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Introduction

In the recent decades, nanomaterials are in the forefront of ivestigations in

the �eld materials science, due to their bene�tial size-dependent properties

in many instances. Phase separation on nanoscale, bimetallic nanoparticles

consisting of one- or two-phases can be utilized in a wide range of �elds

from optical, chemical, catalytic, plasmonic to even biological applications,

as a result of their good properties.

The formation of various metastable/unstable structures can be ob-

served in systems alike and as a result of heat treatment, during or after the

growth, these can go through spontaneous phase transformation or separa-

tion. By the proper description of such processes, one can face a plethora

of possibilities for designing and regulating the atomistic structure of such

materials and as a consequence, the properties of these nanoformations.

There is a huge interest in the �eld of materials science of modelling

and computer simulation methods that can tackle the problems of dealing

with the various processes of the nanoscale. These are either atomistic or

continuum approaches and they are often combined, forming a multiscale

procedure, in order to address the numerous dynamical processes lying be-

hind the formation of complex microstructures.

The goal of my thesis is to present my contributions in the �eld of phase

separation on the nanoscale by the development of atomistic models and

new computer simulation techniques.
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Chapter 1

Theoretical aspects

1.1 Phase separation in alloys

In 1958, Cahn and Hilliard described the free energy function for a cubic

crystal or an isotropic, non-homogeneous binary medium in the following

form [1]:

F = ρ

∫
Ω

[
f0 + κ1∇2c+ κ2(∇c)2 + · · ·

]
dΩ, (1.1)

where ρ is the total volume density (the number of molecules per unit vol-

ume), Ω is the volume, f0 is the free energy per molecule of a solution of

uniform composition c, κis are coe�cients. It has been shown that by ap-

plying the divergence theorem, the number of coe�cients κ can be reduced:∫
Ω
∇(κ1∇c) dΩ =

∮
S
κ1∇c ~ndS, (1.2)

where ~n is the normal vector of the surface S. Since we are not concerned

with the e�ects on the external surface, we can choose an integration limit

on the right-hand side such that ∇c ~n is zero at the boundary (∇c is perpen-
dicular to the surface normal). The surface integral thus vanishes. Further-

more, by applying the left-hand side derivation rules (multiplication and

7
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chain) we obtain: ∫
Ω
κ1∇2c dΩ +

∫
Ω

dκ1

dc
(∇c)2dΩ = 0. (1.3)

We can employ Eq. (1.3) to eliminate the term containing ∇2c from Eq.

(1.1), which results in:

F = ρ

∫
Ω

[
f0 + κ(∇c)2 + · · ·

]
dΩ, (1.4)

where:

κ = −dκ1

dc
+ κ2, (1.5)

called gradient energy coe�cient. Note that usually the higher order terms

are neglected in Eq. (1.4).

In the simplest case a regular solid solution is considered:

f0 = fAc+ fB(1− c) + c(1− c)V0

+ kT [c ln(c) + (1− c) ln(1− c)],
(1.6)

where V0 is the regular solid solution parameter and for this case Cahn and

Hilliard determined the values of κ1 and κ2 [1]:

κ1R = −cξ
2V0

2
and κ2R = 0, (1.7)

where the subscript R denotes the value of the parameter for the regular

solid solution, ξ is the e�ective interaction distance, and if interactions other

than nearest-neighbour interactions are neglected, ξ = r0/
√

3, where r0 is

the distance between atoms.

Hence, even in the simplest case � regular solid solution � κ1 is compo-

sition dependent (linearly), and accordingly the gradient energy coe�cient

de�ned in equation Eq. (1.5) is:
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κR =
ξ2V0

2
. (1.8)

Note that if κ1 was not composition dependent we could not eliminate the

term in ∇2c from Eq. (1.1), as a consequence to introduce the gradient

energy coe�cient κ.

As can be seen, the energy coe�cient of the gradient is composition in-

dependent. It should be emphasized, however, that this result is valid only

for a regular solid solution. In this work, the gradient energy coe�cient

will be determined for nonregular solid solutions. It is expected that for

non-regular solid solutions, κ1 is not only linearly dependent on the compo-

sition, so that κ will also be composition dependent. We will show that κ

as a function of composition can be calculated from the interaction energy

V (c) of the solution � given by, e.g., the Redlich and Kister polynomial [2].

Note that there have been few attempts in the literature to account for the

composition dependent κ due to its complexity (e.g. [3�5]), although the im-

plications of this may not be negligible. It has been shown, for example, that

the morphological evolution pathways and spinodal microstructure of poly-

mer systems with highly asymmetric phase diagrams can be very di�erent

from those with symmetric phase diagrams [6]. The segregation energy is

also expected to change, which plays an important role in solute segregation

and segregation transition in extensive defects such as grain boundaries [7].

In this work, we also present some consequences of composition-dependent

gradient energy coe�cients.

Interdi�usion in the presence of a steep concentration gradient can be

described by the Cahn-Hilliard theory. The atomic �ux for a two component

system in one dimension can be calculated:

jA = −D̃∂ρA
∂x

+
2D̃ρ2

f
′′
0

κ
∂3ρA
∂x3

, (1.9)
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where D̃ is the interdi�usion coe�cient. and

f
′′
0 =

∂2f0

∂c2A
. (1.10)

In this case, the atomic �ux does depend on the concentration gradient

and on the third gradient term. The free energy, for a homogeneous binary

alloy in mean-�eld approximation, depends only on the concentration of one

component (F = F (c)). In order to being able to describe non-homogeneous

solid solutions, the free energy has to depend on the inhomogenities also,

that is on the gradient of the composition. Cahn and Hilliard did not go

further than the second order terms. If we substitute Eq. (1.9) into the

equation of conservation of matter, then:

∂ρA
∂t

= D̃
∂2ρA
∂x2

− 2D̃ρ2

f ′′o
κ
∂4ρA
∂x4

. (1.11)

When κ equals zero, the system can be treated as an ideal solid solution.

In the κ > 0 case, phase separation can be observed, while κ < 0 results in

ordering. Note that, the interdi�usion coe�cient can be expressed using f
′′
0

and the mobilityM, can only be positive or zero value:

D̃ =
1

ρ
Mf

′′
0 . (1.12)

A particular solution of Eq. (1.11) is assumed to have the form of

ρA(t)− ρ0
A = A(t) sin(hx) (1.13)

and h = 2π/λ, where λ is the modulation length and this gives:

R =
d lnA

dt
= −D̃

[
1 +

2κh2

f
′′
0

ρ2

]
h2. (1.14)

This shows that for a given values of κ and f
′′
0 , the A amplitude of a λ
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wavelength �uctuation increases or decreases with time, i.e. the solution

is in the direction of decomposition/separation or not. In the ideal case,

κ = 0, f
′′
0 > 0 and A decreases. In phase separating systems, κ is always

positive, but f
′′
0 changes sign as a function of temperature and composition.

downhill diffusion uphill diffusion

Figure 1.1: Schematic representation of the free energy curve on a given
temperature and the miscibility gap with the spinodal curve inside, which
separates the metastable (f

′′
0 > 0) and unstable (f

′′
0 < 0) region. The �gure

on the left shows the mechanism of the nucleation and growth process (cp:
composition of precipitate, cm: composition of matrix). On the right, one
can see the schematic view of the spinodal decomposition, where (cα−cβ) =
2A < (cs2 − cs1) .

The free energy curve de�nes that on a speci�c temperature which com-

positions are the solubility limits. As Fig.1.1 shows cb1 and cb2 are the cor-

responding compositions, where a common tagent connects the two-minima
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free energy function. The in�ection points, where f
′′
0 changes signs, are cs1

and cs2. By tracking these parameters, while changing the temperature, a

map can be created, forming the binodal and spinodal curves.

Inside the spinodal curve f
′′
0 < 0 and j = −D̃ ∂ρ

∂x the atomic �ux goes to

the the direction of the concentration gradient. This phenomenon is called

spinodal decomposition. The random �uctuations above λc critical wave-

length start to grow. When the material is cooled down to this region, it

is in an unstable state. Fluctuations appear and it decomposes into A and

B rich regions. The �uctuations grow until they reach the concentrations

corresponding to the miscibility gap (cb1 and cb2) by the so called uphill dif-

fusion. After that, coarsening process takes place, beacuse the large number

of interfaces between the phases are energetically unfavourable. Note that

λm =
√

2λc is the fastest growing wavelength.

Outside of the spinodal curve (f
′′
0 > 0) is a metastable region, where the

nucleation-growth-coarsening process can take place. In that case, contrary

to the spinodal decomposition, downhill di�usion can be observed.

1.2 Methods

1.2.1 Phase �eld model

In the phase-�eld model, the microstructure of the decomposing binary A-B

system is described by the coarse grained concentration c(r, t) of component

A. The temporal evolution of this concentration �eld is then given by the

phase �eld equation, also called Cahn-Hilliard equation [8]:

∂c

∂t
= ∇

(
M∇

[
δF (c)

δc

])
. (1.15)

Here,M is the atomic mobility, and F (c) is the total non-equilibrium free

energy on the volume Ω, which embodies the bulk free energy and the

interfacial energy [9]:
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F = ρ

∫
Ω

[
f0(c) + κ|∇c|2

]
dΩ. (1.16)

To model the kinetics of spinodal decomposition in the PFM, the phase-�eld

equation 1.15 is numerically solved in its reduced form. For that purpose,

the reduced free energy potential f∗0 is expressed in units of kBT :

f∗0 (c) = c(1− c)
[
V0

kBT
+

V1

kBT
(2c− 1)

]
+ [c ln c+ (1− c) ln(1− c)] .

(1.17)

Besides, on introducing the characteristic time and length scales t0 and l0,

the PFM reduced time is t∗PFM = t/t0, and the reduced gradient operator is

∇∗ = l0∇. Setting t0 = 2κ/(κ∗M(kBT )2), and l0 =
√

2κ/(κ∗kBT ), where

κ∗ sets the reduced width of di�use interfaces between phases, the reduced

phase-�eld equation is:

∂c

∂t∗
= (∇∗)2

[
ln

(
c

1− c

)
+ a1c

2 + a2c− κ∗(∇∗)2c

]
, (1.18)

where a1 = −6V1/(kBT ), a2 = (6V1 − 2V0)/(kBT ) from the �rst derivative

of f∗0 (c) in equation 1.17. Here, the mobility is assumed constant, as it was

justi�ed for the Ag-Cu system in [10].

1.2.2 (Stochastic) kinetic mean-�eld model

In order to help the reader better understand the idea behind the three-

dimensional stochastic kinetic mean �eld model, �rst of all George Martin's

one-dimesnional kimetic mean-�eld model is going to be presented in the

following section. Thus, these results are not outcomes of this dissertation,

rather than a summary and overview of previous works.
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1D Kinetic mean-�eld

George Martin proposed a one-dimensional Kinetic Mean-Field model. In

this method, a given sample is being treated as planes of a three-dimensional

sample. Atomic movements are only permitted between the planes, but

intraplanar di�usion does not change the microstate. In the case of a two-

component system (where A and B atoms are present) only the exchange

of the two sorts between two neighbouring planes are changing the atomic

con�guration. Otherwise the system remains untouched.

Let us take a one-dimensional set of planes with the corresponding con-

centrations. The ci concentration is the atomic fraction of a given sort on

the plane i. The neighbouring planes can be described as ci−1 and ci+1. To

describe the rate of change of the concentration between the planes, Martin

calculates the atomic �ux or net �ux [11] between the neighbouring planes.

Ji−1,i is the incoming whereas Ji,i+1 is the outgoing �ux compared to the

reference plane i. Thus, in the case of positive values of atomic �uxes, Ji−1,i

increases, Ji,i+1 decreases the atomic fraction of A on plane i. Based on this,

one can get to the following equation:

dci
dt

= Ji−1,i − Ji,i+1. (1.19)

The number of jumps per unit time must be known to calculate the atomic

�uxes, or in other words the number of exchanges per unit time. This value

is noted as Γ. In 1990 George Martin [11] found a criterion for the selection

of Γ, which brings the system in a thermodynamic equillibrium. This indi-

cates that the model is deterministic, because the system will always lead

to a thermodynamic equilibrium.

Hence, the goal is to �nd the concentration pro�le which corresponds

to the thermodynamic equilibrium. But there are two ways to �nd it: a

thermodynamic and a kinetic way. The thermodynamic consideration gives

us the �nal con�guration, on the other hand, the kinetic considerations
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x

ci−1 ci ci+1

Ji−1,i Ji,i+1

Figure 1.2: Atomic planes along the direction of the x axis, the correspond-
ing ci−1, ci, ci+1 atomic fractions are indicated and the Ji−1,i, Ji,i+1 atomic
�uxes.

are showing the intermediate states which the system goes through while

getting to the equilibrium state. One can say that the system is in an

equilibrium state, when the free energy function has a minimum, thus the

thermodynamic method minimizes the free energy and the other method

solves the kinetic equations.

If the Γ jump frequency is known, the Ji,i+1 atomic �uxes can be de-

termined as well. To change the atomic con�guration an A and a B atom

have to change places between plane i and i + 1: site i has to contain an

A and site i + 1 a B atom, or the other way around. The probability that

a randomly chosen atom from plane i is A, is exactly ci, which comes from

the de�nition of the atomic fraction ci = NA
i /N . It shows what is the

proportion of A atoms on a plane containing N atoms. The probability

of �nding a B atom on a neighbouring i + 1 plane is (1 − ci+1) and these

probabilities are independent. We need to know the Γi,i+1 frequency. These

are the jumps pushing the A atoms into the x direction. In the opposite

direction, an A atom from the plane i+1 and B atom from plane i switches

places. The corresponding jump frequency is Γi+1,i. We need to take into
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account, that a chosen atom from a plane can change places with more than

one atom from the neighboring planes. This is noted with Zv, e.g. vertical

coordination number and it gives the number of nearest neighboring sites.

The value of Zv depends on the crystallography and the orientation of our

sample alloy. By using the previous scheme:

Ji,i+1 = Zv [ci(1− ci)Γi,i+1 − ci+1(1− ci)Γi+1,i] . (1.20)

Using Eq.(1.20), the change of rate of the concentration Eq.(1.19)can be

evaluated. According to Martin, the Γ must be chosen in a way, that in the

state corresponding to the thermodynamic equilibrium, all of the atomic

�uxes have to be zero:

Ji,i+1 = 0 ∀ i. (1.21)

In a thermodynamic equilibrium there are no atomic �uxes. Hence, based

on Eq.(1.19) and Eq.(1.21) this gives us:

ci(1− ci+1)Γi,i+1 = ci+1(1− ci)Γi+1,i, (1.22)

which can be reformulated as:

ci(1− ci+1)

ci+1(1− ci)
=

Γi,i+1

Γi+1,i
, (1.23)

and it is called the detailed balance condition. We can get until this point

by using kinteic equations.

The system has to get into a thermodynamic equilibrium when the free

energy has a minimum and this is a su�cient condition:

F = U − TS, (1.24)

where F is the free energy, U is the internal energy, T is the absolute

temperature and S is the con�gurational enthropy. By dividing F with the
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number of atoms in the system, we obtain the free energy per atom:

f = u− Ts. (1.25)

In mean-�eld approximation, we can count the total free energy summarized

for all planes in the system. The probability of �nding an A atom on plane

i is ci, �nding a B atom is 1− ci and the corresponding bond energies are

EAi and EBi . This has to be devided by 1/2 to not count every pair twice,

resulting in the internal energy per atom:

u =
1

2N

N∑
i=1

[
ciE

A
i + (1− ci)EBi

]
, (1.26)

where N is the total number of planes in the system. The enthropy term in

mean-�eld approximation and assuming a two component system:

s = −kB
1

2N
[ci ln ci + (1− ci) ln(1− ci)] , (1.27)

where kB is the Boltzman constant. But the bond energy is still unknown.

The bond energy of an A atom on plane i can be calculated the following

way: the chosen atom has Zv neighbors on plane i − 1. If they are A

atoms, then the pair interaction energy is VAA. The probability, that these

neighbors are B atoms is 1 − ci−1 and the pair interaction energy is VAB.

Inside the given i plane, it has Zl lateral neighbors, which is the lateral

coordination number. We should take into consideration that wheather

they are A or B atoms and multiply with the correct interaction energies

the following terms. By continuing this idea to plane i + 1, the following



18

equation can be obtained:

EAi = Zvci−1VAA + Zv(1− ci−1)VAB+

+ ZlciVAA + Zl(1− ci)VAB+

+ ZvciVAA + Zl(1− ci+1)VAB

(1.28)

By reorganizing the equation we can get the A bond energy:

EAi =Zv [(ci−1 + ci+1)VAA + (2− ci−1 − ci+1)VAB] +

Zl [ciVAA+ (1− ci)VAB] .
(1.29)

Following the logic, the bond energy of B atoms can be calculated as:

EBi =Zv [(ci−1 + ci+1)VAB + (2− ci−1 − ci+1)VBB] +

Zl [ciVAB + (1− ci)VBB] ,
(1.30)

where VBB is the strength of a bond between two B atoms. Thus, we can

say that by knowing EAi and EBi , g is a function which depends on every

concentration from c1, . . . , cN:

f = f(c1, . . . , cN). (1.31)

We have to minimize this function, by keeping the sum of ci constant in the

system:
N∑
i=1

ci = const. (1.32)

This is a conditional limit calculation. In the case of functions of several

variables, there exist an extremum (maximum or minimum) only, if all the

partial derivatives are zeros.

∂f

∂c1
= 0,

∂f

∂c2
= 0, . . . ,

∂f

∂N
= 0. (1.33)
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To �nd out whether it is a minimum or a maximum, we need to calculate

the second derivative as well. The result is a system of equations consisting

N equations which must be solved with the condition Eq.(1.32).

∂f

∂ci
= −2V [Zci + Zv(ci+1 + ci−1 + 2ci)] + kT ln

ci
1− ci

≡ µ̃i,

(i = 2, . . . ,N − 1)

(1.34)

where Z is the total coordination number: Z = 2Zv + Zl and µ̃i is the

exchange chemical potential. Surface e�ects are not taken into account in

this case. V is the regular solid solution parameter:

V = VAB −
VAA + VBB

2
. (1.35)

Free energy has a minimum, when all the µ̃i chemical potentials are equal

with each other (µ̃ = µ̃i ∀ i.) If this condition is true for all µ̃i, then

µ̃i = µ̃i+1:

−2V [Zci + Zv(ci+1 + ci−1 + 2ci)] + kT ln
ci

1− ci
=

−2V [Zci+1 + Zv(ci+2 + ci + 2ci+1)] + kT ln
ci+1

1− ci+1
.

(1.36)

If Eq.(1.23) and Eq.(1.36) coincide, then the kinetic equations are leading to

a thermodynamic balance, thus Γ has to be correctly selected. According to

Martin [11], Γi,i+1 has an Arrhenius-type dependency on the temperature,

because it is a thermally activated process:

Γi,i+1 = ν exp

(
−Ei,i+1

kBT

)
, (1.37)

where ν is the attempt frequency (proportional to the Debye frequency) and

Ei,i+1 is the activation energy. We assume the atoms being trapped in a

potential well, and the depth of the well is proportional how bounded an

atom is in a given position energetically. It is important, that the A and
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B atoms both must reach the E0 saddlepoint energy to achive a successful

exchange.

E = 0
E0

i

EA
i

EB
i+1

E0 − EA
i

EA
i − EB

i+1

i+ 1

Figure 1.3: Schematic representation of the saddlepoint and bond energies.

The activation energy thus:

Ei,i+1 = 2E0 − EAi − EBi+1 = 2E0 − [Zv(ci + ci+2) + Zlci+1](VAB − VBB)+

+ [Zv(ci−1 + ci+1) + Zlci](VAB − VAA)− Z(VAB + VBB).

(1.38)

Martin had stopped somewhere here. He used such pair interaction ener-

gies. At the University of Debrecen Department of Solid State Physics, a

model was created based on these result, which was mentioned as MEB

(Martin - Erdélyi - Beke) model [12] in the scienti�c community. This

model wanted to transform the pair interaction energies into an experimen-

tally easily quanti�able result. By reformalising V , we can get the value of

VAB − VAA:

V = VAB −
VAA + VBB

2
= VAB − VAA + VAA −

VAA + VBB
2

, (1.39)

which results in:

VAB − VAA = V − VAA − VBB
2

. (1.40)
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Similarly, VAB − VBB can be calculated, which equals:

VAB − VBB = V +
VAA − VBB

2
. (1.41)

This makes the system simpler, because both equations contain the term

(VAA − VBB). Due to this fact, one can describe the same system with two

parameters (M and V ) instead of three (VAA, VAB, VBB), where M :

M =
VAA − VBB

2
. (1.42)

By modifying equation (1.40) and (1.41) the following expressions occur:

VAB − VAA = V −M
VAB − VBB = V +M.

(1.43)

Out of these two energy parameters, V determines the chemical properties

of the system. In order to make it more understandable, two additional

parameters are being introduced (αi and εi):

αi = [Zv(ci−1 + ci + ci+1 + ci+2) + Zl(ci + ci+1)]M (1.44)

εi = [Zv(ci−1 + ci+1 − ci − ci+2) + Zl(ci − ci+1)]V (1.45)

Both of these parameters depend on four concentrations: the two planes

where the jump takes place (ci, ci+1) and the closest neighbouring planes

(ci−1, ci+2). Ei,i+1 can be transformed into:

Ei,i+1 = Ê0 − αi + εi, (1.46)

where Ê0 contains all the terms that do not depend on the concentration.

It can be shown, that the activation energy of a backward jump is:

Ei+1,i = Ê0 − αi − εi. (1.47)
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Γi,i+1 can be written in a much simpler form:

Γi,i+1 = ν exp

(
−Ê

0 − αi + εi
kBT

)
= Γ0 exp

(
αi − εi
kBT

)
, (1.48)

where Γ0 = ν exp(− Ê0

kBT
). Based on these Γi+1,i can be written as:

Γi+1,i = Γ0 exp

(
αi + εi
kBT

)
. (1.49)

Applying this on the detailed balance condition results exactly µ̃i = µ̃i+1,

i.e. this choice of Γ satis�es the requirements.

The physical meaning of M and αi can be explained by taking a ho-

mogenous system: ci = c ∀ i. In this case the value of αi is:

αi = (4Zvc+ 2Zlc)M = 2ZMc (1.50)

and εi is zero. In this extreme case:

Γ(c) = Γ0 exp

(
2ZM

kBT
c

)
. (1.51)

One can see the form of the exponentially dependent difussion coe�cient

(D = D0 exp(mc)): m = 2ZM/kT . If we introduce m′, the results are

given in order of magnitude:

m′ = m lg e. (1.52)

Connecting m′ and m, the following expression comes up:

m′ =
2ZM

kBT
lg e. (1.53)

This parameter can be estimated from experiments, because this is the

strength of the di�usion coe�cient's dependence on the concentration. Con-
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sequently, αi represents the concentration dependence of the tracer di�usion

coe�cient and εi contains the thermodynamic factor.

It must be noted, that this is not the only choice of Γ which ful�lls the

conditions. Another example can be found in the so called Kinetic Tight-

Binding Ising Model (KTBIM) [13]. The di�erence between the two choices

is that the KTBIM only contains εi and αi is not present, although it still

ful�lls the conditions.

A simulation starts with an initial con�guration (concentration distribu-

tion), αi and εi must be calculated, where M and V are input parameters.

The value of Γ can be determined, which makes it possible to calculate the

atomic �uxes. These steps are repeated over and over again. One could say

that this is a relatively simple but e�ective method.

Stochastic kinetic mean-�eld

The SKMF approach [14, 15] 1 is based on the model of Martin [11]. Here,

the local atomic con�guration in an A-B binary alloy is described by the

occupation probability ci of A atoms on a site i, so that 1− ci is the occu-
pation probability of B atoms on the same site. The time evolution of ci is

governed by a non-linear stochastic equation satisfying the balance of the

conservation of matter and the �uxes of atoms between the site i and its Z

nearest neighbouring sites j:

dci
dt

=

Z∑
j=1

[Jj,i − Ji,j ] . (1.54)

In this equation, Jj,i and Ji,j are the material �uxes of A atoms from site j

to site i and vice versa, both containing a mean-�eld and a �uctuation part:

1This section is based on the result of the article Stochastic kinetic mean �eld model

[14, 15]. I am a co-author of this paper, however it was already accepted as a work of
János J. Tomán in his PhD thesis.
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Ji,j = JMF
i,j + δJLang

i,j . (1.55)

Here, JMF
i,j is the mean-�eld (MF) atomic �ux from site i to site j, de�ned

from the mean-�eld (MF) exchange rate ΓMF
i,j between sites i and j as follows:

JMFi,j = ci(1− cj)ΓMF
i,j . (1.56)

Similarly, the �uctuation part δJLang
i,j in the total �ux can be expressed from

a dynamic Langevin noise δLang
i,j as [14]:

JLangi,j = ci(1− cj)δLang
i,j , (1.57)

where the dynamic Langevin noise δLang
i,j is a white noise of amplitude An:

δLang
i,j =

An√
dt
θ. (1.58)

In compliance with the de�nition of a Gaussian noise, θ is a random uni-

form number of zero mean value and a mean squared value equal to 1. The

introduction of stochasticity in the SKMF model makes it possible to de-

scribe the initial stages of nucleations, thereby overcoming one limitation

of the deterministic model of Martin. It should be noted that adding the

noise to the �ux rather than the concentration notably allows to circumvent

potential singularities in the composition change rates [14]. When An is set

to zero, the SKMF model becomes purely deterministic.

The MF jump frequency ΓMF
i,j is de�ned as:

ΓMF
i,j = ν exp

(
−
E0 − (EAi + EBj )

kBT

)
. (1.59)

Each energy EXs (X = A,B, s = i, j) is the sum of the interaction energies

between an atom X on site s and the atoms on the Z nearest neighbour

sites in the �rst coordination shell:
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EXs =

Z∑
l=1

[clVAX + (1− cl)VXB] . (1.60)

Now, an equivalent expression of the MF jump frequency ΓMF
i,j is used in

practice in SKMF simulations, on introducing the parameters:

M =
1

2
(2VAA − VBB), V =

1

2
(VAB − [VAA + VBB]). (1.61)

In this expression, the parameter V corresponds to the mixing energy of

the solid solution, and the parameter M accounts for the A/B asymmetry

of the interdi�usion coe�cient. Then, ΓMF
i,j can customarily be rewritten in

the alternative form:

ΓMF
i,j = Γ0 exp

(
− Êi,j
kBT

)
, (1.62)

where Γ0 = ν exp{[−E0 + Z(VAB + VBB)]/kBT}, and Êi,j is an e�ective

interaction energy de�ned by:

Êi,j = (M − V )

Z∑
l=1,
l∈V(i)

cl + (M + V )

Z∑
l=1,
l∈V(j)

cl. (1.63)

The summation spans sites in the vicinity V(i) of site i and in the vicinity

V(j) of site j in the �rst and second term respectively.

To connect the atomistic parameters de�ning the MF jump frequency in

formula (1.59) to the sought expression of the Mean-Field Bragg-Williams

free energy, the internal energy ui of a site i can �rst be calculated from the

mean interaction energy of this atom with the �rst coordination shell:

ui =
1

2

(
ciE

A
i + (1− ci)EBi

)
. (1.64)
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Here, the factor 1/2 compensates the double counting of interactions. Using

expression (1.60) for the energies EAi and EBj , and expression 1.61 for the

parameters M and V , the mean internal energies can be rewritten as:

ui = fAci + fB(1− ci) + ci(1− ci)V0

+
1

2
(c̄l − ci) [ZM + (1− 2ci)V0] ,

(1.65)

where fA = ZVAA/2, fB = ZVBB/2, V0 = ZV , and c̄l = 1/Z
∑Z

l=1 cl is the

local average concentration of A atoms in the vicinity of the site i.

In a homogeneous binary solution, the probability ci to �nd an atom

A in site i and the locally averaged probability c̄l reduce to the average

concentration c of the alloy: ci = c̄l ≡ c. Accordingly, the internal energy

ui of an atom A on site i is equal to the density of internal energy u in the

homogeneous solution: ui ≡ u(c) = fAc+ fB(1− c) + c(1− c)V0. Moreover,

the density of entropy reads s(c) = kB [c ln c+ (1− c) ln(1− c)]. Thus, the
regular solid solution model for the free energy per atom fh(c) = u(c)−Ts(c)
is recovered for the homogeneous solution:

f0(c) = fAc+ fB(1− c) + c(1− c)V0

+ kBT [c ln c+ (1− c) ln(1− c)] .
(1.66)

As can be seen, the �rst two terms are the internal energies of the pure A

and B components, and the excess free energy density is the MFBW free

energy:

∆f0 = c(1− c)V0 + kBT [c ln c+ (1− c) ln(1− c)] . (1.67)

Obviously, ∆f0 is symmetrical, so that only symmetrical solubility limits

corresponding to the minima of ∆f0 can be accounted for at equilibrium.

Consequently, the stationary states of the original SKMF model [14] could

only display symmetrical solubility limits as well. The model and the com-

puter simulation technique can be used in a wide variety of applications.
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The typical length- and timescales that can be simulated with the method

convenietly �ts next to the already available methods, as visualized on 1.4.
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Figure 1.4: Typical time and length scales of di�erent computer simulation
techniques. Figure is based on [16], but with the addition of SKMF.



Chapter 2

Composition dependent

gradient energy coe�cient

In this chapter, the kinetics of the phase transformation in the silver-copper

system is being investigated. The results of the atomistic computer simula-

tions and the analytical calculations are presented in the following sections.
1

The applied numerical approach, the SKMF model, has already been

presented in the previous chapter, which is suitable for the study of solid

state atomic motion processes in multicomponent systems [14, 15, 18]. It

should be mentioned, however, that not only the original SKMF model

was used in this chapter, but an improved version of it, as the method

originally published only allowed the study of regular solids solutions with

symmetric spinodal curves and solubility limits. Additional regular solid

solution parameter was introduced into the approach and the equations

used were modi�ed accordingly. This makes the model able to investigate

non-regular solid solutions, for which the solubility curves are asymmetric,

1The chapter is based on the article B. Gajdics et al. Composition dependent gradient
energy coe�cient: How the asymmetric miscibility gap a�ects spinodal decomposition in
Ag-Cu? Calphad, 67:101665, 2019. [17]

28
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as in the case of the silver-copper two-component system.

The �eld of application of Ag-Cu is diverse as it provides advantageous

physical and chemical properties. Its excellent mechanical strength is cou-

pled with its high conductivity and thus it has applications in electrical

interconnection technologies, microstructure patterning [10], in the �eld of

catalysis [19, 20] and in the production of two-component alloy nanoparti-

cles [21] and for a new generation of brazing materials for Inconelr 718 [22].

Thanks to its wide miscibility gap, it is also excellent as a model system.

The silver-copper two-component system is an eutectic alloy in which

the Ag- and Cu-rich phases can be in equilibrium with the liquid phase.

Both of these solid phases have fcc crystal structure and below the criti-

cal temperature, the free energy of the system can be described by a two

minimum function that connects the two phases. A heterogeneous spatial

pattern is formed during di�usion processes that changes the electrical and

mechanical state of the system. In order for the system to be properly de-

signed for use, an in-depth knowledge of the kinetics of this phase separation

mechanism is required.

In the case of the Ag-Cu system, we assume the homogeneous free energy

density as [21,23]:

f0 = fAgc+ fCu(1− c)
+ c(1− c) [V0 + V1(2c− 1)]

+ kBT [c ln(c) + (1− c) ln(1− c)],
(2.1)

where c is the Ag tomic fraction, T is the absolute temperature, kB is

the Boltzmann constant, fAg = f̃Ag/NA, fCu = f̃Cu/NA, V0 = Ṽ0/NA,

V1 = Ṽ1/NA where NA is the Avogadro constant and f̃Ag = −11945+9.67T

J/mol, f̃Cu = −13054 + 9.62T J/mol, Ṽ0 = 34532 − 9.178T J/mol, Ṽ1 =

−5996 + 1.725T J/mol. In practice, the �rst two terms in the equation

correspond to the internal and free energies of the pureA andB components.

The excess free energy due to phase transformation and mixing is therefore:
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∆fex = c(1− c) [V0 + V1(2c− 1)]

+ kBT [c ln(c) + (1− c) ln(1− c)].
(2.2)

This relationship was plotted in Fig. 2.1 as a function of the concentration

c of the Ag component at T = 873 K. The coe�cients V0 and V1 were

chosen in such a way that they could be used to adequately describe the

two-component system [24], especially bearing in mind that the asymmetric

appearance of the f0 function was determined on the basis of experimental

phase diagram results.
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Figure 2.1: ∆fex(c) excess free energy density function calculated from Eq.
(2.2) at T = 873 K for the Ag-Cu system.

2.1 Free energy

In section 1.2.2, it has been shown that SKMF in its original form is only

suitable for modeling regular solid solutions because its excess free energy

curve is symmetric, and leads to symmetric spinodal curve and miscibility

gap.

The formula F = U − TS was taken to calculate the free energy, where
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U is the internal energy and S stands for the entropy. If we want to evaluate

the internal energy of a system in a three-dimensional model like SKMF, it

is necessary to know the interaction energies between the atoms:

U =
1

2

N∑
i=1

V i =
N∑
i=1

ui, (2.3)

where N is the total number of sites in the system. In Eq. 2.3, V i gives the

mean interaction energy on site i for one atom; dividing by two serves to

take each pair into account only once and the mean internal energy on site

i is ui = V i/2.

The calculation of the mean interaction energy on site i is determined by

the interaction energy of the atom A at site i weighted by its �nding prob-

ability and the interaction energy of the atom B on the same site weighted

by its own �nding probability on site i. Note that the combined probability

of �nding A or B atoms at a given i site is 1, since ci is the probability of

�nding A and 1− ci of �nding B atoms.

V i = ciE
A
i + (1− ci)EBi . (2.4)

Each V i term used to calculate the internal energy of the system, cor-

responds to the interaction energies in the activation energy used in the

SKMF model.

By applying Eqs. (1.60), (2.3) and (1.64), the free energy density of the

system is given as:

ui =
1

2
ZciVAA +

1

2
Z(1− ci)VBB + Zci(1− ci)V

+
1

2
Z(c̄l − ci)

[
VAA − VBB

2
+ (1− 2ci)V

]
.

(2.5)

where:
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c̄l =
1

Z

Z∑
l=1

cl. (2.6)

Eq. (2.5) can be reformulated for the sake of clarity as:

ui = uAci + uB(1− ci) + ci(1− ci)V0

+
1

2
(c̄l − ci) [ZM + (1− 2ci)V0]

(2.7)

with uA = ZVAA/2, uB = ZVBB/2 and V0 = ZV .

If one takes a homogeneous binary solution into account, ci = c̄l ≡ c,

and:

ui ≡ u = uAc+ uB(1− c) + c(1− c)V0. (2.8)

In the case of a homogeneous solution U = Nu (see Eq. (2.3))

is the internal energy, and its entropy is given as S = Ns =

−NkB [c ln c+ (1− c) ln(1− c)]. Thus, for a homogeneous solid solution,

the free energy per atom can be calculated as:

fSKMF
0 = uAc+ uB(1− c) + c(1− c)V0

+ kBT [c ln c+ (1− c) ln(1− c)] .
(2.9)

However, it contains the internal and free energy terms for the pure A and

B component (the �rst and second term), i.e. in the solid solution model

this is the homogeneous free energy per atom. We can take the excess free

energy density from the equation:

∆fSKMF
ex = c(1− c)V0

+ kBT [c ln c+ (1− c) ln(1− c)] .
(2.10)

In the SKMF model, in its original form, the excess free energy density

function is symmetrical to c = 0.5 as it can be seen on Fig. 2.2. This is
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due to the fact that the relationships determining the thermodynamics of

the SKMF approach are based on a regular solid solution model. Conse-

quently, systems with asymmetric miscibility gap and spinodal curve cannot

be studied with the model in this form. If, however, one inspects Eq. (1.67)

and Eq. (2.2), can see that in case of V0 = ZV (V0 is for one atom, V is for

one bond) they di�er by the �rst terms.
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Figure 2.2: Using Eq. (1.67), the excess free energy density was calculated
for the Ag-Cu system as in the original SKMF model, at T = 873 K.

2.2 Improvement of SKMF

In order to be able to make a more realistic description of the system, thus

getting closer to the experimentally observed phase diagram, we made mod-

i�cations to the original SKMF model. This means that it is necessary to

choose the free energy density such as in Eq. (2.1). From this we can as-

sume that in the equation Eq. (1.65) instead of a constant V0, a composition

dependent interaction energy parameter should be selected:

V (cij) = V0 + V1(2cij − 1). (2.11)



34

The term cij was de�ned as:

cij =

ci +
Z∑
l=1

cl + cj +
Z∑
n=1

cn

2(Z + 1)
. (2.12)

However, it is important to note here that it would be possible to intro-

duce the parameter V (c) not only by assuming a linear dependence, but also

other arbitrarily chosen functions could be implemented. One such function

is the Redlich-Kister polynomial [2], which is widely used in CALPHAD [25]:

V (c) =
n∑
v=0

Vv(2c− 1)v. (2.13)

This would of course be achieved in the case of the SKMF model by apply-

ing the term cij instead of c in the equation. The Vv parameters are usually

determined phenomenologically by �tting phase equilibrium and thermody-

namic data. However, there are also other works where they are taken from

ab initio calculations [26�28]. The value of n sets whether a given solution

will be regular or sub-regular. In the case of n = 0 the solution is regular,

while n = 1 corresponds to the sub-regular region and the value of n is

typically less than or equal to 2.

We have prepared an open-source implementation of the method [14,15]

and this version can be found on the website http://skmf.eu. In addition,

we have made available a code that includes the modi�cations presented

here, such as the V (c) composition-dependent interaction energy coe�cient

in Eq. (2.11).

The program also requires an input �le, which can be found on the same

the website. It includes all the parameters of the simulation which must be

speci�ed, such as: the crystal structure of the sample, which determines

the coordination number Z; the required energy parameters, which are M ,

V0 and V1 respectively for the improved method instead of M and V as in
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the original SKMF model. The T absolute temperature parameter is also

necessary to perform simulations. The inputs listed here are su�cient to

describe the kinetics and thermodynamics of the system. A brief summary

of the solution algorithm is being presented in the followings.

Basically, the �rst two terms are responsible for the outgoing and in-

coming atomic �uxes of the A component. It should be noted, however,

that the outgoing atomic �ux of a lattice site corresponds to the incoming

�ux of an adjacent lattice site. In order not to calculate these terms unnec-

essarily twice, only the output �uxes are computed. The equations (1.62),

(1.63), (2.11) and (2.12) are used for the solution of Eqs. (1.56) and they

are used in their dimensionless form. For this we introduce dimensionless

time τ ≡ Γ0t and dimensionless �ux J̃i,j ≡ Ji,j/Γ0. After calculating the

�uxes, multiplying them by a small, �nite dimensionless timestep we receive

how the composition pro�le will evolve in the system during that time.

These calculations were performed in the deterministic limit of the

SKMF model, which is a highly simpli�ed version of it. The description

of the general case can be found in the previous chapter and in [14].

2.3 Results and discussion

Gradient energy coe�cient

In this section, I show that the SKMF model inherently contains the gra-

dient energy coe�cient. It is not an input parameter of the simulations.

This approach, in its original form contains a κ which corresponds exactly

to the Eq. (1.8) form and this will be shown as well for the regular solution

case, where V1 = 0 and the the miscibility gap is symmetric. Furthermore,

this equation can be written in a general form, which includes the compo-

sition dependent V interaction energy as in Eq. (2.13) and a composition

dependent κ as well.

First of all, ~ri and ~rl is being introduced for the sake of convinience,
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where these are the radius vectors of the i and l sites, as well as ci = c(~ri)

and cl = c(~rl) can be used to reformulate Eq. (1.65) as:

u(c(~ri)) = uAc(~ri) + uB(1− c(~ri))

+ c(~ri)(1− c(~ri))V0 +
1

2
(c̄(~rl)− c(~ri))

· [ZM + (1− 2c(~ri))V0] .

(2.14)

Cahn and Hilliard introduced ~r0 = ~rl − ~ri which is the radius vector of the

site l relative to site i. [1] Using this vector, one can write cl as a function

of ci as follows:

c(~rl) = c(~ri) + ~r0∇c(~ri) +
1

2
(~r0∇)2c(~ri) + . . . . (2.15)

Using this expression (neglecting the third and higher derivatives) we can

calculate c̄(~rl) − c(~ri). By expressing Eq. (2.15) in terms of vector compo-

nents and performing the summation indicated in Eq. (2.6) we obtain for a

cubic lattice:

c̄(~rl)− c(~ri) =
1

6
r2

0∇2c(~ri). (2.16)

Substituting this expression into Eq. (2.14), we obtain the internal energy

per atom of an inhomogeneous solution:

u = uAc+ uB(1− c) + c(1− c)V0

+
1

12
r2

0 [ZM + (1− 2c)V0]∇2c.
(2.17)

Considering that the free energy per atom for an inhomogeneous solution is

f = u− Ts = f0(c) + κ1∇2c+ κ2(∇c)2 (see Eq. (1.1)), we can �nd:
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f0 = uAc+ uB(1− c) + Zc(1− c)V0

+ kT [c ln c+ (1− c) ln(1− c)] ,

κ1 =
1

12
r2

0 [ZM + (1− 2c)V0] ,

κ2 = 0.

(2.18)

Applying now Eq. (1.5), we obtain:

κ =
r2

0V0

6
, (2.19)

which is equivalent to κR given by Eq. (1.8) as r2
0/3 = ξ2.

To generalise this expression, only V0 has to be replaced by a composition

dependent interaction parameter in Eq. (2.14) and consequently also in Eq.

(2.18). Thus

κ(c) = − 1

12
r2

0

∂(1− 2c)V (c)

∂c
. (2.20)

Substituting for instance V (c) given in Eq. (2.13) into Eq. (2.20) results in:

κ(c) =
1

6
r2

0

n∑
v=0

(1 + v)Vv(2c− 1)v. (2.21)

This gives back Eq. (2.19) for n = 0 (regular solution) and results in a

linearly composition dependent gradient energy coe�cient for n = 1 (sub-

regular solution):

κ(c) =
1

6
r2

0 [V0 + 2V1(2c− 1)] . (2.22)

At the end of this section, it should be emphasized that in the case,

when composition dependent V (c) interaction energy is used in the system,

it necessarily implies that the κ gradient energy coe�cient will also be

composition dependent. Thus, for systems with an asymmetric solubility

curve, the use of a composition dependent gradient energy coe�cient is
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also required when performing computer model calculations. However, we

often come across authors who do not take this fact into account in their

simulations.

Miscibility gap

Tests were performed on how well the solubility data obtained from SKMF

�t the miscibility gap calculated from the free energy function Eq. (2.1)

using the common tangent method. The results are virtually identical in

these two cases. First, the case of the regular solid solution was investigated,

where the V1 interaction energy coe�cient is set to zero. The correspond-

ing results can be seen in Fig. 2.3a and they show an excellent match. I

performed the same test for the case where V1 is not equal to zero, i.e. for

a non-regular solid solution, but the calculation was made by using the im-

proved verion of the model. As it was expected, the miscibility gap becomes

indeed somewhat asymmetric, as can be seen in Fig. 2.3b, and the solubil-

ity data obtained here show a good agreement with the data obtained from

the free energy function. This shows, that the improved SKMF model can

indeed reproduce the Ag-Cu like miscibility curves.

Note that to calculate the fL0 free energy per atom of the liquid phase,

similarly to Eq. (2.1), the following formula was used:

fL0 = fLAgc+ fLCu(1− c)
+ c(1− c) [L0 + L1(2c− 1)]

+ kT [c ln(c) + (1− c) ln(1− c)].
(2.23)

Here fLAg = f̃LAg/NA, fLCu = f̃LCu/NA, L0 = L̃0/NA, L1 = L̃1/NA, where

f̃LAg = 0, f̃LCu = 0, L̃0 = 15171 − 2.537T J/mol and L̃1 = −2425 + 0.946T

J/mol are the thermodynamic parameters of the Ag-Cu liquid phase. In

the V1 = 0 case L1 = 0 and fLCu = fLAg parameters were chosen in order to

obtain a symmetric phase diagram.
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Figure 2.3: Calculated miscibility gaps provided by SKMF: (a) V1 = 0 and
(b) V1 6= 0.

Interface pro�le

The interfacial free energy density can be expressed as [1]:

σ = ρ

∫ +∞

−∞

[
∆f(c) + κ(∇c)2

]
dx, (2.24)

where

∆f(c) = f0 −
[
cµeqA + (1− c)µeqB

]
(2.25)

and µeqA and µeqB are the chemical potentials per atom of A and B in the α

and β phases, respectively.

The equilibrium composition pro�le can be obtained by minimizing Eq.

(2.24). By applying the appropriate Euler-Lagrange equation for the com-

position �eld, we obtain [4]:

κ(∇c)2 = ∆f(c) (2.26)

The following formula can be obtained for the quilibrium interface by sep-



40

arating the variables and calculating the integral:

x(c) =

∫ √
κ(c)

∆f(c)
dc. (2.27)

To obtain the composition pro�le, we �rst calculated the µeqA and µeqB from

the free energy per atom expression, then calculated ∆f(c) form Eq. (2.25),

and calculated the integral numerically. Finally, we inverted the x(c) func-

tion.

Figure 2.4 shows the calculated interface pro�les compared to equilib-

rium composition pro�les obtained by SKMF for composition independent

and linearly composition dependent gradient energy coe�cients. To obtain

the equilibrium composition pro�les in SKMF, an A/B di�usion pair was

created initially in the computational cell and the program run for very

long time, until no change was seen in the composition pro�le (also in the

free energy). As can be seen, the agreement between the corresponding

pro�les is excellent. The minor deviation comes from that the theoretical

solubilities slightly di�er from that obtained from SKMF (see Fig. 2.3).

Figure 2.5 shows the comparison of the theoretical interface pro�les pre-

sented in Fig. 2.4. As can be seen the slope and the width of the interfaces

hardly di�er with the parameters of the Ag-Cu system. The most remark-

able di�erence is that in the case of a composition dependent gradient energy

coe�cient the interface is asymmetric due to the asymmetry in the solubility

of Cu in Ag and vice versa.

Note that in SKMF we used zero noise amplitude (An = 0) for the cal-

culation, which means that the calculation was free from stochastic �uctua-

tions. We also tested the interface pro�les with high stochastic �uctuations

(up to An = 0.3
√

Γ0), but they practically did not change.
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Figure 2.4: Theoretical interface pro�les calculated by using Eq. (2.27) com-
pared to the equilibrium composition pro�les obtained by SKMF: (a) V1 = 0
(regular solution, symmetric miscibility gap), i.e. composition independent
κR; (b) V1 6= 0 (non-regular solution, asymmetric miscibility gap), i.e. lin-
early composition dependent κR(c).

Spinodal decomposition

We �rst performed the calculations with its original form (regular solid

solution) and then repeated with the improved one (non-regular solution).

For c̄ = 0.3, the evolution of the concentration �eld of silver is displayed in

Fig. 2.6.

The time evolution of the λc cuto� wavelength, and the fastest growing

wavelength λm was investigated, which is - based on the classical Cahn-

Hilliard theory - in a relationship with λc as λm =
√

2λc [21] In the SKMF

simulations, the average Ag composition is c̄ and the structure factor was

calculated as [29] S(k, t) =< ĉ(k, t)ĉ(k, t) >. The ĉ(k, t) and ĉ(k, t) terms

are the Fourier transform and complex conjugate of c(r, t) at t. k = |k|
is the radially averaged wave vector, and < · > is the average over initial

con�gurations. In the Cahn-Hilliard linear theory [30], only the composition

�uctuations with spatial extension exceeding the reduced cuto� wavelength

λc can trigger the phase separation. Here, λc is approximated by 2π/kc,
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Figure 2.5: Comparison of the theoretical interface pro�les calculated by
using Eq. (2.27) (see Fig. 2.4).

where kc is the maximum wave vector whose amplitude S(kc, t) exponen-

tially increases during the early stage of the spinodal decomposition (see

Fig. 2.7a). As for the reduced maximum wavelength λm, it corresponds to

the fastest growing wavelength. Thus, it can be approximated by 2π/km,

where km is the wave vector corresponding to the maximum value of S(k, t)

(see Fig. 2.7b).

The values of λc and λm were determined as a function of the c̄ mean

composition. The results of the SKMF simulations are shown in Fig. 2.8,

and they were performed at T = 873 K temperature for the V1 = 0 regular

solution and V1 6= 0 non-regular solution cases. Here, too, symmetric and

asymmetric behaviour can be observed compared to cAg = 0.5 respectively.



43

0.301

0.299

0.300

1

0.945

0.493

0.042

1

0.966

0.492

0.019

1

Figure 2.6: Three-dimensional visualization of several time steps of an
SKMF simulation showing a phase separating silver-copper system. At the
beginning of the run, a homogenous c̄ = 0.3 average composition was taken
with a small static �uctuation (0.002), at T = 873 K temperature.

In the case of spinodal decomposition, examining a two-component sys-

tem, it was also shown analytically [21] that the dependence of the cuto�

and critical wavelength on the composition can also be estimated. Using

the classical Cahn-Hilliard theory λc can be expressed as:

λc =

√
−8κRπ2

f ′′0
. (2.28)

Here f ′′0 is the second derivative of the f0 free energy function by compo-

sition. This f ′′0 derivative can be substituted into Eq. (2.28) which gives

us:
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Figure 2.7: Time evolution of the S(k, τ) structure factor, and demonstra-
tion how kc cuto� wave vector and km maximum wave vector can be deter-
mined from it. These simulations were performed with the SKMF model for
a phase separating silver-copper alloy. The initial state was a homogenous
system having c̄ = 0.3 average concentration, with additional small initial
concentration �uctuations of the amplitude of 0.002.
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λc =

√
8

2 V0kT − 6 V1kT (1− 2c)− 1
c(1−c)

κR
kT

π. (2.29)

Figs. 2.8 (a) and (b) show this function calculated for the regular V1 = 0

and non-regular V1 6= 0 solution case. It can be clearly seen that the results

of these SKMF simulations agree well with the analytical calculation in the

regular case, but show a di�erent behavior with respect to the non-regular

solution.
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Figure 2.8: The λm maximum wavelenths based on analytical and model
calculations for phase separation in the Ag-Cu alloy. The initial state of
these three dimensional simulations were homogeneous alloys with random
initial composition �uctuations of amplitude 0.002. The calculations were
started from di�erent inital mean c̄ concentration values, at T = 873 K tem-
perature, (a) V1 = 0 (regular solution), (b) V1 6= 0 (non-regular solution).
The solid lines being only guides to the eye.

The explanation for this discrepancy can be attributed to the fact that

the κ gradient energy coe�cient in the SKMF model is composition de-

pendent in the non-regular case. In contrast, in the analytical calculations

presented here Eq. (2.29), the free energy function can be composition de-

pendent without having a composition dependent gradient energy coe�-
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cient. Of course, we could substitute a composition dependent gradient

energy coe�cient into Eq. (2.29), but that would not be justi�ed because

the Cahn-Hilliard equation was derived in a way, to contain only the com-

position independent gradient energy coe�cient.

2.4 Conclusions

In this chapter, spinodal decomposition in the binary Ag-Cu alloy was exam-

ined, which has a slightly asymmetric miscibility gap and spindodal curve.

Since it is a non-regular solid solution, the relationship between the excess

free energy function and the composition cannot be represented as a second-

order polynomial, but with a composition dependent interaction energy.

It was shown that the interaction energy assumed to be composition-

dependent necessarily leads to a composition-dependent κ gradient en-

ergy coe�cient. It was also shown that by taking the interaction energy

V (c) from the free energy function, an equation can be written for the κ-

composition function function: κ = −1/12r2
0∂[(1− 2c)V (c)]/∂c.

It should be noted, however, that the last sections did not cover all the

implications of assuming a composition-dependent gradient energy coe�-

cient, but examined it only up to a linear dependence, which corresponds

to a sub-regular solid solution. Nevertheless, signi�cant di�erences were

observed for the system by making this assumption. It was demonstrated

that the cuto� wavelength of the spinodal decomposition changes, while

the equilibrium interface and the solubility curve remains almost una�ected

under the in�uence of the composition-dependent κ .

It was also discussed, that the analytical expression often used to de-

termine the cuto� wavelength is only true for composition independent κ,

because it does not take κ(c) into account. We improved the SKMF model

to include this behaviour with a V (c) composition dependent interaction

energy.



Chapter 3

A multiscale procedure

In this chapter a sequential multiscale (MS) procedure is proposed: the

SKMF and PFM methods are used on their own natural length scale (atom-

istic and mesoscopic respectively) and are connected to each other through

the upstream transfer of the relevant physical parameters. 1

The method �rst consists of combining the length and time scales of

SKMF and PFM. This is followed by an atomic-scale simulation of the

initial phase of the decomposition dynamics using the SKMF model. The

resulting simulation outputs from the early stage dynamics are the inputs of

the PFM simulations for the further stage of the process. Finally, by scaling

the MS procedure up, a larger box can be simulated using the particle size

distribution (PSD) and density as input for the PFM simulations.

The �rst step in the multiscale process ensures consistent integration

of the two models into the global approach. It also ensures that the spa-

tial and temporal scales of the MS procedure are calculated in real units.

This coupling of SKMF and PFM was made by examining the growth of a

spherical nucleus. The SKMF atomistic model carries its own length scale

1This chapter is based on the article B. Gajdics et al. A multiscale procedure based
on the stochastic kinetic mean �eld and the phase-�eld models for coarsening.Journal of
Applied Physics, 126(6):065106, 2019. [31]

47
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in real units through its three-dimensional grid. In contrast, the resolution

of the PFM is determined by the spatial correlation length (' l0). This

characteristic length scale will therefore be the point of connection between

the two methods. Related to the natural length scale of the SKMF model,

the two methods simulate the interface pro�les of the copper-rich precipi-

tates and the silver-rich matrix. The time scales of SKMF and PFM are

then combined by monitoring the time evolution of the precipitate radius

in both cases. The estimation of the interatomic di�usion coe�cient of the

Ag-Cu alloy, calculated in a previous work [10], is also used to express the

time scale of the MS procedure in real units.

The second step of the MS procedure is to feed atomic simulations of

SKMF into the PFM. In this case, the SKMF and PFM simulations are

run on simulation boxes of the same size (1683 grid points in this chapter)

at the time point corresponding to the maximum number of precipitates.

This strategy is nevertheless limited by the computational load of SKMF

simulations if a large simulation box is taken. To scale up the MS procedure,

we then use the PSD and the density of precipitates at the maximum number

of particles provided by SKMF as an input to the PFM simulations on a

larger simulation box (5123 in this chapter).

3.1 Choosing the parameters for the MS procedure

in case of Ag-Cu

In this chapter, we used a modi�ed version of a original SKMF model that

can be applied to asymmetric phase diagrams [17], such as Ag-Cu. To this

end, the expression for the jump frequency of ΓMF
i,j has been modi�ed, based

on (1.61), (1.62) and (1.63). This can be done in the equation 2.10 by re-

placing the constant parameter V0 with a composition-dependent parameter

V (c), which can be de�ned as follows:
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V (c) = V0 + V1(2c− 1), (3.1)

where the two coe�cients V0(T ) and V1(T ) can be extracted, for example,

from the Redlich-Kister polynomials used in CALPHAD. This reproduces

the experimental solubility limits of the alloy. With this, the excess internal

energy:

∆uex(c) = c(1− c)[V0 + V1(2c− 1)]. (3.2)

Thus, the stationary states of the SKMF model give the same asymmetric

solubility limits if:

V (cij) = V + V ′(2cij − 1), (3.3)

where V = V0/Z, V ′ = V1/Z (V0 and V1 are de�ned in Eq. (2.11) for one

atom, while V and V ′ are calculated for one bond), and:

cij =
1

2(Z + 1)

ci +
Z∑
l=1,
l∈V(i)

cl + cj +
Z∑
l=1,
l∈V(j)

cl

 , (3.4)

this is how the interaction energy Êi,j shown in the equation (1.63) turns

into:

Êi,j = (M − [V + V ′(2cij − 1)])

Z∑
l=1,
l∈V(i)

cl

+ (M + [V + V ′(2cij − 1)])
Z∑
l=1,
l∈V(j)

cl.

(3.5)

In this chapter, we used the SKMF model to study the kinetics of the

phase separation of the Ag-Cu immiscible alloy on the atomic scale. The
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Ag-Cu system has an asymmetric phase diagram [24], and consequently the

expression (3.5) can be applied for calculating the interaction energy.

The thermodynamic data are from the CALPHAD database, which is

used to �t the solubility limits of the system obvserved by experiments [24].

In addition, Ag and Cu have very similar tracer di�usion coe�cients in

silver, copper, and in the silver-copper alloy [10,32]. Consequently, the value

of the di�usion asymmetry coe�cient M is chosen to be 0. In addition, the

FCC grid is made up of 1683 grid points, and periodic boundary conditions

were applied. Eq. (1.54) is solved in a reduced form using reduced timestep

∆t∗ = ∆tΓ0, reduced noise amplitude A∗n = An/
√

Γ0, reduced �uxes J∗i,j =

Ji,j/Γ0, furthermore M , V and V ′ are used in kBT units. The value of the

reduced time step is ∆t∗ = 0.01, which determines the reduced time of the

SKMF simulations. This is t∗SKMF, which can be calculated as the product

of the number of iterations and the time step. Also, when dynamic noise

is applied (nucleation and growth), the value of the reduced amplitude is

A∗n = 0.35.

3.1.1 Solubility limits of the Ag-Cu system

The solubility limits of the Ag-Cu alloy can be calculated for both the

SKMF and PFM models, taking the maximum and minimum values of the

bulk concentration. In both cases, the criterion for achieving steady-state

concentration in the precipitation and matrix was the stationarity of the

numerical solubility limits. To meet this criterion, approximately 30,000

iterations were required for the SKMF model and 5,000 for the PFM model.

The results of SKMF and PFM are summarized in the Figure 2.3, with blue

squares and red circles (full marks). In contrast, the experimental binodal

curve of [24] (solid line) can be seen.

The solid Ag-Cu within the temperature range of (T < 1050 K) for

both models shows a good agreement with the solubility limits of the phase

diagram, based on experimental values. This seems reasonable given the
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Figure 3.1: Solubility limits (full marks) and spinodal limits (sempty marks)
given at di�erent temperatures of the Ag-Cu system, PFM (red circles) and
SKMF simulations (blue squares), together with the binodal line provided
by the CALPHAD database (black line) and the spinodal line obtained from
the Cahn-Hilliard linear theory (black dots).

fact, that the free energy density of the mean-�eld Bragg-Williams theory,

determining the state of equilibrium for the PFM, and the corresponding

equilibrium in the SKMF model were parametrized by taking data from the

CALPHAD database. he asymmetric nature of the phase diagrams derives

from here.

The spinodal curves were also computed for both SKMF and PFM and

simulations were done by taking di�erent initial average compositions in a

wide range of temperatures. As the initial condition for the PFM simu-

lations, homogenous binary solutions with a small imposed concentration

�uctuations with the amplitude of 0.002, a so called static noise. Simi-

larly, homogenous systems were investigated also with the SKMF model,

where for a single site a 10−6 initial �uctuation was used and the dynamic

noise was tuned to zero in these cases (An = 0). During the mapping

of the concentration-temperature �eld, only such pairs were considered to

be within the spinodal curve, which were allowing phase separation to take
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place inside the system. Incidentally, this procedure allowed to circumscribe

the nucleation-growth domain of the Ag-Cu system. These simulations re-

sulted in slightly di�erent compositions than the theoretical values of the

Cahn-Hilliard linear theory (dotted line) for both PFM and SKMF. At

least one of the reasons for this di�erence in the case of SKMF, namely the

composition dependence of the gradient energy coe�cient, is described in

Chapter 2. In the next sections, computer simulations were done using the

average initial composition of c̄ = 0.83, at T = 873 K absolute tempera-

ture. With these parameter settings, the investigated systems are outside

of the spinodal curve for both SKMF and PFM, which places them inside

the nucleation-growth domain.

3.1.2 Space scale

In the SKMF model, the length scale is set by the distance between the grid

points. In the Ag-Cu alloy, the lattice parameter of the FCC grid is about

a0 = 0.38 nm [21], so ∆x = a0/2 = 0.19 nm. As a result, the simulation

grid (1683 locations) used in SKMF roughly corresponds to a (32 nm)3

spatial volume. In the phase �eld model, the length scale is determined by

adjusting the correlation length using an atomistic approach, a role �lled by

the SKMF model here. It is worth noting that in reality, the lattice constant

changes during decomposition because it is 0.3597 nm in pure Cu and 0.4079

nm in pure Ag [33]. During the simulations, the misalignment of the grid

was neglected and the mechanical stresses were not taken into account. This

simpli�cation justi�es spherical precipitates in the �rst approximation, in

the Ag-Cu alloy, both in the early phase (coherent precipitates) and in the

later phase (semi-coherent precipitates) [10].

To �t the distance scale of the two models, we simulated the growth of

a single copper precipitate with the SKMF model at an average composi-

tion of c̄ = 0.83 and a temperature of T = 873 K. The equilibrium pro�le

of the resulting Ag/Cu interface in the direction < 100 > is indicated by
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Figure 3.2: Equilibrium pro�le of Ag/Cu interface for c̄ = 0.83, at T =
873 K. Results by SKMF calculations (blue squares) and by PFM (red
circles). Red line shows the �tting of the SKMF results with the typical
PFM solution, a tanh function. See details in the text.

blue squares in Figure 3.2. The interface was considered to be in equilib-

rium when its width and the solubility limits became stationary. At this

temperature and composition, the condition was met after roughly 30 000

time steps. A typical hyperbolic tangent function was �tted to the SKMF

interface pro�le that reproduced the PFM composition values well. To be

more speci�c, the interface was �tted by I(x) = A0 + A1 tanh (x/l0) (cor-

relation factor > 0.999), where the characteristic distance was found to be

l0 = 0.196 nm (red line in Figure 3.2). The choice to take ∆t∗PFM = 0.97

thus provides ∆xPFM = ∆xSKMF = 1.90×10−10 m (see Table 3.1). Though

uncommon, this small space step in the PFM is the price to pay if we want

to �t the atomic scale composition pro�le of SKMF with the continuous and

di�erentiable functions solving the phase-�eld equation (1.15). It is worth

mentioning that similar values were used in previous PFM based MS pro-

cedures [10, 34]. However, this does not endorse the applicability of PFM

on the atomic scale.
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SKMF PFM
∆t = 9.03× 10−6 s ∆t = 6.32× 10−5 s

∆x = 1.90× 10−10 m ∆x = 1.90× 10−10 m

Table 3.1: Smallest discrete units of the space and time scales for SKMF
and PFM, at T = 873 K.

To verify the transferability of composition pro�les from atomistic

SKMF to continuous PFM, the SKMF must be run until a state of the

appropriate smoothness interface pro�le is generated, which can be used as

a starting point for PFM calculations and the phase �eld to solve equations

numerically. Previous work has shown that continuum equations are also

valid on the atomic scale, in cases when the di�usion distance exceeds a few

times the distance between the atoms [35, 36]. However, it is important to

note that this distance depends signi�cantly on the asymmetry of the di�u-

sion (the dependence of the di�usion coe�cient on the composition) [37,38].

In the case of the Ag-Cu alloy examined here, this is actually neglected for

the di�usion asymmetry, i.e. the parameter M is considered to be zero in

this case. The running times of SKMF calculations were adapted to this

condition. This is particularly con�rmed by the fact that the concentration

pro�le generated in SKMF simulations is very similar to the hyperbolic tan-

gent pro�le of PFM, although no Fickian continuous di�usion is assumed

in it.

Considering these conditions, a simulation volume of 1683 was chosen

for both the phase �eld and the SKMF model. The size range thus ex-

amined corresponds to approximately (32 nm)3. The obtained phase �eld

concentration pro�le is shown in the Figure 3.2 marked with red circles.

From the value l0, the gradient energy coe�cient κ can be calculated

using the formula κ = kbT l
2
0. As a result, κ = 4.6 × 10−21J nm2 or other-

wise κ = 2.1eV nm−1 at a temperature of T = 873 K, where the density is

taken as 72.9nm−3 for the Ag-Cu alloy. This value is slightly larger than
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the κ = 1.5eV nm−1 obtained in Monte Carlo / molecular dynamics simu-

lations in the work [10] at T = 900 K. Also, the SKMF interface pro�le is

slightly sti�er than the system state projected in the previously mentioned

article. Here, moreover, it was found that in the temperature interval be-

tween 600 and 1000 K, the gradient energy coe�cient is independent of

temperature. Therfore, we propose that this constant κ value can be used

to back-calculate the l0 length scale at any temperature in this temperature

range.

3.1.3 Time scale

To calculate the real time scale t0 for the Ag-Cu binary alloy, it is �rst

necessary to determine the atomic mobility M. This can be done based

on Martin's model, which is suitable for bulk di�usions in two-component

alloys [11]:

M' c̄(1− c̄)
kBT

D̄, (3.6)

where D̄ denotes the chemical interdi�usion coe�cient. This is assumed to

be independent of the composition of Ag and Cu near the transition between

the matrix concentrations. This is also evidenced by the fact that the tracer

di�usion coe�cient is close to that of Cu, Ag and Ag-Cu. This choice does

not contradict the assumption that the di�usion asymmetry parameter in

SKMF was chosen to be zero in the equation (1.63). In line with these,

the chemical interdi�usion parameter in [10] is as follows: D̄(T = 873 K

) = 75.9nm2s−1. The value of the atomic mobility can then be evaluated at

T = 873 K temperature. Using the formula (3.6): M = 161nm2s−1eV−1.

Thus, for the PFM, the time scale is t0 = l20/(kbTM) = 3.16 10−3 s. This

t0 will also give the multiscale procedure's time scale.

In order for the SKMF model to be consistently incorporated into the

multiscale method, its time scale must �rst be linked to the phase �eld



56

model. This was done by numerically simulating the growth of a single pre-

cipitate for both models, where the temperature was chosen to be T = 873

K and c̄ = 0.83 was the mean concentration of the system. The mid-point

of the interface between the matrix and the precipitate was taken to es-

timate the radius of nucleus. The precipitate's radius at the initial state

was approximately 20 atomic distances, i.e. R(t = 0) = 3.8 nm. This is

much larger than the critical radius required for nucleation. In addition, a

concentration of 0.013 was used for both models for the precipitate, which

is determined by the lower solubility limit of the alloy. This initial state is

indeed the same as the equilibrium shape of the precipitate in study. Thus,

in the calculations, the growth is examined by the Fick di�usion approxi-

mation, except for the initial steps adjusted to the equilibrium pro�le, as

shown by Fig. 3.2. In the SKMF simulations, the noise amplitude was

chosen to be zero, thus facilitating easier comparison with the phase �eld

model.
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Figure 3.3: The growth of a single precipitate's radius R(t), where T = 873
K and c̄ = 0.83. The result obtained from the SKMF simulation is shows
with blue squares and the corresponding PFM result with red circles. Here,
SKMF time scale was rescaled by a factor τ0 = 3.50.

Figure 3.3 shows the results of the SKMF and PFM calculations for the
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time evolution of the precipitate radius R(t). The two curves are almost

identical except for a multiplication factor of τ0 = 3.50± 0.01, which shows

that the reduced time scale of the two models is proportionally related to

each other, so: t∗SKMF = τ0t
∗
PFM. Consequently, the time scale of the SKMF

model can be converted using the real-time scale of PFM t0 determined

by atomic mobility M. This results in the Figure 3.3. Another possible

solution is to estimate the real time scale in the SKMF model itself using

the expression of the MF jump frequency ΓMF
i,j , as in (1.62) and then compare

with the time scale of PFM t0. Here, however, we decided to use the same

time scale for both methods, which allows the kinetics of the early and later

stages of the system to be compared for SKMF and PFM.

Determining that ∆t∗SKMF = 0.01 and ∆t∗PFM = 0.02, the time scales

of the two models can be displayed in a common table as shown in 3.1. It

should be noted here that the time scale of the PFMmodel relative to SKMF

is about seven times bigger, so: ∆tPFM = 7.00×∆tSKMF. We also performed

simulations using dynamic Langevin noise for the SKMF model, in which

a similar time scale for a single precipitate growth was obtained. However,

due to the stochastic nature of the model, it also allows the appearance

of additional nuclei. In this case, therefore, we �tted the time scale of the

two models to the temporal evolution of the �rst precipitate's radius. It

should also be noted that the curves in Figure 3.3 conform to the law of the

square root of time. This is predicted by Wagner's theory [39] in the case of

the growth of a single nucleus, and this supports the assumption that the

Fickian approximation of di�usion regime is correct.
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3.2 Multi-scale simulation of nucleation and

growth in the Ag-Cu system

3.2.1 SKMF simulations

The simulations were performed at 873 K for the SKMF model, where a

total of 8.75 · 106 simulation steps were required to examine the copper-

rich clusters in the silver matrix. As shown in Figure 3.1, the average

composition in the initial state c̄ = 0.83 is outside the spinodal region but

within the miscibility gap for both methods. In order to be able to cross

the nucleation barrier, we decided to use dynamic noise. However, it is

important to note that the time required for nucleation strongly depends on

the chemical driving force on the one hand and on the amplitude of the noise

on the other hand. This driving force is signi�cantly weaker for systems

where (c̄, T ) is closer to the spinodal curve. Also, higher An dynamic noise

typically results in more viable copper precipitates, however, the statistics

will be worse, while higher c̄ will lead to longer nucleation time. Figure

3.4(a) shows the formation of the �rst small precipitates smaller than 1 nm.

The formation of additional nuclei is then observed, and a rapid increase

in the average radius occurs R̃ (Fig. 3.5(b)) until the maximum number of

copper-rich particles is reached (Fig. 3.5(a)). This time step (t = 0.16

s) served as the initial con�guration for the phase �eld simulations. Then

we can see a decrease in the number of precipitates and an increase in the

radius R̃, which is the result of the coarsening process.

No viable nuclei were observed in the initial stage of nucleation. Figure

3.4(a) shows the early stage of the nucleation process (0.05 s). Thereafter,

during a rapid growth phase, the system quickly reaches the state corre-

sponding to the maximum number of precipitates (∼ 0.16 s). In this case,

the average size of the precipitates is about 1.5 nm. The much slower coars-

ening process is the next stage where the average radius of nuclei starts to

increase (Figure 3.4(b)). Separation can be well characterized by calculating
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(a) t = 0.05 s (b) t = 0.16 s (PFM start)

(c) t = 7.90 s

Figure 3.4: Resulting microstructures of SKMF simulations. The dynamic
noise amplitude A∗n was 0.35 and T = 873 K, c̄ = 0.83. The corresponding
times are a) t = 0.05 s, b) t = 0.16 s and c) t = 7.90 s.

the number of AA, BB, and AB bonds using the atomic �nding probabilities

in SKMF. If the two neighboring lattice sites are i and j, then cicj gives

the number of Ag-Ag, (1 − ci)(1 − cj) a Cu-Cu and ci(1 − cj) + (1 − ci)cj
of the Ag-Cu bonds. The formation of the bond between the same sort of

atoms (AA and BB) is energetically more favorable, therefore a decrease in
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Figure 3.5: Results obtained by SKMF simulations (blue squares) for c̄ =
0.83, at T = 873 K temperature and the dynamic noise amplitude was set
to A∗n = 0.35: a) total number of nuclei, b) mean radius of the precipitates,
c) time evolution of the fraction of homonuclear and heteronuclear bonds
in the system. The state, which was chosen as the initial step for PFM
simulations is marked with red circles.

the number of unfavorable AB bonds can be observed, as shown in Figure

3.5(c).

3.2.2 PFM simulations

The same temperature and mean composition values were used in the phase

�eld simulations, namely T = 873 K and c̄ = 0.83. The atomic con�guration
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of the SKMF simulation for the time step t = 0.16s was selected as input

for PFM (3.4(b)). Considering that in the SKMF model, the probability of

�nding atoms varies continuously between lattice sites, during channeling

into the PFM model, empty atomic lattice sites were made quasi-continuous

by interpolation from adjacent values (Fig. 3.6(a)). It is important to note

once again that this connection is based on the method described previously,

when the size scales of the two methods were matched by the interface pro�le

of a single-growing precipitate.

It should be noted that in the PFM model, the continuous c coarse grained

concentration is discretized on a simple cubic lattice, which is determined at

the mesoscopic level. This not only connects the two models by interpolation

between the FCC and a simple cubic grid, but also changes the nature of

the parameter describing the system. The further study of this question

is by no means trivial, but it goes beyond the scope of this work. The

maximum number of precipitates is 122 and the corresponding time is t =

0.16 s. Figure 3.6 shows how the microstructure of the system changes

by PFM simulation. A brief transition state can be observed in the time

interval between t = 0.16 s and t ' 2 s . This is followed by the onset of

the coarsening regime, where the volume fraction of precipitates is almost

constant, while smaller nuclei coalesce or dissolve, and the average radius

of larger precipitates increases.

To quantify this observation, we determined the particle size distribution

for the system at di�erent time points. This can be seen in Figure 3.7(a).

The distribution of the initial state of the PFM simulation can be seen in

the insert. One can notice that the distribution begins to �atten over time

and shifts in the direction of larger precipitates. The Lifshitz Slyozov Wag-

ner (LSW) theory [40] can be used to describe this behavior, which found

that the microstructure of the system is self-similar in the coarsening stage.

Therefore, the reduced PSD scaled by the mean radius R̄ (red histogram)

follows the theoretical distribution of the LSW (black line) in Figure 3.7(b).
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(a) t = 0.16 s (PFM start) (b) t = 2.69 s

(c) t = 19.15 s

Figure 3.6: Results of di�erent stages of the microstructure evolution pro-
vided by PFM. The initial composition distribution was taken from SKMF
calculations for c̄ = 0.83, at at T = 873 K temperature and t = 0.16 s. The
system is shown at 3 di�erent time steps of the process: a) t = 0.16 s, b)
t = 2.69 s and c) t = 19.15 s.

The change in the number of precipitates and their mean radius over

time is plotted in the Figure 3.8. Initially, a rapid decrease in the number

of precipitates is observed, while a fast increase is seen in the average radius,

which reaches 2.1 nm. This is replaced by a coarsening regime with slower
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Figure 3.7: Distribution of precipitate size provided by PFM computer sim-
ulations for c̄ = 0.83 at T = 873 K temperature a) shown at di�erent time
steps, where the insert gives the original particle size distribution taken
from SKMF simulation, and b) comparison of the theoretical PSD from
LSW (black line) and obtained results, scaled by the mean particle radius.

dynamics. Formation of steps can be observed in Figure 3.8(b), which is

the result of the coalescence or dissolution of precipitate clusters and in this

case the statistics are not suitable. We also compared the results for the

time change of the mean radius R̄ (red circles) with the law expected from

LSW theory R̄(t) = (R̄3
c + Kt)1/3 (black line). At the beginning of the

coarsening phase, R̄c = 2.27 nm is the mean radius, and K = 2.78nm3s−1

is the LSW rate constant. In the time range between t = 1 s and t = 10,

the two were �tted (correlation factor > 0.99) and the results provided by

PFM are in good agreement with LSW theory.

It should be mentioned, however, that the K rate constant is high here.

This is due to the fact that the average composition c̄ = 0.83 is close to

the spinodal curve at T = 873 K temperature. It has been shown for

systems where the second component is present in large quantities, both

by analytical [41�43] and numerical [34, 44, 45] calculations that the rate

constant can increase by even an order of magnitude. Furthermore, the
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analytical calculations of [42] also projected a broader and more symmetric

normalized PSD, than what could be expected from the LSW theory, which

is also consistent with the results presented here (see Figure 3.7(b)).
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Figure 3.8: Results provided by PFM (red circles) simulation: a) change of
total number of precipitates and b) mean precipitate radius over time for
c̄ = 0.83, at T = 873 K temperature. The black line is the �t based on the
LSW theory. The insert contains both PFM (red circles) and SKMF (blue
line) results at the early phase of the process.

The con�rmation of the MS method's self consistency was done by ex-

tending SKMF numerical calculations to the beginning of the early phase

coarsening, as it can be seen in Fig. 3.8. Here, one can observe the change

in the total amount of nuclei taken as the output of both PFM (red circles)

and SKMF (blue line) simulations. In general, the results are matching well

at this stage of the process, however the data provided by SKMF shows

slightly higher values, than PFM. On the other hand, an approximately

constant disparity can be seen on the mean radius measurements. In the

case of SKMF, this can be explained by the fact, that a dynamic noise is

being present in the course of the computer simulations and thus, even in

the coarsening phase of the process, nucleation can still take place. To over

bridge this gap and compare the two methods in a more consistent fash-
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ion, it would have been necessary to make the comparison between PFM

and SKMF in a way that the dynamic noise is being turned o� in SKMF

after the moment the two simulations were linked to each other (t = 0.16

s). This eliminates the further appearance of precipitates, and a thermal

equilibrium can be reached inside the silver matrix component. In such a

scenario, Ostwald ripending would be the driving process during this stage

of the nucleation process. However, the the link created between the two

models shows a good agreement and the self consistency of the MS method

can be supported.

3.2.3 Upscaling the MS procedure

The next step in the multiscale approach is to feed the particle size distri-

bution (PSD) obtained from SKMF simulations and the precipitate density

into the PFM calculations. The downside of the MS method presented so far

is the computational cost of SKMF model simulations for large sizes. How-

ever, this can be solved by using only the precipitate density and PSD from

atomic level simulations and scaling it up for PFM calculations. Thanks

to this, we can investigate arbitrarily larger volumes using the PFM. For

this purpose, the state obtained at t = 0.16 s in case of the SKMF model

was taken as the initial con�guration, in which 122 precipitates are found in

a simulation box of 32nm3 = 32768nm3. This, approximately corresponds

to a precipitate density of 3.72 × 10−3. The PFM model calculations were

discretized on a 5123 grid, which is equivalent to a sample volume of 100
3nm3 . The precipitation density of SKMF at this volume projected 3723

particles for the PFM model, which allowed good statistics. The corre-

sponding Figure 3.9(a) shows the PSD again. 3723 nuclei were generated

with a uniform distribution in the volume, and the particle sizes were also

chosen randomly, following the PSD of the SKMF model.

For that purpose, the inverse F−1
R of the cumulative distribution function

FR(r) = P(R ≤ r) (P being the probability) associated to the PSD of SKMF
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Figure 3.9: a) Initial PSD for PFM upscaled simulations and b) correspond-
ing inverse partition function F−1

R (u) used on a random trial u with uniform
law.

was determined (see Fig. 3.9(b)). Then, each particle radius R was drawn

as R = F−1
R (u), where u is a random trial of the uniform law between 0 and

1. The evolution of the microstructure simulated by the PFM on a 1003

nm3 computation grid is displayed in Fig. 3.10, at times t = 0.16 s (PFM

initial state), t = 1.26 s and t = 17.7 s.
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(a) t = 0.16 s (PFM start) (b) t = 1.26 s

(c) t = 17.7 s

Figure 3.10: Results of PFM simulations calculated using a simulation box
consisting of 5123 grid point. The PSD was taken from SKMF calculations
performed on a 1683 system. T = 873 K temperature and c̄ = 0.83 mean
composition was chosen and the corresponding times are a) t = 0.16 s, b)
t = 1.26 s and c) t = 17.7 s.



Chapter 4

3DO-SKMF

The following section introduces a computer simulation method that can ef-

�ciently study the atomic motion process of three-dimensional objects. This

so-called 3D object stochastic kinetic modeling framework (3DO-SKMF) is

able to take into account surface segregation as well as the e�ect of sur-

face curvature (Gibbs-Thomson e�ect). 1 The created model can simulate

objects of any shape in an extremely advantageous and �exible way, as

a result of which it can be easily applied to model various nanosystems,

such as nanoparticles, nanopillars, nanotubes, nanorods, etc. Similarly to

the SKMF model presented in the previous chapters, the stochasticity of

the system can be tuned with the help of a noise term. In this chapter, I

demonstrate the applicability of the model and I also reproduced experi-

mentally observed results of a phase separating copper - silver nanoparticle

using this new framework.

1The chapter is based on the following publication: Gajdics et al. An e�ective method
to calculate atomic movements in 3D objects with tuneable stochasticity (3DO-SKMF).
Computer Physics Communications, 258:107609, 2020. [46]

68
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4.1 New framework

The equations presented in the 1.2.2 section are true only for bulk sys-

tems with periodic boundary conditions. However, if we want to examine

a sample of any shape, it becomes essential to introduce another approach

instead of a periodic boundary condition. This is made possible by creating

new equations and making the necessary modi�cations to the algorithm. In

the next section, I present a way of considering surface e�ects in the new

framework.

4.1.1 Equations for 3D objects with free surfaces

A �rst and simple approach for taking the surface e�ects into acount for

solving our equations can be the so called broken bond model (BBM) [38].

This assumes that a site i, which is located close to the surface, does not

have the full set of Z �rst neighbours, but instead the �rst coordination

shell is being constructed of Z − Bi sites, where Bi denotes the number of
broken bonds in the close neighbourhood of site i. Accordingly, Eq. (1.60)

interaction energies can be adjusted based on the assumption of the presence

of broken bonds:

EXs =

[
Z−Bs∑
l=1

clVAX +

Z−Bs∑
l=1

(1− cl)VBX
]
. (4.1)

The summation runs over the �rst neighbouring sites, where Z −Bs is the
total number of atomic sites in the �rst coordination shell of site s.

ΓMF
i,j exchange rate must be written in a new form, which contains the

surface e�ect:

ΓMF
i,j = Γ0 exp

(
ESi,j
kT

)
. (4.2)

After some algebra, taking into account the BBM [47], one can �nd that
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ESi,j changes to:

ES,BBMi,j = (M − V )

Z−Bi∑
l=1,
l∈V(i)

cl + (M + V )

Z−Bj∑
l=1,
l∈V(j)

cl+ (4.3)

+
1

2
(Bj −Bi)V +

1

2
(Bj −Bi)M +

(
Z − Bi +Bj

2

)
(VAB + VBB) .

The 1
2 (Bj −Bi)V term together with the �rst two summation terms cause

surface segregation due to the chemical interactions between the compo-

nents. The term 1
2 (Bj −Bi)M stands for the di�erence between the surface

energies of the system's two components, resulting in surface segregation.

Another term was introduced to represent the exchanges rates that are dif-

ferent close to the surface region or in the bulk material and this last piece

of the equation does not depend on the composition. In one extreme case,

when both Bi and Bj are 0, i.e. the sites do not have any broken �rst neigh-

bouring bonds, Eq.(4.3) leads to Eq.(1.62) bulk equation. In the plain BBM,

the pair interaction energies are creating a bond between the surface seg-

regation and di�usion asymmetry properties of the two components, which

re�ects in the M = (VAA−VBB)/2 fourth term of the equation. It must be

noted, however, that in real world systems, these are quite often not con-

nected to each other. Such a case is the Ag-Cu binary system, in which the

surface segregation is signi�cant [48], but only a slight di�usion asymmetry

can be measured [32].

By the introduction of σ∗ parameter, which denotes the di�erence of the

speci�c surface energies between the A and B components, one can avoid

to adjust M for the surface segregation:

σ∗ = −σA − σB
n0Bsurf

, (4.4)

where the surface energies of the A and B components are σA and σB

respectively, n0 is used to quantify how many atomic sites are located at a



71

unit surface and Bsurf show the number of broken bonds for an atom on the

material's surface.

Furthermore, in lieu of using the pair interaction energies, in a more phe-

nomenological way, the following equation can be introduced after having

understood the role of Bsurf term in Eq.(4.3):

ε∗ =
1

Bsurf

ln Γsurf,surf

ln Γbulk,bulk
. (4.5)

Here, Γsurf,surf gives us the exchange rate between to surface sites, whereas

Γbulk,bulk is the exchange rate between two neighbouring sites located in

the bulk material. Note, that in the case of Γbulk,bulk, none of the sites

have broken bonds in their �rst neighbouring shells. Fig. 4.1 shows the

schematic overview of these parameters and demonstrates the relationship

between these in a visual manner.

ln Γ

ln Γsurf,surf

ln Γbulk,surf

ln Γσ
∗=0

surf,bulk = ln Γσ
∗=0

bulk,surf

ln Γsurf,bulk

ln Γbulk,bulk

Bsurf
σ∗

kT

1

2
Bsurf

ε∗

kT

1

2
Bsurf

ε∗

kT

Bsurf
ε∗

kT

Figure 4.1: Schematic overview of the new key parameters used for 3DO-
SKMF calculations and a visual demonstration of the roles of ε∗ and σ∗.
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Therefore, instead of the original broken bond model, which uses

ES,BBMi,j , a new equation can be constructed based on the aforementioned

observations:

ESi,j = (M − V )

Z−Bi∑
l=1,
l∈V(i)

cl + (M + V )

Z−Bj∑
l=1,
l∈V(j)

cn+ (4.6)

+
1

2
(Bj −Bi)V −

1

2
(Bj −Bi)σ∗ +

(
Z − Bi +Bj

2

)
ε∗,

where σ∗ is the di�erence of the speci�c surface energies of A and B materi-

als, while ε∗ controls how fast the di�usion is close to the surface compared

to the bulk material. Together with Γ0 the last term could be viewed as a

saddle point energy the value of which depends on the number of broken

bonds of the sites involved in the exchange.

4.1.2 Simulation method

This section guides thorugh the description of the method's general arrange-

ment and discusses the necessary technical details of the new algorithm.

For better understanding, this section is strictly dedicated to the case of a

nanoparticle having a spherical geomety. While solving the main equations

numerically, a dimensionless form is being used and thus, the the reduced

quantities, which are parameters of this method are the reduced time in-

crement ∆τ = ∆tΓ0, reduced amplitude of the noise term Ãn = An/
√

Γ0,

reduced atomic �uxes J̃i,j = Ji,j/Γ0, moreoverM , V , σ∗ and ε∗ are given in

kBT units, for which the M̃ , Ṽ , σ̃∗ and ε̃∗ notations are used, respectively.

The d lattice distance in the (1 0 0) direction was taken as the unit for the

geometrical characterization of the sample and accordingly, the dimension-

less radius can be calculated as R̃ = R/d. Fig. 4.2 shows a �owchart of the

3DO-SKMF algorithm and visalizes the main steps of the program.

During the �rst step of the simulations, the program reads the required
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Figure 4.2: Schematic �owchart of the 3DO-SKMF method and overview
of the main program steps.

input data form a corresponding �le, which contains the system's physical

properties, such as R̃, M̃ , Ṽ , σ̃∗, ε̃∗ and c0 initial composition. Additionally,

the input �le also contains the main parameters of the simulations, Ãn, ∆τ ,

Ss the time delay between records measured in time step units and the Ns

total number of records required. In Table 4.1 a summary of the necessary

input parameters are listed and their corresponding variable names used in

the source code.

The next step is to create the arrays needed for the calculations. In the

SKMF model presented in the previous chapters, the atomic site with the

coordinate x, y, z was de�ned as the element i, j, k of the c composition
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Program

variable
Sign Description

M_per_kT M̃ Di�usion asymmetry parameter in kT units

V_per_kT Ṽ Mixing energy parameter in kT units

An_tilde Ãn Noise amplitude in
√

Γ0 units

dtau ∆τ Dimensionless timestep in 1/Γ0 units

c_start c0 Starting composition

Eps_per_kT ε̃∗ Surface di�usion parameter in kT units

Sig_per_kT σ̃∗ Surface segregation parameter in kT units

r r̃ Inner radius in d units

R R̃ Outer radius in d units

L L̃ Length of nanowire or -tube in d units. Value
must be even. If set to 0, then the system is

spherical.

Ss Frequency of saving data in dtau units

Ns Stop if number of saved states reaches this value

Table 4.1: Input parameters of 3DO-SKMF
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array, where the coordinates were natural numbers.

In this framework, the total number of atomic sites in the given volume

is N, where each site receives a unique identi�er between 1 and N. In contrast

to the previous SKMF model, we do not allocate memory to a coordinate

where we do not intend to take the concentration into account, i.e., on an

empty atomic site. The FCC structure can be created in such a way that

the sum of the absolute values of the coordinates for a given site is an even

number. To store these coordinates, three additional x[N], y[N], z[N]

arrays are created. It must be noted, that the distances are normalised

by (1 0 0) planar distance d and choosing the coordinate system according

to the base vectors of the FCC lattice, the coordinates are still integer

numbers. The memory allocation of these arrays are done dynamically

in the source code. Note that although the geometry of the sample can

be arbitrary, it is de�ned through conditions or functions in the program.

When constructing a nanoparticle, for example, the atomic sites that fall

within a certain sphere radius R are included in the arrays and this R is also

given in d units. The given atomic site then receives the next new unique

ID, increasing the size of the dynamic arrays by one, and the value of c0

is assigned to the concentration array at this element, which is an input

parameter to the program. The next step is to search for neighbouring sites

in the sample. In order to make this search more optimal, we have built up

the allocation of unique ID's following a certain logic. Going from the center

of the system, we consider the sites that are within the range of [Ri;Ri+d)

distance from the center and repeat this in each cycle. This allows each ID

to belong to a speci�c layer and an array is created for this purpose. The

value of the i-th element of the array layer_start[R] gives us the �rst ID

of the �rst atomic site from which the i-th layer starts.

As already mentioned, after the initialization step, neighbouring sites are

searched and stored in additional arrays created for this purpose: numn[i]

and nn[i][j]. The values of the �rst array are the number of the neigh-
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bouring sites of the site i, while the second one stores the ID's of the neogh-

bouring sites of the given site. These �rst neighbouring pairs can be easily

identi�ed for the FCC structure because these j sites are located at a dis-

tance of
√

2 from the site i. One could implement a search algorithm based

on this idea for storing the matches found. Although this search only runs

once at the beginning of the simulation, as these coordinates do not change

during the run, for larger samples this is a rather time consuming and not

the least an optimal method. For this reason, we created a more optimized

search, in which we search for neighbouring site ID's only in the same layer

and in the two adjacent layers. This procedure can be found in the pub-

lished source code. Of course, we only consider ID's that are larger than the

current ID when searching, thus avoiding double-checking of pairs. For the

FCC grid, the value of Z total coordination number is 12, which speci�es

the maximum number of �rst neighbours. For the atomic sites inside the

sample, the number of �rst neighbours is Z, similarly to the bulk material,

while this is not the case near the sample's surface. Here, the numn[i] array

contains a smaller value than Z. The di�erence between these is denoted

by Bi, which is the number of broken bonds for the given site.

After that, it is the turn of the main computational cycle of the simula-

tion in which the calculation of the kinetic processes takes place.

At the beginning of this loop, we record the current state of the sys-

tem. Output �les are then created with the .xyz extension according to the

speci�cations of this format, which is readable by the visualisation software

OVITO [49]. This �le contains the coordinates and their associated concen-

tration values in the appropriate order and are appended to the end of the

�le in regular intervals. One can adjust the the total number of saves and

the recording frequency in the input �le.

For each site i we calculate the sum of the composition of the �rst

neighbours, which is necessary to determine the activation energies from

(4.6). The dci rate of change of the composition ci are calculated by (1.54)-
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(1.56) and (4.2) and stored. Before updating the c array, we need to make

sure that that dci does not take the value of ci out of the composition range

[0, 1]. If this happens, the time step ∆τ must be reduced in the input �le

because the KMF cycle is unstable.

Then the dynamic Langevin noise is applied to the system. (1.57) and

(1.58), which will a�ect the previously mentioned determined dci values,

which are derived from the deterministic calculation. At this point, c array

is updated with the dc values a�ected by the noise. Note that the high

amplitude noise and/or extreme system parameters may result in values

outside the range [0, 1]. To address this problem, the composition redis-

tribution method, in which the excess material is is distributed among the

�rst adjacent sites based on their composition. The details of this method

have been discussed in [14]. After the reallocation cycle, the composition

array must be checked again. In addition, the time step dτ must be reduced

if values c outside the range [0, 1] remain after the reallocation. The main

loop runs until the simulation is terminated or reaches the number of �xed

states de�ned in the input �le.

4.2 3DO-SKMF in use

The applicability of the developed technique is demonstrated for some cases:

i) a fully miscible binary alloy with surface segregation in spherical nanopar-

ticles and in�nite nanotubes, ii) a hemispherical nanoparticle of a phase-

separating alloy, e.g. Ag-Cu, iii) an ideal alloy with surface segregation as

a hollow nanosphere.

4.2.1 Ideally mixing alloy with surface segregation

The simplest test that can be performed is a spherical nanoparticle with

Ṽ = 0 and M̃ = 0, which is an ideal solid solution, without di�usion

asymmetry, but by changing the value of σ∗, responsible for the separation
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of atoms A or B, on the surface, one can introduce surface segregation.

It can be seen that in this case the chemical segregation does not occur,

but the surface segregation e�ect occurs due to the missing bonds. Sim-

ulations were performed in both cases with sites with initial composition

c0 = 0.5. As shown in Figure 4.3, a core-shell structure was formed, where

the red and blue colors represent the A-rich and B-rich sites, respectively.

By changing the sign of σ̃∗ from positive to negative, the the segregating

species can be changed.

(a) σ̃∗ = −0.5 (b) σ̃∗ = +0.5

Figure 4.3: Segregation of A and B on the surface of a nanosphere (one
quarter removed for visualization) (R̃ = 15, c0 = 0.5, Ãn = 0, Ṽ = 0.0, M̃ =
0.0)

Nanowire and nanotube structures can also be simulated using this

method. Figure 4.4 shows the results obtained with the formation of a

core-shell geometry in an in�nite hollow nanotube, where a longitudinally

periodic boundary condition was applied but surface segregation was al-

lowed. on the free surfaces (both inner and outer).
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Figure 4.4: Core-shell structure formation in an in�nite nanotube (R̃ =

10, r̃ = 4, c0 = 0.5, Ãn = 0.0, Ṽ = 0.0, M̃ = 0.0, σ̃∗ = −0.5)

4.2.2 Phase-separating hemispherical nanoparticle

We investigated spinodal decay in hemispherical nanoparticles and found

that formation of a structure similar to the experimentally observed results

in Ag-Cu system after codeposition [21]. Figure 4.5(a) shows an Ag-Cu

nanoparticle decomposed into Ag- and Cu-rich phases. Figure 4.5(b) is

the result of a 3DO-SKMF simulation showing the separation of the A

and B phases, (which represent Ag and Cu atoms). The simulation was

started from a homogeneous state with the introduction of a small dynamic

noise. The resulting composition pro�les of the particle cross sections are

shown in 4.5(d). As expected, some desegregation is observed near the

surfaces due to chemical interaction. Figure 4.5(c) shows that the surface

composition values are close to those calculated with the single-layer Fowler-

Guggenheim approximation. However, such small changes in composition

cannot be detected in microscopic images.
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Figure 4.5: Phase separation in a Ag-Cu hemispherical nanoparticle: ex-
perimental (a) [21] and the results of simulation (b). The corresponding
line concentration pro�les are shown in �gure (d) (R̃ = 12, c0 = 0.3, Ãn =

0.05, Ṽ = 0.35, M̃ = 0, σ̃∗ = 0). In (b), the dashed rectangles represent the
areas from which the line pro�les were calculated. In (c), we plot the surface
compositions as a function of the bulk composition near the sampled surface
in two cases. The dashed line shows the prediction using the single-layer
Fowler-Guggenheim isotherm

.
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4.2.3 Gibbs-Thomson e�ect in a hollow nanosphere

The Gibbs-Thomson e�ect usually refers to the change in chemical potential

(or vapour pressure) at a curved surface (interface). As a consequence, the

surface composition in a multicomponent system is expected to be di�erent

from that of a �at surface in the case of a curved interface � the greater the

curvature, the greater the di�erence. [48] This phenomenological explana-

tion needs to be translated into an atomistic interpretation to understand

how this e�ect can be accounted for in an atomistic model.

In an atomistic picture, in the simplest case, a curved surface di�ers

from a �at surface in the number of broken bonds (BB) � the greater the

curvature, the greater the di�erence. Obviously, the chemical potential

on the surface is related to the number of BBs, giving rise to the Gibbs-

Thomson e�ect. As the surface segregation e�ect is also related to the

number and type of BBs, it is expected that the curvature � Gibbs-Thomson

e�ect � also a�ects the surface segregation, i.e. the equilibrium surface

composition is curvature dependent.

Once we understand the atomistic picture of the Gibbs-Thomson e�ect,

we can immediately see that the 3DO-SKMF takes this into account. To

test and demonstrate this e�ect, we performed equilibrium calculations for a

hollow nanoparticle (Figure 4.6(a)) and a planar membrane (Figure 4.6(b))

with the same composition far from the surface. As can be seen either in

these �gures or, even more importantly, in the composition pro�les derived

from them (Figure 4.6(c)), the surface composition on the two surfaces of the

�at sample is not di�erent, whereas the compositions on the outer and inner

surfaces of the hollow particle are signi�cantly di�erent. We also note that

the surface composition of the membrane is in between the outer and inner

surface compositions of the hollow particle, which implies that the concave

and convex curvature have opposite e�ects on the surface composition, as

expected from the phenomenological Gibbs-Thomson theory.
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Figure 4.6: Demonstration of the Gibbs-Thomson e�ect in surface seg-
regation emerging due to the curvature of the surface: (a) hollow nano
particle � for better visualisation, a quarter of the particle is removed
(R̃ = 15.5, r̃ = 4.5, c0 = 0.5, Ãn = 0.0, Ṽ = 0.0, M̃ = 0.0, σ̃∗ = −0.7),
(b) �at membrane (Ãn = 0.0, Ṽ = 0.0, M̃ = 0.0, σ̃∗ = −0.7, starting com-
position is set to result in the same bulk composition as in sub�g. (a)) (c)
composition pro�les deduced from (a) and (b).
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4.3 Conclusion

In this chapter, we have presented an e�cient computer simulation method,

the so-called 3D Object Stochastic Kinetic Modeling Framework (3DO-

SKMF), which is used to calculate the motion of atoms in 3D objects,

including surface segregation and the Gibbs-Thomson e�ect. Thanks to the

�exibility and versatility of the model and code, objects of any shape can

be easily considered. Accordingly, the model and the computer code can be

used in a wide variety of applications: nanoparticles, nanorods, nanotubes,

nanocolumns, etc. To increase the versatility of the model, it incorporates

stochastic noise in a tunable way. This allows the calculation of processes

with activation barriers. To demonstrate the capabilities of 3DO-SKMF, we

have presented some examples � �at membrane, nanotube, hollow nanopar-

ticle � and reproduced experimental results showing decomposition in Ag-

Cu binary hemispherical nanoparticles.



Conclusion

In my thesis, I presented my contributions in the �eld of phase separation

on the nanoscale by the development of atomistic models and new computer

simulation techniques.

1.1. In order to better understand the asymmetric miscibility gap of bi-

nary systems, I demonstrated that gradient energy coe�cient-composition

function κ(c) can be calculated from the interaction energy V (c) of a so-

lution. The parameters of the free energy functions were taken from the

available literature and examined in connection with the Ag-Cu alloy.

1.2. I illustrated that many calculations and computer simulations usu-

ally use composition independent κ and the analytical expression for calcu-

lating the cuto� wavelength is valid only for composition independent κ. I

improved the SKMF model to consider κ(c) via a composition dependent

interaction energy V (c).

1.3. Using my program code and based on my computer simulation re-

sults, I showed that while the composition dependence of κ does not mod-

ify the solubility curve and even the equilibrium interface pro�le hardly

changes, the cuto� wavelength for spinodal decomposition does.

2.1. I made a new quantitative multiscale procedure based on the SKMF

and PF models to study the nucleation-growth-coarsening process in alloys.

To ensure the consistency of the procedure, I explicitly connected the length
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and time scales of the two methods on atomic and mesoscopic levels.

2.2. I performed atomistic simulations on spinodal decomposition and

nucleation in Ag-Cu alloy using the improved SKMF model. The program

code and the data analysing softwares were developed by me.

2.3. I made a statistical analysis of the nucleation-growth-coarsening

process. I compared the results obtained from each models to the Lifshitz-

Slyozov-Wagner theory.

3.1. I developed the SKMF model further by introducing new surface

parameters additionally to the previous bulk parameters, which takes the

whole free surface into account by modifying the activation energy, because

the original model was only able to handle samples with periodic boundary

conditions.

3.2. I created a new modelling framework based on the SKMF model

to calculate atomic movements in 3D objects including surface segregation

and Gibbs�Thomson e�ect. Objects with any kind of shapes (nanoparticles,

nanorods, nanotubes, nanopillars, etc.) can easily be considered thanks to

the �exibility and versatility of the model and code.

3.3. I compared the simulations of this model with experimen-

tal observations of Ag-Cu nanoparticles and I showed that the surface

composition values are close to the ones calculated from a single-layer

Fowler�Guggenheim approximation. I also demonstrated that this method

is able to reproduce the Gibbs-Thomson e�ect.



Összefoglalás

Disszertációmban bemutattam a nanoskálán végbemen® fázisszeparáció te-

rületén végzett munkámat, atomisztikus modellek és új számítógépes szi-

mulációs módszerek fejlesztésének segítségével.

1.1. A kétalkotós rendszerek aszimmetrikus oldékonysági görbéjé-

nek jobb megértése érdekében demonstráltam, hogy a gradiens energia

együttható-összetétel függvény κ(c) kiszámítható az oldat V (c) kölcsöhatá-

si energiájából. A szabadenergia függvényeket az elérhet® szakirodalomból

vettem és az Ag-Cu ötvözet tekintetében vizsgáltam.

1.2. Megmutattam, hogy számos munka gyakran összetétel-független κ-

t használ, és a levágási hullámhossz számítására alkalmazott kifejezés csak

összetétel-független κ esetében érvényes. Az SKMF modellt továbbfejlesz-

tettem, hogy κ(c)-t �gyelembe vegye az összetételfügg® V (c) kölcsönhatási

energián keresztül.

1.3. A programkódomat használva és a számítógépes szimulációs ered-

ményeim alapján megmutattam, hogy κ összetételfüggése nem módosítja az

oldékonysági görbét, és az egyensúlyi interfész pro�lja is alig változik, míg

a spinodális szétesés levágási hullámhossza igen.

2.1. Egy új kvantitatív multiskálás módszert készítettem az SKMF és

PF modellek alapján ötvözetek nukleációs-növekedési-durvulási folyamatai-

nak vizsgálatára. Az eljárás konzisztenciájának érdekében összekapcsoltam
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a két módszer méret- és id®skáláját atomi és mezoszkópikus szinten.

2.2. A továbbfejlesztett SKMF modellt használva atomisztikus szimu-

lációkat végeztem az Ag-Cu ötvözetben végbemen® spinodális bomlással

kapcsolatosan. A programkódot és az adatelemz® szoftvereket szintén én

fejlesztettem.

2.3. Elvégeztem a nukleáció-növekedés-durvulási folyamat statiszti-

kai vizsgálatát. A két modellel kapott eredményeket összehasonlítottam

a Lifshitz-Slyozov-Wagner elmélettel.

3.1. Továbbfejlesztettem az SKMF modellt, a korábbi tömbi paramé-

terekhez új felületi paramétereket vezettem be. Az új modell az aktivációs

energia módosítása által �gyelembe veszi a teljes szabad felületet. Az ere-

deti modell csak periodikus határfeltétellel rendelkez® mintákat volt képes

kezelni.

3.2. Készítettem egy új modellezési keretrendszert az SKMF modell

alapján háromdimenziós objektumok atommozgási folyamatainak kiszámí-

tására, beleértve ebbe a felületi szegregációt és a Gibbs-Thomson jelenséget.

Mindenféle alakú objektumok (nanorészecskék, nanorudaok, nanocsövek,

nanoszálak, stb.) könnyen �gyelembe vehet®ek a modell és programkód

rugalmasságának és sokszín¶ségének köszönhet®en.

3.3. Összehasonlítottam ennek a modellnek a szimulációit Ag-Cu

nanorészecskék kísérleti meg�gyelésével és megmutattam, hogy a felületi

összetételek értékei közel vannak az egyréteg¶ Fowler�Guggenheim modell

becsléséhez. Szintén demonstráltam, hogy ez a módszer alkalmas a Gibbs-

Thomson jelenség reprodukálására.
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