh
t o

f C
S

G
 c

om
po

ne
nt

LP
LP−PI

SLP
BLP

0 50 100 150 200 250 300

0.
8

1.
0

1.
2

1.
4

1.
6

Day in evaluation set

P
ar

am
et

er
 v

al
ue

c (SLP) α (BLP)
β

ALADIN-HUNEPS

(c) combination weight (d) further parameters

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Day in evaluation set

W
ei

gh
t o

f C
S

G
 c

om
po

ne
nt

LP
LP−PI

SLP
BLP

0 10 20 30 40 50 60

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Day in evaluation set

P
ar

am
et

er
 v

al
ue

c (SLP)
α (BLP)
β

Figure 6: Illustration of mixture weights and other combination parameters for the LP, LP-PI, SLP and BLP combination

methods over the corresponding verification periods for both precipitation data sets.
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Table 2: Mean CRPS for probabilistic precipitation accumulation forecasts of the raw ensemble, the CSG and GEV EMOS

models, and the forecast combination approaches.

Forecast UWME ALADIN-HUNEPS

Ensemble 2.884 0.269

CSG 2.198 0.258

GEV 2.227 0.264

EWLP 2.188 0.261

LP 2.189 0.259

LP-PI 2.189 0.262

SLP 2.190 0.263

BLP 2.184 0.261

BMC 2.288 0.267

Given the estimated coefficients of the CSG and GEV component models, the parameters of the two-step

combination approaches are estimated as described for wind speed. For the UWME data, forecast cases

from calendar year 2007 are again used to obtain training periods of equal length for all models, whereas

the first 55 days are excluded from the evaluation period of the ALADIN-HUNEPS data. In this way

UWME forecasts are again validated on data from calendar year 2008, whereas the verification period for

ALADIN-HUNEPS precipitation forecasts is 21 January – 25 March 2011.

The estimates of the combination parameters over the evaluation period are shown in Figure 6. The

mixture weights of the LP, LP-PI, SLP and BLP approaches exhibit relatively similar developments over

time, and the spread-adjustment parameter c shows slightly higher variability compared to the wind speed

forecasts.

Mean CRPS values for all post-processing models and forecast combination methods for both data sets

are shown in Table 2. Compared to wind speed, the relative improvements of both EMOS models over

the raw ensemble forecasts are smaller, particularly for the ALADIN-HUNEPS data. This observation is

in line with various comparative studies of post-processing models for different variables (see for example

Hemri et al., 2014). The CSG model outperforms the GEV model, and in case of the UWME data, the

predictive performance is further improved by combining the forecasts via the EWLP, LP, LP-PI, SLP and

BLP approaches which show small relative differences. In light of the larger relative score differences in

favor of the CSG method it is worth noting that the estimated mixture weights of the CSG component in

these combination approaches are between 0.3 and 0.7 for a large number of forecast cases, see Figure 6.

As observed for wind speed, none of the combination methods is able to outperform the best component

model for the ALADIN-HUNEPS data. Forecasts produced by the BMC method are worse than both
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component models for both data sets and only marginally better than the raw ensemble forecasts in case

of the ALADIN-HUNEPS data. These results call for an extension of the methodology towards forecast

distributions with point masses beyond the provisional adaptation described in Section 4.3.

The statistical significance of the observed score differences is again assessed DM tests with the setup

described above. The results are summarized in Figure 4(b). For the ALADIN-HUNEPS data none of

the score differences show a high level of significance. For the UWME data, the differences between the

individual post-processing models and the forecast combination approaches are more pronounced. The

score differences between the EWLP, LP, LP-PI, SLP and BLP approaches are not significant, however, as

expected the BMC forecasts perform substantially worse compared to all alternatives for both data sets.

For the UWME forecasts evaluation of the competing post-processing approaches using the mean loga-

rithmic scores (not reported) results in a similar ranking as the order with respect to the mean CRPS. In

case of ALADIN-HUNEPS data the relative predictive performances are somewhat different, which might

be explained by the differences how CRPS and logarithmic score penalize forecast errors and the smaller

number of forecast cases in the verification period.

In contrast to the wind speed forecast discussed above, the EMOS models for precipitation accumulation

provide relatively well calibrated forecasts for both data sets, and the forecast combination methods only

result in slightly improved calibration. The corresponding verification rank and PIT histograms are provided

in Figures A.9 and A.10 in Appendix A.

5.3. Computational aspects

An important aspect of the empirical comparison of forecast combination approaches are the computa-

tional costs associated with increasingly complex combination methods. Clearly, any estimation of additional

combination parameters will necessarily add computational cost compared to the component models.

Figure 7 graphically summarizes the distribution of computation times over days in the evaluation periods

of all forecast combination approaches. The computation times of the EWLP approach correspond to the

sum of the corresponding computation times required for estimating the parameters of the two component

models. The computation times of all other combination approaches are the sum of these and the additional

time required for determining the combination parameters. All computation times are obtained using a

standard laptop with an Intel Core i7-4700 MQ (4 × 2.40 GHz) CPU and 20 GB RAM. Importantly, note

that the results for the BMC are not directly comparable as they were obtained in Matlab (version 2016a)

under Windows 10, whereas all other computation times were recorded in R (version 3.4.1) under Linux

Fedora 26.

Generally, the BLP approach results in the highest computational costs, followed by the BMC, SLP and

LP methods. For wind speed, all these approaches show higher computation times than the TN-LN mixture

model, whereas the proposed plug-in variant of the linear pool only has marginally higher computation times
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Figure 7: Distribution of computation times over days in the verification period for the different forecast combination approaches

and the four data sets. Median computation times for the different models are shown above the labels on the horizontal axis.
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than the sum of the component models. In light of the results presented in the previous subsections, the

higher computational costs of the more complex methods are not necessarily justified by better predictive

performance.

However, note that all computation times reported here are negligible compared to the computational

costs of generating the ensemble forecasts (UWME, 2011).

6. Conclusions

We have investigated the feasibility of using forecast combination approaches to improve the predictive

performance of statistical post-processing models based on single parametric families. In general, the results

strongly depend on the data set at hand, and forecast combination may either provide slight improvements,

or even result in worse forecasts compared to the best mixture component. The relative improvements

obtained through forecast combination are larger in the case of wind speed where the PIT histograms reveal

complementary systematic errors in calibration. However, none of the forecast combination methods is able

to outperform a jointly estimated full TN-LN mixture EMOS models.

Compared to previous work of Möller & Groß (2016) and Bassetti et al. (2017), we generally do not

find as substantial differences in predictive performance between the individual EMOS models and the

combination approaches. Further, compared to the case study of wind speed data in Bassetti et al. (2017)

the LP and BMC method show much less significant differences. Generally, we find that more complex

combination approaches do not necessarily perform better than the simple LP approach. In fact, except

for the BMC approach for the UWME wind speed data, no competing combination method is able to

significantly outperform the linear pool or the plug-in variant. It might thus be interesting to further

investigate which features of the data and mixture component models would be beneficial for more complex

combination approaches.

The larger relative improvements of forecast combination for the UWME data sets may indicate that

longer training periods are generally better suited to determine the combination parameters. Therefore,

training sets expanding with time might improve the predictive performance. Further, local estimation of

the combination parameters using only data from the single observation station of interest, or alternative

similarity-based semilocal approaches (Lerch & Baran, 2017) might be better able to account for locally

varying station-dependent features of the forecast errors of the individual EMOS models. Here we used

equal regional training periods for all models to ensure direct comparability, and leave such extensions for

future work.

We have proposed a plug-in variant of the linear pool that utilizes the most recent EMOS coefficient

estimates to replace those in the training period used to determine the mixture weight, and thereby re-

duces the number of required numerical integrations to a single one. Despite discarding potentially useful
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information for forecast combination, the LP-PI approach results in very similar mixture weights and pre-

dictive performance compared to the traditional linear pool, and may thus offer an alternative option if the

computational costs of estimating the mixture weight are high.

Forecast combination methods may also offer a new approach to post-processing multi-model ensemble

predictions such as the TIGGE forecasts (Swinbank et al., 2016). Instead of utilizing forecasts from all

models as input of an EMOS model based on a single parametric distribution it might be helpful to post-

process the ensemble predictions of the different models independently, and then subsequently combine the

forecast distributions with the approaches discussed above. A further interesting starting point for future

research might be the application of the combination methods to other weather variables such as total cloud

cover (Hemri et al., 2016).
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ensemble prediction system. Quarterly Journal of the Royal Meteorological Society, 141, 1671–1685.

Diebold F.X. & Mariano, R.S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253–263.

Eckel, F.A. & Mass, C.F. (2005). Effective mesoscale, short-range ensemble forecasting. Weather and Forecasting, 20, 328–350.

Flowerdew, J. (2014). Calibrating ensemble reliability whilst preserving spatial structure. Tellus A, 66, 22662.

Fraley, C., Raftery, A.E. & Gneiting, T. (2010). Calibrating multimodel forecast ensembles with exchangeable and missing

members using Bayesian model averaging. Monthly Weather Review, 138, 190–202.

Garcia, A., Torres, J.L., Prieto, E. & De Francisco, A. (1998). Fitting wind speed distributions: A case study. Solar Energy,

62, 139–144.

Gneiting, T. (2014). Calibration of medium-range weather forecasts. ECMWF Technical Memorandum No. 719. Available

at: http://www.ecmwf.int/sites/default/files/elibrary/2014/9607-calibration-medium-range-weather-forecasts.

pdf [Accessed on 12 January 2018]

Gneiting, T., Balabdaoui, F. & Raftery, A.E. (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal

Statistical Society Series B, 69, 243–268.

Gneiting, T. and Raftery, A.E. (2005). Weather forecasting with ensemble methods. Science, 310, 248–249.

Gneiting, T. & Raftery, A.E. (2007). Strictly proper scoring rules, prediction and estimation. Journal of the American Statistical

Association, 102, 359–378.

Gneiting, T., Raftery, A.E., Westveld, A.H. & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model

output statistics and minimum CRPS estimation. Monthly Weather Review, 133, 1098–1118.

Gneiting, T. & Ranjan, R. (2013). Combining predictive distributions. Electronic Journal of Statistics, 7, 1747–1782.

Good, I.J. (1952). Rational decisions. Journal of the Royal Statistical Society Series B, 14, 107–114.

Grell, G.A., Dudhia, J. & Stauffer, D.R. (1995). A description of the fifth-generation Penn state/NCAR mesoscale model

(MM5). Technical Note NCAR/TN-398+STR. National Center for Atmospheric Research, Boulder. Available at: http:

//www2.mmm.ucar.edu/mm5/documents/mm5-desc-doc.html [Accessed on 12 January 2018]

Hall, S.G. & Mitchell, J. (2007). Combining density forecasts. International Journal of Forecasting, 23, 1–13.

Hamill, T.M. & Whitaker, J.S. (2006). Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory

and application. Monthly Weather Review, 134, 3209–3229.

Hemri, S., Haiden, T. & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly

Weather Review, 2565–2577.

Hemri, S., Scheuerer, M., Pappenberger, F., Bogner, K. & Haiden, T. (2014). Trends in the predictive performance of raw

ensemble weather forecasts. Geophysical Research Letters, 41, 9197–9205.
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Jordan, A., Krüger, F., & Lerch, S. (2017). Evaluating probabilistic forecasts with the R package scoringRules. Working paper,

preprint available at https://arxiv.org/abs/1709.04743 [Accessed on 12 January 2018]

Justus, C.G., Hargraves, W.R., Mikhail, A. & Graber, D. (1978). Methods for estimating wind speed frequency distributions.

Journal of Applied Meteorology and Climatology, 17, 350–353.

28



Kalli, M., Griffin, J.E., & Walker, S.G. (2011). Slice sampling mixture models. Statistics and Computing, 21, 93–105.
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Appendix A. Additional figures

ALADIN−HUNEPS

Verification Rank

R
el

at
iv

e 
F

re
qu

en
cy

2 4 6 8 10 12

0.
00

0.
10

0.
20

TN

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

LN

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

TN−LN

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

EWLP

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

LP

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

LP−PI

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

SLP

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

BLP

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

BMC

PIT

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Figure A.8: Verification rank histogram of raw ensemble forecasts and PIT histograms for post-processed and combined forecast

distributions for the ALADIN-HUNEPS wind speed data.
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Figure A.9: Verification rank histogram of raw ensemble forecasts and randomized PIT histograms for post-processed and

combined forecast distributions for the UWME precipitation data. Note that to account for the discrete-continuous nature of

the models for precipitation accumulation, in case of zero observed precipitation the PITs are randomized in that a random value

is chosen uniformly from the interval between zero and the probability of no precipitation (Sloughter et al., 2007). Similarly, in

case of precipitation accumulation zero observations are randomized among all zero forecasts to compute the verification rank

histograms for the raw ensemble forecasts.
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Figure A.10: Verification rank histogram of raw ensemble forecasts and randomized PIT histograms for post-processed and

combined forecast distributions for the ALADIN-HUNEPS precipitation data.
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