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1. Introduction

Reinforced concrete slabs on columns were developed 
by Turner and Maillart at the beginning of the 20th cen-
tury [1, 2]. In the early years large mushroom-shaped 
column capitals were used for the slab-column con-
nections to facilitate the concentrated effects of the 
column reactions. In the 1950s fl at slabs without cap-
itals started to become dominant, where the slab fail-
ure is the punching shear failure around the column.

The design codes typically give empirical ex-
pressions for the punching shear resistance of fl at 
slabs, which are based on experimental investigations. 
A similar pattern is observed in the critical shear 
crack width theory too, where the semi-empirical fail-
ure criterion is a function of the width of the critical 
crack [3].

However, in another approach, it can be veri-
fi ed that the membrane forces have signifi cant effect 
around the column for calculating the punching shear 
resistance. Hence the load bearing around the col-
umn can be investigated more adequately on the basis 
of the theory of bent shallow shells than that of thin 
plates. On the basis of the shear resistance of the con-
crete compression zone and the theory of bent shallow 
shells, a simple mechanical model and an expression 
for the punching shear capacity can be given. The cal-
culated results of this model were in good agreement 
with the test results of fl at slabs without punching 
shear reinforcement [4].

In discussions on the bending of a fl at slab it is 
mostly assumed that the column reactions can be ap-
proximated by concentrated loads, however, the col-
umn reactions are distributed uniformly over the are-
as of the cross-section of the columns. Moreover, the 
experimental investigations often include the diameter 
of circular column as a variable, thus it raises the ques-
tion, what the applicability limit of the column reac-
tion approximated by concentrated load is.

Consequently, the error caused by this approxi-
mation in the calculated values of the membrane ac-
tion has to be investigated.

2. Analysis of the bent shallow shell

The punching shear resistance of a fl at slab supported 
by columns of a square mesh is investigated by con-
sidering a representative slab element surrounding a 
column. The theory of thin elastic plates shows that, 
in the case of small values of c/L, where c is the radi-
us of a circular column and L is the axis-to-axis spac-
ing of the columns, the bending moments in the radi-
al direction practically form a zero circle of radius r = 
0.22L. Thus the plate around the column and inside 
this circle can be approximated as a circular plate sim-
ply supported along the circle r = 0.22L [5]. The load 
bearing around the column can be investigated more 
adequately on the basis of the theory of bent shallow 
shells, than that of thin plates [4]. The assumed shell 
around the column and its geometry is shown in Fig. 1.
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Let the shape function of the fl at shell in an r, ϑ, z 
cylindrical coordinate system

 z = (1/2) α0  r 2 ,   in which   α0 = 2f /a2, (1)

where a is the boundary radius, and f is the depth of 
the shell. The load and the supports of this paraboloid 
are assumed axisymmetric. The material is assumed 
to be homogenous and isotropic with elastic constants 
E and ν.

For analyzing the bent shallow shell, the method 
of the generator function can be applied. The applica-
tion of this method is shown in detail according to [6]. 
In the case of a shell carrying a concentrated load (see 
in Fig. 1) the application of this same method is shown 
according to [4].

Investigations show analogy of the bent shallow 
shell and the circular plate on elastic foundation (see 
in Fig. 2), where the intensity of the reaction of the 
subgrade is given by the curvature of the middle sur-
face, and the fi ctitious Winkler-type foundation is C = 
α0

2 Et, where t is the thickness of the shell.
Expression (2) is the general solution of displace-

ment of a paraboloid of revolution by the method of 
the generator function [4]. And expression (3) is the 
general solution of a circular plate on elastic founda-
tion according to [7],

 w = α0 L–2 [4c2 + 4c4 (1 + ln x) – c5 bei (x)
     + c6 ber (x) + c7 ker (x) – c8 kei (x)], (2)

 w = (q/C ) + c1 ber (x) + c2 bei (x)
       + c3 kei (x) + c4 ker (x), (3)

where ber (x), bei (x), ker (x) and kei (x) are the zero 
 order Thomson functions, x = r/L is a dimensionless 
radial coordinate, and 

 L = [K /(α0
2 Et)]1/4 (4)

is the characteristic length, in which K is the fl exural 
stiffness of the plate.

Solutions (2) and (3) can be clearly correspond-
ed in their structure as well as in their calculated con-
stants.

3. Analysis of a partially loaded paraboloid 
of revolution

To investigate the load bearing near the column head, 
let us consider the case in which the column reaction 
is distributed uniformly over some areas correspond-
ing to the cross-section of the column (see in Fig. 3). 
Assuming that b is the radius of a circular column q = 
P/pb2.

Fig. 1. Geometry of shell around the column head

Fig. 2. Bent shallow shell and its analogy as circular plate on elastic foundation

Fig. 3. Partially loaded paraboloid of revolution and circular plate on elastic foundation
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Using expression (3) the displacement with re-
spect to the inner and the outer portion of the plate is 
represented in the following form:

 wx ≤ β = winner = (q/C ) + c1 ber (x) + c2 bei (x)
       + c3 kei (x) + c4 ker (x), (5)

 w β ≤ x ≤ α = wouter = c5 ber (x) + c6 bei (x)
       + c7 kei (x) + c8 ker (x), (6)

where β = b/L and α = a/L are dimensionless radial co-
ordinates.

From the expression of displacement, for the 
slope, the radial bending moment and the radial shear 
force, the following expressions can be given as
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For the displacement at point x = 0 (r = 0) be-
comes infi nitely large, since ker (0) = ∞, the constant c4 
must be zero. Since there is no concentrated load at the 
point x = 0, the value of the shear force is (Qr,  inner) r = 0 
= 0, thus c3 = 0 can be obtained. The remaining con-
stants can be calculated from the continuity conditions 
along the circle of radius b (8) and from the boundary 
conditions (9) as follows:
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 outer ,outer( ) 0, ( ) 0.r a r r aw M= == =  (9)

Using this conditions A x = b a sixth order linear 
system of equations is obtained, in which the elements 
of x are the unknown coeffi cients c1, c2, c5, c6, c7, and 
c8, while the elements of the coeffi cient matrix A are:

 a11 = ber ( β ), a12 = bei ( β ), a13 = –ber ( β ),
    a14 = –bei ( β ), a15 = –kei ( β ), a16 = –ker ( β ), 

 a21 = ber´( β ), a22 = bei´( β ), a23 = –ber´( β ),
    a24 = –bei´( β ), a25 = –kei´( β ), a26 = –ker´( β ),

   a31 = –bei ( β ) – [(1 – ν) /β ] ber´( β ),
   a32 = ber ( β ) – [(1 – ν) /β ] bei´( β ),
   a33 = bei ( β ) + [(1 – ν) /β ] ber´( β ),
   a34 = –ber ( β ) + [(1 – ν) /β ] bei´( β ),
   a35 = –ker ( β ) + [(1 – ν) /β ] kei´( β ),
   a36 = kei ( β ) + [(1 – ν) /β ] ker´( β ),

 a41 = bei´( β ), a42 = –ber´( β ), a43 = –bei´( β ),
   a44 = ber´( β ), a45 = ker´( β ), a46 = –kei´( β ),

   a51 = 0, a52 = 0, a53 = ber (α),
   a54 = bei(α), a55 = kei (α), a56 = ker (α),

   a61 = 0, a62 = 0,
   a63 = –bei (α) – [(1 – ν) /α] ber´(α),
   a64 = ber (α) – [(1 – ν) /α] bei´(α),
   a65 = ker (α) – [(1 – ν) /α] kei´(α),
   a66 = –kei (α) – [(1 – ν) /α] ker´(α)

and the elements of b are

 b1 = –q/C ,  b2 = b3 = b4 = b5 = b6 = 0. 

For the special functions Wolfram Mathematica 
Code is used to solve the system of equations and to 
determine the unknown coeffi cients. However, due to 
the structure of matrix A, and due to their sizes, the 
unknown coeffi cients cannot be expressed, cannot be 
given as practical formulas.

The obtained results in the case of f = 0 as a par-
tially loaded circular plate and in the case of f ≠ 0 as a 
circular plate on elastic foundation were verifi ed. The 
verifi ed cases are shown in Fig. 4.

Taking advantage of the tools offered by Wolf-
ram Mathematica the membrane effect was investi-
gated. This effect is an important part of the load bear-
ing around a column. Thus the membrane action can 
be determined as

 μr = 0 = pmembrane  /p = 1 – (w /w0 )r = 0 , (10)

Fig. 4. Verifi ed cases of the obtained results
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where p is the total load, and pmembrane is the part of p 
equilibrated by membrane forces. In expression (10) 
w is the displacement calculated by the theory of bent 
shallow shells, and w0 is the displacement calculated 
by means of the theory based on small defl ections ac-
cording to [7] as follows:
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where c0 = [4 – (1 – ν) β0
2 – 4(1 + ν) ln β0] β0

2, and ρ = 
r/a and β0 = b/a are relative radial coordinates.

The performed numerical calculations show that 
the column reaction approximated by concentrated 
load causes an error in the membrane action, which 
is less than 5% for the maximum ratio of β0 = 0.395.

However, if the membrane action is calculated 
for the punching resistance according to [4], this error 
should be kept below 2%, from which the ratio β0 = 
0.195 can be calculated, because, in fact, the error of 
membrane action has no linear effect on the punching 
resistance. The error of punching resistance δV can be 
expressed in the following form:
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where δμ is the error of the membrane action. Let us 
assume that the value of membrane action is μ = 0.600 
and its error is 5% (δμ = 0.05). In this case, from ex-
pression (13), δV = 0.135 can be obtained, thus the 
generated error is 13.5%.

4. Approximation of the load bearing for
a partially loaded paraboloid of revolution

4.1. Approximation by combination with two circular 
plates on elastic foundation

On the basis of the available literature [7], an approx-
imate solution can be given with the combination of 
the cases of Fig. 4b and 4c. The general form of this 
combination is:
 w ≅ wappr.(2) = [1 – F( β0)]w1 + F( β0) w2 , (14)

where F( β0) is a function of the ratio of the loaded 
area  β0 = b/a, w1 and w2 are the functions of displace-
ment according to (3) taking into account the cases of 
Fig. 4b and 4c. If F( β0) is chosen as a linear function, 
expression (14) becomes
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The deviation of the approximate function at the 
point r = 0 versus the ratio b/a, which is also the error 
of the membrane action, is shown in Fig. 5. In this fi g-
ure the relative depth of the shell is denoted f /t.

In cases, when f /t = 0.00 ÷ 1.00, the curves are lo-
cated between the curves given in Fig. 5. As shown in 
Fig. 5, the error of the approximation for b/a = 0.50 is 
signifi cant, it approaches 40%. The fi gure also shows 
that the approximate expression must contain the ratio 
f /t, beside the ratio b/a. Thus the approximate function 
of displacement at the point r = 0 can be expressed in 
the following form:

 wappr. (2) = [1 – F( β0, f /t)]w1 + F( β0, f /t) w2 ,  (16)

where F(β0, f/t) = F1(β0) + (f /t) F2( β0). In expression 
(16) F1 and F2 are both polynomials, choosing them as 
fourth-degree expressions, take the form

 Fi = bi1 + bi2 β0 + bi3 β0
2 + bi4 β0

3 + bi5 β0
4 . (17)

Based on the deviation of the approximate func-
tion at the point r = 0 the following constants of (17) 
can be determined

 b11 = 0.0000,  b12 = 0.0990,  b13 = 1.7213,
 b14 = –1.1322,  b15 = 0.3119,

 b21 = 0.0000,  b22 = 0.1460,  b23 = 0.6136,
 b24 = –1.3209,  b25 = 0.5667.

With these values of the constants the deviation of 
wappr.(2) at the point r = 0 versus the ratio b/a is shown 
in Fig. 6.

The error of the approximate function at the 
point r = 0 for f /t = 1.00 is 0.27%, and the maxi-
mum error in case of f /t = 0.50 is 1.66%. Due to 
the error of the membrane action, considering that 
the decrease of the relative depth of the shell caus-
es decrease in the membrane action, the generat-

Fig. 5. Deviation of the approximate function at the point r = 0



Int. Rev. Appl. Sci. Eng. 7, 2016 25

 ANALYSIS OF A PARTIALLY LOADED PARABOLOID OF REVOLUTION 

ed error of punching resistance, in all cases remains 
under 2.50%.

Taking into account that the approximate function 
wappr.(2) at the point r = 0 is constructed, in cases of 
r ≠ 0 the deviation of this function is larger than given 
above. In order to reduce this deviation, a function, 
called shape function has to be chosen, which does 
not change the value of wappr.(2) at the point r = 0. The 
shape function is constructed as a quadratic, and the 
corresponding polynomial F3 is chosen in the form of 
(17). Thus

 wappr.(3) = wappr.(2)(1 + wappr.(shape)) , (18)
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2

3 0appr. shape 0.45 0.55 2 ,f x xw F
t

β
α α

⎡ ⎤⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

(19)

in which the constants for F3 are

 b31 = 0.000,  b32 = –0.100,  b33 = –0.648,
 b34 = 0.277,  b35 = 0.471. 

The results of expression (18) with various ratio 
of b/a for f /t = 1.00, which is the maximum deviation 
of (18), is shown in Fig. 7.

As it is shown in Fig. 7 the maximum error of 
wappr.(3) for b/a = 0.40 is 4%.

4.2. Approximation by combination with two circular 
plates on elastic foundation

To get an approximate solution advantage can be tak-
en of the fact that the system of differential equations 
for bent shallow shells can be derived from the gen-
eral equations of large defl ections of plates [8]. Thus 
simple approximate solutions of large defl ections of 
plates can also be used. In the followings, based on the 
above, a simple approximation method can be applied, 
which consists of a combination of the known solu-
tions given by the theory of small defl ections and the 
membrane theory [5].

The defl ection at the center w0, plate of a circular 
plate by the theory of small defl ections, according to 
[7], is given by the following expression:
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Considering the circular plate as a circular mem-
brane, the defl ection at the center is
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Substituting b = a in expression (21) the known 
solution for the defl ection of a uniformly loaded circu-
lar membrane [9] can be obtained, which is

 w0, membrane = [{3(1 – ν)qa4}/(8Et)]1/3. (22)

Having expressions (20) and (21) for the defl ec-
tions, can be obtained

 qplate = w0, plate [64 K (1 + ν)]/(a2b2Cplate) , (23)

where Cplate = 4(3 + ν) – (7 + 3ν) β0
2 + 4(1 + ν) β0

2 ln β0 
and
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The defl ection w0 is obtained from the equation q 
= qplate + qmembrane which gives
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where

 B = (1/2)[Cplate(4a – 3b)]/[b(1 – ln β0
2)3] . (26)

The expression (25) can be used to determine the 
defl ection by method of successive approximations. 
Observing expression (25) it can be concluded that the 

Fig. 6. Deviation of wappr.(2) at the point r = 0

Fig. 7. Deviation of wappr.(3) at the point r = 0
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last factor on the right-hand side is the plate action. 
In the case when the defl ection is small in compari-
son with the thickness of the plate, this factor hardly 
differs from one, thus the membrane action can be ne-
glected.

Taking advantage of the relationship between the 
differential equation system of the bent shallow shells 
and the general equations of the large defl ections of 
plates, by replacing w0 with f in divisor of formu-
la (25), we get an approximate solution for partially 
loaded paraboloid of revolution, as follows

 ( ) ( )

12 2 2
plate

appr. 4 21 .
64 1
q a b C fw B

K tν

−
⎡ ⎤

= +⎢ ⎥+ ⎣ ⎦
 (27)

The deviation of wappr.(4) at the point r = 0 versus 
the ratio b/a is shown in Fig. 8. It is evident that in case 
of f = 0 this approximate solution gives the solution of 
a partially loaded circular plate by the theory of small 
defl ections.

As it is shown in Fig. 8, the error of the approx-
imate function wappr.(4), in cases of b/a ≥ 0.025, is less 
than 14%.

It should be noted that, in cases of f /t ≠ 0.00 for 
very small values of the ratio b/a, B becomes infi nitely 
large and expression (27) tends to zero. This means 
that a concentrated load cannot be balanced only by 
membrane forces.

Using the more adequate solution for partially 
loaded paraboloid of revolution, expression (27) can 
be improved in the following form

 wappr.(5) = wappr.(6) [1+ ( f /t) Fcorr.( β0)] , (28)

where Fcorr.( β0) is a correction function. This correc-
tion function is chosen as a linear function in the fol-
lowing form
 Fcorr.( β0) = –0.20 + 0.35 β0 (29)

or as a sixth degree polynomial

 Fcorr.( β0) = – 2.903 β0 + 20.25 β0
2 – 61.77 β0

3 
         + 97.22 β0

4 – 75.39 β0
5 + 22.73 β0

6 .
 (30)

The deviation of the approximate function wappr. (5) 
at the point r = 0, using the correction function as a 
linear function and as a sixth degree polynomial, it is 
shown in Fig. 9.

As it is shown in Fig. 9, the difference between 
the corrected functions only for small values of the 
ratio b/a is signifi cant. Thus, in cases of b/a ≥ 0.150 
the application of a linear function and in cases of 
0.050 ≤ b/a < 0.150 the application of a sixth degree 
polynomial can be proposed for the correction func-
tion.

5. Conclusions

The fi nal results of the investigation show that the 
column reaction approximated by concentrated load 
causes an error in the membrane action, which is less 
than 2% and the generated error of the punching shear 
resistance is less than 5% for the maximum ratio of 
b/a = 0.195. Therefore it is verifi ed that for the ratios 
used in practice, also in the case when the membrane 
action is calculated, the column reaction can be ap-
proximated by concentrated load.

Two useful approximate solutions are determined 
for calculating the membrane action. From these the 
fi rst approximate solution, which is based on the com-
bination of known solutions for two circular plates on 
elastic foundation, can be used for any ratio b/a, its 
maximum error is 1.66%. And the second approxi-
mate solution, which is based on the combination of 
the solutions given by the theory of small defl ections 
and the membrane theory, can be used for the ratios 
b/a ≥ 0.050, and its maximum error is 3.42%.Fig. 8. Deviation of wappr.(4) at the point r = 0

Fig. 9. Deviation of wappr.(5) using the correction functions
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