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We propose a generic model to describe the mechanical response and failure of systems which undergo a
series of stick-slip events when subjected to an external load. We model the system as a bundle of fibers, where
single fibers can gradually increase their relaxed length with a stick-slip mechanism activated by the increasing
load. We determine the constitutive equation of the system and show by analytical calculations that on the
macroscale a plastic response emerges followed by a hardening or softening regime. Releasing the load, an
irreversible permanent deformation occurs which depends on the properties of sliding events. For quenched
and annealed disorder of the failure thresholds the same qualitative behavior is found, however, in the annealed
case the plastic regime is more pronounced.
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There is a large variety of systems which undergo confor-
mational changes when subjected to external mechanical
loads. The dynamics of spatial rearrangements can usually be
described by the stick-slip mechanism, i.e., when the local
load exceeds some threshold value, subunits of the system
increase their length leading to relaxation. The stored length
which can be activated by external loading typically arises
due to the existence of frictional contacts or chemical bond-
ing between subunits. Several examples of such systems can
be mentioned from the molecular scale organization of spider
silk �1�, through the chains of magnetic beads in magne-
torheological fluids on the mesoscale �2,3�, to the wire nets
used to protect roads from rockfalls in mountains �4� on the
macroscale. Experiments have revealed that the surprisingly
high fracture toughness of spider silk is partly caused by the
presence of blobs of protein molecules with a folded hairpin
structure, which get unfolded under external loading �1�. A
similar mechanical response has also been observed for bio-
logical tissues composed of interconnected bundles of fibrils
�5�. In magnetorheological fluids particles of permanent
magnetic moment aggregate and form chains aligned with
the external field, which then modify the rheological proper-
ties of the fluid. Stretching and bending chains of particles of
micrometer size by optical tweezers revealed that the aniso-
tropic magnetic interaction and the frictional contact of par-
ticles result in a noisy response, i.e., particles undergo sub-
sequent rearrangements increasing the length of the chain
and reducing the reactant force �2,3�. A similar mechanism is
exploited on the macroscale in wire nets, which cover steep
walls in mountains protecting roads from rockfalls. In order
to dissipate the kinetic energy of falling boulders, the wires
form rings which can slide and collapse without breaking
resulting in a large dissipation but keeping the integrity of
the net �4�.

In the Brief Report we present a micromechanical model
which captures the main ingredients of the mechanical re-
sponse of system which undergo conformational changes
with stick-slip mechanism. Our model construction is based
on fiber bundle models �6–11� extended in such a way that
fibers undergo sliding events which gradually increase their

relaxed length when the local load exceeds some threshold
values. After a large number of sliding events, fibers may
also fail under a large enough external loads. We derive the
constitutive equation of the system and show analytically
that the sliding mechanism leads to macroscopic plasticity of
the bundle and permanent deformation remains after the load
has been released. We explore the case of both quenched and
annealed disorder of sliding thresholds.

Our model consists of N parallel fibers which have iden-
tical elastic properties characterized by the Young modulus E
�6–11�. Under an increasing external load � parallel to the
fibers’ direction, the fibers exhibit a linearly elastic behavior
until the local deformation �i reaches a threshold value �th

i ,
i=1, . . . ,N. The key element of the model is that at the
threshold the fiber does not break, instead it suffers sliding,
i.e., its relaxed length increases until the fiber becomes ca-
pable to sustain the remaining load. The sliding threshold of
fibers �th is a random variable with a probability density
p��th� and a distribution function P��th� defined over the do-
main ��th

min ,�th
max�. The sliding event is instantaneous, i.e., it

does not take time. After the relaxation the fiber can be
loaded again which may lead to further slidings. The total
number of allowed sliding events �steps of extension� kmax is
an important parameter of the model. When the fibers can
slide more than ones kmax�1, they either keep the initial
sliding threshold for all slidings �quenched disorder�, or can
obtain a new threshold value each time from the same prob-
ability distribution �annealed disorder�. The constitutive be-
havior of single fibers is illustrated by Fig. 1 for both types
of disorder.

The sliding of a fiber means that its equilibrium length
gets suddenly increased, which has the consequence that the
fiber can only keep a lower load �i=E��−�th

i �, where �i
denotes the local load of fiber i, �th

i is its sliding thresholds
and � is the macroscopic strain of the system. Under a fixed
external load �, the other fibers of the bundle have to over-
take the load dropped by the one which has just been ex-
tended. For the load redistribution we assume an infinite
range of interaction, i.e., load sharing �8,11�. However, it
does not imply that the load is everywhere the same in the
bundle. At a given macroscopic deformation � the fibers
have suffered a different number ki of slidings occurring at
different threshold values, hence the load they keep will be*feri@dtp.atomki.hu
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different: �i=E��−ki�th
i � for quenched, and �i=E��−�th

i,1

−�th
i,2− ¯−�th

i,ki� for annealed disorder �i=1, . . . ,N�, respec-
tively. �A fuse model with a slightly similar microscopic dy-
namics was considered in Ref. �12�, where fuses burn out
due to gradual overheating.�

We start the analysis with the case of quenched disorder
and assume that only a single sliding is allowed for the fibers
kmax=1. At the macroscopic deformation � the fibers with
sliding thresholds �th

i �� are still intact and have the local
load E�. However, those fibers which have already suffered a
sliding �th

i �� keep only the load E��−�th
i � so that the mac-

roscopic constitutive equation follows as

���� = E��1 − P�E��� + �
�th

min

�

p�E�1�E�� − �1�d�1. �1�

Note that the integral in the second term is performed over
the entire loading history of the system. In the integrand the
probability density p of the thresholds occurs since the load
of the extended fibers depends on the precise value of the
deformation where the sliding initiated. Allowing for two
sliding events kmax=2, at the macroscopic deformation �
those fibers slided exactly once whose sliding threshold falls
in the range � /2��th

i ��, while the ones with �th
i �� /2 al-

ready suffered two slidings, hence, ���� can be written as

���� = E��1 − P�E��� + �
�/2

�

p�E�1�E�� − �1�d�1

+ �
�th

min

�/2

p�E�1�E�� − 2�1�d�1. �2�

For any arbitrary value of kmax the sliding threshold of fibers
which are intact or suffered a k number of sliding events 1
�k�kmax fall in the following subintervals of ��th

min ,�th
max�

� � �th
i , intact,

�

k + 1
� �th

i �
�

k
sliding k times, where k � kmax

0 � �th
i �

�

kmax
sliding kmax times. �3�

The general form of the macroscopic constitutive equation
can be obtained by integrating the load kept by the above
subsets of fibers

���� = E��1 − P�E��� + �
k=1

kmax−1 �
�/�k+1�

�/k

p�E�1�E�� − k�1�d�1

+ �
�th

min

�/kmax

p�E�1�E�� − kmax�1�d�1. �4�

Note that in Eq. �4� the fibers retain their initial stiffness after
suffering kmax sliding events, which is expressed by the last
term. It can be seen that for small deformations �→0 only
the intact fibers are relevant which result in a macroscopic
linear behavior with a Young modulus equal to that of the
individual fibers. For very large deformations �→	, practi-
cally all fibers have suffered kmax restructuring events so that
only the last term of Eq. �4� survives which can be further
written as

���� � E� − kmaxE�
�th

min

�/kmax

p��1��1d�1. �5�

The integral in the second term converges to the average
value of the thresholds ��th	, hence, we obtain �����E�
−kmaxE��th	. The result implies that the bundle has an
asymptotic linear behavior with the initial value of the Young
modulus. When unloading the system ����→0, the fibers
simply relax with a linearly elastic response since there is not
any mechanism in the model to decrease the equilibrium
length of fibers. It has the consequence that as the load is
released, the system relaxes along a straight line of slope E
equal to the Young modulus of fibers and an irreversible
remaining deformation occurs �r, whose maximum value
�r

max is proportional to the average slip length ��th	 and the
number of sliding events kmax allowed �r

max=kmax��th	. Un-
loading the bundle after reaching a macroscopic deformation
�m the remaining irreversible deformation �r can be obtained
as �r=�m−���m� /E. For the purpose of explicit calculations
we used a Weibull distribution for the sliding thresholds with
the cumulative distribution P��th�=1−e−��th / 
�m

over the
range 0��th�+	, where 
 sets the scale of the threshold
values and m denotes the Weibull exponent. In all the calcu-
lations 
=1 was chosen. The constitutive curve of the model
is presented in Fig. 2 for the case of m=1, i.e., exponential
distribution. It can be observed that increasing kmax the
asymptotic linear part of ���� is preceded by a longer and
longer plateau regime indicating a plastic response of the
system. Figure 3 presents the remaining permanent deforma-
tion �r of the bundle measured after unloading the system
from the maximum deformation �m of the loading process.
One can observe that �r tends to the maximum value
kmax��th	 as �m increases.

In realistic situations it is typical that after a certain num-
ber of sliding events the relaxed length of the subunits of the
system cannot be further extended, which then results in
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FIG. 1. Response of a single fiber for quenched �a� and annealed
�b� disorder. When the failure threshold is reached the load on the
fiber drops down to zero. The threshold can be constant �a� or new
ones can be drawn from the same distribution �b�.

BRIEF REPORTS PHYSICAL REVIEW E 80, 027102 �2009�

027102-2



breaking. Such cases can be captured by the model with the
assumption that after a fiber has slided kmax times it breaks
irreversibly, i.e., its stiffness is set to zero. The constitutive
equation of the sliding-breaking system can be obtained ana-
lytically by skipping the last term of Eq. �4� which has the
consequence that for large deformations �→	 the stress
tends to zero ����→0 indicating that the bundle gradually
looses its load bearing capacity. Figure 4 presents a compari-
son of constitutive curves Eq. �4� with hardening and failure
after kmax slidings. It is important to emphasize that due to
the breaking of fibers, the unloading Young modulus of the

system is a decreasing function of the maximum deformation
�m achieved before the load is released so that the remaining
deformation �r takes the form �r=�m−���m� /E�1
− P�E�m /kmax��. In Fig. 4 the arrows indicate unloading
curves where the decreasing unloading modulus can also be
observed. Under stress controlled loading the constitutive
curve ���� can only be realized up to the maximum, where
macroscopic failure occurs. The value of the maximum de-
fines the fracture strength �c=���c� of the sliding-breaking
bundle, where the critical deformation �c can be determined
numerically from the equation 1=�c��k=1

kmax−1�1 /k�p�E�c /k�
− �kmax−1� /kmaxp�E�c /kmax��. Numerical analysis of the
above equation shows that both �c and �c are increasing
functions of kmax converging to finite values.

In the case of annealed disorder, the fibers get a new
threshold value from the same probability distribution after
each sliding event �see also Fig. 1�b��. The new threshold
may represent that the physical properties of the new confor-
mation attained by the fiber are different from the previous
ones including also the effect of thermal noise. The macro-
scopic load � on the system can be obtained by summing the
load above subsets of fibers with different sliding numbers
k=0,1 , . . . ,kmax as ����=�0���+�1���+ ¯+�kmax

���. Due to
the independence of subsequent thresholds the terms of the
above constitutive equation can be cast in the forms �0���
=E��1− P�E���,

�1��� = �
�th

min

�

p��1�d��1�E�� − �1��1 − P�� − �1�� , �6�

�2��� = �
�th

min

� �
�th

min

�−�1

d�1d�2p��1�p��2�

� �1 − P�� − �1 − �2��E�� − �1 − �2� . �7�

The general case of arbitrary k�kmax reads as

FIG. 2. �Color online� Constitutive behavior of the bundle with
exponentially distributed quenched failure thresholds. ���� tends to
an asymptotic linear response preceded by a more and more hori-
zontal plateau when kmax increases. The intersection of the
asymptotic straight lines with the horizontal axis indicates the value
of �r

max obtained when unloading the system. For annealed disorder
the cases of kmax=5 �red, dotted line� and 10 �blue, dashed line� are
shown.
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FIG. 3. Remaining deformation �r as a function of the maxi-
mum deformation �m reached before the unloading starts for differ-
ent values of kmax. �r and �m are normalized by the average sliding
threshold ��th	 and the maximum value �r

max, respectively.

FIG. 4. �Color online� Comparison of the constitutive curves of
the system with hardening �no failure� and failure after kmax sliding
events. The arrows represent unloading curves for kmax=2 with a
decreasing Young modulus.

BRIEF REPORTS PHYSICAL REVIEW E 80, 027102 �2009�

027102-3



�k��� = �
�th

min

� �
�th

min

�−�1

¯�
�th

min

�−�1−�2¯−�k



l=1

k

d�lp��l�

� �1 − P�� − �
l=1

k

�l�E�� − �
l=1

k

�l , �8�

Finally, for k=kmax we get

�kmax
��� = �

�th
min

�

¯�
�th

min

�−�1−¯−�kmax 

l=1

kmax

d�lp��l�

� E�� − �
l=1

kmax

�l . �9�

Figure 2 shows also examples of the constitutive curve ����
of the fiber bundle with annealed disorder. We obtain quali-
tatively the same behavior with the same asymptote as with
quenched disorder, however, the plastic plateau becomes sig-
nificantly longer. The result shows that the extension of the
plastic regime is determined by �r

max, however, the precise
functional form of ���� is sensitive to the type of disorder.

We presented a micromechanical model for systems
which can extend their length in a series of stick-slip events

when subjected to an external load. The model is an exten-
sion of fiber bundle models in such a way that single fibers
have stick-slip rheology characterized by quenched or an-
nealed threshold values of the local strain. We showed ana-
lytically that varying its parameters the model provides a
broad spectrum of constitutive behaviors: for a large number
of sliding events a plastic regime develops which is then
followed by hardening �no breaking� and softening �fiber
breaking�. Unloading the system a permanent deformation
remains which is a monotonically increasing function of the
maximum deformation. If the fibers break after kmax sliding
events, the unloading modulus goes to zero with increasing
deformation. The constitutive curves provided by the model
have qualitative agreement with the measured response of
stick-slip systems �1,5�, however, for a quantitative compari-
son further improvement is needed: allowing for an increase
or decrease in the Young modulus of single fibers after local
sliding events would make the model more realistic. Assem-
bling bundles of fibers to form a chain �serial coupling of
fiber bundles� is also a promising direction to reproduce the
mechanical response of biological tissues. Work in this direc-
tion is in progress.
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