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The innate immune response is a principal trait of all living organisms, and

serves as a universal mechanism to protect cells from microbial pathogens,

foreign and malfunctional cells — such as tumor cells — and also the

hazardous contents of dying cells [1–3]. Proper immune functioning is

crucial to sustain growth and metabolic homeostasis, and the innate immune

system has a long evolutionary history that can be traced back to the dawn of

life. Diseases can occur when the immune system is challenged by new

antigens, or when the immune response is unbalanced or compromised.

Protection against infectious diseases requires a rich understanding of how

pathogens can evade the immune response and how they can be neutralized

through strengthening specific immune responses. This editorial was writ-

ten in the Spring of 2020, when the global efforts to contain the spread of the

novel coronavirus SARS-CoV-2 and mitigate the mortality rate of the

COVID-19 pandemic perfectly illustrate the importance of understanding

disease immunity [4]. Beyond its involvement in host defense against

infection, the innate immune system also participates in the normal physio-

logical function of organs, by maintaining tissue integrity, tolerating self-

antigens, clearing and safely disposing of unwanted cells, and shaping the

metabolic performance of the body [5]. Dysfunction of these physiological

immune mechanisms also causes diseases that, akin to COVID-19 and

related coronaviral SARS-CoV and MERS-CoV outbreaks, has reached

pandemic levels – for example, metabolic syndrome, insulin resistance,

diabetes, osteoporosis, cardiovascular disease, self-immunity and cancer.

The modulation of immune mechanisms by pharmacological means has

become an intensive area of research. Genes of the innate immune response

are controlled by a complex network of transcription factors, including the

nuclear receptor superfamily of ligand-dependent transcription factors.

Nuclear receptors can be activated or inhibited by a plethora of endogenous

or exogenous molecules, including lipid metabolites, nutritional lipids and

vitamins, microbiome-derived metabolites, pathogen-derived products, var-

ious hormones, and xenobiotics [6]. All of these signals have their own

specific effects on immunity, with both desirable (i.e. pathogen elimination)

and unwanted (i.e. metabolic side effects) outcomes. This section of the

2020 Current Opinion in Pharmacology Immunomodulation special issue has,

as its chief focus, the role of nuclear receptors in the modulation of immune

mechanisms.

Macrophages represent the first line of defense against pathogens, and are

conspicuous by their ubiquity in all tissues of the body, where they help to

control organ development, metabolism, tissue turnover and healing [7].

The immune functions of macrophages are determined at the checkpoint of
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gene transcription – for instance, whether macrophages

adopt a pathogen-killing activity and induce inflamma-

tion or, conversely, curb inflammation, is mostly deter-

mined at the level of gene transcription. Accordingly,

transcriptional regulators, including nuclear receptors,

have key roles in the orchestration of innate immune

responses. The review of Leussink et al. [8] from the

laboratory of Noelia Alonso-Gonzalez in Münster, Germany

describes how the immunomodulatory capacity of macro-

phages is dependent on the regulation of their transcrip-

tional activity by liver X receptors (LXRs). LXRs control

the genes that orient macrophages towards diverse

immune scenarios, such as pathogen elimination or

self-tolerance of dying cells within tissues. Leussink

et al. also address the different mechanisms by which

LXRs contribute to macrophage activation, control mac-

rophage number in tissues, and link lipid metabolism and

immunity. A second LXR-centered review is provided by

Gları́a et al. [9] from the laboratory of Annabel Fernandez
Valledor in Barcelona, Spain, who describe how LXRs

control host-cell pathogen interactions, and detail how

LXR-mediated transcriptional responses modulate the

metabolism of infected cells and limit the infectivity

and growth of several pathogens. Both articles support

the notion that LXRs have diverse immunomodulatory

functions, and that pharmacological intervention of LXR

signaling may be a double-edged sword because of the

undesirable side effects of ubiquitous LXR activation.

Hence, therapeutic strategies designed to target LXR

activity with cell-specificity and organ-specificity are

necessary.

Macrophages reside in specific tissue niches, where their

number and immune functions are shaped by tissue-

specific cues [7,10]. Tissue-resident macrophages can

be replenished from bone marrow-derived monocytes,

and many examples are known where local proliferation

also ensures the renewal of the tissue macrophage pool

[11,12]. Various signals, including endocrine mediators,

are possible regulators of tissue-specific macrophage

development and replenishment, although much remains

to be discovered about the underlying mechanisms. In

this regard, the review by Porcuna et al. [13] from the

laboratory of Mercedes Ricote in Madrid, Spain introduces

the concept that nuclear receptor signaling participates in

the control of tissue macrophage niche development, and

the authors give examples of how nuclear receptors may

control macrophage development in some of the tissue-

resident macrophage pools.

A highly specialized bone-resident macrophage pool is

formed by osteoclasts, which are bone degrading cells

important for physiological remodeling of the bone archi-

tecture. The review by Bae et al. [14] from the laboratory

of Kyung-Hyun Park-Min in New York, USA, examines

how osteoclast dysfunction can cause diseases such as

osteoporosis, bone metastasis, and inflammatory bone
www.sciencedirect.com 
erosion, and provides an overview of the molecular mech-

anisms underlying the action of nuclear receptors in

osteoclasts that block these pathological processes.

The molecular mechanisms that enable nuclear receptors

to control gene transcription are complex, as exemplified by

the transcriptional machinery of theglucocorticoid receptor

(GR). In their review, Syed et al. [15] from the laboratory of

Henriette Uhlenhaut in München, Germany summarize the

known molecular mechanisms that underpin the anti-

inflammatory effects of GR signaling. Factors influencing

the anti-inflammatory actions of GR — including different

chromatin states such asDNAsehypersensitive regions and

histone marks — are discussed, together with the relevant

transcriptional co-regulators and promoter/enhancer fea-

tures. The authors further address the involvement of non-

coding RNAs such as lncRNAs, miRNAs and eRNAs,

which adds another level of complexity to nuclear receptor

signaling, as exemplified by the post-transcriptional regu-

lation of GR. The immunomodulatory function of GR is

reviewed by Van Looveren et al. [16] from the laboratory of

Claude Libert in Ghent, Belgium. Activation of GR by

glucocorticoid steroid hormones has well known anti-

inflammatory effects in many clinical settings; however,

glucocorticoid resistance and unwanted side effects remain

a major barrier to treatment. Van Looveren et al. examine

the recent findings suggesting that GR dimerization is

essential to induce anti-inflammatory effects of glucocorti-

coids, and discuss the concept that pharmacological inter-

vention to selectively trigger GR dimerization can have

utility in life-threatening inflammatory conditions such as

sepsis.

It is increasingly evident that intestinal microbiota pro-

duce metabolites that can engage nuclear receptors, with

the potential to shape immunity and metabolism. In their

review, Stefano Fiorucci et al. [17] from Perugia, Italy,

describe how steroids produced during cholesterol and

bile acid metabolism in the liver and by intestinal micro-

biota are ligands for bile acid receptors (BARs). The two

best characterized members of this family are the nuclear

receptor farnesoid-X-receptor (FXR) and the G protein-

coupled receptor bile acid receptor 1. Both receptors are

expressed by cells of innate immunity including liver-

resident and intestinal-resident macrophages and mono-

cyte-derived macrophages. Fiorucci et al. provide insights

into the role of BARs in the possible interface between

immune response and metabolic performance. For exam-

ple, BARs might have a role in the development and

maintenance of a tolerogenic phenotype, and BAR

ligands have proved effective in the treatment of inflam-

matory and metabolic disorders. Accordingly, agonists of

these receptors are currently under development for the

treatment of non-alcoholic steato-hepatitis and diabetes.

As mentioned earlier, innate immune signaling deter-

mines metabolic performance. Indeed, the interplay
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between innate immune cells and metabolically active

cells begins soon after birth, and has a key role in the

development of diabetes and obesity-associated meta-

bolic diseases [18]. While metabolic deterioration is pri-

marily a consequence of hyperinflammation within met-

abolic organs, it has recently been shown that

inflammatory signaling is important for the physiological

development of metabolism [18–20]. The final review in

this section by Molocea et al. [21] from the laboratory of

Stephan Herzig, in München, Germany focuses on the role

of inflammatory signaling in opposing metabolic settings,

cachexia and obesity, and summarizes existing therapies

and discusses potential novel strategies that could emerge

by bridging the mechanistic commonalities between the

syndromes.

As the Guest Editor of this Section, I hope that this

collection of review articles will be useful references

for teaching and research to stimulate discussion, and

to open up new avenues of research in the understanding

of immune signaling. I thank all of my colleagues who

enthusiastically accepted the invitation to participate in

the 2020 Section, as authors and reviewers. I also appreci-

ate the editorial assistance provided by the Current Opin-
ion in Pharmacology Editorial Office.
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