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Abstract

TRAIL (TNF-related apoptosis-inducing ligand) can selectively trigger apoptosis in various 

cancer  cell  types.  However,  many  cancer  cells  are  resistant  to  death  receptor-mediated 

apoptosis.  Combination  therapy  with  platinum  complexes  may  affect  TRAIL-induced 

signaling via modulation of various steps in apoptotic pathways. Here we show that cisplatin 

or  a  more  potent  platinum(IV)  complex  LA-12  used  in  twenty-fold  lower  concentration 

enhanced  killing  effects  of  TRAIL  in  human  colon  and  prostate  cancer  cell  lines  via 

stimulation  of  caspase  activity  and overall  apoptosis.  Both  platinum complexes  increased 

DR5 surface expression in colon cancer cells. siRNA-mediated DR5 silencing rescued cells 

from  sensitizing  effects  of  platinum  drugs  on  TRAIL-induced  caspase-8  activation  and 

apoptosis,  showing the functional importance of DR5 in the effects observed.  In addition, 

both cisplatin and LA-12 triggered the relocalization of DR4 and DR5 receptors to lipid rafts, 

and  accelerated  internalization  of  TRAIL,  which  may  also  affect  TRAIL  signaling. 

Collectively, modulations of the initial steps of the extrinsic apoptotic pathway at the level of 

DR5 and plasma membrane are important for sensitization of colon and prostate cancer cells 

to TRAIL-induced apoptosis mediated by LA-12 and cisplatin. 
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Introduction

The main goal of anticancer therapy is to selectively induce apoptosis in cancer cells 

while sparing untransformed cells and healthy tissues. One promising approach is triggering 

of  the  extrinsic  apoptotic  pathway  by  TRAIL  (tumor  necrosis  factor-related  apoptosis-

inducing ligand), a member of TNF superfamily, which has been shown to selectively induce 

apoptosis in various cancer cells in vitro and in vivo [1,2]. The different sensitivity/resistance 

to TRAIL in normal and cancer cells is still a matter of debates among the experts. Several 

potential ways of resistance of non-tumorigenic cells to TRAIL have been proposed so far, at 

the level of both surface and intracellular  molecules.  Furthermore,  many tumor cells have 

been shown to be resistant to the effects of TRAIL due to deficiencies in apoptotic pathways 

or over-activated pro-survival signaling [3-6]. Elucidation of the molecular mechanisms of the 

resistance,  and designing safe combination therapy using agents capable of sensitizing the 

cancer but not normal cells to TRAIL-induced apoptosis are important prerequisites of the 

successful clinical application of this cytokine. 

There are five known types of TRAIL receptors. Death receptors DR4 (TRAIL-R1) 

and DR5 (TRAIL-R2) containing death domain (DD) are responsible for transmission of the 

apoptotic signal, while decoy receptors DcR1 (TRAIL-R3, lacking DD) or DcR2 (TRAIL-R4, 

with truncated DD), and a soluble receptor osteoprotegerin (OPG, TRAIL-R5) are unable to 

signal apoptosis. However, the cell surface expression of particular TRAIL receptor may not 

fully  corelate  with  its  functional  importance  in  induction/inhibition  of  TRAIL  apoptotic 

signaling. It has been published in several cancer cell types that despite the presence of both 

DRs  at  their  surface,  particular  tumors  preferentially  signal  through  either  DR4  (e.g. 

lymphocytic leukemia) [7] or DR5 (e.g. colon cancer) [8]. The specific DR involvement as 

well as differences in apoptotic signaling mediated by DR4 or DR5 remain to be answered. 
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Some  authors  also  showed  a  higher  expression  of  decoy  receptors  in  non-tumorigenic 

compared to tumor cells.  However, this phenomenon may be tissue specific,  and the sole 

presence of surface decoy receptors has often been found not sufficient to protect the cells 

from apoptotic effect of TRAIL [9,10]. 

DR4 and  DR5  mediate  TRAIL-induced  apoptosis  by  recruiting  FADD  (Fas-

Associated  DD)  protein  and  pro-caspase-8  to  form  a  death-inducing  signaling  complex 

(DISC). The amount of caspase-8 activated at the DISC is important factor affecting further 

progression of apoptotic signaling. In so-called type I cells, abundantly activated caspase-8 

directly cleaves and activates effector caspases, which leads to execution of cell death. In type 

II cells, the amount of caspase-8 activated at the DISC is not sufficient to trigger an adequate 

effector caspase stimulation; therefore, amplification of the apoptotic signal via mitochondria 

is required [11,12]. In this case, a BH-3-only protein Bid is cleaved by caspase-8 to tBid, and 

translocated to mitochondria to trigger processes leading to release of proapoptotic proteins 

such as cytochrome c into the cytosol [12]. Cytochrome c, Apaf-1, and procaspase-9 then 

form  an  apoptosome  complex  where  caspase-9  is  activated,  and  the  apoptotic  signal  is 

augmented.

The initial  steps  of  TRAIL signaling have been studied  intensively,  especially  the 

regulation  of  TRAIL  receptor  expression,  their  translocation  to  the  cell  surface,  plasma 

membrane distribution, lipid raft (co)localization, and receptor internalization (endocytosis). 

Lipid  rafts  are  dynamic  plasma  membrane  microdomains  enriched  with  cholesterol  and 

sphingolipids. They play fundamental roles in diverse cellular processes, particularly in signal 

transduction, by promoting compartmentalization of membrane proteins and lipids [13,14]. 

Recent studies have suggested the role of lipid rafts as platforms for DR-mediated apoptosis 

signaling [15]. Relocalization of TRAIL DRs into the lipid rafts has been shown to facilitate 

DISC formation and caspase-8 activation-initiated apoptosis, while TRAIL-DISC assembly in 
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the non-raft phase of the plasma membrane resulted in inhibition of caspase-8 cleavage, and a 

promotion of antiapoptotic signaling [15]. Changes of the DRs distribution within the plasma 

membrane may therefore have a crucial impact on modulation of cell sensitivity/resistance to 

apoptotic signals triggered by TRAIL. Death ligand/receptor interactions may induce receptor 

clustering and internalization, which targets the active receptor to endocytic compartments. 

An  essential  requirement  for  receptor  internalization  in  transmitting  the  CD95L-induced 

apoptotic signal has been reported [16,17]. In contrast, although being rapidly internalized, 

TRAIL and its DRs have been reported not to essentially require internalization for DISC 

formation, caspase-8 activation, and subsequent apoptosis induction in BJAB type I cells [18]. 

Combined  treatment  with  chemotherapeutic  drugs  has  been  shown  to  overcome 

TRAIL  resistance  in  many  cancer  cell  types.  Diverse  molecular  mechanisms  have  been 

reported to be responsible for synergistic effects of these agents to induce apoptosis of target 

cells. Chemotherapy may have a great impact on the crucial steps of the TRAIL signaling 

pathway,  e.g.  through increase  of  TRAIL DR expression  [19,20],  lipid  raft  relocalization 

[21,22],  decrease  of  cFLIP protein  level  [23],  facilitating  DISC formation  and  caspase-8 

activation [24], upregulation/downregulation of proapoptotic/antiapoptotic molecules [25], or 

stimulation of mitochondria [26]. The involvement of the particular events depends on the 

type and/or stage of cancer,  type I/II cells,  and the type of the selected chemotherapeutic 

drug(s).

Platinum complexes,  e.g.  cisplatin,  carboplatin  and oxaliplatin,  belong to  the most 

widely used chemotherapeutic agents in the treatment of solid cancers. By creating covalent 

bonds with DNA, they induce DNA damage signaling, which leads either to cell cycle arrest 

providing time to repair the damage, or immediate activation of apoptotic signaling via the 

intrinsic mitochondrial pathway, and killing of cancer cells. However, application of therapy 

using  platinum  drugs  such  as  cisplatin  is  limited  due  to  serious  side  effects  and/or 
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development of intrinsic or acquired resistance of the cancer cells. In the past two decades, 

plenty of newly synthesized analogues of platinum complexes were examined, and some of 

them  entered  the  clinical  trials,  e.g.  Pt(IV)  complexes.  LA-12  is  a  novel  Pt(IV) 

adamantylamine ligand-containing complex, currently in phase I of clinical trials. It has been 

shown to be more cytotoxic than satraplatin and to efficiently induce cell death in a panel of 

14 cancer cell lines with various sensitivity to cisplatin [27] and in ovarian carcinoma cells 

with acquired (A2780cis) or intrinsic resistance to cisplatin (SK-OV-3) [28,29]. LA-12 has 

been shown to induce cell cycle arrest and apoptosis in various cancer cells [30,31,32,33].

 In vivo studies in murine xenografts revealed a higher antitumor activity of LA-12 

compared to cisplatin and Pt(IV) complex satraplatin, and enhanced tissue penetration, and 

lower  acute  systemic  toxicity.  Due  to  its  improved  lipophilicity,  LA-12  was  shown  to 

effectively penetrate  tissues and tumors  and can be administered perorally [34-36].  Taken 

together, these data imply that LA-12 is a promising candidate for cancer therapy, with high 

effectivity in killing cancer cells in vitro and in vivo and low toxic side effects in vivo.

In  the present  study,  we investigated  the  role  of  a  novel  platinum drug LA-12 in 

modulating  colon  and  prostate  cancer  cell  sensitivity  to  apoptotic  effects  of  TRAIL,  and 

compared the LA-12-mediated effects with those exerted by conventionally used cisplatin in 

combination with TRAIL. The molecular  mechanisms responsible for the enhancement  of 

apoptosis following combined treatments with these agents were investigated, with special 

focus on the most upstream events of the TRAIL signaling pathway, namely TRAIL DRs and 

initiator caspase-8. Both platinum complexes increased DR5 surface expression and lipid raft 

localization, and consequentially TRAIL-induced caspase-8 activation and apoptosis, which 

could  be  counteracted  by  siRNA-mediated  DR5  silencing.  Our  results  demonstrate  that 

modulating the initial steps of the extrinsic apoptotic pathway by LA-12 and cisplatin at the 
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level of DR5 and plasma membrane are important events in sensitization of colon and prostate 

cancer cells to TRAIL-induced apoptosis. 

Materials and methods

Materials and reagents

The  stock  solutions  of  cisplatin  (cis-diamminedichloroplatinum(II);  FW  300.1)  (Sigma-

Aldrich  Corp.;  St.  Louis,  MO,  USA);  and  LA-12  ([(OC-6-43)-bis(acetato)(1-

adamantylamine)ammine  dichloroplatinum(IV)];  FW  552.4)  (Pliva-Lachema,  a.s.;  Brno, 

Czech  Republic) were  freshly  prepared  before  use. Human  N-terminally  His-tagged 

recombinant Apo2L/TRAIL (amino acids 95–281) was affinity-purified from cell lysates of 

the producer bacteria  (E. coli,  strain BL-21) and contaminating bacterial  endotoxins  were 

removed by Endotrap chromatography (Profos AG) [37].

Cell culture

The human colon adenocarcinoma cell line HCT-116 (obtained from Prof. B. Vogelstein) and 

prostate  cancer  PC-3 (from ATCC) epithelial  cell  lines  were  maintained  in  McCoy’s  5A 

modified medium with 1.5 mM L-glutamine (Sigma-Aldrich; St. Louis, MO, USA) or F12, 

respectively,  supplemented with penicillin  (100 U/ml) and streptomycin (0.1 mg/ml) (both 

Duchefa  Biochemie;  The  Netherlands),  sodium  bicarbonate  (1.5  g/l, Serva;  Heidelberg, 

Germany),  and  10% heat-inactivated  fetal  bovine  serum (HCT-116)  or  10% fetal  bovine 

serum (PC-3) (PAA Pasching, Austria). The cells were incubated in a humidified incubator at 

37 °C in a 5% CO2 atmosphere,  and passaged twice a week by EDTA/PBS washing and 

trypsinization.
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WST cytotoxicity assay

HCT-116 and PC-3 cells were seeded in 96-well plates in a density of 20,000 cells per cm2. 

After 24 h (HCT-116) or 48 h (PC-3), the cells were treated with cisplatin (10 μM) or LA-12 

(0.5 μM). Twenty-four hours later, various amounts of TRAIL (6.25-100 ng/ml) were added. 

After  24  h  of  incubation,  tetrazolium  salt  WST-1  with  1-methoxy-5-methylphenazium 

methylsulphate (Serva; Heidelberg, Germany) was added for 4 h, and absorbance of a soluble 

formazan compound formed by metabolically active cells was analyzed using a microplate 

reader FLUOSTAR Galaxy (BMG Labtechnologies GmbH, Offenburg, Germany).

Real-time cell impedance analysis

Acea E-plates® 96  and an xCELLigence RTCA SP system including RTCA Software v1.2 

(both Roche; Applied Science, Prague, Czech Republic) monitors cellular events including 

cell  number,  adhesion,  viability,  and  morphology,  and  provides  information  about  the 

biological status of the cells in real time by measuring electrical  impedance across micro-

electrodes integrated on the bottom of its special tissue culture plates [38]. First, a standard 

background measurement was performed using 100 µl of complete culture media. PC-3 cells 

were  trypsinized,  counted,  and  seeded  in  additional  100  µl  of  culture  media  in  a  final 

concentration of 30,000 cells per cm2. The cells were monitored continually every hour after 

the seeding for a period of 48 h. Next, the cells were pretreated with cisplatin or LA-12 for 24 

h followed by treatment with TRAIL (HCT-116 cells: 100 ng/ml, PC-3 cells: 12.5 ng/ml) for 

another 20 h. During TRAIL treatment, the cells were monitored continually every 2 min in 

the  first  3  h,  and  then  every  30  min.  Acea  E-plates®  16  and  xCELLigence  RTCA  DP 

Analyzer were used for monitoring the effects of tested compounds after transfection with 

nontargeting siRNA (sc-37007) or siRNA targeting DR5 (sc-40237; both Santa Cruz; CA, 

USA). Briefly, HCT-116 cells were seeded in 200 µl of cultivation media without antibiotics 
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in a final concentration of 50,000 cells per cm2 and after overnight incubation the cells were 

transfected with control or DR5 siRNA using LipofectamineTM 2000 (Invitrogen; Carlsbad, 

CA,  USA)  according  to  the  manufacturer’s  instructions.  Twenty-four  hours  later,  the 

cultivation medium was replaced by a fresh one with penicillin/streptomycin and the cells 

were  treated  with  LA-12 (0.5  μM) for  24 hours.  Finally,  TRAIL (50 ng/ml)  was  added. 

During TRAIL treatment, the cells were monitored continually every 2 min for 4 hours. 

Flow cytometric analysis of TRAIL receptors on the cellular surface

After 24 h of incubation with cisplatin (10 μM) or LA-12 (0.5 μM), the attached cells were 

harvested  by gentle  trypsinization,  washed twice  in  cold  PBS with  0.2% BSA,  and then 

incubated with anti-DR4 (#HS101, 1:100), anti-DR-5 antibody (#HS201, 1:100; both FITC-

conjugated;  Alexis  Biochemicals  Corporation;  Lausen,  Switzerland)  or  anti-DR4  (anti-

CD261,  #1P-403-C025)  and  anti-DR5  (anti-CD262,  #1P-461-C025;  both  PE-conjugated, 

Exbio; Vestec, Czech Republic) on ice in the dark for 45 min. The cells were washed twice, 

and 7-AAD or LIVE/DEAD® Fixable Dead  Cell Stain Far Red (Invitrogen; Carlsbad, CA, 

USA) were added.  After  20 min,  the expression of DR4 and DR5 was assessed by flow 

cytometry (FACSCalibur, Becton Dickinson; San Jose, CA). CellQuestPro software was used 

for  data  acquisition  and  analysis.  Dead  cells  (7-AAD or  Dead  Cell  Stain  positive)  were 

excluded from analysis. Receptor expression on the cellular surface was expressed as a ratio 

of  the median  fluorescence index (MFI) of  the specific  antibody and MFI of the isotype 

control antibody.  To minimize the possibility of antibody-receptor complex internalization 

during the incubation  period,  we performed a staining  protocol  based on only 10 min  of 

incubation with both antibody and viability probe together. Both analyses gave similar results. 

 

Internalization of TRAIL
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TRAIL  was  labeled  using  Alexa  Fluor  647  Microscale  Protein  Labeling  Kit  (A3000, 

Molecular probes; Eugene, Oregon, US) based on the manufacturer’s instructions. Cells were 

seeded in a 12-well plate, incubated with cisplatin (10 μM) or LA-12 (0.5 μM) for 24 h, and 

then with Alexa Fluor 647-conjugated TRAIL for 5, 10, 20 or 30 min. Sucrose (0.25 M) was 

added at the same time to inhibit endocytosis of TRAIL. The plates were rapidly chilled on 

ice to stop internalization. The cells were washed in HEPES twice and incubated in a mixture 

of 0.2 M acetic acid and 0.2 M NaCl for 5 min on ice. After three washing steps in HEPES, 

the cells were incubated in EDTA/PBS and briefly trypsinized. Trypsin was neutralized by 

2% BSA in PBS. The cells were centrifuged, resuspended in 2% BSA, stained with propidium 

iodide (5 μg/ml), and immediately analyzed by flow cytometer [18]. The data were analyzed 

using CellQuest software. Doublets, debris and dead cells (propidium iodide positive) were 

excluded from analysis.

Western blot analysis

The  cells  were  harvested,  washed  twice  in  cold  PBS,  and  lysed  in  1% SDS buffer  and 

Western  blot  analysis  was  performed  as  previously described [30].  Immunodetection  was 

carried out with the following antibodies: anti-DR5 (1:1000, 210-743, Alexis, Biochemicals 

Corporation;  Lausen,  Switzerland),  caspase-8 (1:500, 9746, Cell  Signaling;  Danvers,  MA, 

USA), caspase-3 (1:500, sc-7272), PARP (1:500, sc-7150), lamin B (1:500, sc-6217) (all of 

them Santa Cruz, CA, USA), anti-DR4 (D3813, 1:500) and β-actin (A5441, 1:5000) (both 

Sigma-Aldrich Corp.; St. Louis, MO, USA). Densitometric quantification of the visualized 

bands  was  performed  by  ImageJ  software  (NIH,  Bethesda,  MD)  and  normalized  to  the 

expression of β-actin.

RNA isolation and real-time RT-PCR

 at U
niversity of D

ebrecen, F
aculty of M

edicine, C
entral Library on N

ovem
ber 21, 2010

carcin.oxfordjournals.org
D

ow
nloaded from

 

http://carcin.oxfordjournals.org/


Total  RNA was  isolated  using  a  High Pure  RNA Isolation  Kit  (Roche  Applied  Science, 

Prague, Czech Republic)  according to the manufacturer’s instructions.  The sequences of a 

gene-specific primer for combination with Universal ProbeLibrary probes: DR5 (GenBank: 

AF012628.1), F: 5’-AGA GCC AAC AGG TGT CAA CAT; R: 5’-GCC TCC TCC TCT 

GAG ACC TT (probe #29, 04687612001); POLR2A (polymerase (RNA) II (DNA directed)) 

polypeptide  F:  5′-ATCTCTCCTGCCATGACACC-3′,  R:  5′-

AGACCAGGCAGGGGAGTAAC-3′  (probe  #1,  04684974001,  Roche Diagnostics  GmbH, 

Mannheim, Germany). The amplification reactions were carried out in a final volume of 20 μl 

in a reaction mixture containing 10  μl of QuantiTect Probe RT-PCR Master Mix, 0.2  μl of 

QuantiTect RT Mix (Qiagen; Valencia, CA, USA), 2 μl of solution of primers and probe, 5.8 

μl of water, and 2 μl of RNA sample. The final concentration of each primer was 0.4 μM and 

the probe was 0.1 μM. The amplifications were run on the RotorGene3000 with RotorGene 

Real-Time  Analysis  Software  (Corbett  Research;  Sydney,  Australia),  using  the  following 

program: 50 °C for 30 min for reverse transcription and 95 °C for 15 min for denaturation of 

cDNA,  followed  by  cycling  (40  repeats)  94  °C  for  15  s  and  60  °C  for  60  s  acquiring 

fluorescence. All PCR reactions were performed in triplicates and changes in gene expression 

were  calculated  using  the  comparative  threshold  cycle  method  [39]  with  POLR2A  as  a 

normalizing gene.

Immunofluorescent labeling TRAIL receptors and lipid rafts

PC-3 and HCT-116 cells were seeded in IBIDI 8-well coverslip chambers. The cells were 

washed three times in ice-cold HEPES buffer and incubated with 15 μg/ml anti-DR4 (MA1-

19025)  or  anti-DR5  (MA1-19416,  Affinity  Bioreagents;  Golden,  CO,  USA)  monoclonal 

antibodies  for  10 min  on ice.  After  three  washes,  Alexa  Fluor  488-conjugated  secondary 

antibody (A-11017, Molecular Probes, OR, USA) was added at 10 μg/ml together with 4 μg/
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ml Alexa Fluor 647-conjugated cholera toxin B-subunit  (C-34778, Molecular Probes, OR, 

USA) for 10 min on ice. After three washes, the cells were fixed with 4% formaldehyde and 

mounted  with  Mowiol  4-88  (Calbiochem). The  Cholera  toxin  B  subunit  binds  to  GM1 

glycosphingolipid rich domains and serves as one of the most widely used markers for lipid 

rafts.

Confocal laser scanning microscopy (CLSM) 

CLSM (Zeiss LSM 510) was used for colocalization measurements.  Alexa Fluor 488 was 

excited at 488 nm, and Alexa Fluor 647 was excited at 633 nm. Their fluorescence emission 

was detected through 505- to 550-nm band-pass and 650-nm long-pass filters, respectively. 

The images were taken in multitrack mode to completely exclude channel cross-talk (although 

the great spectral separation minimized this already). 512 × 512-pixel, 1.5  μm thick optical 

sections were obtained with a 40× C-Apochromat water immersion objective (NA=1.2).

Determining colocalization from image cross-correlation 

Colocalization of molecules at the few-hundred-nm scale was determined from CLSM images 

of double-labeled cells.  The optical  section was taken from the top horizontal  slice of the 

membrane  of  adherent  cells.  The  images  were  gated  on  the  presence  (above-background 

intensity)  of  at  least  one  of  the  fluorophores.  For  a  pair  of  images,  x and  y,  the  cross-

correlation  coefficient  between  the  intensity  distributions  of  cell-surface  labeling  was 

calculated as (1),

[1]

where xij and yij are fluorescence intensities at pixel coordinates i, j in images x and y, and x , 

y  are the mean intensities in each channel. The theoretical maximum is  C = 1 for identical 

 at U
niversity of D

ebrecen, F
aculty of M

edicine, C
entral Library on N

ovem
ber 21, 2010

carcin.oxfordjournals.org
D

ow
nloaded from

 

http://carcin.oxfordjournals.org/


images and a value of 0 implies independent random localization of the labeled molecules. A 

custom program was written in LabView to analyze  the images.  The average intensity of 

labels in the membrane was also evaluated by the program [13,14].

RNA interference

HCT-116 cells  were  seeded at  a  density  of  20,000 cells  per  cm2 and  cultured  for  12  h. 

Transfections  were  carried  out  in  McCoy’s  medium  without  antibiotics  using  a 

LipofectamineTM 2000 transfection reagent (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s  protocol.  The  small  interfering  RNA (siRNA) targeting  DR5 (40  nM; sc-

40237)  or  nontargeting  control  siRNA (40nM; sc-37007;  Santa  Cruz Biotechnology;  CA, 

USA) was added directly to the transfection reagent solution and incubated for 24 h. After the 

transfection, the medium was replaced by McCoy’s medium. 

Caspase activity assay

The cells were collected and caspase activity assay was performed as described previously 

[40]  using  fluorogenic  caspase-8  substrate  Ac-IETD-AMC  (ALX-260-042-M005,  Alexis, 

Biochemicals Corporation, Lausen, Switzerland).

Statistical analysis

The data were expressed as means ± S.D., and analyzed by ANOVA followed by a Tukey test 

or by a nonparametric Mann-Whitney U-test.  A  P value of less than 0.05 was considered 

significant. All statistical analyses were performed by the Statistica for Windows software, V. 

6.1 (StatSoft, Inc., Tulsa, OK, USA).

Results
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LA-12 or cisplatin enhanced cytotoxic effects of TRAIL in HCT-116 and PC-3 cell lines

After pretreatment with cisplatin (10 μM) or LA-12 (0.5 μM), the cytotoxic effects of TRAIL 

(6.25 – 100 ng/ml) were significantly enhanced as demonstrated by a decrease of HCT-116 

and PC-3 cell metabolic activity (WST test; Figure 1a, b and e, f). Platinum drug-mediated 

sensitizing effects were clearly evident already when combined with the lowest concentration 

of TRAIL (6.25 ng/ml). Using a real time impedance analysis (system xCELLigence; Figure 

1  c,  d  and  g,  h),  we  also  demonstrated  a  significant  decrease  of  cell  surface  adhesion 

following the combined treatment with cisplatin/LA-12 and TRAIL in both cell lines. The 

pretreatment with platinum drugs prevented recovery of the cell index value observed in cells 

treated with TRAIL alone. 

LA-12- or cisplatin-mediated potentiation of TRAIL-induced cytotoxicity is associated with  

activation of the apoptotic caspase cascade

In order to examine whether the cytotoxicity induced by combination of platinum drugs and 

TRAIL occurred via activation of the caspase cascade and apoptotic signaling, analysis of the 

cleavage  of  caspase-8,  -3,  and  effector  caspase  substrate  PARP was  performed  (Western 

blotting). Pretreatment with cisplatin or LA-12, followed by TRAIL, resulted in a substantial 

potentiation of specific processing of pro-caspase-8, -3, and PARP in HCT-116 cells (Figure 

2a) compared to TRAIL alone-treated cells. A similar increase in cleavage of pro-caspase-8 

and  -3  was  also  observed  in  PC-3  cells  following  combined  treatments  (Figure  2b).  A 

corresponding significant increase in the number of cells with characteristic apoptotic changes 

of  nuclear  morphology  (condensation  and  fragmentation  of  chromatin,  fluorescence 

microscopy) was also detected in cisplatin/LA-12 and TRAIL-treated cells compared to the 

agents used alone (data not shown).
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LA-12 and cisplatin were responsible for significant increase of surface DR5 expression in  

HCT-116 but not in PC-3 cells

LA-12 or cisplatin induced a significant concentration-dependent upregulation of the surface 

DR5 but not DR4 level in HCT-116 cells (Figure 3a). Increased surface expression of DR5 

following  treatment  with  platinum  drugs  in  HCT-116  was  also  confirmed  by  confocal 

microscopy (data not shown). No significant effects of any platinum drug in concentrations 

used on DR4 and DR5 surface  levels  were detected  in  PC-3 cells  using  flow cytometric 

analysis (Figure 3b). LA-12-mediated changes of DR5 surface level in HCT116 cells were 

accompanied by an increase in DR5 mRNA (Figure 3c) and total protein level (Figure 3d). 

Similarly, cisplatin enhanced amounts of DR5 mRNA (Figure 3c) and total protein (Figure 

3d) in HCT-116 cells. None of the two platinum complexes modulated total amount of DR4 

protein in HCT-116 cells (Figure 3d). 

Lipid raft  localization  of DR4 and especially  of  DR5 was increased upon treatment  with  

cisplatin derivatives

To determine the membrane domain localization of DR4 and DR5 with respect to lipid rafts, 

the receptors  on the cell  surface were labeled  with indirect  immunofluorescence  (specific 

monoclonal primary antibodies followed by Alexa Fluor 488 secondary Abs) and CTX B was 

used as a lipid raft marker specific to GM1 rich domains. The extent of colocalization was 

quantitated  by calculating  the Pearson’s correlation  coefficient  from confocal  microscopic 

optical  sections  of  upper  horizontal  membrane  layers  from  numerous  single  cells.  Both 

TRAIL DR4 and DR5 receptors colocalized with GM1 rich domains in the plasma membrane 

of PC3 as well as HCT-116 cells. An example is shown for DR5 in HCT-116 cells (Figure 4a, 

b,  c).  After 1h of cisplatin  or LA-12 treatment,  the colocalization between lipid rafts and 
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TRAIL receptors increased in both HCT-116 (Figure 4d) and PC-3 cells (Figure 4e). This 

effect was more pronounced for DR5. 

Cisplatin induced an increase of TRAIL internalization in both PC-3 and HCT-116 cell lines,  

while LA-12 was only effective in the latter one 

Following  treatment  with  TRAIL,  an  acute  time-dependent  increase  of  dye-conjugated 

TRAIL internalization was detected in both HCT-116 and PC-3 cell lines by flow cytometry. 

Suppression of TRAIL internalization by sucrose was used as a negative control of clathrin-

dependent endocytosis [18]. Pretreatment with cisplatin resulted in a significant enhancement 

of TRAIL internalization, starting from 10 or 20 min of subsequent TRAIL treatment in PC-3 

or  HCT-116  cells,  respectively  (Figure  5a,  b).  LA-12-mediated  stimulation  of  TRAIL 

internalization was detected only in HCT-116 cells following 30 min incubation with TRAIL 

(Figure 5b).

LA-12 or cisplatin-mediated increase of DR5 is essential for potentiation of TRAIL-induced 

caspase-8 activation and apoptosis in HCT-116 cells

To  determine  the  functional  role  of  DR5  in  the  LA-12/cisplatin  and  TRAIL-induced 

apoptosis, the expression of DR5 was down-regulated using specific siRNA. Transfection of 

HCT-116 cells with DR5 but not control siRNA resulted in a significant decrease of basal (72 

%) as well as LA-12/cisplatin-induced (78/80 %) surface level of DR5 (Figure 6a). Following 

DR5 siRNA transfection, LA-12/cisplatin-mediated stimulation of TRAIL-induced caspase-8 

processing/activation  and  apoptosis  (demonstrated  by  PARP  and  lamin  B  cleavage)  was 

significantly reduced (Figure 6b, c) compared to control siRNA-transfected cells. To further 

elucidate the role of DR5 in LA-12/cisplatin enhanced TRAIL-mediated cell death, the cell 

index  was  assessed  using  the  xCELLigence  system  (Figure  6d).  Silencing  of  DR5 
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significantly rescued the reduction of the cell index observed in TRAIL- and LA-12/TRAIL-

treated cells.  The results imply that cisplatin- or LA-12-mediated enhancement of TRAIL-

induced cell death depends on DR5 function. 

Discussion

The  ability  to  induce  apoptosis  in  tumor  cells  while  sparing  nontransformed  cells 

designates TRAIL for the therapy of cancer diseases. Unfortunately, an increasing number of 

studies demonstrate that many primary tumors are resistant to TRAIL monotherapy [41]. A 

promising  strategy  to  overcome  the  resistance  of  cancer  cells  and  improve  the  clinical 

outcome is represented by combination therapy. By this time, combinations of TRAIL with 

many other antitumor agents with various mechanisms of action including DNA damage have 

been tested [42,43]. However, detailed description of the molecular mechanisms of combined 

effects of these compounds has to precede their possible clinical application. Chemotherapy-

mediated enhancement of TRAIL toxicity in tumor cells has been shown to be regulated at 

many levels, e.g. TRAIL receptors expression and localization, DISC components expression 

and  modulation  of  their  assembly,  integrity  of  mitochondria,  prosurvival,  and  apoptotic 

signaling. Interactions of extrinsic and intrinsic pathways of apoptosis may also be profitable 

for  the  killing  of  type  II  cells  as  they rely on the mitochondrial  loop to  activate  enough 

effector  caspases  and commit  TRAIL-mediated  programmed cell  death.  In  our  study,  we 

showed that pretreatment with subtoxic concentrations of cisplatin and novel Pt(IV) complex 

LA-12  significantly  enhanced  TRAIL-induced  apoptosis  in  human  colon  and  prostate 

carcinoma cells, and we studied molecular mechanisms responsible for the observed effects.

Cisplatin has been shown to enhance the killing capacity of TRAIL in several cancer 

cell lines in in vitro [19,20,44,45], in vivo [46,47], and in ex vivo models [48]. Contradictory 
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studies demonstrating a cisplatin-mediated inhibition of TRAIL-induced cell death through 

direct inactivation of caspases have also been reported. The authors explain the discrepancy in 

their results compared to the majority of literature by the dependance on the duration of the 

treatment  [49,50].  In  our  study,  cisplatin  was  responsible  for  significant  potentiation  of 

TRAIL-induced apoptosis in human prostate and colon cancer cell lines. Importantly, similar 

effects  on  TRAIL-induced  apoptosis  were  also induced by novel  Pt(IV)  complex  LA-12, 

although a twenty-fold lower dose of LA-12 was used compared to cisplatin. The ability of 

LA-12 to  be effective  in  significantly  lower doses  when compared  to  other  conventional 

therapeutic  drugs,  together  with  its  favorable  pharmacokinetic  profile,  make  LA-12  a 

promising candidate for combination cancer therapy.  Enhancement of cell  death induction 

following cisplatin/LA-12 and TRAIL was confirmed by cytotoxic tests, the state-of-the-art 

noninvasive real time cell impedance analysis method, and biochemical and morphological 

apoptosis assays. 

The  death  domain-containing  receptors  DR4 and  DR5 are  important  mediators  of 

TRAIL  proapoptotic  signaling.  Modulation  of  their  surface  expression  may  affect  the 

apoptotic  signal  transduction  and  sensitivity/resistance  of  tumor  cells  to  TRAIL-induced 

apoptosis. Some antitumor agents have been shown to increase expression of death receptors 

at the level of transcription, translation or posttranslational modifications. This increase may 

result in enhanced sensitivity to TRAIL, while evidence exists that in some models cisplatin 

enhanced TRAIL-induced apoptosis without modulation of DRs expression [51,52]. Cisplatin 

has been shown to increase expression of TRAIL receptors DR4 or DR5 in esophageal and 

osteosarcoma tumor cells at the mRNA level [19,20]. Various mechanisms of regulation of 

DRs by chemotherapeutic drugs have been suggested. In addition to p53, other transcription 

factors such as NF-?B or Sp-1 have been demonstrated to be involved in the regulation of 

DR5 expression [53,54]. In our study, cisplatin as well as Pt(IV) complex LA-12 increased 
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the expression of DR5 mRNA and protein, and enhanced its surface level in colon but not in 

prostate carcinoma cells.  At the same time,  these agents were not effective in modulating 

DR4. The precise mechanisms responsible for cisplatin/LA-12-mediate increase of the DR5 

level in HCT-116 cells remain yet to be fully elucidated. We confirmed a functional role of 

DR5 in LA-12/cisplatin-mediated enhancement of TRAIL-induced apoptosis in colon cancer 

cells by showing that siRNA-mediated silencing of the DR5 surface level rescued cells from 

activation of caspase-8 and apoptosis induced by combination treatment.  This implies that 

DR5 plays  an important role in cisplatin/LA-12-mediated enhancement of TRAIL-induced 

apoptosis, being more important than DR4.

Localization  of  TRAIL  receptor  complexes  in  the  plasma  membrane  and  their 

distribution in membrane microdomains can have a significant functional impact on TRAIL 

signaling. Cisplatin has been shown to relocalize Fas receptors to lipid rafts and to enhance 

receptor clustering and apoptosis [55]. The shift of DR receptors to lipid rafts facilitated the 

apoptotic  outcome  of  TRAIL by depsipeptide,  quercetin,  and  oxaliplatin  [21,22,56].  LA-

12/cisplatin-mediated  relocalization  of  DR4  and  DR5  to  lipid  microdomains  was  also 

observed in our models of colon and prostate carcinoma cells. We suggest that in addition to 

the increase in surface DR levels, changes in lipid rafts localization of DR4 and DR5 may be 

important in LA-12/cisplatin-mediated reinforcement of TRAIL-induced apoptosis.

After the binding of death ligands to its cognate death receptors, complexes of ligand 

and membrane receptors can be internalized via endocytosis. Internalization of Fas receptor 

(CD95) has been shown to be crucial for Fas ligand-mediated formation of the DISC complex 

and induction of apoptosis. Inhibition of Fas internalization activated the prosurvival ERK 

and NF-?B signaling pathways [17]. The role  of internalization of the TRAIL ligand and 

receptor  complex  for  TRAIL-induced  apoptosis  has  not  been  fully  resolved  yet. 

Internalization was described not to influence formation of DISC and activation of caspase-8 
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in  a  type  I  BJAB Burkitt  lymphoma  B cell  line  [18].  Nevertheless,  transit  of  TRAIL to 

lysosomes was shown to contribute to TRAIL-induced apoptosis in the type II hepatocellular 

carcinoma cell line Huh-7 [57], and to participate in the activation of the lysosomal pathway 

of apoptosis. Internalization of TRAIL led to release of cathepsin B from lysosomes,  and 

liberalization of cytochrome c from mitochondria [58]. Here we demonstrated that cisplatin 

and  LA-12-mediated  enhancement  of  TRAIL-induced  apoptosis  was  accompanied  by 

accelerated internalization of TRAIL, suggesting its possible role in the effects observed. 

We demonstrated that cisplatin- and the novel platinum(IV) complex LA-12-mediated 

enhancement of TRAIL-induced apoptosis in human colon and prostate carcinoma cells were 

associated  with modulation  of  upstream events  of TRAIL signaling.  Cisplatin  and LA-12 

increased the expression of DR5, stimulated the relocalization of DR4 and DR5 to lipid rafts, 

and accelerated the internalization of TRAIL. Furthermore,  these drugs enhanced TRAIL-

induced caspase-8 activation, cleavage of caspase-3 and its substrate PARP and, overall, the 

fraction of apoptotic cells. We demonstrated a functional role of DR5 in the reinforcement of 

TRAIL-activated  apoptosis  by  cisplatin  and  LA-12.  Our  results  show  the  complexity  of 

interactions of signaling pathways triggered by TRAIL and cisplatin or LA-12, and highlight 

the striking ability of LA-12 to sensitize the cancer cells to TRAIL-induced apoptosis even 

when applied in significantly lower doses compared to cisplatin. Our observation will help to 

improve  therapeutical  approaches  to  cancer  diseases  in  terms  of  more  efficient  killing  of 

cancer cells, while minimizing the side effects of the therapy. 
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Legends to Figures

Figure  1 Pretreatment  of  HCT-116  and  PC-3  cells  with  cisplatin  or  LA-12  intensified 

cytotoxic effects of TRAIL. (a, b, e, f) WST test was performed in HCT-116 (a, b) and PC-3 

(e, f) cell lines pretreated with LA-12 (0.5 μM) (a, e) or cisplatin (10 μM) (b, f) for 24 h, and 

then  treated  with  TRAIL  (6.25-100  ng/ml)  for  further  24  h.  The  ability  of  the  cells  to 
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transform WST reagent to soluble formazan salt was measured as relative absorbance using 

plate reader Fluostar. (c, d, g, h) Real-time measurement of TRAIL toxic effects in HCT-116 

(c, d) and PC-3 (g, h) cells pretreated (24 h) with vehicle, LA-12 (0.5 μM) (c, g) or cisplatin 

(10  μM)  (d,  h)  and then incubated  for  20 h with TRAIL, was performed employing  the 

xCELLigence  RTCA SP system as  described in  Materials  and Methods.  Time of TRAIL 

application is indicated by an arrow-head.

Figure 2 Subtoxic concentrations of cisplatin and LA-12 enhanced TRAIL-induced cleavage 

of caspase-8, -3, and PARP. HCT-116 (a) and PC-3 (b) cells were pretreated with LA-12 (0.5 

μM) or cisplatin (10 μM) for 24 h, and then treated (4 h) with TRAIL (5 ng/ml). Proteins were 

detected by Western blotting. An equal loading was verified using anti-β-actin antibody. The 

results are representative of three independent experiments.

Figure 3 Total and surface level of DR5 was augmented by LA-12 and cisplatin. HCT-116 

(a) and PC-3 cells (b) were untreated or treated (24 h) with LA-12 (0.1-1 μM) or cisplatin (1.5 

μM), incubated with specific FITC-conjugated antibodies (Alexis),  and analysis  of surface 

DR4 and DR5 was performed using flow cytometer. DR5 mRNA (c) in HCT-116 cells treated 

(4 h) with LA-12 (0.5 μM) or cisplatin (1.5 μM), was detected by qRT-PCR, and total protein 

level (d) of DR4 and DR5 in HCT-116 cells treated (24 h) with LA-12 (0.5 μM) or cisplatin 

(1.5 and 10 μM) was detected by Western blotting.

 

Figure 4 Cisplatin and LA-12 treatment increased colocalization of TRAIL DR4 and DR5 

receptors with GM1-rich domains of plasma membrane. HCT-116 (a, b, c, d) and PC-3 (e) 

cells were incubated (1 h) with cisplatin (10 μM) or LA-12 (0.5 μM), cell surface receptors 

(green) and GM1-rich lipid rafts (blue) were labeled, detected by CLSM, and differences in 
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the  cross-correlation  coefficient  were noted  (p<0.005).  An example  is  shown for  DR5 in 

HCT-116 cells (a, b, c, fields of view: 5x5 μm). Confocal optical sections of 1.5 μm in size 

were  used  to  calculate  cross-correlation  of  cell  surface  receptors  and  GM1-rich  lipid 

microdomains for HCT-116 (d) and PC-3 (e) cells. Data are averages of the cross-correlation 

coefficient ± SEM of 40~60 independent measurements, normalized to control values.

Figure 5 Internalization of TRAIL is accelerated by platinum complexes cisplatin and LA-12. 

Cells were pretreated (24 h) with cisplatin (10 µM) and LA-12 (0.5 µM), and incubated with 

Alexa Fluor 647-conjugated TRAIL for 5 to 30 min. Simultaneously with TRAIL, 0.25 M 

sucrose was added to suppress endocytosis in appropriate samples. Flow cytometric analysis 

was accomplished. The amount of internalized TRAIL was expressed as percent of maximum 

fluorescence measured after 30 min of TRAIL incubation in HCT-116 (a) and PC-3 cells (b).

Figure  6 siRNA-mediated  silencing  of  DR5  prevented  enhancement  of  TRAIL-induced 

apoptosis by cisplatin and LA-12 in HCT-116 cells. (a) Surface DR5 level in HCT-116 cells 

with Lipofectamine alone or transfected (24 h) with control or DR5 siRNA (40 nM), followed 

by 24 h of incubation with cisplatin  (10  μM) or LA-12 (0.5  μM), was evaluated by flow 

cytometry (specific anti-DR5 PE-conjugated antibody,  Exbio). (b, c) Activity of caspase-8 

was measured by fluorogenic assay (b), and cleavage of caspase-8, PARP, and lamin B (c) in 

HCT-116 cells transfected (24 h) with control or DR5 siRNA (40 nM), then treated (24 h) 

with cisplatin (10 μM) or LA-12 (0.5 μM), and subsequently incubated (1 h) with TRAIL (5 

ng/ml), was detected by Western blotting. An equal loading was verified using anti-β-actin 

antibody.  The  results  are  representative  of  three  independent  experiments.  (d) Real-time 

measurement  of  TRAIL toxic  effects  in  HCT-116  cells  transfected  with  control  or  DR5 

siRNA, pretreated (24 h) with vehicle  or LA-12 (0.5  μM), and then incubated (4 h) with 

 at U
niversity of D

ebrecen, F
aculty of M

edicine, C
entral Library on N

ovem
ber 21, 2010

carcin.oxfordjournals.org
D

ow
nloaded from

 

http://carcin.oxfordjournals.org/


TRAIL (50 ng/ml) was performed employing the xCELLigence RTCA SP system. Time of 

TRAIL application is indicated by an arrow-head. Data were normalized to the time interval 

when TRAIL treatment was performed (normalized cell index).
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Figure 1 continued
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