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Abstract 
 
 

It is not uncommon that person-by-item data in the context of Item Response Theory are 

correlated beyond the correlation that is captured by the model, or in other words stated, that 

there is extra binomial variation. Heterogeneity of the parameters can explain this variation. 

There is a need for proper statistical methods to indicate possible extra heterogeneity and its 

location, since investigating all different combinations of random parameters is not very 

practical or sometimes even unfeasible. The ignored random person effects are the focus of 

this study. Considering the random weights linear logistic test model, random effects can 

occur as a general latent trait, and as weights of covariates. A simulation study was conducted 

with different sources and degrees of heterogeneity in order to investigate and to compare 

various methods: individual analyses (one per person), marginal modeling, principal 

component analysis of the raw data, DIMTEST and DETECT.  
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Test data are often of a binary type, and may be considered as repeated measures, 

since different items are presented to the same persons. The focus of this paper is on binary 

repeated measures with a design. The availability of a design is not very common, but it is 

interesting, because a design is a potential basis to explain the data. Many tests do not have a 

design, and the individual items enter the psychometric model instead of the design factors. In 

contrast, when the test is based on a design, the items are characterized by corresponding item 

features, and these can be used as covariates in a mixed logistic regression model for the data. 

The resulting item response model, with explanatory item covariates for the binary data, is a 

logistic regression model, as in Equation 1: 
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The model assumes binary response variables, which are nonlinearly related to the 

covariates. piY  is the response of person p (p = 1,…, P) to item i (i = 1,…, I), and follows a 

binomial distribution with npi = 1, and parameter ),1( pppiYP βθ= which is the success 

probability for person p and item i , modeled as a function of the covariates. xki is the k-th 

covariate (k = 1,…, K) changing its value over items, and the kpβ is the associated random 

weight. θ p is the random intercept that is the so-called ability of the person in the context of 

achievement tests. When the intercept is the only random effect, meaning that the weights of 

the covariates are fixed, the resulting model is the Linear Logistic Test Model (LLTM; 

Fischer, 1973).  When the effects of the covariates are random over persons, which is 

indicated with subscript p, then the random weights LLTM is obtained (RWLLTM; Rijmen & 

De Boeck, 2002), or in other words, the resulted model is a logistic mixed model. The term 
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mixed refers to the combination of fixed and random effects. Note, that also the intercept can 

bee seen as a weight of a covariate that is an overall 1-vector. The LLTM has been commonly 

used without assumming heterogeneity in the weights of the covariates, but with 

heterogeneity being restricted to the intercept.  

The term heterogeneity refers to any source of the binomial variance beyond the fixed 

effects, and the more specific term extra heterogeneity denotes the heterogeneity that is not 

yet included in the model, which means that the model does not specify all sources of 

variance in the data. Ignored variance causes overdispersion. In the context of logistic 

regression models, the notion for a “too large variance” is overdispersion (Collett, 1991). 

Underdispersion can also occur, but that is a rare phenomenon. In principle, heterogeneity 

may stem from the persons or from the items. In this study, the focus is on person-based 

heterogeneity, which can occur either in the intercept or in the weights of the covariates, more 

precisely when the intercept or the weights are random effects (also called random 

coefficients).  

In general, extra heterogeneity implies local item dependency. In this study 

dependencies are investigated that stem from random effects in a logistic regression model, 

but in practice, other sources of dependency may also occur. Item response dependencies can 

be studied through the correlations of the residuals of the applied IRT models, providing 

indices for item dependencies: 2Q  (Van den Wollenberg, 1982; Yen, 1984) and 3Q  (Yen, 

1984).  A specialized computer software was also developed (IRT LD) for the detection of 

local dependencies (Chen & Thissen, 1997), and graphical techniques were proposed for 

detecting residual dependencies (e.g., Landwehr, Pregibon & Shoemaker, 1984).  These are 

valuable alternatives to the approach for detecting heterogeneity that is followed here. These 

approaches are relevant to dependencies in general and are therefore less specific than the aim 

of the present study. 
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The aim of the present study is to investigate methods for detecting heterogeneity in 

data with item covariates. The motivation for this interest is that from a psychological point of 

view, it is not uncommon that factors such as item covariates have a person-based effect. 

Often one is precisely interested in the individual differences in these effects. In personality 

psychology, the study of such interactions is called interactionism (see, Blumer, 1969; Pervin, 

1977). In the domain of intelligence, the study of cognitive processes, as initiated by 

Sternberg (1977) and Embretson (1985), is based on item covariates indicating how much of a 

certain process is required to succeed in the item. The random weights of these covariates are 

assumed to show individual differences in the ability for dealing with the difficulty 

represented by the covariate. A similar idea is behind the development of a cognitive 

diagnostic approach as initiated by Tatsuoka and Tatsuoka (1982), which represents the item 

covariates in the so-called Q-matrix (Tatsuoka, 1990). Although in further developments 

(DiBello, Stout & Roussos, 1995) a different formalisation is chosen than in Equation 1, 

individual differences with respect to the item covariates, as defined in the Q matrix, are an 

important ingredient of the approach.  

Because a well-established theory that specifies the sources of heterogeneity is often 

not available, one may consider to include random effects for all possible covariates. 

However, this leads to models with high dimensionality, which require high-dimensional 

integrals to be solved for a successful estimation. An interesting alternative to deal with high 

dimensionality is a Bayesian approach (Beguin & Glas, 2001; Segall, 2001). However, high-

dimensional models may require larger sample sizes than in a typical study in psychology, 

where a few hundred or even less than one hundred is a common practice. For these reasons, a 

diagnostic approach of heterogeneity without estimating all possible random effects, seems 

useful. As a first step in the diagnostic approach, one can investigate whether there are 
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random effects and where they are, so that in a next step one can estimate a more directed 

model. 

There is a wide range of literature on the diagnosis of heterogeneity in biometrics with 

several procedures for dealing with heterogeneity. Unfortunately, most of these procedures 

cannot be implemented in the field of psychometrics, because they are developed for data 

following a binomial distribution with n>1(Collett, 1991). In psychometrics one often has 

only one observation for each combination of a person and an item. 

On the other hand, several methods were developed in psychometrics for indicating 

multidimensionality in an item set, independently of a possibly available test design. An early 

overview of unidimensionality assessment is provided by Hattie (1985). At present, the most 

prominent methods are DETECT (Zhang & Stout, 1999), a method to reveal the 

dimensionality structure of the data, and DIMTEST (Stout, Douglas, Junker & Roussos, 

1993), a method for testing the unidimensionality of a test. Both methods are nonparametric. 

Because they are developed to investigate the dimensionality of the data, and because the 

dimensions refer to individual differences, such as the heterogeneity of the item covariate 

weight does, these methods are possible candidates for a diagnostic approach to 

heterogeneity. However, they are less directed than it is possible when applied to data with a 

design, because no use is made of the item covariates. Although PCA is not really appropriate 

for binary data, it can also detect dimensional variance, but neither this method makes use of 

item covariates. Nevertheless, all three undirected methods, DIMTEST, DETECT and PCA 

will be investigated on their performance for data with a design. 

As directed methods, two will be investigated. They are directed to the item covariates 

but without an actual estimation of the possible random effects of the item covariates. First, 

logistic regressions will be used for each individual separately, and the variance of the 

weights will be checked. Second, a marginal modeling will be performed with a separate 
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modeling of the association structure (Hardin & Hilbe, 2003). None of the methods may be 

appropriate for the estimation of item response models, but both may be useful for the 

detection of heterogeneity. 

The methods that will be applied differ in several respects. The differences are 

summarized here, but will be further explained when the methods are described more in 

detail. The first respect in which these methods can differ is whether or not they indicate the 

localisation of the heterogeneity in terms of the item covariates. Some methods detect 

(extra)heterogeneity, such as DIMTEST, the DETECT statistic, and the (size of) eigenvalues 

of a PCA. Other methods can also give an indication of where the heterogeneity is located, 

such as DETECT clusters and the PCA loadings. Finally, the individual analyses and marginal 

modeling are an explicit way to the location of (extra) heterogeneity in terms of the 

covariates. 

The second respect in which methods can differ is whether they provide an absolute or 

relative decision about the presence of extra heterogeneity. Some methods provide a test 

statistic to make an absolute decision about the occurrence or absence of heterogeneity or 

extra heterogeneity. In some cases, an associated significance test is available, such as for 

DIMTEST and marginal modeling, and in other cases a rule of thumb has been proposed in 

the literature, such as for DETECT. For other methods no evident decision rule exists. The 

loadings of the PCA may be interpretable in terms of the item covariates,  so that the 

corresponding eigenvalues may give an indication of the heterogeneity in the weights of the 

corresponding item covariates. In a similar, but more direct way, also the variance of the 

individual estimates (from individual logistic regressions) give such an indication. However, 

the critical values are unknown. PCA and individual logistic regressions can be still used for a 

relative decision, because they indicate for which covariates the weights are more likely to be 

heterogeneous than for others. Random parameters can be included in the model in the order 
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that is suggested by the diagnostic analyses, until the fit statistic of the random effects model 

does not improve any more.  

 

Overview of the Methods 
 

Individual Analyses 

 

As explained, the heterogeneity that will be studied implies individual differences in 

the intercept or / and in the slope(s). A very simple logistic regression approach would be to 

do a logistic regression analysis for each single person, and then to inspect the variance of the 

regression weights and the intercept. Apart from the fact that the separate analyses do not take 

advantage of information from other individuals, this method the drawback that complete or 

quasi-complete separation (see e.g., Webb, Wilson & Chong, 2004) may occur rather easily.  

For binary data complete separation is realized when the 0 and 1 responses can be perfectly 

separated by the weighted sum of the covariates. When the overlap is limited to the weighted 

sum of zero, then the separation is quasi-complete. Complete and quasi-complete separation 

do not give unique, finite maximum likelihood estimates. Therefore, data from persons for 

whom the logistic regression analysis results in complete or quasi-complete separation, have 

to be omitted, but this omission is not without consequences for the variance of the estimates. 

 In general, because the method uses the information of the item covariates, it is 

limited to cases when there is information on the item covariates a priori, but this is not a 

problem for this study. Based on the variance of the regression weights this method provides a 

direct indication of where the heterogeneity is located, and based on the ordering of these 

variables, it can used for a relative decision about which random effects should be included in 

the model. 
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Marginal Models 

 

In general, one can follow a marginal modeling approach as an alternative to an IRT 

model when one is not interested in the measurement of latent traits. Since the detection of 

heterogeneity does not require such measurement, this approach can be applied in this study.  

The primary aim  of marginal models is to find the relationship between the expected value of 

the response variable and the covariates (i.e., to find an appropriate model for the mean). 

Using Generalized Estimating Equations (GEE) and in more particular the GEE2 variant 

(Hardin and Hilbe, 2003), beside estimation for the mean, also an estimation for the 

association structure is obtained. For binary data, it is appropriate to use odds ratios instead of 

correlations as the measure of associations:  
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where p refers to a cluster (i.e., a person in this case), i is the first item of the item pair and i’ 

is the second item of the item pair.  

In Alternating Logistic Regression (ALR) (Carey, Zeger & Diggle, 1993), a logistic 

regression model is fitted to obtain an estimation of the effects covariates have on odds ratios 

(OR):  

 

'' ))(log( kikikpipi xxYYOR αΣ= ,                         (4) 

 

where xki  and xki’ are the values of items i and i’ on the k-th item covariate (one covariate is an 

overall 1 vector), and kα  is the association parameter belonging to the k-th item covariate. In 
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other words, kα  is a weight that indicates how much item covariate k contributes to the log 

odds ratio. Heterogeneity based on covariate k is shown, in kα being larger than zero. 

Negative values of kα  are possible, but often not really meaningful, because it implies that 

positive products xki xki’ yield negative associations. In this study a -1/+1 coding was used for 

the covariates in the ALR (in Equation 4). The +1/-1 coding implies a positive association for 

same sign values of xki and xki’ and a negative association for opposite sign values. The 

GENMOD procedure of the SAS software (SAS Institute Inc., 1999) was applied for ALR 

analyses. When the estimation did not converge (in about 65 % of the cases), dummy coding 

was used (with success in all cases) and the resulting estimates were transformed to obtain in 

an indirect way the corresponding weights for a +1/-1 coding. In general the interpretation of 

kα  depends on how the covariates are coded, and the coding is also important for the kind of 

correlation that can be modelled. For example, a +1/-1 coding is appropriate for a covariate 

that induced bipolarity (positive and negative correlations), but a dummy coding is not 

appropriate for a direct modelling of bipolarity, and as a consequence, a transformation is 

required. 

 The method of marginal modeling provides the localisation of the heterogeneity in 

terms of the covariates through the α-parameters (Equation 4). It will be derived from the α -

estimates and their statistical significance whether there is heterogeneity and where it is. In 

principle, it would be possible to elaborate a system of pairwise likelihood ratio tests to find 

out whether there is extra heterogeneity in comparison to a number of reference models, but 

the approach that will be followed here is simpler and is only based on the α-estimates for all 

item covariates. The asset of the marginal modeling approach is that it can localize the 

heterogeneity, because there is advance knowledge of the item covariates, but the requirement 

to have this advanced knowledge is a limitation of the method for general use. 
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PCA  for the Raw Data 

 

Although Principal Component Analysis is not an orthodox method for the analysis of 

binary data, it may be a useful and quite easy technique for detecting heterogeneity in 

practice. In case of heterogeneity, data are correlated, and the underlying dimensions 

correspond to the sources of heterogeneity. Earlier, several attempts were made to find an 

index that would reflect unidimensionality (Hattie, 1985), based on the idea that the larger is 

the variance which is explained by the first principal component, the better the assumption of 

unidimensionality. It is well-known that PCA for binary data may lead to artifacts especially 

when the proportions of response values are extreme, but we will nevertheless explore how it 

behaves for detecting heterogeneity as in a logistic model. 

PCA is an undirected approach that can be used as a detection method in several ways. 

First of all,  the eigenvalues give an indication of the size of the heterogeneity, but without a 

statistical test or a clear absolute decision criterion. Second, from the loadings the items have 

on the components, one can derive an indication of where the heterogeneity occurs. When 

item covariates are used, and they are sources of heterogeneity, the loadings should show 

specific patterns, as it will  be explained in the result section. The order of the eigenvalues 

could be a criterion for a relative decision on the heterogeneity. PCA does not require advance 

knowledge of the item covariates. However, the method should be used with caution,  because 

of the possibility of artifacts.  

 

Dimensionality Test (DIMTEST) 

 

            DIMTEST (Stout, Douglas, Junker & Roussos, 1993) is a nonparametric statistical 

approach for assessing unidimensionality of dichotomously scored test items. This technique 
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provides a tool for assessing extra heterogeneity beyond the general underlying latent trait. 

The method is based on the principle that for two parallel subsets of items the variance of the 

sum scores should be about equal in homogeneous subgroups of persons, as defined on the 

basis of a third subset of items. A T statistic, which can be tested on its significance,  is used 

to decide upon the presence of extra heterogeneity.            

 In an early simulation study (Stout, 1987), the DIMTEST procedure was shown to 

have good power in detecting multidimensionality when the sample size was very large (750, 

2.000, 20.000). DIMTEST performs not as good for smaller sample sizes, for example 200 

(van Abswoude, van der Ark & Sijtsma, 2004). It is important to note that in psychological 

studies, 200 is already a large sample size. 

DIMTEST provides a criterion for an absolute decision on extra heterogeneity beyond 

one underlying dimension, based on a statistical test. It does not give an indication of where 

the extra heterogeneity is located, and no advance knowledge of item covariates is required. 

 

Dimensionality Evaluation To Enumerate Contributing Traits (DETECT) 

 

The DETECT procedure is a nonparametric IRT based method developed for 

detecting the latent dimensionality of a test, or more precisely for disclosing the 

dimensionally homogeneous item clusters of a test. The DETECT procedure was developed 

originally by Kim (1994), and its theory was further adapted by Zhang and Stout (see, e.g., 

Zhang & Stout, 1999, or Stout, Habing, Douglas, Kim Roussos & Zhang, 1996). In case of 

sufficiently separated, strongly homogeneous item clusters (as in a “simple structure”), the 

procedure is able to find the exact number of latent dimensions and the true latent structure of 

the test. Even if the item vectors in the test space are considerably differing in their angles, but 

when the clusters are still clearly separable (an approximate simple structure type), DETECT 
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still finds the crucial clusters. For a simple structure, the number of clusters indicates the 

dimensionality; for an approximate simple structure, the number of clusters found by 

DETECT may be smaller than the number of the latent dimensions, because DETECT finds 

only the substantively distinct dimensions. The R(P) index provides information about the 

degree to which simple structure is realized. As a guideline, the authors of DETECT 

recommend to assume approximate simple structure in practice when the estimated R(P) ≥ 

0.8. In that case the DETECT statistic can be used.  In case of simple structure the R value 

equals to one. 

The statistic is based on the covariance within the item pairs, conditional upon the test 

composite, αθ  (the standardized linear combination of the underlying latent traits or 

dimensions). The items are clustered in an iterative procedure to obtain the partition with the 

highest value of the DETECT statistic for a given maximal number (chosen by the user) of 

non-overlapping clusters (Zhang and Stout, 1999). The theoretical DETECT index for a given 

partition (P) is based on the sum of the conditional covariances (conditional upon αθ ) of item 

pairs belonging to the same cluster minus the conditional covariances of item pairs belonging 

to different clusters. A DETECT value between 0 and 0.1 indicates unidimensionality, higher 

values, between 0.1 and 0.5, 0.5 and 1, 1 and 1.5, and 1.5 or higher correspond to weak, 

moderate, strong and very strong multidimensionality, respectively. The authors emphasize 

that these categories may depend on the particular application, and may deviate from the 

above described ones (Douglas, Kim, Roussos, Stout & Zhang, 1999). 

The current version of DETECT starts with a hierarchical cluster analysis (HCA) and 

then uses a generic algorithm to obtain the global maximum DETECT value. A cross-

validation is also build into the procedure. In the cross-validation two subsets are used with 

approximately equal size. First, the DETECT value is calculated for the first subset, which is 

called the maximum DETECT value. Afterwards, a partitioning of the items is obtained based 
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on the second subset, and this partitioning is applied for the first subset. The obtained 

DETECT value is called the reference DETECT value. Zhang and Stout (1999) suggest that 

when the discrepancy between the reference DETECT value and the maximum DETECT 

value is large, one should suspect unidimensionality, disregarding the partitioning provided by 

DETECT. Zhang and Stout (1999) define a discrepancy measure to decide on 

unidimensionality in their simulation study as the difference between the maximum DETECT 

value and the reference DETECT value divided by the reference DETECT value. In their 

study, when the discrepancy exceeded the critical value of 0.5 or the reference DETECT 

value was smaller or equal than 0.1, the data sets was judged unidimensional. This decision 

rule worked perfectly in their case. 

The authors (Zhang & Stout, 1999) warn that DETECT might not perform well in case 

of a small sample size, or a small number of items. Items close to the test composite, and 

items with small discrimination parameters may be incorrectly classified. It is also important 

to note that in case of an approximate simple structure, the partition which maximizes the 

DETECT index, does not necessarily indicate the number of dimensions of the data, and that 

the indicated number may be smaller than the actual number of dimensions. On the other 

hand, those items that have a relatively small discrimination parameter and are close to other 

clusters may form a new cluster in the DETECT analyses. These clusters are not sizable and 

should not be considered, but they explain why DETECT may suggest more dimensions than 

there are in the data (Zhang & Stout, 1999).  

DETECT provides an absolute decision on extra heterogeneity beyond one underlying 

dimension (i.e., heterogeneity), but the criterion is a rule of thumb and not a statistical test. 

The method does not require advance knowledge of item covariates. An important asset of the 

DETECT method is that it yields a cluster structure, and therefore may give an indication of 

not just whether extra heterogeneity occurs, but also where it is located, however, without an 
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explicit link to the item covariates.  When item clusters can be linked to the item covariates 

indeed, the method can be informative also for the relative decisions on heterogeneity. 

 
The Simulation Study 

 

In order to test the methods, a simulation study was carried out. A quite modest 

problem size was chosen, with 32 items, 3 covariates and 200 persons. The size of the data set 

is rather typical in psychology when a test or inventory is used, and it is rather large in 

comparison with most experiments. The covariates were binary and were crossed in an 

orthogonal way, so that there were eight types of items, and four items of each type. From an 

experimental point of view this is a 2x2x2 within-subject repeated measures design. In 

contrast with experiments, tests often do not have a design, but it is a desirable feature to have 

for a test (Embretson, 1985), also for purposes of cognitive diagnosis, as noted in the 

introduction (Tatsuoka & Tatsuoka, 1982; Tatsuoka, 1990), and in psychological experiments 

with repeated measures a design is often used, indeed. 

 For the generation of the data, the coding of the covariates was +1 and –1. When the 

effects were fixed, the coding did not matter, as any change in the coding could be adapted 

through the intercept. However, if the effect was random over persons, opposite signs of the 

covariate values lead to a negative association, whereas same signs lead to a positive 

correlation. In combination with a random intercept (with a coding of +1 for all items) 

opposite signs and random weights for the corresponding covariate yield a simple structure 

(+1, +1 and +1, -1).  This particular structure of item covariates makes sense for both the 

ability and the personality domain. Perhaps bipolar item covariates as such are not evident in 

the ability domain, but it is common in an unrotated factor solution to find a general 

dimension (random intercept), and a bipolar dimension, so that a simple structure is obtained. 
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For the personality domain, contrasts do make sense as item covariates, and of course also the 

simple structure is not uncommon for personality. 

One of the slopes and/or the intercept was defined to be random over persons. The 

general model for the data generation was the following: 

 

logit 3322111)),1(( iiipppppi xxxYP βββθβθ +++==                       (5) 

 

When only one random effect was used, the variance was varied between 0 and 1.2 

with steps of 0.2 (0, 0.2, 0.4, 0.6, 0.8, 1, 1.2). The mean of the intercept was always zero, the 

means of the slopes were 1. The theoretical mean for each data set as a whole was .5. This 

part of the simulation study will be referred further on as the single effect design, however,  in 

two cells of the design (with zero variance value for the slope and for the intercept) there is no 

random effect present. 

When both the intercept and one slope were random, three variance values were used: 

0, 0.2, and 1.2, so that nine combinations were obtained from crossing the three levels. These 

values represent three kinds of effects of the covariates: fixed effects, a minor source of 

heterogeneity, and a major source of heterogeneity, respectively. With two random effects, 

the distribution was bivariate normal with zero correlation. This second kind of design will be 

called the combined effect design.  

The above described variance values are the theoretical values the data were generated 

with. The actual variance of the random effects may be different due to the sampling that is 

inherent to the generation procedure. These two variances are denoted as theoretical variance 

and real variance, respectively.  
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In general, a relatively small number of data sets (10) was generated per cell, because 

the results seemed rather stable over these ten data sets. Only for the investigation of 

DIMTEST was a larger number of data sets used (100).  

 
Results 

 
Individual Analyses 

 

For all individual analyses, the same coding of the covariates was used as for the 

generation of the data .For the combined effect design, the results are given in Table 1. The 

results are similar for the single effect design. Complete or quasi-complete separation 

occurred in 6.9% of the individual logistic regression analyses for the single effect design, and 

this ratio was 9.5% for the combined effect design. The corresponding estimates were not 

considered in the calculation of the variances. 

__________________________ 

Insert Table 1 about here. 

__________________________ 

 

First, it is clear that the larger the theoretical variance is, the larger the variance of the 

individual estimates is. For theoretical values of 0, mean variances of 0.2 to 0.25 were found, 

for theoretical values of 0.2, mean variances of 0.43 to 0.50 were found, and finally, for 

theoretical values of 1.2, mean variances of 1.09 to 1.22 were found. When the theoretical 

(and real) variance was zero, the mean established variance based on the estimates from the 

individual analyses was still .20 or somewhat higher. One may not generalize this value for 

the general case of homogeneity. A general and absolute criterion for heterogeneity is not 

available for the estimated variance values. 
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Considering the 140 data sets from the single effect design, and taking into account 

only the intercept and the first slope, the highest estimated variance for a parameter with a 

zero theoretical variance was 0.25, while the smallest estimated variance for a parameter with 

non-zero theoretical variance was 0.37. Considering the 90 data sets from the combined effect 

design, the highest estimated variance value for a parameter with zero theoretical variance 

was 0.28 and the smallest estimated variance value for a parameter with non-zero theoretical 

variance was 0.36. According to these results, any value between 0.28 and 0.36 as a rule of 

thumb would result in a perfect decision for these data sets. When variances of the second and 

third slopes were considered, the smallest critical value with perfect predictions was 0.33.  

Second, from a further analysis it seems that the relation between real variance and the 

estimated variance is very strong and linear when there is only one random effect (R2=.87 for 

the intercept, and R2=.88 for the slope). When both the slope and the intercept variance were 

random, the real variance was again linearly related to the estimated variance (R2=.98 for the 

slope, R2=..97 for the intercept). Although these linear relations are of interest, the weights of 

the prediction function may not be generalized by definition to other kinds of data sets. 

Third, from a more detailed inspection of the results it was concluded that a wrong 

decision was never made when the variance of the individual estimates was used to decide 

which theoretical variance is the larger (of the intercept or slope). Therefore the method of 

individual analyses can be used to decide on the order in which random effects are included in 

the model until the model fit would be sufficient. It is clear from the results that theoretical 

values of variance as small as 0.2 lead to variances of the estimates that are larger than when 

the theoretical values of variance is zero.  

In sum, although an absolute general criterion for the individual logistic regression 

analyses method is unknown, the method can be used for relative decisions on heterogeneity, 

or in other words, for determining the order in which to include effects as random effects in 
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the model. Given that one has a priori knowledge of the item covariates, an advantage of the 

method is that it locates the heterogeneity.  

 

Marginal Modeling 

 

 In Figures 1 and 2 the estimated association parameters α belonging to the random 

intercept and random slope are plotted, for the single effect design. The ten data sets per 

theoretical variance are shown on the approximately horizontal curves in the figures. The data 

sets are ordered on the x-axis based on the association estimates. 

_________________________ 

Insert Figure 1 about here. 

__________________________ 

 

_________________________ 

Insert Figure 2 about here. 

__________________________  

 

 It is clear that the values of the association parameters are increasing with the 

theoretical variance of the random effect (indicated on the right hand side of the figure). The 

series belonging to adjacent theoretical values show some overlap, but also the real variances 

do overlap.  

_________________________ 

Insert Figure 3 about here. 

__________________________ 
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In Figure 3, the estimated association parameters are displayed for the combined effect 

design. In each of the panels of Figure 3, all four association estimates of the corresponding 

ten data sets are plotted (related to the intercept and to the three slopes, see Equation 4). Each 

line consist of ten parameter estimates belonging to different data sets. The  triangles denote 

the association parameters of the intercepts, the circles refer to the association parameters of  

the manipulated slopes and the squares to the ones of the fixed slopes. The estimates are 

ordered on the x-axes according to their value on the y-axes, in a different panel for each pair 

of a theoretical value of the intercept and slope variance. As it can be seen, only the 

association parameters belonging to random effects differ from zero. The obtained values are 

also closely related to the amount of heterogeneity. This is a clear and unambiguous result.  

First, as it was mentioned before, the +1/-1 coding did not converge for 65% of the 

data sets, therefore the 0/1 coding was used instead, and from these results the corresponding 

α-estimates of the +1/-1 coding were calculated. As a consequence, the corresponding 

significance test could not been used for these data sets. For 40 data sets in both  parts of the 

study with maximum 0.2 variance in the random parameters, the +1/-1 coding did converge 

indeed. In each data set there were four parameters, so that all in all, there were 160 

observations available for investigating the behavior of the significance test of the α-values 

for both parts of the study. With p ≤ .05 as the critical value for an absolute decision criterion, 

only one false alarm (out of 120 cases with a true α of zero) was found, and no misser was 

found (out of 40 cases with a true α larger than zero) for the combined effect design.  

The significance test for the α-values could not be used for all data, but an ad hoc 

critical value for α can be applied. The α-values of  the random parameters with zero and 0.2 

theoretical variance did not overlap, for the single effect design, so that a critical value for the 

α-values between 0.018 and 0.14 would be perfectly suitable. For the combined effect design, 

any critical value between 0.05 and 0.12 would lead to perfect predictions. Therefore in this 



Detecting heterogeneity      21

study any critical value for the for the α-values between 0.05 and 0.12 would result in perfect 

predictions. Comparing the α-values for the second and the third covariates to the ad hoc 

critical value of 0.06, perfect predictions could obtained. 

Second, it is clear that the estimated association was a function of the real variance. 

For the single effect design R2 for the association estimates and the real variance was .95 for 

the intercept, and .97 for the slope. The relation between the association parameters and the 

real variance was also linear for the combined effect design. The corresponding R2 was .93 for 

the intercept, and .97 for the slope. 

In sum, marginal modeling with ALR seems to be a quite effective method to detect 

heterogeneity in an absolute sense, when convergence is obtained (and a statistical test is 

possible). Given the high values of R2, also a relative decision based on the ordering of the 

variances, seems to be a good procedure. Given that one has item covariates available, an 

advantage is that the heterogeneity can be located . 

 

Principal Component Analysis 

 

PCA Eigenvalues 

 

When only one effect was random, only one salient principal component was 

expected, as there is one source of heterogeneity. In a similar way, two salient components 

were expected when both the intercept and the slope were random. The results confirmed 

these expectations.  

First, when 1.9 was used as the best criterion for an eigenvalue to decide whether it 

represents a true source of heterogeneity, 5% false alarms (one out of 20 data sets) and 0% 

missers (out of 120 data sets) was obtained for the single effect design. For the combined 
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effect design, 1.67 % (one out of 60) false alarms and 8.33% (ten out of 120) missers were 

obtained.  Taking into account both parts of the simulation study in most of the cases, the 

elbow criterion (based on a judgment by the first author) also indicated the correct number of 

dimensions (100% of the data sets for the single effect design, but only 72% for the combined 

effect design). 

Second, when only one effect was random, a linear relation was obtained between the 

eigenvalues and the real variances. However, there are overlaps between the eigenvalues of 

data sets with a high, but different theoretical variance (above 0.6), due to overlapping real 

variance values. The real variance was linearly related to the first eigenvalue, R2 =.97 for the 

intercept and also R2=.97 for the slope. When both the slope and the intercept were random, 

the corresponding eigenvalues did not have such a nice interpretation. The higher the variance 

of one random effect was, the larger (but still moderate) the decrease was in the eigenvalue of 

the other random effect.  

Although the PCA approach also suffers from the absence of an absolute criterion, 

because there is not a general reference eigenvalue available for all types of  data sets, the 

procedure seemed rather effective for relative decisions on heterogeneity. The PCA 

eigenvalues do not locate the heterogeneity, but an inspection of the PCA loadings may help, 

as it will be explained next.  

 

PCA Loadings 

 

The PCA loadings were found to show the hypothesized pattern. Figure 4 and 5 show 

two representative cases for the single effect design, one for the random intercept (Figure 4) 

and another for the random slope (Figure 5). The PCA loadings belonging to the 32 items are 

ordered in the figures. Each line represents a series of PCA loadings belonging to one 
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principal component. For simplicity’s sake only the PCA loadings belonging to the first five 

principal components are plotted. For the random intercept, the almost horizontal line with 

only positive values can easily be noticed (in black). For the random slope, the line in black 

shows the hypothesized pattern with a jump from negative to positive values (because of the 

opposite signs coding).  

 

_________________________ 

Insert Figure 4 about here. 

__________________________ 

 

__________________________ 

Insert Figure 5 about here. 

__________________________ 

 

In case of the combined effect design, the same effects were observed as earlier.  

Figure 6 is provided for illustrative purposes. One line is horizontal (for the intercept 

component) and the other one shows a jump (for the slope component). When the intercept 

and slope variances were equal, it depended on the data set which of the two random effects 

showed in the first component, because the order of the real variances is a matter of chance 

given that the generation values are equal.  

__________________________ 

Insert Figure 6 about here. 

__________________________ 
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In an additional parallel simulation study with an unipolar coding instead of a bipolar 

coding for the item covariate with random effects, the results were similar. The only 

difference was that the PCA loadings referring to the random slope were mostly positive and 

the jump of the ordered loadings was more moderate than in Figures 5 and 6. 

These results show that one may derive the source of the variance from the pattern of 

the loadings. When the variance of the slope is concerned, one needs of course advanced 

knowledge of the item covariates to interpret the pattern of the loadings in terms of slope 

variance.  

While the results suggest that PCA is a quite easy and good method to detect and to 

locate heterogeneity for the considered category of problems, the success of this approach is 

limited, because the PCA of binary data is subject to artifacts when extreme means of items 

occur. 

 

DIMTEST 

 
Because DIMTEST concentrates on extra heterogeneity beyond a general underlying 

trait, and because this kind of extra heterogeneity occurs in this study only when both 

manipulated parameters are random, the combined effect design was used for investigating 

DIMTEST. For this part of the simulation study, 100 data sets were generated in each cell, 

because the results were not as clear-cut as for the previous methods. The sorting of the items 

into two of the three subsets required for DIMTEST was made by the automatic item selection 

option of the DIMTEST software. As a first step, a factor analysis was used, and the items for 

the first subset were selected based on their second factor loadings. The desired significance 

level of the DIMTEST statistic was set to α = .05.  

_________________________ 

Insert Table 2 about here. 
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__________________________ 

 

Table 2 contains the number of the data sets indicated to be multidimensional (out of 

100). Since the cells in the first column and the first row of Table 2 are unidimensional, 

ideally, one would expect 5 out of 100 data sets to be indicated as multidimensional in those 

cells and much higher frequencies than five in the other four cells. In fact, the frequencies are 

slightly higher in the first column and much higher for the rest of the unidimensional cells 

than it is expected. For three of the four remaining cells, the frequency is rather low, meaning 

that the detection of multidimensionality is rather poor. Finally, when both theoretical 

variances are 1.2, still only 81 out of the 100 data sets were identified as multidimensional, 

meaning that 19% cases of strong heterogeneity went undetected. DIMTEST resulted in  

64.75% (259 out of 400 data sets) missers and 11.4% (57 out of 500 data sets) false alarms. 

 Note, that from the point of view of DIMTEST, a bipolar coding with random weights 

of an item covariate also leads to multidimensionality. Taking this into account, one may 

expect multidimensionality in the first row,  except for the first cell. However, as can be seen 

in Table 2, the detection of multidimensionality based on the bipolar covariate quite poor, and 

the global results improve only slightly. Considering the DIMTEST perspective on bipolarity 

51.3% (308 out of 600) missers and 8% (24 out of 300) false alarms were obtained. 

               These results do not come unexpected. As it was mentioned earlier, DIMTEST 

underperforms for small samples (van Abswoude, van der Ark & Sijtsma, 2004). 

Furthermore, equal numbers of items loading on the different dimensions leads to less stable 

DIMTEST results than unequal numbers of items (van Abswoude, van der Ark & Sijtsma, 

2004). These may be the reasons for the moderate detection rate of heterogeneity in this study. 

One should be aware that, when the sample size is small, DIMTEST may overlook small 

variances. 
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DETECT 

 

As for DIMTEST, also for DETECT the focus is on the combined effect design, 

because it is a method to detect extra heterogeneity beyond one underlying dimension. For 

DETECT only 10 data sets per cell were used, because the variance of the test statistics was 

small. There are different ways to apply the DETECT procedure, and this will be reflected in 

this study.   

In a first step, the DETECT analyses were limited to two latent dimensions, but in 

order to gain a better understanding of the results, later the analyses were repeated for a larger 

number of dimensions (whereas the true dimensionality was never larger than two). DETECT 

was first applied with cross-validation, because using the cross-validation option in the 

DETECT procedure is strongly recommended (Zhang & Stout, 1999). The examinees of each 

data set were randomly assigned to two subsets (with equal size). The results of the first step 

are shown in Table 3. Both the maximum DETECT value and the reference DETECT value, 

and the associated R-values for each subset are given. In this first step, different decision rules 

will be compared, concerning the inferences to be made regarding unidimensionality and 

extra heterogeneity. 

__________________________ 

Insert Table 3 about here. 

__________________________ 

 

According to the results, the DETECT statistic is not so sensitive to the intercept 

variance than to the slope variance. The maximum DETECT value and the reference 

DETECT value increase with the slope variance, but not with the intercept variance. This is 
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because the intercept is not a source of item clusters, whereas the slope certainly is, because 

of the bipolar coding of the corresponding item covariate. The slope variance is clearly 

linearly related to the maximum DETECT value and also to the reference DETECT value 

(R2= .94 and R2= .95, respectively), but the intercept variance is not (R2= .02 and R2= .004, 

respectively). When the slope variance is 0 or 0.2, the reference DETECT values are much 

smaller than those of the first subset. This shows the effect of cross-validation. 

According to the DETECT manual, when the DETECT procedure indicates 

multidimensionality, the DETECT value can be interpreted only in case of simple structure or 

approximate simple structure. For an approximate simple structure, the R-value should be 

higher than 0.8. For unidimensional data sets this condition is not required for interpreting the 

DETECT value. Because simple structure is a condition for the interpretation of the DETECT 

value, strictly speaking only 28 data sets could be considered for multidimensional (out of the 

60 multidimensional data sets), all with theoretical slope variance of 1.2. All 28 data sets 

should be detected as showing extra heterogeneity when DETECT is used, because of a 

bipolar covariate with random weight.  

 Since the DETECT values are linear functions of the slope variance that is the source 

of multidimensionality in these data sets, it makes sense to consider all DETECT values. The 

theoretical critical values for indicating unidimensionality and strong multidimensionality are 

<0.1 and ≥1, respectively.  Applying these values for the 28 data sets with approximate simple 

structure, not one misser was found (and false alarms were not possible). Applying these 

critical values to all 90 data sets, two false alarms on a total of 30 data sets and 30 missers on 

a total of 60 data sets were obtained. Using the critical value of  0.5 for moderate 

multidimensionality, still 20 missers were found. When only one critical value was used (0.1) 

for deciding upon unidimensionality, only three false alarms and five missers were found for 

the 90 data sets. Based on these results, the value of 0.1 seems to be a successful criterion to 
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find out whether there is extra heterogeneity beyond an underlying dimension. Note that these 

results are obtained while considering  a bipolar unidimensional structure as multidimensional 

(in the sense of DETECT). When such structure is considered as unidimensional, the number 

of false alarms is of course higher.  

When also the discrepancy measure was considered in the decisions about extra 

heterogeneity, in our study the discrepancy was calculated as the difference of the two 

DETECT values divided by the absolute value of the reference DETECT value, because the 

reference DETECT value was often negative. The application of the combined criteria 

resulted in zero false alarm and 21 missers (out of 60 multidimensional data sets).  

 When DETECT was used without cross-validation, and  allowing for two dimensions, 

the DETECT values and the R-values for slope variances of 0 and 0.2 were much higher than 

the reference DETECT value in the cross-validation procedure. For a slope variance of 1.2, 

values similar to the reference values were obtained. For these analyses without cross-

validation, the optimal critical DETECT value turned out to be 0.5, yielding two missers and 

zero false alarm. With the critical value of 0.1, as recommended in the manual, a remarkable 

amount of unidimensional cases were overlooked. The same was found in the comparative 

study of van Abswoude et al. (2004), who noted that the suggested upper bound of 

unidimensionality might be too low. However, with a higher critical value, the procedure 

without cross-validation also seems to work well for our problem. 

Because in practice one may not have an idea about the number of  latent dimensions, 

it is interesting to see how the method works when more then two dimensions are assumed. 

For an analysis with more than two dimensions, 12 dimensions, were allowed, the highest 

possible number of dimensions in the DETECT program, in order to give maximal freedom to 

DETECT in finding clusters. Also in this case, first the cross-validation procedure was 

followed. The results concerning the number of clusters are reported in Table 4. The R-values 
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indicated simple structure only when the theoretical slope variance was 1.2. For that case, the 

correct partition with two clusters based on the bipolar covariate was always found. When the 

theoretical slope variance was 0.2, the highest maximum DETECT value for the data was 

obtained for two to five clusters. When the theoretical slope variance was 0, the number of 

clusters was between two and five, and for one data set (with zero intercept variance) even six 

clusters were found.  

__________________________ 

Insert Table 4 about here 

__________________________ 

 

However, it is mentioned in the DETECT manual, that a considerably higher 

maximum DETECT value than the reference DETECT value indicates that the clusters may 

stem from capitalization upon chance, and the data set may be unidimensional. The earlier 

described combined decision rule (discrepancy of DETECT values larger than 0.5 or the 

reference DETECT value is smaller or equal than 0.1) resulted in zero false alarms and 20 

missers (out of 60 multidimensional data sets).   

A new decision algorithm was developed, as follows: 

(1) Choose the highest maximum number of dimensions (12) in the DETECT 

program, and run the DETECT procedure. 

(2) When the dimensionality indicated by DETECT is k=2, and the reference   

DETECT value for k is higher than 0.1, the true dimensionality is two, if it is smaller 

or equal, the test is unidimensional. 

When k>2, go to (3). 
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(3) Calculate the discrepancy measure for dimensionality k. If it is smaller or equal 

than its critical value, the true dimensionality is k. If the discrepancy is higher than the 

critical value, choose k=k-1 as maximal dimensionality and return to (2). 

When for the discrepancy measure 0.5 was chosen as a critical value five missers were found 

and the dimensionality was overestimated for 12 data sets.  With 0.3 as critical value, again 

five missers were found, and the dimensionality was still overestimated for four data sets. 

When the DETECT procedure was used without cross-validation, and 12 dimensions 

were allowed, the true dimensionality was always found when the slope variance was 1.2. For 

a slope variance of 0.2, two to six clusters were found and for a slope variance of 0, three to 

seven clusters were indicated by DETECT. When a critical DETECT value of 1.1 was used, 

perfect decisions were obtained, identifying cases with zero slope variance as one-

dimensional if the value was lower than 1.1, and identifying cases with slope variance .2 or 

1.2 if the DETECT value was equal to or larger than 1.1. It seems that when higher critical 

values are used than those provided by the DETECT manual, the procedure also works well 

without cross-validation, and perhaps even better. The problem is that the proper critical 

values are not know a priori.  

 There are some remaining problems. The DETECT value is based on conditional 

covariances calculated for each item pair and for each total score group based on the 

remaining items. The minimum number of examinees for each total score group is defined by 

the user in the input of the DETECT procedure. The recommended value is 20. Only those 

total score groups are considered for the covariance calculation which contain at leas as many 

examinees as the reference value defined in the input. This value should be lowered if the 

minimum percentage of examinees used for the covariance calculations is lower than 85%. In 

the present study the minimum number of examinees per cell had to be decreased for each 

data set. This may be the consequence of  the small ratio of examinees versus items (200 to 
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32), although it is a common ratio in psychological research. In order to reach the 

recommended percentage of observations used in the covariance calculation, one should have 

20(I-2) observations, where I is the number of items. In psychological research this condition 

is often not fulfilled. 

 The R-value seems to be a function of the variance, and in this study the criterion 

value was often not reached for multidimensional data sets. In general, when we interpret all 

DETECT values, it seems that cut-off values are not easy to find. Apart from these problems, 

DETECT turned out to be a reasonably good method to detect extra heterogeneity and also to 

explore where it is located.  

 

Discussion and Conclusion 
 

Various methods were investigated for detecting heterogeneity in small data sets with 

binary repeated measures and with item covariates. This is perhaps not a very common 

problem in educational measurement, because in that context the data sets tend to be much 

larger than N = 200, and item covariates are not so common. But it is a rather common 

structure for a within-subjects psychological experiment, or for a psychological test with a 

design, for example a test with subscales. Furthermore, in psychological measurement the 

assumption of design factors with effects that differ depending on the person make sense, as a 

structure with person-by-item interaction. 

As it was mentioned earlier, there are important differences between the investigated 

methods from a practical point of view. Among the methods that require the availability of 

item covariates, marginal modeling gave excellent results. Marginal modeling provides a 

statistical test for the association parameters and also locates heterogeneity. Also, the results 

of  individual analyses seem to be quite sensitive to the size of the heterogeneity, but this 

method can be used only for a relative decision, for deciding on the order of the random 
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effects that should be included in the model. Although additional bootstrap could help to find 

appropriate cut off value for procedures with different cut-off values for different data 

structures.  

Among the methods that do not require item covariates, it is difficult to differentiate. 

PCA seemed to be an effective method in this study, but PCA has the drawback that it is 

vulnerable to artifacts. DIMTEST seems less sensitive than PCA and DETECT, because it 

tends to overlook small variances. DETECT would be a preferable method, in principle, 

because it does not require a priori information about the item covariates and still can locate 

heterogeneity. But although DETECT seemed to be a quite effective method in this study, the 

decision criteria for DETECT are not always evident. 
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Table 1 

The mean of variance of the individual estimates for the 

combined effect design  

First slope variance  

Intercept  variance 0 0.2 1.2 

0 

   Intercept 

   Slope 1 

   Slope 2 

   Slope 3 

 

0.21 

0.22 

0.22 

0.22 

 

0.22 

0.45 

0.22 

0.22 

 

0.23 

1.22 

0.22 

0.22  

0.2 

   Intercept 

   Slope 1 

   Slope 2 

   Slope 3 

 

0.48 

0.22 

0.21 

0.20 

 

0.50 

0.44 

0.21 

0.23 

 

0.43 

1.19 

0.22 

0.23 

1.2 

   Intercept 

   Slope 1 

   Slope 2 

   Slope 3 

 

1.21 

0.23 

0.23 

0.24 

 

1.17 

0.47 

0.23 

0.23 

 

1.1 

1.09 

0.20 

0.25 
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Table 2 

The number of data sets indicated as 

multidimensional by DIMTEST  

 First slope variance  

Intercept variance 0 0.2 1.2 

0 6 12 21 

0.2 10 18 21 

1.2 8 20 82 
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Table 3 

The mean DETECT and R-values with cross-validation for an analysis with 2dimensions 

First slope variance  

0 0.2 1.2 

 

Intercept variance 

Maximum 

value 

Reference 

value 

Maximum 

value 

Reference 

value 

Maximum 

value 

Reference 

value 

0 

   Detect 

   R 

 

0.583 

0.357 

 

0.036 

0.000 

 

0.857 

0.476 

 

0.470 

0.250 

 

4.117 

0.986 

 

3.821 

0.981 

0.2 

   Detect 

   R 

 

0.628 

0.389 

 

0.008 

0.006 

 

0.858 

0.465 

 

0.353 

0.196 

 

3.514 

0.906 

 

3.864 

0.902 

1.2 

   Detect 

   R 

 

0.595 

0.381 

 

-0.002 

 0.014 

 

0.875 

0.458 

 

0.278 

0.144 

 

2.907 

0.906 

 

3.430 

0.919 
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Table 4 

The number of clusters found by DETECT with cross-validation  when 12 

dimensions were allowed  

First slope variance  

 0 .2 1.2 

Number of clusters  

Intercept variance 2    3    4     5    6 2    3    4     5    6 2    3    4     5    6 

0             5     4    1             7    3 10 

.2             7     3 2    3    4    1 10 

1.2 1    2    6     1 1    4    5 10 
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Figure Captions 

 
Figure 1. The estimated association parameter values referring to the random intercept, for 

different values of the variance, ordered according to the size of the estimated association 

Figure 2. The estimated association parameter values referring to the random slope, for 

different values of the variance, ordered according to the size of the estimated association 

Figure 3. The association parameter estimated in the combined effect design 

Figure 4. The PCA loadings for the first five principal components, ordered as a function of 

the size of the loadings (the intercept variance is 0.6, the other variances are zero) 

Figure 5. The PCA loadings for the first five principal components, ordered as a function of 

the size of the loadings (the slope variance is 0.6, the other variances are zero) 

Figure 6. The PCA loadings of the first five principal components (the intercept variance and 

the slope variance are both 1.2, the other variances are zero)   
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Figure 1 

The estimated association parameter values referring to the random intercept, for different 

values of the variance, ordered according to the size of the estimated association 
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Figure 2 

The estimated association parameter values referring to the random slope, for different values 

of the variance, ordered according to the size of the estimated association 
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Figure 3: The association parameter estimated in the combined effect design 

First slope variance=0 First slope variance=0.2 First slope variance=1.2 
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Figure 4 

The PCA loadings for the first five principal components, ordered as a function of the size of 

the loadings (the intercept variance is 0.6, the other variances are zero) 
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Figure 5 

The PCA loadings for the first five principal components, ordered as a function of the size of 

the loadings (the first  slope variance is 0.6, the other variances are zero) 
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Figure 6 

The PCA loadings of the first five principal components (the intercept variance and the first 

slope variance are both 1.2, the other variances are zero)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


