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Abstract We present the computation of energy–energy
correlation in e+e− collisions in the back-to-back region at
next-to-next-to-leading logarithmic accuracy matched with
the next-to-next-to-leading order perturbative prediction. We
study the effect of the fixed higher-order corrections in a
comparison of our results to LEP and SLC data. The next-
to-next-to-leading order correction has a sizable impact on
the extracted value of αS(MZ ), hence its inclusion is manda-
tory for a precise measurement of the strong coupling using
energy–energy correlation.

1 Introduction

Precision measurements of event shape distributions in e+e−
annihilation have provided detailed experimental tests of
QCD and remain one of the most precise tools used for
extracting the strong coupling αS from data. Quantities
related to three-jet events are particularly well suited for this
task, since the deviation from simple two-jet configurations
is directly proportional to αS. Furthermore, since the strong
interactions occur only in the final state, non-perturbative
QCD corrections are restricted to hadronization and power
corrections. These may either be extracted from data by com-
parison to predictions by Monte Carlo simulations or com-
puted using analytic models. Hence the precision of the the-
oretical computation is limited mainly by the accuracy of the
perturbative expansion in αS.

In this regard, the state of the art currently includes exact
fixed-order next-to-next-to-leading order (NNLO) correc-
tions for the six standard three-jet event shapes of thrust,
heavy jet mass, total and wide jet broadening, C-parameter
and the two-to-three-jet transition variable y23 [1–3] as well
as jet cone energy fraction [3], oblateness and energy–energy
correlation [4].
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However, fixed-order predictions have a limited kinemati-
cal range of applicability. For example when the two-jet limit
is approached multiple emissions of soft and collinear glu-
ons give rise to large logarithmic corrections that invalidate
the use of fixed-order perturbation theory. In order to obtain
a description appropriate to this limit, the logarithms must
be resummed to all orders. For three-jet event shapes such
logarithmically enhanced terms can be resummed at next-
to-next-to-leading logarithmic (NNLL) accuracy [5–11] and
even at next-to-next-to-next-to-leading logarithmic (N3LL)
accuracy for thrust [12] and the C-parameter [13]. A pre-
diction incorporating the complete perturbative knowledge
about the observable can be derived by matching the fixed-
order and resummed calculations.

For the standard event shapes of thrust, heavy jet mass,
total and wide jet broadening, C-parameter and y23, NNLO
predictions matched to NLL resummation were presented in
Ref. [14]. Predictions at NNLO matched to N3LL resumma-
tion are also known for thrust [6,12] and the C-parameter
[13].

In this paper we consider the energy–energy correlation
(EEC) in e+e− annihilation and present NNLO predictions
matched to NNLL resummation for the back-to-back region.
EEC was the first event shape for which a complete NNLL
resummation was performed [5] while the fixed-order NNLO
corrections to this observable were computed recently in
Ref. [4]. We also investigate the numerical impact of our
results and perform a comparison of the most accurate the-
oretical prediction with precise OPAL [15] and SLD [16]
data.

The paper is organized as follows. In Sect. 2 we review
the ingredients of our calculation, i.e., the fixed-order result
as well as the resummation formalism. The matching of the
NNLO predictions to the NNLL resummation is not entirely
straightforward and we devote Sect. 3 to a careful discus-
sion of our procedure. We compare our results to LEP and
SLC measurements in Sect. 4 and in particular perform a

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5320-9&domain=pdf
mailto:tulipant.zoltan@science.unideb.hu


749 Page 2 of 14 Eur. Phys. J. C (2017) 77 :749

fit to OPAL and SLD data. Finally, in Sect. 5 we draw our
conclusions.

2 Fixed-order and resummed predictions

EEC is the normalized energy-weighted cross section defined
in terms of the angle between two particles i and j in an event
[17]:

1

σt

d�(χ)

d cos χ
≡ 1

σt

∫ ∑
i, j

Ei E j

Q2 dσe+e−→ i j+X

× δ(cos χ + cos θi j ), (2.1)

where Ei and E j are particle energies, Q is the center-of-
mass energy, θi j = π − χ is the angle between the two
particles and σt is the total hadronic cross section. Notice that
the back-to-back region, θi j → π , corresponds to χ → 0,
while the normalization ensures that the integral of the EEC
distribution from χ = 0◦ to χ = 180◦ is unity.

The fixed-order prediction for EEC has been known in
QCD perturbation theory up to NLO accuracy for some time
[18–28] and has been computed at NNLO accuracy recently
in Ref. [4] using the CoLoRFulNNLO method [3,29,30]. At
the renormalization scale μ1 the result can be written as
[

1

σt

d�(χ,μ)

d cos χ

]
f.o.

= αS(μ)

2π

d Ā(χ, μ)

d cos χ

+
(

αS(μ)

2π

)2 d B̄(χ, μ)

d cos χ

+
(

αS(μ)

2π

)3 dC̄(χ, μ)

d cos χ
+ O(α4

S),

(2.2)

where Ā, B̄ and C̄ are the perturbative coefficients at LO,
NLO and NNLO, normalized to the total hadronic cross sec-
tion. In practice, our numerical program computes this dis-
tribution normalized to σ0, the LO cross section for e+e− →
hadrons and at the fixed scale of μ = Q,
[

1

σ0

d�(χ, Q)

d cos χ

]
f.o.

= αS(Q)

2π

dA(χ)

d cos χ
+

(
αS(Q)

2π

)2 dB(χ)

d cos χ

+
(

αS(Q)

2π

)3 dC(χ)

d cos χ
+ O(α4

S).

(2.3)

At the default renormalization scale, the distribution normal-
ized to the total hadronic cross section can be obtained from
the expansion in Eq. (2.3) by multiplying with

1 We use the MS renormalization scheme throughout the paper with
the number of light quark flavors set to nf = 5. Furthermore, we use the
two-loop running of αS for all predictions that incorporate a fixed-order
NLO result, while predictions involving a fixed-order NNLO result are
obtained using three-loop running.

σ0

σt
= 1 − αS(Q)

2π
At +

(
αS(Q)

2π

)2 (
A2

t − Bt

)
+ O(α3

S),

(2.4)

where

At = 3

2
CF and Bt = CF

[(
123

8
− 11ζ3

)
CA − 3

8
CF

−
(

11

2
− 4ζ3

)
nfTR

]
, (2.5)

with the color factors

CA = 2NcTR, CF = N 2
c − 1

Nc
TR and TR = 1

2
. (2.6)

Scale dependence can be restored using the renormalization
group equation,

μ2 d

dμ2

αS(μ)

4π
= −β0

(
αS(μ)

4π

)2

− β1

(
αS(μ)

4π

)3

−β2

(
αS(μ)

4π

)4

+ O(α5
S),

β0 = 11CA

3
− 4nfTR

3
,

β1 = 34

3
C2

A − 20

3
CATRnf − 4CFTRnf ,

β2 = 2857

54
C3

A −
(

1415

27
C2

A + 205

9
CACF − 2C2

F

)
TRnf

+
(

158

27
CA + 44

9
CF

)
T 2

Rn
2
f , (2.7)

and one finds

Ā(χ, μ) = A(χ),

B̄(χ, μ) = B(χ) +
(

1

2
β0 ln

μ2

Q2 − At

)
A(χ),

C̄(χ, μ) = C(χ) +
(

β0 ln
μ2

Q2 − At

)
B(χ)

+
(

1

4
β1 ln

μ2

Q2 + 1

4
β2

0 ln2 μ2

Q2

−Atβ0 ln
μ2

Q2 + A2
t − Bt

)
A(χ). (2.8)

Finally, using three-loop running the scale dependence of the
strong coupling is given by

αS(μ) = α
(1)
S (μ) + α

(2)
S (μ) + α

(3)
S (μ), (2.9)

where α
(1)
S , α

(2)
S and α

(3)
S represent the one-, two- and three-

loop contributions:

α
(1)
S (μ) = αS(Q)

1 + αS(Q)
β0
4π

ln μ2

Q2

,

α
(2)
S (μ) = −(α

(1)
S (μ))2 β1

4πβ0
ln K (μ),
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Fig. 1 Fixed-order predictions for EEC at LO, NLO and NNLO accu-
racy. The bottom panel shows the ratio of the data and the perturbative
predictions at each order to the NNLO result. The bands represent the
effects of varying the renormalization scale by a factor of two around
the default scale of μ = Q. OPAL data is also shown

α
(3)
S (μ) = (α

(1)
S (μ))3

×
[

β2
1

(4π)2β2
0

ln K (μ)(ln K (μ) − 1)

−
(

β2
1

(4π)2β2
0

− β2

(4π)2β0

)
(1 − K (μ))

]
,

(2.10)

with

K (μ) = αS(Q)

α
(1)
S (μ)

. (2.11)

The physical predictions for EEC up to NNLO accuracy
are presented in Fig. 1 where the data measured by the OPAL
collaboration is also shown. The bands represent the effect of
varying the renormalization scale by a factor of two around
its central value of μ = Q in both directions. Including the
higher-order corrections reduces the discrepancy between the
predictions and data, although sizable differences remain.
However, examining the region of intermediate χ (χ � 30◦)
i.e., the region of validity of the fixed-order expansion, we
observe that the LO scale variation band does not overlap
with the NLO one, while the overlap of the NLO band with
the NNLO one is marginal up to around χ ∼ 60◦, beyond
which the two bands no longer touch. This behavior indicates
that up to NLO the customary prescription for scale varia-
tion is not a reliable estimate of the size of the higher-order
corrections and casts some doubts also on the reliability of
the NNLO band to estimate the perturbative uncertainty of

the calculation. This phenomenon, however, is not unique to
EEC and in fact very similar comments apply also to other
three-jet event shapes in e+e− annihilation [1–3]. Neverthe-
less, one could argue that a more realistic estimate of the
perturbative uncertainty could be obtained by considering a
wider range for scale variation; see Ref. [31] for a careful dis-
cussion. This observation could explain, at least partially, the
difference between the NNLO predictions and experimental
data.

The fixed-order predictions clearly diverge for both small
and large values of χ . As discussed above, this is the result
of large logarithmic contributions of infrared origin. Concen-
trating on the back-to-back region (θi j → π , i.e., χ → 0),
these contributions take the form αn

S ln2n−1 y, where

y = sin2 χ

2
. (2.12)

As y decreases the logarithms become large and invalidate
the use of the fixed-order perturbative expansion. In order to
obtain a description of EEC in the small angle limit, these log-
arithmic contributions must be resummed to all orders. The
appropriate resummation formalism has been developed in
Refs. [32–36] and the coefficients which control this resum-
mation are known completely at NNLL accuracy [5].2 At a
center-of-mass energy of Q and renormalization scale μ the
resummed prediction can be written as[

1

σt

d�(χ,μ)

d cos χ

]
res.

= Q2

8
H(αS(μ))

×
∫ ∞

0
db b J0(b Q

√
y)S(Q, b),

(2.13)

where the large logarithmic corrections are exponentiated in
the Sudakov form factor,

S(Q, b) = exp

{
−

∫ Q2

b2
0/b2

dq2

q2

[
A(αS(q2)) ln

Q2

q2 +B(αS(q2))

]}
.

(2.14)

The Bessel function in Eq. (2.13) and b0 = 2e−γE in
Eq. (2.14) have a kinematic origin. The functions A, B and H
in Eqs. (2.13) and (2.14) are free of logarithmic corrections
and can be computed as perturbative expansions in αS,3

A(αS) =
∞∑
n=1

( αS

4π

)n
A(n), (2.15)

B(αS) =
∞∑
n=1

( αS

4π

)n
B(n), (2.16)

2 Note that the NNLL A(3) coefficient in Ref. [5] is incomplete. The
full coefficient has been derived in Ref. [37]. (See also Ref. [11].)
3 Notice that our normalization conventions for A(n), B(n) and H (n), as
well as βn in Eq. (2.7) differ from Ref. [5]. We follow the conventions
of Ref. [37].
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H(αS) = 1 +
∞∑
n=1

( αS

4π

)n
H (n). (2.17)

It is possible to perform the q2 integration in Eq. (2.14)
analytically and the Sudakov form factor can be written as

S(Q, b) = exp[Lg1(aSβ0L) + g2(aSβ0L)

+aSg3(aSβ0L) + · · · ], (2.18)

where aS = αS(μ)/(4π) and L = ln(Q2b2/b2
0) corresponds

to ln y at large b (the y � 0 limit corresponds to Qb 	 1
through a Fourier transform). The gi functions read4

g1(λ) = A(1)

β0

λ + ln(1 − λ)

λ
, (2.19)

g2(λ) = B(1)

β0
ln(1 − λ) − A(2)

β2
0

(
λ

1 − λ
+ ln(1 − λ)

)

− A(1)

β0

(
λ

1 − λ
+ ln(1 − λ)

)
ln

μ2

Q2

+ A(1)β1

β3
0

(
1

2
ln2(1 − λ) + ln(1 − λ)

1 − λ
+ λ

1 − λ

)
,

(2.20)

g3(λ) = − A(3)

2β2
0

λ2

(1 − λ)2 − B(2)

β0

λ

1 − λ

+ A(2)β1

β3
0

(
λ(3λ − 2)

2(1 − λ)2 − (1 − 2λ) ln(1 − λ)

(1 − λ)2

)

+ B(1)β1

β2
0

(
λ

1 − λ
+ ln(1 − λ)

1 − λ

)
− A(1)

2

λ2

(1 − λ)2 ln2 μ2

Q2

− ln
μ2

Q2

[
B(1) λ

1 − λ
+ A(2)

β0

λ2

(1 − λ)2

+ A(1) β1

β2
0

(
λ

1 − λ
+ 1 − 2λ

(1 − λ)2 ln(1 − λ)

)]

+ A(1)

[
β2

1

2β4
0

1 − 2λ

(1 − λ)2 ln2(1 − λ)

+ ln(1 − λ)

(
β0β2 − β2

1

β4
0

+ β2
1

β4
0 (1 − λ)

)

+ λ

2β4
0 (1 − λ)2

(β0β2(2 − 3λ) + β2
1λ)

]
. (2.21)

The functions g1, g2 and g3 correspond to the LL, NLL and
NNLL contributions. The expansion coefficients A(n) and
B(n) appearing in Eqs. (2.19)–(2.21) above were obtained in
Ref. [5] (see also Refs. [11,37] for the complete NNLL A(3)

coefficient). In our normalization conventions they read

A(1) = 4CF,

A(2) =
[
CA

(
67

9
− π2

3

)
− 20

9
nfTR

]
A(1),

4 We note that the form of the gi functions is not affected by our different
choice of normalization as compared to Ref. [5], hence our expressions
agree with those in Ref. [5].

A(3) =
[
C2

A

(
245

6
− 134π2

27
+ 11π4

45
+ 22

3
ζ3

)

+CFnfTR

(
− 55

3
+ 16ζ3

)

+CAnfTR

(
− 418

27
+ 40π2

27
− 56

3
ζ3

)

− 16

27
n2

f T
2
R

]
A(1) + 2β0d

q
2 , (2.22)

where

dq2 = CACF

(
808

27
− 28ζ3

)
− 224

27
CFnfTR. (2.23)

For B(1) and B(2) we have

B(1) = −6CF,

B(2) = −2γ (2)
q − CFβ0

(
8 − 10π2

3

)
, (2.24)

with

γ (2)
q = C2

F

(
3

2
− 2π2 + 24ζ3

)

+CFCA

(
17

6
+ 22π2

9
− 12ζ3

)

−CFnfTR

(
2

3
+ 8π2

9

)
. (2.25)

Finally, H (1) reads

H (1) = −CF

(
11 + 2π2

3

)
, (2.26)

while the values of the higher loop coefficients H (n) (n > 1)
are currently unknown.

Notice that the gi functions are singular as λ → 1. This
singularity is related to the presence of the Landau pole in the
QCD running coupling. Thus a prescription must be intro-
duced to properly define the integral overb in Eq. (2.13). Here
we follow the same procedure as in Ref. [5] and deform the
contour of integration to the complex b-space as explained
in Refs. [38–40].

In Fig. 2 we present the resummed predictions for EEC
up to NNLL accuracy together with OPAL data. Clearly,
the resummed predictions are finite for χ → 0 and cap-
ture the general trends in the data in this limit. However, the
purely resummed result badly underestimates the measured
data already for moderate angles.

3 Matching

Fixed-order results are valid for moderate to large y (αS ln2

y � 1), while resummed results apply to small y (y � 1). In
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Fig. 2 Purely resummed predictions for EEC at LL, NLL and NNLL
accuracy. The bands represent the effects of varying the renormalization
scale by a factor of two around the default scale of μ = Q. OPAL data
is also shown

order to obtain predictions over a wide kinematical range5 the
two computations must be matched. A number of different
matching procedures have been proposed in the literature
(see for example [41] for a review), but conceptually they
all involve adding the two computations and subtracting the
doubly counted terms:

1

σt

d�(χ,μ)

d cos χ
=

[
1

σt

d�(χ,μ)

d cos χ

]
res.

+
[

1

σt

d�(χ,μ)

d cos χ

]
f.o.

−
{[

1

σt

d�(χ,μ)

d cos χ

]
res.

}∣∣∣∣
f.o.

. (3.1)

Here, the first term on the right hand side is the resummed
result of Eq. (2.13), the second term is the fixed-order predic-
tion of Eq. (2.2), while the last term is obtained by expanding
the resummed component to the same order in αS as was used
to compute the fixed-order result. Nevertheless, the subtrac-
tion of doubly counted terms alone is in general not suffi-
cient to produce a physically sensible matched prediction.
Indeed, in Eq. (3.1) the resummed contribution on the right
hand side is assumed to contain all logarithmically enhanced
terms, hence the difference of the second and third terms,[

1

σt

d�(χ,μ)

d cos χ

]
f.o.

−
{[

1

σt

d�(χ,μ)

d cos χ

]
res.

}∣∣∣∣
f.o.

, (3.2)

should be free of such contributions. However, unless the
order of the logarithmic approximation is high enough to cor-
rectly reproduce the complete singular behavior of the fixed-
order result as χ → 0, the difference in Eq. (3.2) will contain
non-exponentiated subleading logarithmic terms which make
the matched distribution divergent at small χ . In contrast, the
physical requirement is that the distribution should vanish at
least as fast as a positive power of χ . The matching procedure

5 Notice that the description of the EEC distribution over the full angular
range would require another resummation in the forward limit.

is thus in general more involved than a simple subtraction of
the terms that have been doubly counted.

For EEC the NNLL approximation is sufficient to repro-
duce all singular terms in the LO and NLO fixed-order differ-
ential distributions. This is no longer true at NNLO accuracy.
(Similarly the NLL approximation will only reproduce the
complete singularity structure of the LO fixed-order result.)
Hence Eq. (3.1) may be used to define a matched result at
NNLL + NLO accuracy but not at NNLL + NNLO accu-
racy.

In order to obtain a matched prediction at NNLL + NNLO
accuracy which behaves physically for small χ , the prescrip-
tion of Eq. (3.1) must be refined. This refinement has been
worked out for EEC at NLL + NLO accuracy explicitly in
Ref. [42] and corresponds to what is commonly referred to as
‘R matching’ for event shapes [43]. However, this matching
scheme has the drawback that some matching coefficients
must be extracted from the behavior of the fixed-order result
around χ → 0. Since the fixed-order calculation is partic-
ularly challenging in this region, the matching coefficients
can only be extracted with large numerical uncertainties.
This issue becomes more severe as we go to higher orders
in the fixed-order computation. Hence we will not develop
R matching for EEC at NNLL + NNLO. Nevertheless, the
complete R matching formula does simplify to just Eq. (3.1)
when applied at NNLL + NLO accuracy, thus we will refer
to NNLL + NLO predictions obtained with Eq. (3.1) as R
matched predictions below.

An alternative procedure for combining fixed-order and
resummed results is log-R matching [43]. An attractive fea-
ture of this scheme is that all matching coefficients can be
extracted analytically from the resummed calculation. In the
log-R scheme one considers the cumulative event shape dis-
tribution, which we denote by the generic variable R(y, μ)
for some given event shape y:

R(y, μ) = 1

σt

∫ y

0
dy′ dσ (y′, μ)

dy′ . (3.3)

This quantity has the following fixed-order expansion:

[
R(y, μ)

]
f.o.

= 1 + αS(μ)

2π
Ā(y, μ) +

(
αS(μ)

2π

)2

B̄(y, μ)

+
(

αS(μ)

2π

)3

C̄(y, μ) + O(α4
S), (3.4)

where the fixed-order coefficients Ā, B̄ and C̄ are obtained by
integrating the corresponding differential distribution (e.g.,
Eq. (2.2) for EEC) and using the constraint R(ymax, μ) = 1
to all orders in αS in order to fix the constants of integration.
(ymax is the kinematically allowed maximum value of the
variable y, for EEC χmax = 180◦.)

The specific formulas for log-R matching in the literature
[43] pertain to event shapes where the resummed prediction
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for the cumulative distribution can be written in a fully expo-
nentiated form,

[
R(y, μ)

]
res.

= (1 + C1αS + C2α
2
S + · · · )eLg1(αS L)+g2(αS L)+αS g3(αS L)+...

+ O(αS y)

(3.5)

(with L = ln y), where the Cn and gn are known constants
and functions. The gn functions can be expanded in powers
of αS and L such that

gn(αSL) =
∞∑
i=1

Gi,i+2−n

( αS

2π

)i
Li+2−n . (3.6)

The log-R matching scheme simply amounts to taking the
logarithm of Eq. (3.4) and expanding it as a power series in
αS yielding

ln
[
R(y, μ)

]
f.o.

= αS(μ)

2π
Ā(y, μ) +

(
αS(μ)

2π

)2

×
[
B̄(y, μ) − 1

2
Ā(y, μ)2

]
+

(
αS(μ)

2π

)3

×
[
C̄(y, μ) − Ā(y, μ)B̄(y, μ) + 1

3
Ā(y, μ)3

]

+O(α4
S), (3.7)

and similarly rewriting Eq. (3.5) as

ln
[
R(y, μ)

]
res.

= L g1(αSL) + g2(αSL) + αS g3(αSL)

+αSC1 + α2
S

(
C2 − 1

2
C2

1

)

+α3
S

(
C3 − C1C2 + 1

3
C3

1

)
+ O(α4

S).

(3.8)

Removing the terms up to O(α3
S) from Eq. (3.8) and replac-

ing them by the O(α3
S) terms from Eq. (3.7) yields the final

expression for the log-R matched prediction at NNLL +
NNLO:

ln R(y, μ) = Lg1(αSL) + g2(αSL) + αSg3(αSL)

+ αS(μ)

2π

[
Ā(y, μ) − G11L − G12L

2
]

+
(

αS(μ)

2π

)2 [
B̄(y, μ) − 1

2
Ā2(y, μ)

−G21L − G22L
2 − G23L

3
]

+
(

αS(μ)

2π

)3 [C̄(y, μ) − Ā(y, μ)B̄(y, μ)

+ 1

3
Ā3(y, μ) − G32L

2 − G33L
3 − G34L

4
]

.

(3.9)

Notice that the constantsCn do not enter Eq. (3.9), since they
are removed from Eq. (3.8) and replaced by the fixed-order
coefficients. Indeed, constant terms of the form Cnα

n
S must

be factorized with respect to the form factor [43] and should
not be exponentiated.

For the case of EEC, the straightforward application of
Eq. (3.9) faces two difficulties. First, the resummed expres-
sion is not directly in the form of Eq. (3.5). Second, EEC
exhibits a particular problem because the fixed-order differ-
ential distribution diverges at both small and large χ , so that
the cumulative coefficients Ā, B̄ and C̄ cannot be reliably
determined [15].

The latter complication can be conveniently solved by
focusing on the following cumulative distribution:

1

σt
�̃(χ, μ) ≡ 1

σt

∫ χ

0
dχ ′ (1 + cos χ ′)d�(χ ′, μ)

dχ ′

= 1

σt

∫ y(χ)

0
dy′ 2(1 − y′)d�(y′, μ)

dy′ , (3.10)

where we used the definition of y in Eq. (2.12) to obtain
the second equality. Hence, �̃(χ, μ)/σt is just a linear com-
bination of the zeroth and first moments of the differential
EEC distribution. It is straightforward to reconstruct the orig-
inal differential EEC distribution from the quantity defined
in Eq. (3.10):

1

σt

d�(χ,μ)

d χ
= 1

1 + cos χ

d

d χ

[
1

σt
�̃(χ, μ)

]
. (3.11)

In addition, �̃(χ, μ) has the following properties. First, the
singularity in the forward region (χ → π or y → 1)
of the differential EEC distribution present in the fixed-
order perturbative predictions is regularized by the factor
of (1 + cos χ) which goes to zero in this limit. Second,
it is not difficult to show that in massless QCD the value
of this cumulative distribution is unity when χ = 180◦,
i.e., �̃(χmax, μ)/σt = 1. These properties together ensure
that the fixed-order cumulative coefficients for �̃ (defined
in Eq. (3.4) for a generic observable R) can be computed
accurately by integrating the corresponding differential dis-
tribution and using �̃(χmax, μ)/σt = 1 to all orders in αS to
fix the constants of integration.

Furthermore, using Eq. (2.13) in the definition of �̃,
Eq. (3.10), we find that the integration over y is straight-
forward to perform analytically and we obtain the following
expression for the resummed prediction:

[
1

σt
�̃(χ, μ)

]
res.

= H(αS(μ))

2

∫ ∞

0
db

[
Q

√
y(1 − y)

J1(b Q
√
y) + 2y

b
J2(b Q

√
y)

]
S(Q, b),

(3.12)
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where the Sudakov form factor S(Q, b) is unchanged and
given in Eq. (2.14).

Now let us turn to the issue of extending the definition
of log-R matching, Eq. (3.9), to the case of EEC. Although
the resummed prediction for �̃ is not directly in the form
of Eq. (3.5), one can repeat the constructions in Eqs. (3.7)–
(3.9) to arrive at the analog of Eq. (3.9) for �̃. However, one
must pay attention to the treatment of the non-logarithmically
enhanced constant terms of the form H (n)αn

S. These terms
must not be exponentiated [43] and thus should not appear in
the formula for the log-R matched expression, just as the Cn

constants are absent in Eq. (3.8). Hence, we find the following
expression for EEC in the log-R matching scheme6:

ln

[
1

σt
�̃(χ, μ)

]
= ln

{
1

H(αS(μ))

[
1

σt
�̃(χ, μ)

]
res.

}

+ αS(μ)

2π

[
Ā(χ, μ) − Āres.(χ, μ)

]

+
(

αS(μ)

2π

)2 [(
B̄(χ, μ) − 1

2
Ā2(χ, μ)

)
−

(
B̄res.(χ, μ)

− 1

2
Ā2

res.(χ, μ)

)]

+
(

αS(μ)

2π

)3 [ (
C̄(χ, μ) − Ā(χ, μ)B̄(χ, μ)

+ 1

3
Ā3(χ, μ)

)

−
(
C̄res.(χ, μ) − Āres.(χ, μ)B̄res.(χ, μ)

+ 1

3
Ā3

res.(χ, μ)

)]
, (3.13)

where Āres., B̄res. and C̄res. are the coefficients obtained by
expanding the resummed component in the curly brackets
above in a power series in αS:

1

H(αS(μ))

[
1

σt
�̃(χ, μ)

]
res.

= 1 + αS(μ)

2π
Āres.(χ, μ)

+
(

αS(μ)

2π

)2

B̄res.(χ, μ)

+
(

αS(μ)

2π

)3

C̄res.(χ, μ) + O(α4
S). (3.14)

The explicit expressions for these coefficients are somewhat
long and we present them in Appendix A.

Equation (3.13) is our final result for the log-R matched
prediction for �̃ at NNLL + NNLO accuracy. The log-R
matched prediction at NNLL + NLO accuracy is obtained

6 A similar expression was used in Ref. [15] to define a log-R matched
result for average jet multiplicity; see Eq. (20) of that paper.
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Fig. 3 NNLL + NLO matched predictions for EEC using R and log-R
matching. The bottom panel shows the ratio of the fixed-order NLO and
R matched predictions to the log-R matched result. The bands represent
renormalization scale variation of the matched predictions in the range
μ ∈ [Q/2, 2Q] with two-loop running of αS

simply by dropping theO(α3
S) term in Eq. (3.13). We empha-

size that the quantities H (n) do not appear in Eq. (3.13) at
all. In the log-R matching scheme these terms, as well as
subdominant logarithmic contributions are all implicit in the
unsubtracted parts of the fixed-order coefficients Ā, B̄ and C̄
[43]. Hence the log-R matched prediction can be computed
without the explicit knowledge of H (n).

4 Phenomenological results

In the following we investigate the numerical impact of the
NNLO corrections and show quantitative predictions for the
differential EEC distribution at NNLL + NLO and NNLL +
NNLO accuracy.

We start by presenting the NNLL + NLO predictions. As
discussed above, at this accuracy both R matching (Eq. (3.1))
as well as log-R matching (Eq. (3.13)) may be used to define
physically sensible matched predictions. The results obtained
with both the R matching and the log-R matching schemes
are shown in Fig. 3, together with the fixed-order NLO result.
Throughout we set the center-of-mass energy to the Z -boson
mass, Q = MZ = 91.2 GeV while the strong coupling is
fixed to αS(MZ ) = 0.118. The fixed-order prediction is seen
to diverge to −∞ as χ → 0. On the other hand, the matched
results remain well-behaved in both matching schemes down
to very small values of χ . In the bottom panel of Fig. 3 we
show the ratio of the fixed-order NLO and the R matched
predictions to the log-R matched result. The bands represent
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Fig. 4 NNLL + NNLO matched prediction for EEC. The bottom panel
shows the ratio of the fixed-order NNLO prediction to the matched
result. The band represents renormalization scale variation of the
matched prediction in the range μ ∈ [Q/2, 2Q] with three-loop running
of αS

the effect of varying the renormalization scale by a factor
of two around its central value of μ = Q, using two-loop
running for the strong coupling. We see that the two matching
schemes give very similar results with the relative difference
of the R matched prediction to the log-R matched prediction
changing from about − 2% at χ ∼ 0◦ to 0% for χ ∼ 120◦.
Around χ ∼ 180◦, the relative difference is about + 0.5%.

Next, we include the NNLO corrections and present our
NNLL + NNLO results. At this accuracy only the log-R
matching scheme gives a prediction which behaves physi-
cally at small χ , and this prediction is shown in Fig. 4. Here
too, the center-of-mass energy was set to Q = 91.2 GeV
and we used αS(MZ ) = 0.118. The fixed-order prediction
at NNLO accuracy diverges to +∞ as χ → 0. (The diver-
gence to +∞ is not visible on the plot where the NNLO result
seems to diverge to −∞.) As previously, the matched pre-
diction is well-behaved down to very small values of χ . The
bottom panel shows the ratio of the fixed-order prediction to
the matched result. The band again represents the effect of
varying the renormalization scale by a factor of two in either
direction around its central value of μ = Q. In this case,
three-loop running of the strong coupling is used.

To better appreciate the impact of the NNLO corrections
on the matched prediction, in Fig. 5 we compare the NNLL
+ NLO and NNLL + NNLO results obtained in the log-R
matching scheme. The lower panel shows the ratio of the
NNLL + NLO prediction to the NNLL + NNLO one. We see
that the inclusion of the NNLO corrections slightly lowers
the prediction in and below the peak region by from − 5 to
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Fig. 5 Matched predictions for EEC at NNLL + NLO and NNLL +
NNLO accuracy in the log-R matching scheme. The bottom panel shows
the ratio of the NNLL + NLO result to the NNLL + NNLO prediction.
The bands represent renormalization scale variation in the range μ ∈
[Q/2, 2Q]

− 2%, while the prediction is enhanced for medium and high
values of χ . This enhancement goes from around + 7% at
χ = 60◦ to around + 14% at χ = 120◦ and up to + 20 to
+ 25% for values of χ near 180◦. Hence the inclusion of
NNLO corrections has a sizable impact on the shape of the
distribution.

Next, we compare our predictions to precise OPAL [15]
and SLD [16] data. In particular, we perform a fit of our most
accurate NNLL+NNLO prediction to the experimental data
with the strong coupling αS as a free parameter. We use a
χ2 analysis for the fitting procedure. In general, both statis-
tical and systematic errors are correlated between bins, but
unfortunately the experimental publications provide practi-
cally no information on the correlations. Therefore, we sim-
ply add statistical and systematic uncertainties in quadrature
and treat them as uncorrelated between all data points. In
order to quantify the impact of the NNLO corrections, we
perform the same fit also for the NNLL+NLO prediction
computed in both the R and the log-R matching schemes.
Since we cannot take into account correlations properly, we
do not aim to produce the most accurate extraction of αS(MZ )

here, but rather to assess the impact of the NNLO corrections
on the extraction.

In a first attempt, we neglect hadronization corrections,
however, we come back to this point below. Obviously, the
results obtained in this way must be interpreted with care.

In order to ease the comparison of our results to previous
work, we choose the fit ranges of Ref. [5] for our analyses.
In the first case we include data in the range 0◦ < χ < 63◦
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Table 1 Results of the fits of the matched predictions at NNLL + NLO and NNLL + NNLO accuracy to OPAL and SLD data. The number of
degrees of freedom of the fits are d.o.f. = 50 for 0◦ < χ < 63◦, d.o.f. = 38 for 15◦ < χ < 63◦ and d.o.f. = 86 for 15◦ < χ < 120◦

Fit range NNLL + NLO (R) NNLL + NLO (log-R) NNLL + NNLO (log-R)

αS (MZ ) χ2/d.o.f. αS (MZ ) χ2/d.o.f. αS (MZ ) χ2/d.o.f.

0◦ < χ < 63◦ 0.133 ± 0.001 1.96 0.131 ± 0.003 1.21 0.129 ± 0.003 4.13

15◦ < χ < 63◦ 0.132 ± 0.001 0.59 0.131 ± 0.003 0.54 0.128 ± 0.003 1.58

15◦ < χ < 120◦ 0.135 ± 0.002 3.96 0.134 ± 0.004 5.12 0.127 ± 0.003 1.12

where the effects of resummation are rather pronounced.
However, given that the low χ region is particularly sen-
sitive to non-perturbative corrections, we also investigate the
range 15◦ < χ < 63◦ where the lower cut is expected to
mitigate the effects of these contributions. Finally, we per-
form fits including data in the 15◦ < χ < 120◦ interval.
Since for large χ the matched prediction is controlled by the
fixed-order result, we expect the effects of the NNLO cor-
rection to be most prominent here. The upper limit is chosen
to cut the forward region where another resummation would
be required.

We collect the results of these fits in Table 1 where we
show the best fit value of αS and the χ2/d.o.f. for each fit. The
quoted uncertainty on the extracted value of αS is obtained
by adding the fit uncertainty and the theoretical uncertainty
from missing higher-order contributions in quadrature. We
assess the latter by repeating the fit with several values of μ

in the range Q/2 ≤ μ ≤ 2Q and taking the envelope of the
obtained results. This theoretical contribution is dominant in
the total uncertainty.

In the first case, when we include data in the 0◦ < χ < 63◦
interval, we observe that the quality of the fit is actually
better for the NNLL + NLO predictions than the theoret-
ically most accurate NNLL + NNLO prediction, with the
latter fit being rather poor as evidenced by the high value
of χ2/d.o.f. = 206.4/50 = 4.13. The extracted values
of αS(MZ ) are generally quite high compared to the world
average αS(MZ ) = 0.1181 ± 0.0011 [44], in the range
αS(MZ ) = 0.129–0.133, with the fit using the NNLL +
NNLO prediction giving the smallest value. However, as
mentioned above, non-perturbative corrections are the largest
in the low-χ region, hence the results of fits using purely per-
turbative predictions should be interpreted with great care,
especially in this fit range.

Indeed, repeating the fit in the 15◦ < χ < 63◦ interval,
we observe that the χ2/d.o.f. decreases in each case and the
change is particularly significant for the fit using the NNLL
+ NNLO prediction, where we find a much more reasonable
value of χ2/d.o.f. = 60.1/38 = 1.58. On the other hand,
the extracted values of αS(MZ ) are rather insensitive to this
lower cut on the data and are still high compared to the world
average.

Finally, we perform the fits including data in the 15◦ <

χ < 120◦ interval. The quality of the fits based on NNLL +
NLO predictions deteriorates quite drastically as evidenced
by the rather high values of χ2/d.o.f = 340.3/86 = 3.96 for
the R matched prediction and χ2/d.o.f. = 440.1/86 = 5.12
for the log-R matched one. At the same time the extracted
values of αS(MZ ) become even higher with αS(MZ ) =
0.134–0.135. However, the inclusion of NNLO correction
drastically improves the quality of the fit and we obtain
χ2/d.o.f. = 95.9/86 = 1.12. The extracted value of
αS(MZ ) also decreases somewhat and we find αS(MZ ) =
0.127 ± 0.003 for the best fit value.

Our extracted values of αS(MZ ) based on the NNLL +
NLO predictions using R matching are quite close to the val-
ues obtained in Ref. [5] for all three fit ranges, although our
results are marginally higher. We have checked that these dif-
ferences are due to the fact that the determinations in Ref. [5]
used the incomplete A(3) NNLL resummation coefficient.

Overall, we observe that the inclusion of the fixed-order
NNLO corrections reduces the extracted value of αS(MZ ).
This reduction is about − 2 to − 3% when data in the range
0◦ < χ < 63◦ are taken into account, about − 2 to − 4% for
the range 15◦ < χ < 63◦ and between − 5 and − 7% when
15◦ < χ < 120◦, depending on the matching prescription
used for the NNLL + NLO prediction. Hence, these correc-
tions must be included in a precise determination of αS using
EEC.

In our analysis so far, we have neglected hadroniza-
tion corrections. However, non-perturbative contributions are
expected to be relevant, especially at small angles [17,32–
34,45], and indeed the OPAL analysis of Ref. [15] found
hadron-parton correction factors from around 1.5 for very
small χ to around 0.9 for large χ .7 Hence it is important to
account for these non-perturbative contributions. As already
mentioned, these can be determined either by extracting them
from data by comparison to Monte Carlo predictions, or by
performing analytic model calculations. Here, we follow the
latter option and use the non-perturbative model of Ref. [42]

7 In Ref. [15] only the hadron level data is given in a tabulated form
with uncertainties, while the parton level data appears only in plots. This
is nevertheless sufficient to assess the magnitude of the hadron-parton
correction factors even without the original parton level data.
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to describe the hadronization contributions. Thus we multi-
ply the Sudakov form factor of Eq. (2.14) with a correction
of the form

SNP = e− 1
2 a1b2

(1 − 2a2b), (4.1)

and treat a1 and a2 as free parameters of the non-perturbative
model to be fitted from data.

We have performed a three-parameter fit including data
in the 0◦ < χ < 63◦ range using our NNLL + NNLO pre-
diction, as well as the predictions obtained at NNLL + NLO
with both R matching and log-R matching. In the R matching
scheme at NNLL + NLO accuracy, we extract the following
parameters:

NNLL + NLO(R): αS(MZ ) = 0.134+0.001
−0.009,

a1 = 1.55+4.26
−1.54 GeV2, a2 = −0.13+0.50

−0.05 GeV, (4.2)

with χ2/d.o.f. = 38.7/48 = 0.81. All uncertainties are
again obtained by adding the fit uncertainties and the theoret-
ical uncertainties in quadrature. The theoretical uncertainties
are assessed by varying the renormalization scale μ between
Q/2 and 2Q and repeating the fit. The total uncertainties
are mostly dominated by the theoretical uncertainty with the
exception of the upper limit of strong coupling. In this case,
we find that the maximal best fit value of αS is obtained for
μ 
 Q, hence the upper limit is controlled by the fit uncer-
tainty. We also report the correlation matrix of the fit for the
central values:

NNLL + NLO(R):

corr(αS, a1, a2) =
⎛
⎝ 1 0.04 −0.70

0.04 1 −0.03
−0.70 −0.03 1

⎞
⎠ . (4.3)

Evidently the strong coupling αS is highly anti-correlated
with the non-perturbative parameter a2.

The analysis of Ref. [5] performed on the same data
gave |a2| � 0.002 GeV, a very small value compatible
with a2 = 0. After fixing the parameter a2 to zero, a
two-parameter fit to the strong coupling and the remaining
non-perturbative parameter a1 produced the best fit values
of αS(MZ ) = 0.130+0.002

−0.004 and a1 = 1.5+3.2
−0.5 GeV2 with

χ2/d.o.f. = 0.99. Our results in Eq. (4.2) are compatible
with these values within uncertainties. We have nevertheless
verified that the source of the discrepancy between the two
extractions is, again, due to the fact that Ref. [5] used the
incomplete A(3) NNLL resummation coefficient.

Turning to the log-R matching scheme at NNLL + NLO
accuracy, we obtain the results:

NNLL + NLO (log-R): αS(MZ ) = 0.128+0.002
−0.006,

a1 = 1.17+1.46
−0.29 GeV2, a2 = 0.13+0.14

−0.09 GeV, (4.4)

and we find χ2/d.o.f. = 40.8/48 = 0.85, with the correla-
tion matrix for the central values

NNLL + NLO (log-R):

corr(αS, a1, a2) =
⎛
⎝ 1 −0.17 −0.98

−0.17 1 0.08
−0.98 0.08 1

⎞
⎠ . (4.5)

The strong coupling αS and the a2 non-perturbative parame-
ter is even more strongly anti-correlated than in the R match-
ing scheme. As before, the uncertainties in Eq. (4.4) include
the fit and theoretical uncertainties added in quadrature. We
observe that the quality of the fits as measured by χ2/d.o.f.
is very similar in the two matching schemes and the fit results
are compatible between the two schemes within uncertain-
ties. The extracted value of the strong coupling is reduced by
about − 5% in the log-R scheme compared to the R scheme,
however, it remains high compared to the world average in
both schemes.

We present the comparison of the best fit NNLL + NLO
predictions in the R and log-R matching schemes to the data
in Fig. 6. The figure shows a nice overall agreement between
the predictions and experiment and it is clear that the cal-
culations can reproduce the measurements up to the small-
est measured values of χ . Nevertheless, we observe a small
but systematic deviation of the prediction from data in the
region of medium χ (from about χ � 30◦) and it is clear
that the shape of the measured distribution is not fully repro-
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Fig. 6 NNLL + NLO matched predictions for EEC in the R and log-R
matching schemes. The analytic model of Eq. (4.1) is used to account
for hadronization corrections. The bottom panel shows the ratio of the
data and the R matched prediction to the log-R matched result. The
bands represent the effect of varying the renormalization scale in the
range μ ∈ [Q/2, 2Q] with two-loop running of αS
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duced. The bottom panel shows the ratio of the data and the
R matched prediction to the log-R matched result, with the
bands representing scale uncertainty.

Finally, we investigate the impact of NNLO corrections
and repeat the three-parameter fit in the same range of
0◦ < χ < 63◦, but using our most accurate NNLL +
NNLO theoretical prediction. The best fit corresponds to
χ2/d.o.f. = 56.7/48 = 1.18 and we extract the following
parameter values:

NNLL + NNLO (log-R) : αS(MZ ) = 0.121+0.001
−0.003,

a1 = 2.47+0.48
−2.38 GeV2, a2 = 0.31+0.27

−0.05 GeV. (4.6)

Once more, the uncertainties shown include the fit uncertain-
ties and theoretical uncertainties added in quadrature. The
correlation matrix of the fit for the central values again shows
that αS and a2 are very strongly anti-correlated:

NNLL + NNLO (log-R) :

corr(αS, a1, a2) =
⎛
⎝ 1 0.05 −0.97

0.05 1 −0.07
−0.97 −0.07 1

⎞
⎠ . (4.7)

We see that the quality of the fit improves drastically com-
pared to the purely perturbative fit reported in Table 1. More-
over, the extracted value of αS(MZ ) is sizably reduced com-
pared to the fits based on NNLL + NLO predictions and is
indeed compatible with the world average within uncertain-
ties.

Figure 7 shows the comparison of the best fit NNLL +
NNLO result to the measured data. We again observe that
the measurement is very well described by the theoretical
prediction and, in particular, the impact of the NNLO cor-
rection is clearly visible in the medium χ range, where the
agreement between the data and the prediction is now excel-
lent. The systematic deviation which is present in the NNLL
+ NLO predictions in this range is completely erased when
the NNLO correction is taken into account. At the same time
the best fit value of αS(MZ ) is shifted by about − 6%. We
conclude that the inclusion of the fixed-order NNLO correc-
tion is essential for a precise determination of αS from EEC.

Finally, the three-parameter fits show that in this approach
to hadronization corrections, the non-perturbative parame-
ter a1 is more important than a2. As stressed already in
Ref. [5], this indicates that the parametrization in Eq. (4.1)
is not able to fully describe the non-perturbative correc-
tions, especially at medium and large χ . Hence, part of the
hadronization effects are absorbed into the strong coupling.
This is also apparent from the very strong anti-correlation in
the fits between αS and the non-perturbative parameter a2.
Thus, it would be very interesting to repeat our analysis with
hadronization corrections extracted from data by comparison
to Monte Carlo simulations. The results of such an analysis
will appear elsewhere [46].
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Fig. 7 NNLL + NNLO matched prediction for EEC. The analytic
model of Eq. (4.1) is used to account for hadronization corrections. The
bottom panel shows the ratio of the data to the matched result. The band
represents renormalization scale variation in the range μ ∈ [Q/2, 2Q]
with three-loop running of αS

5 Conclusions

In this paper we presented precise QCD predictions for the
energy–energy correlation in e+e− collisions. Our compu-
tation includes fixed-order perturbative corrections up to
NNLO accuracy, as well as a resummation of the logarith-
mically enhanced terms in the back-to-back region at NNLL
accuracy. In order to obtain a description which incorporates
the complete perturbative knowledge about the observable
and is valid over a wide kinematical range, the fixed-order
and resummed predictions must be matched. We have imple-
mented this matching in the R scheme at NNLL + NLO and
also, for the first time, in the log-R scheme at both NNLL
+ NLO and NNLL + NNLO accuracy. All of our matched
results satisfy the physical requirement that the EEC distri-
bution should vanish as χ → 0.

We also presented perturbative predictions at NNLL +
NLO and NNLL + NNLO accuracy and compared these
to precise OPAL and SLD data. In particular, we have per-
formed a fit of our results to the data with the strong coupling
αS as a free parameter. Using an analytic model to account for
hadronization corrections, we obtain a very good description
of the data down to the smallest measured angles. We observe
that the inclusion of the NNLO corrections has a significant
impact on the extracted value of αS(MZ ), shifting the best
fit value by around − 6% compared to the NNLL + NLO
computation. Hence, the inclusion of these corrections in a
precise measurement of αS from EEC is mandatory.
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Using our most accurate NNLL + NNLO theoretical pre-
diction and Eq. (4.1) to model the non-perturbative contribu-
tions, we obtain our best fit value of αS(MZ ) = 0.121+0.001

−0.003
which is compatible with the world average within uncertain-
ties. It would be very interesting to perform a more compre-
hensive phenomenological analysis and a precise measure-
ment of αS from EEC, using modern Monte Carlo tools to
extract the hadronization corrections from data. This work is
in progress.
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A The Āres., B̄res. and C̄res. coefficients

Recall that Āres., B̄res. and C̄res. are the coefficients obtained
by expanding the resummed component of Eq. (3.13),

1
H(αS(μ))

[
1
σt

�̃(χ, μ)
]

res.
, in a power series in αS:

1

H(αS(μ))

[
1

σt
�̃(χ, μ)

]
res.

= 1 + αS(μ)

2π
Āres.(χ, μ)

+
(

αS(μ)

2π

)2

B̄res.(χ, μ)

+
(

αS(μ)

2π

)3

C̄res.(χ, μ) + O(α4
S). (A.1)

These coefficients read (recall y = sin2 χ
2 )

Āres.(χ, μ) = 1

4

{
− A(1) ln2(y)

+ 2(B(1) + A(1)y) ln(y) − 2(A(1) + B(1))y

}
, (A.2)

B̄res.(χ, μ) = 1

16

{
(A(1))2

2
ln4(y)

+
[

4A(1)β0

3
− 2A(1)B(1) − 2(A(1))2y

]
ln3(y)

+
[

− 2A(2) − 2β0B
(1) + 2(B(1))2

+
(

6(A(1))2 − 4A(1)β0 + 6A(1)B(1)

)
y

− 2A(1)β0 ln
μ2

Q2

]
ln2(y)

+
[

4B(2) + 8(A(1))2ζ3 + 4β0B
(1) ln

μ2

Q2

+ y

(
− 12(A(1))2 + 4A(2)

+ 8A(1)β0 − 12A(1)B(1) + 4β0B
(1)

− 4(B(1))2 + 4A(1)β0 ln
μ2

Q2

)]
ln(y)

+
[

16A(1)β0ζ3

3
− 8A(1)B(1)ζ3

+ y

(
12(A(1))2 − 4A(2) − 8A(1)β0

+ 12A(1)B(1) − 4β0B
(1) + 4(B(1))2 − 4B(2)

− 8(A(1))2ζ3 + (−4A(1)β0

− 4β0B
(1)) ln

μ2

Q2

)]}
, (A.3)

C̄res.(χ, μ) = 1

64

{
− (A(1))3

6
ln6(y)

+
[

− 4(A(1))2β0

3
+ (A(1))2B(1) + (A(1))3y

]
ln5(y)

+
[

2A(1)A(2) − 2A(1)β2
0

+ 14A(1)β0B(1)

3
− 2A(1)(B(1))2 +

(
− 5(A(1))3

+ 20(A(1))2β0

3
− 5(A(1))2B(1)

)
y + 2(A(1))2β0 ln

μ2

Q2

]
ln4(y)

+
[

16A(2)β0

3
+ 8A(1)β1

3
− 4A(2)B(1)

+ 8β2
0 B

(1)

3
− 4β0(B

(1))2 + 4(B(1))3

3

− 4A(1)B(2) − 40(A(1))3ζ3

3

+
(

16A(1)β2
0

3
− 8A(1)β0B

(1)

)
ln

μ2

Q2

+ y

(
20(A(1))3 − 8A(1)A(2) − 80(A(1))2β0

3

+ 8A(1)β2
0 + 20(A(1))2B(1)

− 56A(1)β0B(1)

3
+ 8A(1)(B(1))2

− 8(A(1))2β0 ln
μ2

Q2

)]
ln3(y)

+
[

− 4A(3) − 4β1B
(1) − 8β0B

(2) + 8B(1)B(2)

− 160

3
(A(1))2β0ζ3 + 40(A(1))2B(1)ζ3
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+
(

− 8A(2)β0 − 4A(1)β1 − 8β2
0 B

(1)

+ 8β0(B
(1))2

)
ln

μ2

Q2 − 4A(1)β2
0 ln2 μ2

Q2

+ y

(
− 60(A(1))3 + 24A(1)A(2) + 80(A(1))2β0

− 16A(2)β0 − 24A(1)β2
0 − 8A(1)β1

− 60(A(1))2B(1) + 12A(2)B(1) + 56A(1)β0B
(1)

− 8β2
0 B

(1) − 24A(1)(B(1))2

+ 12β0(B
(1))2 − 4(B(1))3 + 12A(1)B(2) + 40(A(1))3ζ3

+
(

24(A(1))2β0 − 16A(1)β2
0

+ 24A(1)β0B
(1)

)
ln

μ2

Q2

)]
ln2(y)

+
[

32A(1)A(2)ζ3 − 32A(1)β2
0 ζ3 + 224

3
A(1)β0B

(1)ζ3

− 32A(1)(B(1))2ζ3 − 48(A(1))3ζ5 + 32(A(1))2β0ζ3 ln
μ2

Q2

+ y

(
120(A(1))3 − 48A(1)A(2)

+ 8A(3) − 160(A(1))2β0 + 32A(2)β0

+ 48A(1)β2
0 + 16A(1)β1 + 120(A(1))2B(1)

− 24A(2)B(1) − 112A(1)β0B
(1) + 16β2

0 B
(1)

+ 8β1B
(1) + 48A(1)(B(1))2 − 24β0(B

(1))2

+ 8(B(1))3 − 24A(1)B(2)

+ 16β0B
(2) − 16B(1)B(2) − 80(A(1))3ζ3 + 320

3
(A(1))2β0ζ3

− 80(A(1))2B(1)ζ3 +
(

− 48(A(1))2β0 + 16A(2)β0

+ 32A(1)β2
0 + 8A(1)β1 − 48A(1)β0B

(1)

+ 16β2
0 B

(1) − 16β0(B
(1))2

)
ln

μ2

Q2

+ 8A(1)β2
0 ln2 μ2

Q2

)]
ln(y) +

[
64A(2)β0ζ3

3

+ 32A(1)β1ζ3

3
− 16A(2)B(1)ζ3

+ 32

3
β2

0 B
(1)ζ3 − 16β0(B

(1))2ζ3 + 16(B(1))3ζ3

3

− 16A(1)B(2)ζ3 − 80(A(1))3ζ 2
3

3

− 64(A(1))2β0ζ5 + 48(A(1))2B(1)ζ5 +
(

64

3
A(1)β2

0 ζ3

− 32A(1)β0B
(1)ζ3

)
ln

μ2

Q2 + y

(
− 120(A(1))3 + 48A(1)A(2)

− 8A(3) + 160(A(1))2β0

− 32A(2)β0 − 48A(1)β2
0 − 16A(1)β1

− 120(A(1))2B(1) + 24A(2)B(1) + 112A(1)β0B
(1)

− 16β2
0 B

(1) − 8β1B
(1) − 48A(1)(B(1))2 + 24β0(B

(1))2

− 8(B(1))3 + 24A(1)B(2)

− 16β0B
(2) + 16B(1)B(2) + 80(A(1))3ζ3 − 32A(1)A(2)ζ3

− 320

3
(A(1))2β0ζ3 + 32A(1)β2

0 ζ3

+ 80(A(1))2B(1)ζ3 − 224

3
A(1)β0B

(1)ζ3

+ 32A(1)(B(1))2ζ3 + 48(A(1))3ζ5

+
(

48(A(1))2β0 − 16A(2)β0 − 32A(1)β2
0

− 8A(1)β1 + 48A(1)β0B
(1) − 16β2

0 B
(1)

+ 16β0(B
(1))2 − 32(A(1))2β0ζ3

)
ln

μ2

Q2

− 8A(1)β2
0 ln2 μ2

Q2

)]}
. (A.4)
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