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1. INTRODUCTION 

1.1. Dendritic cells (DCs) 

1.1.1. General feature of DCs 

The immune system has evolved to exert acute and systemic inflammatory responses and to protect 

the host with layered defenses of increasing specificity. Humans and mice have two types of immune 

defense: innate- and adaptive immunity. The innate phase of immunity is rapidly followed by an 

antigen–specific adaptive immune response, initiated by antigen presenting cells (APCs). As APCs, 

dendritic cells (DC) are unique innate immune cells that function as an indispensable link between the 

innate- and adaptive immunity, and are important sentinels of the host immune system. Immature DCs 

(iDCs) constantly sample the peripherial tissues for invaders and host cell-associated self-antigens. 

Some DCs migrate in immature state to draining lymph nodes (LNs), present self-antigens and are 

involved in the maintenance of the peripheral tolerance. Mature DCs (mDCs) induce adaptive immune 

responses in the host by a highly specific antigen presentation process, mediated by their cell surface 

major histocompatibility complex class (MHC) I molecules that present self-antigens/viruses or by 

MHCII molecules, required for exogenous antigen presentation. mDCs migrate to LNs from the 

periphery, present antigens to naïve T cells and activate them. They also present glycolipids of 

infectious invaders or self-lipid antigens through the cluster of differentiation 1 (CD1) molecules. 

Despite of enormous scientific effort, lipid antigen presentation is less characterized at molecular level 

in DCs. To solve a part of these uncovered mechanisms, we dedicated this work to analyze the 

importance of nuclear hormone receptors in affecting the differentiation and immunogenicity of human 

and murine DCs. 

1.1.2. Ontogeny of DCs 

DCs are classified as plasmacytoid DCs (pDCs) or conventional DCs (cDCs). They develop from 

common myeloid progenitors (CMPs) in the bone marrow (BM), during hematopoiesis. Further studies 

have indicated that monocytes and DCs may share a common intermedier progenitor, known as the 

macrophage and dendritic cell progenitor (MDP). MDPs become commitment to produce monocytes or 

common DC progenitors (CDPs). CDPs give rise only conventional pre-dendritic cells (pre-cDCs) or 

plasmacytoid pre-dendritic cells (pre-pDCs). It has been suggested that pDCs complete their 

development before leaving the BM, whereas pre-cDCs constantly released from bone, circulate through 

the blood to localize into non-lymphoid or lymphoid tissues and fill the DC compartment.  

The development and expansion of DC subtypes are determined by a combination of cytokines and 

transcription factors (TFs). Fms-related tyrosine kinase 3 ligand (Flt3L) was found to be a key cytokine 

for the myeloid DCs development. Besides the common progenitor (MDP), the common origin of 

macrophages and DCs has been further supported by the requirement for the macrophage colony-

stimulating factor/Colony stimulating factor 1 receptor (M-CSF/CSF-1R) during their development. 
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Monocytes under the influence of this cytokine give rise to CD103
-
 DCs in the lamina propria (LP). 

Although human circulating monocytes are excellent source of DCs in vitro, their contribution to DC 

homeostasis is still not fully characterized in vivo. CD14
+
 monocytes can be differentiated to monocyte-

derived DCs (mo-DCs) in the presence of interleukin-4 (IL-) IL-4/IL-13 and granulocyte-macrophage 

colony-stimulating factor (GM-CSF/CSF-2), which is the most frequently utilized human DC 

differentiation model. Previously, this differentiation process was found to be restricted to inflamed or 

infected environments, suggesting that the in vitro generation process models mainly the tissue 

inflammatory and not the steady state DC development. Subsequent experiments have identified the 

development of monocyte-derived intestinal CD103
-
/CD11b

+
-, splenic CD11b

+
/ endothelial cell-specific 

adhesion molecule (ESAM)
low

- and muscular FC gamma Receptor 1 (FcγRI) bearing DCs under steady 

state conditions. 

Adoptive transfer experiments supported, that DC subsets in the intestinal LP are originated from 

different precursors (monocytes or pre-cDCs). Monocytes give rise exclusively to CD103
-
/C-X3-C 

Motif Chemokine Receptor 1 (CX3CR1)
+
 DCs under the control of M-CSF and Flt3L, while GM-CSF 

and Flt3L are critical factors for the CD103
+
/CX3CR1

- 
DC differentiation form Pre-DCs.  

Genome wide gene transcriptional- and cell surface receptor profiling of small intestinal LP, blood 

and splenic (Sp-) Sp-DC subpopulations identified a co-ordinately regulated TF profile that directs 

subtype specification and development of these cells in various non-lymphoid and lymphoid tissues. 

This analysis also revealed that human intestinal CD103
-
/signal regulatory protein alpha (Sirpa)

+ 
cDCs 

have a gene expression profile consistent with mo-DCs.  

1.2 Lipid antigen presentation by DCs  

1.2.1. Group 1 and Group 2 CD1 molecules 

Beside their peptide antigen presentation capacity, DCs acquire the ability to stimulate lipid-

mediated T cell responses. Antigenic lipids are presented by the family of CD1 molecules, evolutionary 

conserved lipid antigen-presenting molecules. Five CD1 proteins are expressed in humans, classified 

into two groups based on their nucleotide and amino acid sequence homology. Group 1 contains CD1a, 

b, c and e; and the only Group 2 member is CD1d. Mice express only CD1d. CD1 genes encode 

integrated membrane proteins that are structurally similar to MHCI molecules. CD1 isoforms are 

consisting of a heavy chain with α1, α2, and α3 extracellular domains, associated non-covalently with 

β2-microglobulin (β2m). Crystallographic analysis of human and mouse CD1 molecules revealed that 

these antigen presenting molecules have narrow, deep hydrophobic ligand binding pockets, optimized 

for lipid presentation. CD1 molecules can adopt different conformations, facilitating the binding of 

structurally related lipids, hence allowing the presentation of multiple CD1d-bound lipids and increasing 

the antigen repertoire to CD1-reactive T cells.  
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1.2.2. CD1d molecules  

High level of CD1d can be detected on human blood monocytes; this expression is rapidly down-

regulated during their differentiation to DCs. Despite of the low cell surface expression level, CD1d 

stimulates the expansion and cytokine secretion of CD1d-restricted, invariant natural killer T cells 

(iNKTs) when mo-DCs are loaded with α-galactosylceramide (αGC) (a lipid activator ligand for iNKT 

cells). In vivo, immunohistochemistry (IHC) data has demonstrated the CD1d expression on dermal DCs 

in the skin. CD1d are also present on murine APCs such as Sp-DCs, macrophages, B cells and 

thymocytes. In contrast to human mo-DCs, GM-CSF and IL-4 induce moderately the surface expression 

of CD1d on BM-DCs. Furthermore, Flt3L-stimulated BM-DCs, differentiated in the presence of LPS 

and INFα, have enhanced surface expression of the protein and under inflammatory condition colonic 

LP-DCs have increased level of CD1d. CD1d also associates with β2m before exiting the ER, although 

functional CD1d can also be detected on the cell surface in β2m-independent manner. CD1d molecules 

reach the plasma membrane following two different secretory routes. In the intrinsic pathway, CD1d 

molecules travel directly to cell surface and present self-antigens, while during the extrinsic pathway, a 

portion of CD1d molecules in association with the invariant chain (Ii), traffic first to the endosomal 

compartments. This second pathway is critical for CD1d molecules to be loaded by antigenic self- or 

exogenous-lipids that are presented to autoreactive CD1d-restricted NKT cells and is required for the 

positive selection of NKTs.  

Murine cell surface CD1d is reinternalized in activatin protein 2 (AP-2)/AP-3-dependent manner. 

Studies using murine CD1d mutants, revealed that this motif is critical for the lysosomal targeting and 

iNKT autoreactivity. Contrast to mouse CD1d; the cytoplasmic tail of human CD1d molecule is not 

associated with AP-3. Moreover human and murine CD1d molecules showed distinct intracellular 

trafficking properties. The components of the alternative internalization pathway are remained to be 

characterized. A fraction of human CD1d can be sorted to MHC class II compartments (MIICs) 

by MHCII and Ii molecules. The association with MHCII does not affect the intracellular localization of 

CD1d, but facilitates its internalization rate from the cell surface. Ii deficiency resulted in reduced cell 

surface level of CD1d in MHCII
+ 

cell lines, suggesting that CD1d can be complexed both with Ii and 

MHCII at the cell surface. MHCII/Ii recruits CD1d into membrane lipid rafts, enriched for 

costimulatory molecules and this makes CD1d a more potently stimulators to iNKTs. 

DCs have the ability to present lipid antigens and efficiently activate CD1-restricted T cells 

regardless of their maturation state, while the MHC-dependent peptide antigen presentation requires 

maturation of the cells and fast mobilization of MHC molecules to plasma membrane. CD1d-mediated 

exogenous antigen presentation is more efficient in iDCs, which actively recycle MHCII/CD1d 

complexes through the endocytic system, compared to mature DCs that have stabilized MHCII cell 

surface expression. Both iDCs and mDCs present αGC, which does not require intracellular processing, 

although iDCs are more active in this presentation. IDCs also have the capacity to present galactosyl(1-

2) galactosylceramide (αGGC) (requires lysosomal activation to generate αGC).  
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1.2.3. Lipid antigen processing and loading  

For presentation, lipids have to be extracted from their intra cellular milieu, processed and loaded 

into the antigen binding pocket of CD1 molecules. These processes are assisted by hydrolases and lipid 

transporter proteins (LTPs). Some lipid antigens require partial degradation to become antigenic. The 

synthetic glycolipid αGGC processing requires the removal of the terminal galactose of the precursor 

lipid to become αGC by α-galactosidase hydrolase enzyme, located in late endosomes. Lipid extraction 

to the lumen is mediated by LTPs that facilitate loading or replacement of lipid antigens to CD1 

molecules in the endosomal compartments.  

CD1d lipid antigens are edited by saposins (Saps), membrane-perturbing sphingolipid activator 

proteins. Active saposins (SapA-D) are generated from the precursor prosaposin in the late endosomes. 

This process is catalyzed by cathepsins (Cats). Saposins directly bind lipid antigens, extract them from 

endosomal membranes, and transfer them to CD1 proteins, while the loading of the lipids onto CD1 

molecules is an indirect process. The in vivo relevance of Sap-mediated lipid presentation was 

determined in Sap
-/-

 mice. Sap deficiency leaded to defective iNKT development. In contrast to the 

impaired iNKT development, the number of the type II NKT cells was normal. Importantly, CD1d 

expression, cellular distribution and iNKT cell autoreactivity were not altered by Saps but the 

presentation of αGC was affected to CD1d-resticted iNKT cells. αGC can bind to cell surface CD1d 

molecules without endosomal recycling, but Saps facilitated the intracellular CD1d/αGC complex 

formation in lysosomes. Sap deficiency leads to dysregulated lysosomal lipid accumulation, lipid traffic 

and exchange between membranes. The impaired lipid metabolism results in lysosomal storage diseases 

which affect CD1d loading.  

1.2.4. Lysosomal Cathepsins in DCs 

Immunogenic lipid presentation is depended on lysosomal proteolytic mechanism in DCs. Most 

lysosomal proteases are known as Cats, which are essential for both peptide and lipid antigen 

presentation. Cysteine proteinases-mediated proteolysis is critical for the antigen-presentation in DCs, 

wherein controls the lipid editing by cleaving of Ii and pro-saposins in late endosomes. In response to 

maturation signals, DCs acquire higher capacity for lipid editing by enhanced lysosomal activity 

(elevated antigen processing and lipid/CD1 complex formation).  

CatL, S, and B have shown to be expressed in DCs. Amongst them only CatL and S have been 

connected to lipid presentation to date. In CatS
-/-

 mice, MHCII complexes were accumulated in 

endosomal vesicles that might affect the intracellular CD1d transport to the membrane. CatS deficiency 

leaded to reduced level of cell surface CD1d in thymic DCs. Moreover the intracellular trafficking of 

CD1d was also affected in CatS
-/-

DCs. iNKTs were not reactive to αGC. The number of iNKT cells was 

also reduced in CatL
-/-

 mice but in contrast to CatS
 -/-

 animals, CatL deficiency failed to alter the CD1d 

level on the cell surface. CatL in thymocytes was essential for the positive selection and the enzyme was 

involved in APC-mediated negative selection of iNKTs. In the periphery, CatL in APCs was critical for 
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the terminal differentiation of iNKTs. In both cases, the deficiency in Cat proteins appeared to impede 

endosomal events required for potent CD1d-mediated antigen presentation. 

DCs have been reported to express lysosomal aspartic proteases such as CatD. Similar to cysteine 

proteases, CatD is synthetized in inactive form and are activated by autocatalysis in ceramide-dependent 

manner. Activated CatDs are abundant in lysosomes where cleave LTPs as prosaposin. The significance 

of this protease has not previously tested in the context of lipid presentation.  

1.2.5. CD1d-resticted NKT cells 

Unlike conventional T cells, T cell receptors (TCRs) on NKTs are reactive to lipid antigens in the 

context of the CD1d. These unique self-reactive T cells express both natural killer cell (NK) markers 

and TCRs on their surface; hence they are termed as NKTs. There are two types of CD1d-restricted T 

cell populations: invariant NKT (iNKT) cells and type II NKTs. 

iNKTs represent a unique population of evolutionarily conserved subset of innate lymphocytes 

which express highly restricted set of TCR, composed of a semi invariant α chain (Vα14-Jα18 in mice 

and Vα24-Jα18 in humans) paired with a restricted repertoire of β chains (Vβ2, Vβ7, and Vβ8.2 in mice, 

or Vβ11 in humans).  

In the periphery their subsequent activation results in a rapid cytokine burst within hours by which 

transactivate other lymphocytes. Indeed, iNKTs are involved in a wide range of immune relevant 

processes such as maturing DCs, activating NK or B cell or biasing T cell responses, hence iNKTs 

regulate both innate and adaptive immunity, modulate the ongoing immune responses that can influence 

the outcome of various disease from autoimmune responses, bacterial or viral infection and cancer.  

The potent role of iNKTs in providing tumor immune surveillance was demonstrated by αGC 

injection, and in several studies without administration of the antigenic lipid ligand, supporting the 

notion that iNKTs can recognize endogenous antigenic lipids produced by tumor cells. The essential 

function of iNKTs was demonstrated in Jα18
−/−

 mice, in which adoptively transferred iNKT cells 

elicited protection against tumors. Depending on the tumor model, resident iNKT reactions can lead to 

effective anti-tumor immunity through down-stream activation other immune cells by initiating Th1 

cytokine cascade in the tumor-associated stroma (TAS), thus orchestrating local activation of effector 

cells, such as NK and CD8
+ 

T cells, which kill tumor cells. iNKT activation also contributes to DC 

activation through the CD1d-TCR and CD40-CD40L interactions, which induce DC maturation and IL-

12 expression. Secreted IL-12 stimulates NK and iNKT cells to produce even more INFγ, and the two 

cytokine together trigger NK and CD8
+
 T cells. Co-administration of peptide antigens with iNKT 

agonist has adjuvant effect.  

Conversely, type II NKTs have polyclonal TCR repertoire. The limited reagents to monitor type II 

NKTs and the absence of specific surface markers have limited the functional characterization of this 

NKT population. The immune functions of a fraction of type II NKTs can be analyzed by 

sulfatide/CD1d tetramers. The in vivo relevance of NKT activation can be characterized in CD1d
-/-

 mice 
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lacking both iNKTs and type II NKTs. These animal models have been very useful in defining the 

unique role of type II NKTs in several pathological conditions. Once activated, type II NKTs have the 

capacity to override iNKT-mediated immune responses.  In contrast to the protective role of iNKTs in 

most murine tumor models, type II NKTs have been shown to be sufficient to suppress tumor immune 

surveillance and had tumor promoting activity. When sulfatide and αGC were administered together, 

sulfatide-reactive murine type II NKTs can antagonize the potent αGC-dependent protective iNKT 

responses. This immune regulatory axis between the two NKT populations and that type II NKTs favor 

tumor growth by releasing IL-4 and IL-13 were demonstrated in several mouse models. 

 

1.3. Nuclear hormone receptors  

1.3.1. Nuclear hormone receptors in human mo-DCs 

A global gene expression analysis revealed that some nuclear hormone receptors including 

peroxisome proliferator-activated receptor  (PPARγ) and liver X receptor α (LXRα) are expressed and 

induced in differentiating DCs. Later our microarray profiling demonstrated that 20 out of the 48 

nuclear hormone receptors are expressed in human mo-DCs. Retinoid X receptors (RXRs) are unique 

nuclear hormone receptors with the ability to form heterodimers with one third of the nuclear hormone 

receptor family. In most cases, RXRs act as obligate partner for high affinity binding transactivation. 

RXR heterodimers are classified into functionally distinct non-permissive and permissive subgroups.  

Among RXR partners, the role of PPARγ/RXR and RARα/RXR heterodimers in developing mo-

DCs will be introduced in the next chapter. 

1.3.2. The role of retinoid acid receptors in DC biology 

Vitamin A/retinol and its derivatives are collectively known as retinoids. Deviation from optimal 

retinoid level is associated with a variety of human diseases, All-trans-retinoic acid (ATRA), the highly 

potent biologically active metabolite of retinol, prevents and rescues the main defects caused by 

Vitamin A deficiency in adult animals.Retinoids exerts their effects in target cells via nuclear retinoid 

receptors. RARs consist of three subtypes involving RARα, β and γ, form heterodimers with RXRs, 

which also have three subtypes, RXRα, β and γ. Although both ATRA and 9-cis retinoic acid activate 

RARs, RXR binds 9-cis retinoic acid only. 

1.3.2.1. Retinoids in target cells (cellular up-take and transport)  

Vertebrates do not have the ability for de novo retinol synthesis but can obtain this vitamin from the 

diet as retinyl ester or carotenoids, absorbed by enterocytes and transported predominantly to the liver. 

Retinyl esters are continually hydrolyzed into retinol from the liver store, binds to Retinol binding 

protein 4 (RBP4), which delivers it to target tissues. Retinol target cells express a highly conserved, 

stimulated by retinoic acid-6 (STRA6) transporters, for retinol uptake. Cells may take up retinol through 

http://www.google.hu/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEkQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRetinol_binding_protein_4&ei=QZ-0UvCDNaf8ygOGp4DABQ&usg=AFQjCNGVCPWdUGyJxchaUiUkI9OaFlU_nQ&sig2=ZSqXZmW9yOoqaCg7H17L3Q&bvm=bv.58187178,d.bGQ
http://www.google.hu/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEkQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRetinol_binding_protein_4&ei=QZ-0UvCDNaf8ygOGp4DABQ&usg=AFQjCNGVCPWdUGyJxchaUiUkI9OaFlU_nQ&sig2=ZSqXZmW9yOoqaCg7H17L3Q&bvm=bv.58187178,d.bGQ
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the recently identified RBP4 receptor-2 (RBPR2) transporters. The structure of RBPR2 is related to 

human and murine STRA6 and therefore the receptor may be an alternative retinol transporter for 

STRA6 negative cells.  

Within the cell, retinoids are bound by cellular retinol binding proteins (CRBPs). CRBP1 targets 

retinol for storage or toward metabolic enzymes such medium-chain alcohol dehydrogenases (ADHs) or 

short-chain dehydrogenase/reductases (RDHs) that convert retinol to retinal. Subsequently, retinal 

dehydrogenase (RALDH) enzymes synthetize ATRA form retinal. ATRA associates with cellular 

retinoic acid-binding protein 1 (CRABP1), CRABP2 or fatty acid-binding protein 5 (FABP5) 

transporters. Cytosolic CRABP2 delivers ATRA directly to RARs and enhances the transcriptional 

activity of the receptors. CRABP1 moderates the cellular response to ATRA by transporting it to 

enzymes involved in the ATRA catabolism. Intracellular ATRA level is tightly regulated by the 

members of cytochrome P450 gene family: CYP26A1, B1 and C1. Polar metabolites generated by these 

catabolic enzymes are more easily excreted from cells. Importantly, the proximal upstream promoter 

region of the Cyp26a1 gene contains a functional retinoic acid response element (RARE), therefore 

Cyp26a1 gene expression is directly regulated by RARs. FABP5 transfers ATRA to PPARβ/δ and 

activates PPARβ/δ-mediated transcription.  

1.3.2.2. Retinol metabolism  

For exerting physiological function, retinol has to be converted during two consecutive oxidative 

reactions for metabolic activation. In the first rate-limiting oxidative step retinol is converted to retinal, 

catalyzed either by alcohol dehydrogenases (ADH1,3, and 4), or by retinol dehydrogenases (RDH1 and 

RDH10). 80-94% of cellular retinal-generating capacity resided in the microsomes (intracellular 

localization of RDHs), rather than the cytosol (site of ADHs). Currently at least three RDHs are seem to 

be physiologically participating in converting retinol to ATRA: RDH1, RDH10 and DHRS9. RDH10 was 

identified as all-trans retinol dehydrogenase in the RPE BX and was purified from the microsomal 

fraction of rMC-1 cells. The role of RDH10 for embryonic ATRA synthesis was identified in RDH10
-/-

 

mice, which had severe organ abnormalities and an embryonic lethal phenotype at embryonic day 13.5. 

The fundamental role of RH10 in embryonic development has been confirmed utilizing RDH10
-/-

 mice, 

carrying the RARE-lacZ-reporter transgene, which monitor endogenous sites of retinoid signaling. 

The second enzymatic step is the irreversible oxidation of retinal to ATRA, mediated by RALDH1,2 

or 3, members of the aldehyde dehydrogenase family. Genetic deletion experiments in mice have 

established the physiological contribution of RALDH isoforms to ATRA production and vital functions 

of RALDH2 during the embryonic development. RALDH2
-/-

 mice showed early lethality suggesting 

that this enzyme was essential for embryonal ATRA production. Moreover, the sites of RDH10 

expression overlapped with RALDH2 sites, suggesting that co-expression of the two metabolic enzymes 

was required for active ATRA generation in developing embryos.  
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1.3.2.3. ATRA synthesis in DCs 

Numerous data have demonstrated that multiple factors including ATRA, retinol, GM-CSF, IL-4, 

TLR ligands can promote or in case of prostaglandin E2 (PGE2) can inhibit the ATRA synthesis in the 

cells. These imprinting factors promote the expression of Raldh genes, indispensable markers for active 

ATRA synthesis in DCs. First, Iwata demonstrated that PP- and MLN-DCs synthetized ATRA from 

retinol and released ATRA enhanced the expression of CCR9 and integrin α4β7 gut homing markers on 

responding CD4
+
 T cells. According to their results, Adh5 was expressed ubiquitously and PP-DCs 

expressed Adh1 and 4, suggesting that these enzymes might be responsible for retinol to retinal 

conversion in adult mice. For the retinal to ATRA oxidation step, PP-DCs expressed Raldh1 and to a 

lower extent Raldh2, while MLN-DCs expressed Raldh2. Subsequent studies demonstrated, that Raldh2 

expression in GALT-associated DCs was enriched in CD103
+
 DC subsets. It soon became evident that 

ATRA synthesis is not a universal DC property and only certain DC subsets acquire the ability to 

produce this retinoid.  

The relevance of examining intestinal retinoid metabolism in DCs was further intensified by the 

detection of CD103
+
 DCs in human MLNs. These cells displayed a more mature phenotype by the cell 

surface expression of CD83 as compared with their CD103
−
 counterparts and induced α4β7 or CCR9 

expression on responding CD8
+
 T cells. The DCs-mediated gut-homing expression could be inhibited 

by LE540 (RARα antagonist), suggesting that human DCs similarly to mouse cells acquire active 

ATRA metabolic capacity in the gut. Furthermore, unique APCs within the LP, with macrophage-like 

morphology and co-expressed macrophage (CD14) and DC (CD209) markers, elicited potent antigen-

specific immune responses through ATRA-mediated signals. These cells express RDH10 and RALDH2, 

suggesting that at least some in vivo APCs may produce ATRA by utilizing these oxidizing enzymes. 

Finally, a comprehensive analysis demonstrated that ATRA metabolism could be detected also in 

extra intestinal tissue-derived DC such as lung and skin DCs. Unexpectedly, the RALDH activity was 

detected in CD103
-
 skin migratory DCs, while ATRA producing cells in the lung contained both 

CD103
+
 and CD103

-
 subsets. These data collectively demonstrated that ATRA synthesis capacity is not 

restricted to intestinal DCs and at least some migratory DC subsets in the peripheral tissue produce 

ATRA. 

1.3.3. PPARs in DC biology  

DCs express PPARs. The PPAR family consists of three isotypes: PPARα, δ/β and γ. These 

receptors show distinct tissue-specific distribution with different physiological functions. In the nucleus 

for direct transcriptional activation, PPARs heterodimerize with RXRs and bind to their receptor-

specific response elements (PPREs) in the promoter or enhancer regions of their target genes. Beside 

this fundamental role in metabolism, the receptor is involved in the regulation of immune responses. 

The idea that PPARγ might transcriptionally integrate lipid metabolism and inflammatory responses in 

DCs was supported by increasing amount of evidence. In vitro experiments presented that the receptor 
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was functional in DCs, contributing the subtype- and functional specification and immune phenotype of 

the cells. However, the receptor was not expressed in all DCs but at least in a subset of these immune 

cells in vivo.  

First, an extensive microarray analysis revealed that PPARγ gene was up-regulated during human 

monocyte-to-DC development. Subsequently, the expression of PPARγ was confirmed by other 

investigators. in vitro and partly in vivo experimental data suggested that PPARγ acts as a suppressive 

TF in DCs that inhibits murine and human DCs immunophenotype at multiple levels.  

For further characterization of the role of PPARγ on human DC functions, a suitable in vitro model 

system is required in which DCs express the receptor. Human DCs can be differentiated either for 

CD34
+
 hematopoietic stem cells, from CD14

+
 peripheral monocytes or from myeloid CD1c

+
 blood DCs. 

According to previous results of our laboratory, PPARγ expression was immediately induced in a 

narrow developmental period during the mo-DC differentiation. Freshly isolated monocytes failed to 

express the receptor, while PPARγ protein was detectable after 4 hours in cultured cells. The receptor 

was active in this model, because its agonists induced the expression of its bone fide target gene 

FABP4. To assess the global PPARγ-dependent gene expression profile during DC differentiation we 

utilized microarray experiments. These results revealed that PPARγ was not a simple inhibitory TF of 

the DC development because more than 1000 transcripts were regulated by the receptor and the half of 

these transcripts was up-regulated in the RSG-treated samples. PPARγ-activated genes in the first 6 

hours of the differentiation program were involved primarily to the lipid metabolism and transport and 

were most likely directly/transcriptionally regulated by the receptor. Conversely, immune function-

related genes were regulated in the later developmental period, suggesting that PPARγ might alter the 

DC immune phenotype indirectly through activation of intracellular lipid metabolism and signaling 

pathways. 

1.4. Co-ordinated regulation of retinoid signaling by RARα and PPARγ in DCs 

PPARγ and RARα regulate the expression of genes participating in lipid antigen presentation (CD1a 

and d) in mo-DCs. We confirmed that both receptors regulated the lipid antigen presentation through 

up-regulated CD1d expression in cultured DCs  

Based on literature data, endogenous serum derived lipids skewed mo-DC development to the 

generation of CD1a
-
 cells. Lysophosphatidic acid and cardiolipin were identified human serum lipids 

that could potently modulate the expression profile of Group 1 CD1 molecules but not that of CD1d. 

CD1 mRNA expression was regulated by PPARγ. DCs differentiated in serum-supplemented medium 

expressed CD1d in PPARγ-, and RAR-dependent manner. Administration of lipoproteins during DC 

development also affected the CD1 profile of the cells, suggesting that the uptake of lipids resulted in 

intracellular endogenous PPARγ agonists that induced transcriptional events, co-ordinating lipid 

metabolism, expression of CD1 molecules and DC immune functions. 
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PPARγ triggered indirectly CD1d expression by turning on endogenous lipid ligand synthesis in 

developing mo-DCs. Utilizing global gene expression analysis, we compared the expression pattern of 

genes in control samples and in PPARγ-ligand treated samples, which might be involved in retinol and 

retinal metabolism and endogenous ATRA production from retinol. Members of SDRs (RDH10 and 

DHRS9) were up-regulated by PPARγ during mo-DC differentiation. Furthermore, RSG-treatment 

induced RALDH2 expression. We determined the intracellular ATRA concentration in RSG-treated 

differentiated DCs by LC-MS analysis. The co-treatment of DCs with RSG and DEAB (RALDH 

inhibitor) confirmed, that PPARγ-triggered ATRA synthesis was mediated by RALDH activity. The 

accumulation of ATRA resulted in the induction of retinoid response by the RARα/RXR heterodimer. 

We also found that approximately the 30% of all PPARγ-responsive genes are regulated via the 

induction of retinoid signaling. 

Both PPARγ and RARα activation leaded to increased iNKT expansion by αGC-loaded DCs. These 

DCs triggered selective induction of iNKT proliferation and INFγ secretion in autologous MLR 

cultures. We concluded that PPARγ-induced CD1d expression could be translated to efficient lipid 

presentation by DCs and to enhanced iNKT activation under these in vitro conditions. These results 

linked PPARγ and RARα to iNKT-mediated immune responses.   
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2. AIMS 

During the process of DC differentiation many genes in these cells become up-or down-regulated. 

The regulation of gene expression requires a complex network of growth factors, signaling pathways 

and TFs. Environmental factors such as lipids induce signal transduction pathways that act on TFs, 

which have a fundamental role in controlling and co-ordinating of the expression of multiple genes that 

regulate physiological functions of DCs. We demonstrated that PPARγ signaling axis altered the lipid 

metabolism through the activated endogenous ATRA synthesis in mo-DCs, leading to subsequent cell 

type specification, characterized by enhanced lipid antigen presentation capacity of the cells. Despite of 

enormous scientific effort, the identity of permissive cell types, the required components of the 

biological active ATRA synthesis and the steps of lipid antigen processing for CD1d-mediated lipid 

presentation in DCs are still not characterized to date. 

Therefore the objectives of our studies: 

1, Identification of permissive murine DC subtypes by characterization of the expression of genes 

required for retinol uptake, ATRA production and signaling. 

2, Comprehensive survey of human DC subtypes for ATRA biosynthesis and signaling.  

3, Functional validation of our human mo-DCs as a suitable model to characterize the required steps for 

PPARγ-regulated ATRA synthesis, retinoid signaling and lipid antigen presentation. 

4, Determination whether PPARγ also stimulates retinoid signaling through the cellular ATRA 

transport. 

5, Characterization of the PPARγ-regulated ATRA signaling in human tissues.   

6, Provide functional evidence by gene specific silencing and lipid antigen presentation assay that 

beside RALDH2, PPARγ-activated RDH10 and CRABP2 are also mechanistically indispensable for the 

retinoid signaling axis-mediated gene expression. 

7, Determination whether PPARγ stimulates the iNKT expansion capacity of DC through a novel 

signaling axis.    
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3. MATERIALS AND METHODS 

3.1. Ligands  

Cells were treated with the following ligands:RSG and GW9662 (Alexis Biochemicals, San Diego, 

CA, USA), ATRA (Sigma-Aldrich, St. Louis, MO, USA), AGN193109 a gift from Roshantha A. S. 

Chandraratna, (Allergan Inc. Irvine, CA, USA), AM580 (Biomol, Hamburg , Germany), DEAB from 

Fluka (Honeywell, Morris Plains, NJ, USA) pepstatin A and OVA 257-264 peptide (Innovagen, Lund, 

Sweden), bafilomycin (Sigma-Aldrich). GC was obtained from Kirin Brewery Ltd. (Gunma, Japan), 

GGC from P.A. Illarionov (School of Bioscience, University of Birningham, Edgbaston, UK). The 

vehicle control (1:1 of dimethyl sulfoxide/Ethanol). 

3.2. Generation of bone marrow-derived dendritic cells (BM-DCs) 

BM cells were isolated from the femur of C57BL/6 mice. Animals were housed under specific 

pathogen free conditions and the experiments were carried out under institutional ethical guidelines and 

licenses (license number: 21/2011/DEMÁB). BM cells were differentiated to BM-DCs in RPMI 1640 

medium (Sigma-Aldrich) supplemented with 10% Fetal bovine serum (FBS), 500 U/ml 

penicillin/streptomycin, 2 nM L-glutamine ( Reagents obtained from Thermo Fisher scientific, 

Waltham, MA, USA), 20 ng/ml GM-CSF (Peprotech EC, London, UK)) and 20 ng/ml IL-4 (Peprotech) 

or 20 ng/ml GM-CSF alone for 9 days. Cytokine treatment was repeated at day 3 and 6. After 9 day of 

culturing period, cells were harvested in Trizol reagent (Thermo Fisher scientific) for RNA isolation.  

3.3. Splenic (Sp-DC) and Mesenteric lymph node-dendritic cell (MLN-DC) separation 

CD11c
+
 MLN-DCs were obtained from B16-Flt3L tumor cell-injected C57BL/6 mice. Pooled 

spleens and MLNs of male C57BL/6 mice were cut into small fragments and digested with Collagenase 

D (Roche, Basel, Switzerland) for 40 minutes at 37
o
C. Solutions were passed through a nylon mesh and 

washed. Cell suspension was pre-incubated for 10 minutes at 4
o
C with anti-mouse CD16/CD32 Mouse 

BD FC Block antibody (BD Biosciences Pharmingen, San Diego, CA, USA). CD11c
+ 

cells were 

obtained followed by anti-CD11c MACS bead (Miltenyi Biotec, Bergisch Gladbach, Germany) 

separation. CD103
+
 and CD103

- 
DCs were separated by labeling the cells with anti-CD11c-APC and 

anti-CD103-PE (BD Biosciences Pharmingen) antibodies and subsequent sorting on FACSVantage (BD 

Biosciences, San Hose, CA, USA).  

3.4. DC/Splenocyte co-culture experiment  

Pooled MLN CD103
+
 DCs were obtained as described above (3.3). Splenocytes were purified from 

pooled spleens of BALB/c mice. Spleens were placed in Petri dish containing RPMI 1640 medium 

supplemented with 10% FBS, were squeezed out with glass plunger. After washing, lysing Buffer (BD 

Pharm Lyse, BD Biosciences) was applied against red blood cells. The DC/Splenocyte ratio was 1:20, 

corresponding to 1:10 DC: T cell ratio in 2 ml culturing medium/well. After 72 hour incubation at 37
o
C, 

MLN CD103
+
 DCs were separated as dicribed above.   
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3.5. DC/CD8a
+
 T cell co-culture experiment 

CD8a
+
 T cells were obtained from OTI-I mice (as a gift of Dr. Zoltan Pos). Single-cell suspension 

from spleens of OT-I mice were prepared using gentleMACS Dissocator (Miltenyi Biotech). After 

washing, CD8a
+ 

cells were obtained followed by the CD8a
+
 T Cell Isolation Kit II (Miltenyi Biotech), 

by autoMACS Separator (Miltenyi Biotech). Pooled CD103
+ 

MLN-DCs were isolated as described 

above (3.3). CD103
+
 DCs were loaded with 20 pM OVA 257-264. DC/T cell ratio was 1:2. After 72 

hour incubation, CD103
+
 MLN-DCs were separated by anti-CD11c-APC and anti-CD103-PE antibodies 

and subsequent sorting on FACSVantage. Cells were harvested in Trizol. 

3.6. Human mo-DC culture 

Monocytes (98% CD14
+
) were isolated from Buffy coats of healthy volunteers, obtained with the 

Regional Ethical Board permit from the Regional Blood Bank, by Ficoll gradient centrifugation 

(Amersham Biosciences, Uppsala, Sweden), followed by separation using anti-CD14-conjugated 

microbeads (Miltenyi Biotech). Monocytes were differentiated to DCs at the density of 1.5 x 10
6
 cell/ml 

in RPMI 1640 medium supplemented with 10% FBS, 500 U/ml penicillin/streptomycin, 2 nM L-

glutamine, 800 U/ml GM-CSF (Gentaur Ltd. London, UK) and 500 U/ml IL-4. Cells were cultured for 5 

days. Ligands or vehicle control were added to the cell culture at day 0 and 3. 

3.7. Flow cytometry 

Cells were harvested and washed in 1X buffered (phosphate buffered saline) PBS and stained in 1X 

PBS/0.5% bovine serum albumin (BSA) (Sigma-Aldrich) for 40 minutes at 4
o
C. Cell staining was 

performed using PE- or FITC- conjugated antibodies: anti-CD14-FITC, anti-F4/80-FITC, anti-CD11c-

PE, anti-CD1d-PE, anti-CD1a-FITC, anti-CD11c-FITC, anti-CD209-PE (BD Biosciences Pharmingen) 

and anti-Vα24-FITC, anti-Vβ11-PE (Immunotech, Marseille, France) and appropriate isotype-matched 

controls. Analysis of cell surface expression of proteins was performed using a FACSCalibur and 

analyzed by CellQuest software (BD Biosciences). 

3.8. Microarray analysis  

The generation of the microarray data used for Figure 18 and 20 (DC subtypes) was described by 

Szeles et al. We assessed the genes are expressed in mo-DCs and other DC types using Affymetrix 

microarray data of DCs. The generation of the microarray data of human mo-DC used for Figure 18 and 

20 was described by Szatmari et al. Hybridization of the RNA samples was carried out at the Microarray 

Core Facility of the European Molecular Biology Laboratory (Heidelberg, Germany). Analysis was 

carried out using GeneSpring GX7.3.1 software (Agilent Technologies, Santa Clara, CA, USA). Raw 

data (cell files) were analyzed by the GeneChip robust multiarray analysis algorithm (GC-RMA) and 

raw signal intensities were normalized per chip (to 50th percentile). All microarray data are available in 

the public Gene Expression Omnibus database (GEO) under accession no. GSE23618 (DC subtypes and 

in ArrayExpress database, accession no E-TABM-34), accession no. GSE8658 (mo-DC differentiation).  

http://www.jimmunol.org/content/187/1/240.long#F1
http://www.jimmunol.org/content/187/1/240.long#F1
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23618
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3.9. Real time quantitative PCR (RT-qPCR) 

1µg of total RNAs were reverse transcribed with SuperScript II reverse transcriptase and random 

primers (Thermo Fisher scientific). This was performed at 42
o
C for 2 hours, and 72

o
C for 5 min. 

Quantitative PCR was performed on LC480 platform (Roche), 40 cycles of 95
o
C for 10 sec and 60

o
C for 

30 sec for Taqman assays (Applied Biosystems, Thermo Fisher scientific) or 95
o
C for 10 min, 40 cycles 

of 95
o
C for 10 sec and 60

o
C for 30 sec using Sybr green. Gene expression was quantified by the 

comparative threshold cycle method and normalized to human or mouse housekeeping gene Cyclophilin 

A (PPIA and Ppia). All PCR reactions were performed in triplicates. Values are expressed as means ± 

SD. In addition, TaqMan low-density arrays (TLDAs) (Applied Biosystems, Thermo Fisher scientific) 

were used according to manufacturer’s instructions. For TLDA analyses a high capacity cDNA archive 

Kit (Life Technologies, Thermo Fisher scientific) was used. RT-qPCR was performed using real-time 

PCR (ABI Prism 7900, Applied Biosystems, Thermo Fisher scientific). 

3.10. RNA interference 

Small interfering RNA (siRNA) delivery was performed using electroporation of monocytes as 

described earlier. Monocytes were counted and resuspended in Opti-Mem (Invitrogen, Thermo Fisher 

scientific) without phenol/red at the density of 4 x 10
7 

cell/ml. For silencing of gene expression, the 

following siRNA oligonucleotides were used: On-Targetplus SMART pool siRNA against human 

RDH10, RALDH2, CRABP2, FABP4 or On-Targetplus non-targeting control siRNA pool (NS) 

(Dharmacon, Lafayette, CO, USA). Non-silencing siRNA and siFABP4 were used, that did not altered 

the normalized mRNA level of the examined genes. Oligonucleotides were transferred to a 4-mm 

cuvette (Bio-Rad Laboratories, Hercules, CA,USA) at 3 M final concentration. 100 l cell suspension 

was added, gently mixed and incubated for 3 minutes at room temperature. Electroporation was 

performed using a Gene Pulser Xcell (Bio-Rad Laboratories). Pulsing conditions were square-wave 

pulse, 500 V, 0.5 ms. After electroporation, cells were transferred into RPMI 1640 medium 

supplemented with 10 % FBS, 500 U/ml penicillin/streptomycin, 2 nM L-glutamine, 800 U/ml GM-

CSF and 500 U/ml IL-4. Silencing efficiency was assessed on day 1 and day 2 post electroporation. The 

average siRDH10 efficiency was 48.58± 8.44%, in the case of siRALDH2 the efficiency was 39.22± 

10.81% and the average siCRABP2 efficiency was 44.22± 9.25%.  

iDCs were harvested at day 3, washed once with unsupplemented RPMI 1640 and PBS. Cells were 

resuspended in Opti-Mem without phenol/red at the density of 4 x 10
7 

cell/ml. The expression of 

PPARG was silenced with Qiagen siRNA against PPARG, On-Targetplus SMART pool siRNA against 

human CATD or On-Targetplus non-targeting control siRNA pool (NS) (Dharmacon). Electroporation 

was performed using a Gene Pulser Xcell and same pulsing condition that was used for monocyte 

samples. PPARG and CATD were silenced at an efficiency approximately 60%. 

https://en.wikipedia.org/wiki/Hercules,_California
https://en.wikipedia.org/wiki/United_States
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3.11. Aldefluor assay  

RALDH activity of mo-DC was determined by ALDEFLUOR Kit (StemCell Technologies 

Germany, Cologne, Germany). Activity measurement was carried out according to manufacturer’s 

instructions. Briefly, cells were incubated at the density of 1 x 10
6 

cell/ml in assay buffer containing 

activated substrate with or without DEAB for 40 minutes at 37
o
C. ALDEFLUOR positive cells were 

determined in FL1-chanel of FACSCalibur compared to DEAB-treated control samples.  

3.12. Expansion of iNKT cells  

mo-DCs were differentiated for 5 days. Cells were treated with 100 ng/ml αGC or αGGC for 48 

hours to obtain αGC- or αGGC-pulsed DCs. Lipid-loaded DCs (1 x 10
5
) were co-cultured with 

monocyte-depleted autologous PBMCs (1 x 10
6
) for 5 days (1:10 DC/PBMC cell ratio). In CatD 

inhibition experiments, DCs were treated with 1 or 10 µM pepstatin A (Sigma-Aldrich) at day 3. Prior 

to co-culture, DCs were washed extensively and resuspended in fresh RPMI 1640 medium 

supplemented with 10 % FBS, 500 U/ml penicillin/streptomycin, 2 nM L-glutamine, 800 U/ml GM-

CSF and 500 U/ml IL-4. PBMCs were stained with anti-TCR Vα24-FITC and anti-TCR Vβ11-PE 

monoclonal antibodies and double-positive iNKT population was monitored by FACSCalibur 

Additionally, the invariant V24-J18 (iNKT) TCR chain was quantified by RT-qPCR. In lysosomal 

acidification inhibition experiments, DCs were differentiated in the presence of RSG. Cells were treated 

with 50 nM bafilomycin at day 4. 

3.13. Western blot analysis 

20 μg protein from whole cell lysate was separated by 12.5% polyacrylamide gel and transferred to 

PVDF membrane (Millipore, Merck, Darmstadt, Germany). Membranes were probed with anti-

CRABP2 (208) antibody, kindly provided by Cecile R.-Egly (IGBMC, INSERM, Illkirch-

Graffenstaden, France), and then the membranes were stripped and re-probed with anti-GAPDH 

antibody (ab8245-100; Abcam, Cambridge, MA, USA) according to the manufacturer’s 

recommendations. In addition, 50 μg protein whole cell lysate was separated by 12.5% PAGE before 

being transferred onto PVDF membrane (Bio-Rad Laboratories). Membranes were blocked using 5% 

nonfat dry milk in tris-buffered saline (TBS)+ Tween 20 (TBST) at 4°C overnight before being probed 

with anti-CatD antibody (R20, sc-6487; Santa Cruz Biotechnology, Paso Robles, CA, USA), and then 

membranes were stripped and reprobed with anti-GAPDH. 

3.14. Immunoperoxidase staining 

For IHC, monocytes, vehicle-, or RSG-treated DCs (6 x 10
6
 cells/group) were pelleted and fixed in 

4% paraformaldehyde for 24 hours at 4
o
C. Cell blocks were embedded into paraffin. Sections (4 μm 

from each group) were mounted on glass slides. Sections were treated with 3% H2O2 in methanol for 15 

minutes at room temperature to block the endogenous peroxidase. For antigen unmasking, sections were 

heated in antigen retrieving citrate buffer (pH 6.0, Dako, Thermo Fisher Technologies ) for 2 minutes at 
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120
o
C using a pressure cooker. Immunostaining of the cells for CRABP2 were carried out using the 

standard ABC technique utilizing the primary antibody-specific biotinylated secondary antibodies 

(Vectastain kits, Vector Laboratories, Burlingame, CA, USA). After blocking the non-specific binding 

sites, sections were incubated with the primary anti-CRABP2 (208) antibody at dilutions of 1 x 1/50 for 

1 hour at room temperature prior to use the biotinylated secondary antibodies. The peroxidase-mediated 

color development was set up for 5 minutes using the VIP substrate (Vector Laboratories). Finally, the 

sections were counterstained with methylgreen.  

3.15. Double immunofluorescence (DI) 

DI was performed on formalin-fixed, paraffin embedded intestinal tissue sections obtained from the 

archives of surgical specimens of the Department of Pathology, University of Debrecen as described 

earlier. Briefly, following antigen-retrieving and peroxidase block, the first primary antibody was 

visualized with antibody-matched peroxidase-conjugated IgG followed by tetramethyl-rhodamine 

(TMR) tagged tyramide (PerkinElmer, Waltham, MA, USA) treatments (red fluorescence). After 

washing and blocking the non-specific binding sites, sections were incubated with the second primary 

antibody which was then developed with the use of matched biotinylated secondary antibody 

(IgG[Fab]2) and streptavidin-FITC (Vector Laboratories) (green fluorescence). After thorough 

washings, nuclear counterstaining was made with 4',6-diamidino-2-phenylindole (DAPI) containing the 

mounting medium (Vector Laboratories). To check the staining specificities, positive and negative 

controls were included for each IF reaction as described earlier and as indicated in the result section  

In Figure 35, monocytes, DC, or RSG-treated DCs (6 × 10
6
 cells/group) were pelleted and fixed in 

4% paraformaldehydefor 24 hours at 4
o
C. Cell blocks were then embedded in paraffin followed by 

serial sectioning (4 μm thick). Sections from each group were mounted on the same glass slides and 

subjected to sequential DI staining for detection of PPARγ and CatD protein expressions, respectively. 

The following primary antibodies were used: anti-PPARγ (clone E8; Santa Cruz Biotechnology) at 1:75 

dilution and polyclonal goat anti-CatD (clone C20; Santa Cruz Biotechnology) at 1:100 dilution. In 

brief, PPARγ was detected by incubating sections 1 hour at room temperature with primary antibody 

followed by HRP-labeled anti-mouse secondary (IgG[Fab]2) and FITC-conjugated tyramide 

(PerkinElmer Life Science) treatment. Following extensive washing and blocking, CatD protein 

expression was detected by 1 h incubation with primary antibody followed by biotinylated rabbit anti-

goat (IgG[Fab]2) and streptavidin-Texas Red (Vector Laboratories). DAPI was used for nuclear 

counterstaining (Vector Laboratories). For negative controls, isotype-specific control IgG Abs (Dako, 

Thermo Fisher Technologies) or a mixture of monoclonal antibody to PPARγ and a specific blocking 

peptide were applied on separate slides in replacement of primary antibodies. Normal human adipose 

tissue was included as positive control. Fluorescence microphotographs were captured using an 

Olympus BX51 microscope (Tokyo, Japan) equipped with a tricolor excitation filter and an Olympus 

DP50 digital camera. For transferring and editing images for documentation, Viewfinder and Studio 

http://www.jimmunol.org/content/187/1/240.long#F1
https://www.google.hu/search?client=opera&hs=cgb&q=Shinjuku&stick=H4sIAAAAAAAAAOPgE-LQz9U3SCssTlHiBLEMjSqyjLS0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQDEj7ymQwAAAA&sa=X&ved=0ahUKEwjNz_nXztjbAhXF6CwKHWe5AeYQmxMI-gEoATAR
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Lite software version 1.0.136 of 2001 Pixera (Pixera UK Digital Imaging Systems, Bourne End, UK) 

and Adobe Photoshop version 8.0 were used. 

3.16. Mixed leucocyte reaction (MLR) 

mo-DCs were harvested on day 5 and used as stimulator cells. To obtain mDC, iDCs were treated 

with a mix of cytokines: 10 ng/ml TNFα, 10 ng/ml IL-1β, 1000 U/ml IL-6 (Peprotec), 1 µg/ml PGE2 

(Sigma-Aldrich), and 800 U GM-CSF for 24 hour. Allogeneic PBMCs were labeled in PBS 

supplemented with 10 µM Carboxyfluorescein succinimidyl ester (CFSE) (Thermo Fisher 

Technologies) at 37
o
C for 15 minutes. CFSE-labeled PBMCs (2 × 10

5
 cell/ml) and immature or mature 

DCs (1 × 10
4
 cell/ml) were co-cultured in 96-well flat-bottom tissue culture plates (1:20 DC/PBMC cell 

ratio). Cell proliferation was quantitated on day 5 by FACSCalibur. 

3.17. Statistical analyses 

Samples for each experiment were performed in triplicate (n=3). Biological repeats for each 

experiment were performed at least three times. Statistical significance was determined using the 

GraphPad Prism (GraphPad Software, La Jolla, CA, USA) program. Probability of significance was 

determined using the two-sample Student t test. The results were considered significant at the level of p 

< 0.05. Standard error bars are shown.    
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4. RESULTS 

4.1. PPARγ-DIRECTED ATRA SYNTHESIS AND SIGNALING IN DENDRITIC CELLS 

4.1.1. ATRA biosynthesis in mouse intestinal DCs 

We hypothesized that RDH10 might be the primary enzyme that initiates retinol oxidation to retinal 

and the co-expression of RDH10 and RALDH2 determines ATRA production in mucosal DCs. We test 

this hypothesis in different in vivo- and in vitro generated DC subtypes. We quantificated the expression 

levels of genes involved in ATRA synthesis by RT-qPCR in MLN-DCs. Raldh2 could be detected only 

in CD103
+
 DCs. Rdh10 was expressed in both populations. RAR/RXR target gene Cyp26a1 had a 

similar transcription pattern to the Raldh2 gene, suggesting a negative feedback mechanism to control 

active retinoid signaling in cells. CD103
+
 and CD103

- 
MLN-DC populations expressed Tgm2 and 

Cd1d1, two well-established ATRA target genes. Unexpectedly, the normalized mRNA levels of the 

genes did not correlate with the ATRA production capacity of the cells.  

We characterized ex vivo differentiated DCs in additional gene expression analyses. We 

differentiated GM-CSF-DCs or GM-CSF+IL-4-DCs from BM and we used isolated Sp-DCs as negative 

control (no capacity for ATRA generation). GM-CSF triggered Raldh2 expression, the synergistic effect 

of the two cytokines was confirmed, while Raldh2 expression in Sp-DCs was barely detectable as it was 

earlier demonstrated. Next we focused on Rdh10 in in vivo- and ex vivo generated cells and found that 

all DCs expressed this gene. 

All DC subsets expressed Cd1d1, but with no correlation with retinoid signaling, while Cyp26a1 and 

Tgm2 could be reliable markers of active retinoid signaling.  

Next we assessed the expression of genes involved in retinol uptake and transport. We could not 

quantificated Stra6 in DC subsets, we detected the expression of Rbpr2 gene in all DC subsets, 

indicating the possibility of retinol uptake through this transporter. We assessed the role of cellular 

interactions using allogenic splenocytes/CD8
+
 T cells on Crabp2 and Rbpr2 gene expression co-

culturing with ex vivo DCs. In the co-culture experiments, the expression of both Crabp2 and Rbpr2 was 

induced in CD103
+
 DCs, as a result of cellular, most likely T cell interactions. We confirmed the role of 

cellular interactions on Crabp2 expression in CD103
+
 MLN-DC/CD8a

+
 T cell co-culture experiment, 

suggesting a triggered ATRA delivery as a result of cellular interactions. 

We concluded that ATRA biosynthesis is not a universal feature of DCs, and that, in line with our 

hypothesis, Rdh10 expression overlaps with Raldh2 expression, suggesting that DCs expressing both 

enzymes are likely to have active ATRA synthesis and signaling.  

4.1.2. Characterization of retinoid signaling in human DCs 

CD103
+
 DCs are also present in the human small intestinal MLNs with similar functional properties 

compared to murine CD103
+
 MLN-DCs. Despite previous data, the human DC phenotypes are not 

identical and not easy to match up with the ATRA generating DCs in mice. Therefore we considered 

using human mo-DCs for our mechanistic characterization of the components of retinoid signaling by 
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functional assays. We proved that these ex vivo cells faithfully replicate the behavior of human in vivo 

DCs by microarray data set analysis that compared the gene expression pattern of mo-DCs and iv vivo 

DC subsets. mo-DCs were CD14
-
/CD11c

+
/CD209

+
, thus phenotypically resembled in vivo iDCs. 

Next we examined the gene expression profile of a group of select genes involved specifically in 

ATRA biosynthesis and signaling. RDH10, RDH11, and DHRS9 were expressed in mo-DCs. Both 

RALDH1 and RALDH2 were expressed at high levels in mo-DCs, while a moderate level of the 

transcription of these genes was observed only in dermal DCs. Among the genes encoding ATRA-

transporting proteins, CRABP2 was expressed ubiquitously. We also examined the retinoid signaling by 

analyzing the expression pattern of target genes: tonsillar CD1c
+
, blood CD1c

+
 and mo-DCs expressed 

CD1D and TGM2. PPARG is expressed in mo-DCs. The detectable level of FABP4 is likely to indicate 

either the presence of extracellular PPARγ ligand in the serum or the presence of possible endogenous 

activators inside the cells. Other in vivo DC types failed to express PPARG or FABP4. This systematic 

analysis suggested that retinoid signaling is only active in mo-DCs that co-express RDH10 and 

RALDH2, and in these cells PPARγ signaling is connected to the retinoid signaling pathway.  

To validate our microarray data, we quantified the transcriptional changes of the genes contributed to 

ATRA synthesis (RALDHs) during the full differentiation period by RT-qPCR. As expected, ligand 

treatment induced the expression of RDH10 after 6 h, indicating that PPARγ activates this gene 

probably via direct molecular interaction. The expression of RDH10 in PPARγ-ligand instructed 

samples continuously increased during the differentiation period. Both CRABP2 and TGM2 genes were 

up-regulated in RSG-treated DCs after 24 h in accordance with earlier results and increased CD1D 

transcription was observed at later time points in RSG-treated samples. PPARG was immediately 

induced in differentiating cells, the highest expression level was detected at 6 h, and the gene was 

detectable at a somewhat lower level in DCs. We detected a similar expression pattern of FABP4 

compared to RDH10. 

In summary, ATRA production and signaling is not a universal feature of human DCs and is tightly 

regulated. We found evidence that mo-DCs expressed all components required for retinol to ATRA 

conversion and transport. This ATRA producing ability can be induced by the co-ordinate up-regulation 

of RDH10, RALDH2, and CRABP2. 

4.1.3. Transport of ATRA via CRABP2 to the nucleus is PPAR-regulated  

We investigated whether intracellular ATRA delivery could also be regulated by PPARγ. PPARγ 

activation induced the transcript levels of CRABP2. We found that monocytes did not express CRABP2, 

while control-treated mo-DCs expressed a detectable level of the protein, which was highly induced by 

RSG. We further confirmed the elevated CRABP2 expression at the expression site of the delivery 

protein by IHC. We postulated that the elevated CRABP2 expression in PPARγ-instructed DCs might 

contribute to the enhanced ATRA response. Further investigations are required for providing direct 

evidence for CRABP2-mediated ATRA delivery to the nucleus in mo-DCs.  
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4.1.4. PPARγ, RDH10, RALDH2, CRABP2, and the ATRA-regulated TGM2 co-localize in DCs of 

the human GALT 

In order to obtain evidence for the physiological relevance to our findings, we systematically 

surveyed the expression of the components of ATRA biosynthesis and signaling in resting human 

GALT using DI. We chose GALT, as this is the most likely place where lipid signaling could contribute 

to DC differentiation and subtype specification in the gut. DI of resting GALT for PPARγdemonstrated 

that PPARγ was in part co-expressed with Dendritic Cell-Specific Intercellular adhesion molecule-3-

Grabbing Non-integrin (DC-SIGN) in mucosal lymphoid tissue cells with DC phenotype. Interestingly, 

nuclear PPARγ and the cytoplasmic TGM2 proteins showed co-expression in similar cells of GALT 

exhibiting cytoplasmic green projection characteristic of DC elements, comparable with the staining 

pattern as seen for PPARγ-DC-SIGN. Therefore, these cells co-expressing PPARγ/TGM2 should 

represent the DC population of GALT, similarly to PPARγ/DC-SIGN positive cells. These results 

indicate that in resting lymphoid tissues some of the PPARγ-positive DCs express TGM2 

simultaneously, suggesting that PPARγ might regulate ATRA-dependent transcription in vivo as well.  

On the other hand, in the GALT we showed that some PPARγ positive cells co-expressed RDH10. 

Similarly, we observed few PPARγ-expressing DCs with RALDH2 and CRABP2 co-expression, 

respectively. RDH10, RALDH2, and CRABP2 also co-localized with DC-SIGN in some mucosal DCs. 

The number of PPARγ
+
 DCs was increased in cases of inflammatory bowel diseases (IBDs). 

These data collectively strongly suggest that the key components of ATRA synthesis and the PPARγ 

are expressed together in some of the antigen-presenting cells (APCs) of the mucosal lymphoid tissues, 

consistent with a previous report which demonstrated that murine intestinal DCs expressed RALDH2. 

4.1.5. Increased RALDH activity in PPARγ-activated mo-DCs 

We wanted to provide functional evidence that retinoic acid biosynthesis take place in mo-DCs. 

Utilizing LC-MS method we previously demonstrated that mo-DCs could produce ATRA in a PPARγ-

dependent manner. We aimed to further investigate this result using ALDEFLUOR staining assay that is 

suitable to detect intracellular enzymatic activity of RALDHs. mo-DCs were differentiated and at 120 h 

RALDH activity was measured by flow cytometry. There were 8% RALDH active cells in control-

treated sample. In the presence of RSG, the number of RALDH active cells was increased to 

approximately 40%. We noted that a much higher enzyme activity was displayed in these treated DCs 

than even in the positive ones in control DCs. In the RSG and GW9662 co-treated sample, the RALDH 

activity was similar to vehicle-treated control DCs. 

Next, we examined RALDH activity in mo-DCs electroporated at monocyte stage using specific 

siRNAs against RDH10, RALDH2, CRABP2 and NS control siRNA. At day five ALDEFLOUR staining 

was quantified. These results suggest that RALDHs are active in mo-DCs, and the enhanced ATRA 

production capacity of mo-DCs is PPARγ dependent.  
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4.1.6. PPARγ activation induces RAR signaling/gene expression via RDH10, RALDH2 and 

CRABP2 

Based on these data, we hypothesized that RDH10, RALDH2, and CRABP2 might be required for 

PPARγ-regulated ATRA production and gene expression. Pharmacological analysis revealed the 

importance of RALDH2 in PPARγ-enhanced retinoid signaling. We have extended our studies by 

testing to determine whether the oxidizing enzymes and CRABP2 are indeed mechanistically 

indispensable for retinoid-regulated gene expression induced by PPARγ. To test this hypothesis, we 

used siRNA-based approach. Monocytes were electroporated with siRNA against RDH10, RALDH2, or 

CRABP2 and FABP4 (as a control). After 24 or 48 h of RSG treatment, we quantified the transcript 

level of CD1D and TGM2 by RT-qPCR. PPARγ-induced CD1D expression was down-modulated by all 

except FABP4–specific siRNA at both time points (24 and 48 h). TGM2 expression changes were 

similar at 24 h, but only RDH10-specific siRNA reduced it significantly at 48 h as compared with 

control electroporated (NS) DCs. 

 In the next set of experiments, we electroporated monocytes with RDH10-specific siRNA then we 

measured CD1d cell surface protein expression by flow cytometry. Transient transfection of siRDH10 

reduced RSG-up-regulated CD1d levels on DCs and it was still down-regulated at day 5 post-

electroporation  

These results strongly suggested that PPARγ-mediated signaling induced retinol conversion by 

RDH10 in mo-DCs. The produced retinal was oxidized to ATRA by RALDH2. The enhanced retinoid 

signaling was more effective in the presence of the CRABP2 ATRA transporter. In the nucleus, ATRA 

activates regulated target genes via RAR/RXR heterodimers due to integrated PPARγ-RAR signaling.  

4.1.7. PPARγ-induced iNKT expansion is attenuated by RDH10, RALDH2, or CRABP2 knock 

down  

To investigate whether RDH10 can influence the PPARγ-mediated iNKT expansion capacity of the 

APCs, we silenced the RDH10 gene in monocytes with siRDH10. Cells were differentiated to mo-DCs 

in the presence of DMSO/ethanol for the control-treated sample or RSG for PPARγ activation; pulsed 

with or without GC for 48 h and then co-cultured with autologous PBMCs. The iNKT proliferation 

capacity was monitored by V24/V11 double staining. As expected, enhanced iNKT expansion was 

detected in RSG-treated and NS siRNA-transfected samples, while reduced iNKT cell numbers were 

detected in RDH10 siRNA-treated cells. 

mRNA expression of the invariant V24-J18 (iNKT) TCR marker gene correlated with the cell 

surface expression of TCR V24 and TCR V11 on iNKT cells. siRNA against RDH10, RALDH2, and 

CRABP2 reduced the normalized TCR Vα24 mRNA levels in RSG-treated samples as compared with 

non-silencing control (NS)-treated cells.  
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In the second part of the Result section, we present our recent published data about PPARγ-

regulated CatD expression in human mo-DCS. This project was co-ordinated by Dr. Britt Nakken 

and Dr. Tamás Varga.  

4.2. PPARγ-regulated Cathepsin D (CatD) is required for lipid antigen presentation by DCs 

4.2.1. PPARγ-regulated CatD expression in human mo-DCs 

Our goal was to uncover how PPARγ modulates lipid antigen presentation events in mo-DCs in 

addition to regulating of the expression of CD1d molecules. If PPARγ enhances lipid presentation by 

regulating a yet unidentified mechanism, then this must be reflected in the gene expression changes 

upon PPARγ ligand treatment. Therefore, we analyzed our previous microarray data set of 

differentiating human mo-DCs. We compared the gene expression profiles of differentiating DCs at 6 h, 

24 h, and 120 h in control- or RSG-treated samples. This analysis revealed PPARγ-mediated regulation 

of genes, participated in lipid antigen presentation. 

CatD, L, and S lysosomal proteinases, were up-regulated in RSG-treated samples. Based on this 

microarray result CATD was up-regulated by PPARγ in mo-DCs. RT-qPCR indicated a robust up-

regulation of the CATD in RSG-treated samples. 

Western blot analysis confirmed PPARγ-mediated up-regulation of CatD at protein level. 

Furthermore, DI result demonstrated the nuclear localization PPARγ and cytoplasmic localization of 

CatD. 

To further confirm the PPARγ dependence of CATD expression obtained by pharmacological means, 

we knocked-down PPARγ in differentiating mo-DCs by electoporation. The PPARγ-dependent up-

regulation of CATD was robustly reduced by siPPARγ compared to NS control siRNA transfected 

samples Based on these results, we concluded that CatD is regulated by PPARγ. 

To identify the exact molecular components of the signaling events from PPARγ activation to CATD 

up-regulation, we examined the involvement of retinoid signaling in the regulation of CATD. We 

mapped the signaling pathways required for CATD induction by analyzing the expression levels of 

FABP4 and TGM2 that are under control of PPARγ or RAR, respectively. We found that both receptor 

specific ligands could induce CATD  

 Our data suggest that CATD is under the control of multiple nuclear receptors in developing DCs 

and that it is under dual control by both PPARγ and RAR. 

We hypothesized also, that the induction of CD1d expression might be not the only mechanism, by 

which PPARγ signaling can enhance iNKT expansion. The result that silencing of PPARγ in day 3 DCs 

by siRNA did not alter the CD1d transcript level in DCs, whereas regulation of iNKT activation could 

still be found under these conditions, suggested that PPARγ signaling pathway in mo-DCs enhanced 

iNKT expansion by regulating other molecules as well, including CatD. This finding is in line with our 

previous results that demonstrated that CD1d is an indirect and late target of PPARγ.  
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4.2.2. Inhibition of CatD leads to decreased iNKT proliferation in response to lipid antigen 

through reduced lysosomal events important for lipid antigen presentation in the context of CD1d  

To investigate the possible function of CatD in lipid antigen presentation and iNKT cell stimulation, 

we used pepstatin A, a inhibitor of CatD. Upon GGC administration, RGS-treated mo-DCs acquired a 

substantial increase in their ability to induce iNKT expansion  

Pepstatin A reverted GGC-induced iNKT cell expansion in a dose-dependent manner in RSG 

treated mo-DCs.  

Endosomal processes involved in lipid antigen presentation to iNKT cells in DCs remain mostly 

undefined. We found that inhibiting endosomal acidification by bafilomycin in RSG-treated mo-DCs 

absolutely reduced iNKT expansion in the presence of the precursor lipid GGC but not in the presence 

of GC. This result indicated that PPARγ could induce an endosomal process included to the effective 

lipid presentation and enhanced iNKT expansion. Furthermore, we detected that only the GGC-

induced iNKT expansion was sensitive to pepstatin A, suggesting the function of CatD in the lysosomal 

lipid antigen processing.  

 

5. DISCUSSION 

5.1. ATRA synthesis in murine DCs  

Mucosal DCs orchestrates intestinal homeostasis. Several of these DC functions are tightly regulated 

by ATRA. After migration to the intestine, specific DC subsets acquired the ability to sense and respond 

to ATRA which promoted an anti-inflammatory phenotype. 

Our goal was to identify and validate additional key regulatory components of ATRA synthesis in 

mouse DCs. The enzyme required for the retinal production from retinol has not been evaluated in 

ATRA-producing DCs We focused on RDH10 which might be the key enzyme that could initiate retinol 

metabolism in intestinal DCs. While transcription of Rdh10 gene was detectable in all DC subtypes, 

irrespective of ATRA-production capacity, overlapping expression of Rdh10 with Raldh2 suggested that 

RDH10 could be responsible for the initial retinol oxidation to retinal in ATRA-generating DCs. The 

role of RDH10 enzymatic activity in these DC subtypes is remained to be investigated. 

ATRA synthesis itself can be regulated by nuclear receptor-mediated signals. In contrast to human 

DCs, PPARγ agonist did not significantly induce Raldh2 expression in Flt3L-generated BM-DCs and 

purified Sp-DCs in the absence of IL-4 or GM-CSF. This apparent disparity between mouse and human 

data may reflect a species difference but remains to be clarified. These results suggest that caution 

should be exercised when extrapolating mouse data on the manipulation of ATRA signaling to generate 

efficient mucosal immune responses in the human intestine.  

5.2 ATRA production in human DCs 

ATRA synthesis in the human intestinal DC subtypes is less investigated. In contrast to murine gut 

DCs, ATRA synthesis is not restricted to CD103
+ 

DC subsets in human DCs. Both CD103
–
/SIRPα

+
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and CD103
+
/SIRPα

+
 DCs had high levels of RALDH activity, whereas CD103

+
/SIRPα

–
 DCs had 

significantly lower RALDH activity. ATRA synthesis was also detectable in DCs isolated from the 

distal part of the human small intestine or the colonic tissues. RDH10, DHRS9 and RALDH2 was 

detected in tissue-derived DCs, indicating that human intestinal myeloid DCs acquired the complete 

enzymatic machinery to generate ATRA from retinol. Mindegyik DC CCR= All DCs expressed CCR7, 

suggesting that these populations might migrate to organized lymphoid tissue in the gut to activate naïve 

T cells.  

Our laboratory previously identified that PPARγ-regulated lipid metabolic pathways could be 

associated with the altered immune response of DCs. The activation of the nuclear receptor leaded to a 

transcriptional program with altered lipid metabolism in mo-DCs via induced expression of genes that 

are required for endogenous ATRA synthesis. RSG-treated DCs express higher level of RDH10 and 

RALDH1/2 mRNA level, supporting that key enzymes readily could be regulated in these cells in 

PPARγ-dependent manner. Thereafter de novo produced ATRA is transported to the nucleus by PPARγ-

up-regulated CRABP2 carrier molecules to activate RARα receptors. 

Our results suggested that transcriptional events in human mo-DCs that up-regulate the CD1D gene 

that were co-ordinately mediated by PPARγ and RARα receptors. The consequences of the PPARγ-

regulated ATRA signaling was the expression of the lipid antigen presenting CD1d molecules on the 

surface of the mo-DCs and enhanced lipid antigen presentation capacity of the cells. To assess direct 

evidence that the primary enzyme in this de novo ATRA synthesis was readily RDH10 and the PPARγ-

induced ATRA signaling pathway required RALDH2 and CRAPB2, we used siRNA-based gene 

silencing technic. These results supported our previous data and also provided an even more detailed 

analysis of the components of this PPARγ-initiated de novo ATRA synthesis, transport and lipid antigen 

presentation by evidences at molecular level. 

These data indicated that ATRA production is regulated differently in mice and human and the 

expression of RDH10 might providing an important control point to ATRA synthesis in humans DCs. 

5.3. PPARγ-dependent nuclear ATRA transport in DCs  

CRABP2 expression was barely or not detectable in the murine DC subtypes by TLDA analysis. 

Utilizing DC/T cell co-culture experiments, we found that the T cell/DC interactions could be an 

intrinsic factor in the mucosal environment for CRABP2 expression in the APCs. 

We found in our human mo-DC model that PPARγ activation resulted in CRABP2 expression in 

cultured DCs. These results indicated that PPARγ receptor activation is also involved in the nuclear 

transport of the active metabolite of retinol. The direct evidence for CRABP2-mediated ATRA 

transport to the nucleus requires further experimentation.  

5.4. PPARγ and retinoid signaling in intestinal DCs 

ATRA synthetizing DCs was previously identified in the human gut. DCs endow RALDH activity 

after entry into the intestinal mucosa. As intestine is a privileged area for intensive lipid absorption and 
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for PPARγ ligand generation we decided to assess whether PPARγ contributes in the regulation of DC 

retinoid signaling in the intestinal GALT. The functional relevance of PPARγ was assessed in DSS-

induced colitis. In mouse colitis models ATRA production was decreased in CD103
+
 DCs. Contrary, 

DCs had enhanced capacity to synthetized ATRA in human colonic DCs, isolated from inflamed 

colonic tissues of CD patients. This elevated generation of ATRA might contribute to disease pathology. 

Both CD103
+
 and CD103

-
 DC subsets expressed enhanced level of RALDH2. RDH10 expression was 

also measured in the sorted DC populations, indicating that human intestinal DCs have capacity for 

intracellular ATRA production.  

Utilizing DI method we characterized the expression a PPARγ and the components of ATRA 

signaling in human intestinal tissues. We found that GALT-associated immune cells readily express the 

key components of ATRA production (RDH10, RALDH2) and transport (CRABP2). PPARγ-positive 

DC-like cells co-expressed the RAR target gene, TGM2, suggesting that these cells possess the 

complete enzymatic machinery to generate ATRA from retinol, have an active retinoid signaling system 

and represent a relevant ATRA-producing APCs. The proportion of PPARγ positive DC-like APCs was 

increased in IBD samples. Our results suggested that the RALDH activity of human intestinal myeloid 

DCs was indicative of the generation of ATRA that signals via RARα to modulate T cell function in the 

gut. These data also suggested that PPARγ and ATRA signaling might be connected in intestinal DCs 

and our ex vivo mo-DCs may correspond to these in vivo DC-like APCs.   

5.5 CatD and lipid antigen presentation in human mo-DCs 

It is widely accepted that the primary biological function of CatD is the lysosomal protein 

degradation. CatB and L, have been implicated in lipid antigen presentation. 

Multiple aspects of lipid presentation were linked to these lysosomal proteases such as the cell 

surface expression of CD1d and processing of lipid antigens. However, the function of nuclear hormone 

receptors in the regulation of the lipid presentation process was poorly investigated in DCs and might be 

transcriptionally controlled. We tested what other steps of lipid presentation can be under the control of 

PPARγ in mo-DCs than CD1d. The expression of CatD in differentiating DCs was regulated by the 

receptor and its expression was closely matched with that of genes already functionally connected to 

lipid presentation. We also investigated that CatD was up-regulated by both PPARγ and RARα, regulate 

the protease dually and likely indirectly. The inhibition of the CatD activity resulted in the blocking of 

PPARγ-dependent iNKT activation, lower capacity to present αGGC. These experiments provided us 

with mechanistic links between PPARγ, CatD and lipid antigen presentation.  

5.6 Lipid antigen presentation, PPARγ in cancer 

PPARγ is one of the most controversial TF in term of tumor progression in DCs. In DC-based 

vaccination therapy the relevant question is how PPARγ affects DC-controlled immune responses. 

Transcriptional activation of this receptor is crucial during DC development, resulting in a specific DC 
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characteristic, suggesting that PPARγ active DCs have a regulatory DC phenotype that would be 

detrimental during the development or the optimization of in vivo DC-based vaccination therapies.  

DCs were demonstrated to elicit effective anti-tumor immune responses by presentation of lipid 

antigens to iNKTs that have primarily protective function in various experimental tumor models in 

mice. The success of preclinical results supported the idea to design clinical trials, which either harness 

the function of resting iNKTs or increase the frequency of the cells by adoptive transfer of ex vivo 

expanded autologous iNKTs as a vaccine. To solve the unpredicted limited success of these trials and to 

improve the efficacy of the iNKT vaccine therapy, our ex vivo DC-model offer many advances for 

optimization. Although most of the key qualities of DCs, which are critical during DC-vaccination 

design, are negatively affected by PPARγ. Upon RSG treatment DCs express all molecules which 

required for potent lipid antigen presentation, therefore these model DCs let us to understand the 

molecular mechanisms essential for clinical harnessing of this iNKT population. Optimal manipulation 

of these DCs in anti-tumor trials is critically dependent on our knowledge of iNKT– and DC biology 

and of the factors that activate and regulate these cells. PPAR
+
 DCs promote iNKT cell functions 

through enhanced CD1d thus the receptor could be a potential target for CD1d-restricted iNKT-based 

cancer therapy.  

 

6. SUMMARY 

DC network represent a complex APC family of a number of specific subpopulations. From the first 

stage of their differentiation, all developmental and differentiation status of DCs are TF-regulated. DCs 

have to adapt to various environmental cues during homing peripheral tissues or in the course of their 

shuttle to LNs. As professional APCs, the main function of DCs is the continuous grading of all potent 

molecules into the state of harmful or self-antigens to sustain effective immune protection (2). In this 

regard, DCs acquire the capacity to process a huge amount of surrounding information, which triggers 

specific signaling pathways in the cells. The functional flexibility of DCs is frequently accompanied by 

TF-mediated transcription. DCs express nuclear hormone receptors that translate intra/extracellular 

signals to the level of gene expression, required for appropriate immune phenotype of the cells 

(169).The precise transcription network, which regulates DC immune specificities has to be 

characterized. Therefore we analyzed the functions of PPARγ and RARα in DCs. PPARγ activation 

turns on the endogenous ATRA production in DC by up-regulated retinol/retinal oxidizing enzyme 

genes, namely RDH10 and RALDH2. ATRA is transported to nucleus by the PPARγ-induced CRABP2 

transporters, activates RARα, leading to co-ordinated transcriptional regulation of genes, required for 

lipid antigen presentation, such as CD1d antigen presenting molecules. Lipid antigen-loaded DCs 

activate CD1d-restricted iNKT cells. 
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We provided evidence that other step of the lipid presentation could be under the control of the two 

receptors. We identified CatD as a novel target of the PPARγ and linked this lysosomal protease at 

molecular- and functional level to DC-based lipid presentation to harness iNKT functions. 

Based on preclinical results, DC-activated iNKTs triggered regression/stabilization of advanced 

tumors. A set of anti-cancer strategies focused on inducing extended iNKT number and activity in 

patients. The main challenge of these trials was triggering clinically relevant responses in patients 

without side-effects. These therapies were generally well tolerated and in some patients, forced 

prolonged survival. For optimization of these iNKT-based trials we have to understand all step of lipid 

antigen presentation in DCs and its functional consequences on iNKT immunity. Our ex vivo DC/iNKT 

model allows us to monitor these regulator steps at molecular levels. Collectively our results points out 

the potential benefit to consider PPARγ as a potential target for CD1d-restricted iNKT-based cancer 

therapy. 
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