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Abstract

Modeling and simulating movement of vehicles in established transportation infrastructures,

especially in large urban road networks is an important task. It helps in understanding and

handling traffic problems, optimizing traffic regulations and adapting the traffic management

in real time for unexpected disaster events. A mathematically rigorous stochastic model that

can be used for traffic analysis was proposed earlier by other researchers which is based on

an interplay between graph and Markov chain theories. This model provides a transition

probability matrix which describes the traffic’s dynamic with its unique stationary distribution

of the vehicles on the road network. In this paper, a new parametrization is presented for

this model by introducing the concept of two-dimensional stationary distribution which can

handle the traffic’s dynamic together with the vehicles’ distribution. In addition, the weighted

least squares estimation method is applied for estimating this new parameter matrix using

trajectory data. In a case study, we apply our method on the Taxi Trajectory Prediction data-

set and road network data from the OpenStreetMap project, both available publicly. To test

our approach, we have implemented the proposed model in software. We have run simula-

tions in medium and large scales and both the model and estimation procedure, based on

artificial and real datasets, have been proved satisfactory and superior to the frequency

based maximum likelihood method. In a real application, we have unfolded a stationary dis-

tribution on the map graph of Porto, based on the dataset. The approach described here

combines techniques which, when used together to analyze traffic on large road networks,

has not previously been reported.

Introduction

In the past decade, research and development of smart city applications have become an active

topic [1, 2]. These services contain solutions such as intelligent city planning, crowdsourcing,

as well as crisis and disaster management [3]. These applications will also both generate and

make use of big data which will arise from the wide availability of cloud computing and IoT

applications [4]. By the year 2050, 68% of Earth’s population is expected to live in urban areas

[5]. City infrastructures will face new challenges from many factors; one such factor is urban
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traffic. Moreover, a solution for the problem of air pollution and congestion is highly demand-

ing [6–8]. In the recent years, the research and development of intelligent transportation sys-

tems (ITS) in the context of smart cities have become a vivid topic [9, 10]. In the near future, a

smart city ITS application may also have a requirement to support the operation of both self-

driving and electric cars [11–13].

This research follows and contributes to our development of a traffic simulation platform

initiative called rObOCar World Championship (or OOCWC for short) [13–17]. The

OOCWC is a multiagent-oriented environment for creating urban traffic simulations and for

investigating the relationship between smart cities and self-driving cars. The traffic simulations

are performed by one of its components called Robocar City Emulator (RCE). We extract geo-

graphical information from OpenStreetMap (OSM) and transform this data into a routing

map graph. The simulation takes place on a rectangular part of the OSM. The traffic simula-

tion model of the RCE is based on the Nagel-Schreckenberg cellular automata model [18]. We

slice all graph edges for parts 3 meters long, so the length of each cell is l = 3m. Each edge has

only one lane and up to one car can occupy a cell at every time step Δt = 0.2s; therefore, each

simulation unit moves with fixed speed v = 54km/h. During the simulation, we can observe

how the distribution of the cars changes. In the original implementation, the simulation algo-

rithm moves the cars by random walk. So, when a car arrives at a graph vertex (i.e. intersec-

tion), it selects the next edge (i.e. next road segment) according to uniform distribution and is

delivered to the next edge if the first cell of the next edge is free. This model is somewhat simi-

lar to that is used in [7]. One statistic that can represent this distribution to test the stationarity

is the order of the streets based on the number of cars on them. An important aspect is that the

order of the street should remain the same during the simulation when it is already in a steady

state. In paper [14], we showed that in the original edition of the OOCWC the order of the

streets changes almost randomly even when the simulation has been running for a long time,

so the requirement of stationarity does not hold. In this paper, a method is proposed to answer

this problem. For a detailed description of the operation of RCE, see paper [13]. There exist

several traffic simulation platforms (Multi-Agent Transport Simulation [19], Simulation of

Urban Mobility [20], Aimsun (see https://www.aimsun.com/), PTV Vissim (see http://vision-

traffic.ptvgroup.com/en-us/products/ptv-vissim/)). Although these applications are widely

used in traffic analysis and planning, the main focus of their simulation algorithms is on

microscopic traffic events. In contrast, our software system focuses only on the traffic flow of

the whole city, or, to be more precise, the traffic graph.

A fundamental requirement in developing a traffic simulation algorithm which controls the

simulated cars is to hold the real distribution of cars in a stationary way, see our previous

paper [14]. Another aspect is how we are able to fit this algorithm by estimating its parameters

based on real data, which has the form of trajectories. Our result presented in this paper is an

answer to these problems. In [21], see also [22] and [23], a stochastic model is proposed which

can handle the traffic in an urban network by using a mathematically rigorous method. This

model is based on discrete time Markov chain on the road graph which plays the role of the

state space. In the traffic interpretation, the transition probability matrix describes the

dynamic of the traffic while its unique stationary distribution corresponds to the traffic equi-

librium or steady state on the road network. In this steady-state, the distribution of vehicles

remains invariant locally in time under the transport dynamic. Thus, this stationary distribu-

tion of the Markov chain can be interpreted as the momentary “true” distribution of the vehi-

cles on the road network.

Note that the joint application of Markov chains and large graphs to analyze the behavior of

complex systems is well known in several fields, e.g., distributed systems [24], geophysics [25]

and biology [26]. Several approaches exist for short-term traffic flow prediction. These models
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are based on many techniques including Box-Jenkins time-series analyses with ARIMA model

[27–30], Kalman filter theory [31, 32], non-parametric methods (k-NN, kernel, local regres-

sion) [33–36], exponential smoothing [37, 38], spectral analysis [39] or wavelets [40–42]. In

addition, several approaches use machine learning and data mining techniques, such as sup-

port vector regression [43], artificial neural networks [44–46], Bayesian networks [47] or deep

learning [48]. Some applications can be found based on computational intelligence techniques,

e.g., linear genetic programming [49] or fuzzy logic [50–52], but seldom can we find

approaches based on Markov models, see [53] and [21] mentioned previously.

Our contributions in this paper are as follows. Based on [21], we introduce the concepts of

a Markov random walk, which describes the motion of an individual vehicle, and Markov traf-

fic, which describes the entire traffic on the road network, respectively. We derive the station-

ary distribution of the Markov traffic as a multinomial distribution, see formula (3). We

present how the ergodic theory of finite Markov chains can be applied to prove the ergodicity

of Markov traffic model which implies that complex traffic events can be approximated well by

the help of the stationary distribution of a Markov chain on the road network. This result also

yields the theoretical ground of our simulation algorithm. We reparametrize the model by

introducing the concept of two-dimensional stationary distribution which possesses equi-dis-

tributed marginals that are the unique stationary distribution of the transition probability

matrix, respectively. To estimate this parameter matrix the weighted least squares (WLS) esti-

mation as a kind of composite (quasi-) likelihood methods is applied, see [54]. In Theorem 2,

we show that the WLS estimator of the two-dimensional stationary distribution can be

expressed explicitly. Moreover, this estimation method provides a computationally effective

technique on a large scale since the MapReduce paradigm can be easily applied to it. Finally,

we present how a city-controlled IT solution can be developed which is able to simulate the

traffic on a road network that fits to real world data.

Modeling traffic flow by Markov chains on graphs

In this section, we overview a traffic simulation model that uses tools from graph theory and

Markov chains. First, we outline the basic concepts in the fields of graph theory and finite Mar-

kov chains. Then, we describe the proposed model called “Markov traffic” shortly. Subsection

after that is devoted to the ergodicity of Markov traffic model. As a case study, we use a pub-

licly available trajectory dataset, namely, the Taxi Trajectory Prediction dataset (see https://

www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i). After, we outline the key points

of how we selected and processed the trajectory data. Finally, we describe how we process

OSM data and build a traffic graph from this data.

Road network: Basic concepts and notation

In this subsection, we outline the concepts of graph theory that are necessary for modeling

traffic flow. A standard textbook on graph theory is [55].

Let G = (V, E) be a directed graph (digraph) where V and E denote the set of vertices or

nodes and the set of directed edges or arcs or arrows of the graph, respectively. In the sequel,

vertices are denoted by u, v, w, edges are denoted by e, f, g. For a directed edge e = (v, w) 2 E
we also use the notation v! w. We suppose that G is a simple digraph in the sense that it does

not contain multiple arrows and loops. Multiple arrows means two or more edges that connect

the same two vertices in the same direction. The edge (v, v), v 2 V, is called a loop, i.e., it con-

nects the vertex v to itself. The digraph G, called road network in this paper, represents the

road system of a city. More precisely, we start from the following definition, see [56].
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Definition 1. A road network G is a simple directed graph, G = (V, E), where V is a set of

nodes representing the terminal points of road segments, and E is a set of directed edges

denoting road segments.

A road segment e = (v, w) 2 E is a directed edge in the road network graphs, with two ter-

minal points v and w. The vehicle flow on this edge is from v to w.

Note that the simplicity of the graph model of an existing physical road network is clearly

guaranteed if the resolution of the network is enough high. The resolution of a road network

can be increased by introducing new terminal points on road segments splitting them into

smaller road segments. By locking out the loops we can avoid that vehicles can move in an infi-

nite cycle remaining persistently at the same node. Later however, when we define the traffic

flow on a road network, we allow “virtual” loops to ensure that vehicles may remain at the

same node or edge of the road network after a time step. Let S denote the set of loops in G, i.e.,

S≔ {(v, v)|v 2 V}. Since G is simple E \ S = ;. Fig 1 presents a simple example for road

network.

For a digraph G = (V, E) another digraph can be associated by the following way. Let the set

V0 of vertices of this new digraph be the set of directed edges E of G and let the set E0 of its

directed edges consist of the ordered pair (e, f) where e, f 2 E such that there exist u, v, w 2 V
that e = (u, v) and f = (v, w), i.e., u! v! w is a path (dipath) in G of length 2. This associated

digraph is called a directed line graph, see Section 4.5 in [55], shortly line digraph, or line road

network (network line graph, see [57]), and it is denoted by L(G) = (V0, E0). The elements of E0

can be described by triplets (u, v, w), where u, v, w 2 V, (u, v), (v, w) 2 E, and for a directed

edge in L(G) we may use the notation (u, v)!(v, w) too.

Fig 1. A simple road network.

https://doi.org/10.1371/journal.pone.0246062.g001
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The basic difference between the digraph and line digraph views of a road network is that

the former assigns the vehicles moving in a city to the vertices while the latter to the edges. One

can refer the former as first-order (primal) network while the latter as second-order (dual) net-

work, see [58, 59]. These two kinds of graphs are both useful because in a road network, certain

measurements are associated with the crossings (vertices), and certain measurements are asso-

ciated with the road segments (directed edges). When we are concerned with comparing mea-

surements associated with crossings, then we will be concerned with the adjacency

relationships of crossings, and so with the road network. However, when we are concerned

with measurements associated with road segments we will be concerned with the adjacency

relationships of road segments, and so our analyses will involve the line road network.

The degree distributions of the digraphs G and L(G), respectively, are given in the following

way. For v 2 V define v−≔ {e 2 E|9u 2 V: e = (u, v)} and v+ ≔ {e 2 E|9w 2 V: e = (v, w)}, i.e.,

v− and v+ are the sets of arrows in and out the node v, respectively. Note that deg−(v) = |v−|

and deg+(v) = |v+| is the indegree and outdegree of v, respectively, where |�| denotes the cardi-

nality of a set. For all i = 0, 1, 2, . . . define nþi ≔jfv 2 V j degþðvÞ ¼ igj. Then, the pairs

ði; nþi Þ; i ¼ 0; 1; 2; . . ., form the frequency histogram for the outdegree distribution of G.

The indegree frequency histogram is defined similarly as ði; n�i Þ; i ¼ 0; 1; 2; . . ., where

n�i ≔jfv 2 V j deg� ðvÞ ¼ igj. On the other hand, for all i = 0, 1, 2, . . ., define

mþi ≔
P

v2Gþi
deg� ðvÞ where Gþi ≔fv 2 V j degþðvÞ ¼ ig. Then, the pairs ði;mþi Þ; i ¼ 0; 1; 2; . . .,

form the frequency histogram for the outdegree distribution of L(G). Note that nþi ¼ jG
þ
i j for

all i. Similarly, the pairs ði;m�i Þ; i ¼ 0; 1; 2; . . ., form the frequency histogram for the indegree

distribution of L(G) where m�i ≔
P

v2G�i
degþðvÞ and G�i ≔fv 2 V j deg � ðvÞ ¼ ig. (Note that

n�i ¼ jG
�
i j for all i.) One can easily see that the supports of the two indegree (outdegree) histo-

grams are the same. For the Porto example (described later in this paper), the above mentioned

degree distributions can be seen in Fig 2. These histograms corroborate the fact that the Porto’s

road network, as all city’s road network, is a sparse graph since there is no node with higher

in- and outdegree than 6 and the ratio of the number of edges and the number of nodes is less

than 2, see Fig 5.

Finally, we recall some topological properties of digraph G. For a pair u, v 2 V, u 6¼ v, v is

reachable from u if there exists a walk u = v1! v2! . . .! vℓ = v where vi 2 V (i = 1, . . ., ℓ). A

digraph G is said to be strongly connected (diconnected) if every vertex is reachable from

every other vertex. Clearly, the line digraph of a strongly connected digraph is also strongly

connected. A cycle C� V in digraph G is a path v1! v2! . . .! vℓ! v1 where vi 2 V, i = 1,

. . ., ℓ, are different nodes. Here ℓ(C) = ℓ is called the length of C. A digraph G is said to be ape-

riodic if the greatest common divisor of the lengths of its cycles is one. Formally, the period of

G is defined as per(G) ≔ gcd{ℓ> 0: 9C� V cycle such that ℓ(C) = ℓ}. Then, G is aperiodic if

per(G) = 1. One can also see that the line digraph of an aperiodic digraph G is also aperiodic.

Fig 2. The degree distribution histograms of the Porto map traffic graph. a: Indegree distribution (vertices). b:

Outdegree distribution (vertices). c: Indegree distribution (edges). d: Outdegree distribution (edges).

https://doi.org/10.1371/journal.pone.0246062.g002
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In a proper traffic, there are vehicles which leave or enter the city. To model these two pos-

sibilities V is augmented by a new ideal vertex 0 which denotes the world outside of the city.

This approach is similar to that is applied for public transport in [60]. Let V≔V [ f0g. Then,

additional directed edges which contains vertex 0 are also added to E. In this case, (v, 0)

denotes that the vehicles can leave the city at vertex v, and (0, v) denotes that new vehicles can

enter the city at vertex v, where v 2 V. Let E denote the augmentation of E by directed edges

for getting into and out of the city. Note that E does not contain the loop (0, 0). The augmenta-

tion of G is denoted by G ¼ ðV ;EÞ and it is called the closure of road network G. For e ¼
ðv;wÞ 2 E we also use the notation v! w. Moreover, each aforementioned concept, e.g.,

strong connectivity, periodicity, line digraph, given for G can be extended for G in a natural

way. Note that in the augmented line digraph LðGÞ ¼ ðV 0;E0Þ the elements of the edge set E0

can be described by triplet (u, v, w), where u; v;w 2 V such that u! v! w and if v = 0 then

u, w 6¼ 0 and if u or w is 0 then v 6¼ 0 because triplets (0, 0, v), (v, 0, 0) and (0, 0, 0) are excluded

from E0. One can easily see that if G is strongly connected (aperiodic) then its closure G (as

well as LðGÞ) is also strongly connected (aperiodic). In the rest of this paper, it is assumed that

the road network is closed, i.e., the vehicles can not get into and out of the road system of the

city augmented with the ideal vertex 0. Moreover, for the sake of simplicity, only the first-

order (primal) network is considered which is denoted by G as well.

We define vectors (functions) and matrices (operators or kernels) on V in the usual way.

Let α : V ! R denote a real function on V and letFðV;RÞ denote the set of real functions on

V. We also use the notations α(v) = αv for all v 2 V and α = (αv)v2V.F ¼ FðV;RÞ is a finite

dimensional vector space with the usual inner (dot) product. A T : V � V ! R real function

is called matrix, operator or kernel on V and induces a linear operator onFðV;RÞ in the

usual way. Moreover, we write T(α) = Tα as a matrix-vector product. If the support of T (the

set {(u, v)|u, v 2 V: tuv 6¼ 0} in V × V) is a subset of E (E [ S) then T is called G-subordinated in

strong (weak) sense.

An example for matrix on V is the adjacency matrix A = (auv)u,v2V of the digraph G where

auv = 1 if and only if (u, v) 2 E and 0 otherwise. Clearly, the support of A is E, i.e., A is a G-sub-

ordinated matrix in strong sense (avv = 0 for all v 2 V). It is known that G is strongly connected

if and only if there is a positive integer k such that the matrix I + A + . . . + Ak is positive, i.e., all

the entries of this matrix are positive. The indegree and outdegree of a vertex v can be

expressed by the adjacency matrix as deg� ðvÞ ¼
P

u2Vauv and deg+(v) = ∑u2V avu. Introduce

the vectors d� ≔ðdeg� ðvÞÞv2V and d+ ≔ (deg+(v))v2V. Then, we have d� ¼ AT1 and d+ = A 1

where 1 ≔ (1)v2V is the constant unit function. It is well known that the adjacency matrix A of

an aperiodic, strongly connected digraph G is primitive, i.e., irreducible and has only one

eigenvalue of maximum modulus. Primitivity is equivalent to the following quasi-positivity:

there exists k 2 N such that the matrix Ak> 0, see Section 8.5 in [61].

Probability distributions and Markov kernels on road networks

In this section, we summarize some basic concepts and results of the theory of finite Markov

chains with their interpretations and consequences for traffic flow modeling. Some textbooks

on this field are [62] and [63].

A probability distribution (p.d.) on V is the vector π≔ (πv)v2V where πv� 0 for all v 2 V
and ∑v2V πv = 1. That is a p.d. π is a normalized V ! Rþ function. We can think of πv as the

proportion of the number of vehicles which drive through the crossing v with respect to the

whole number of vehicles in the city at a fixed time period. A Markov kernel or transition
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probability matrix on V is defined as a real kernel P≔ (puv)u,v2V such that puv� 0 for all u, v 2
V and ∑v2V puv = 1 for all u 2 V, i.e., pu≔ (puv)v2V is a p.d. on V for all u 2 V. The quantity puv

2 [0, 1] is called the transition probability from vertex u to vertex v. The kernel P is said to be

G-subordinated if puv> 0 for a pair u, v 2 V implies (u, v) 2 E or u = v, i.e., P as a matrix on V
is G-subordinated in the weak sense. It is well known, see [64], that for a Markov kernel P on

V, an associated digraph GP = (V, EP) can be introduced in the following way: for a pair u, v 2
V (where the case u = v is also allowed) (u, v) 2 EP if and only if puv> 0. Thus, P is G-subordi-

nated if and only if EP� E [ S, i.e., GP is the subgraph of the digraph G extended with its loops

S. In other words, a G-subordinated Markov kernel P is a stochastic matrix on V with support

E [ S. Then, the sum condition for a G-subordinated Markov kernel P can be rewritten as:

X

w:v!w

pvw þ pvv ¼ 1; v 2 V: ð1Þ

(Note that p00 = 0).

A p.d. π on V is a stationary distribution (s.d.) of the kernel P if ∑u2V πu puv = πv for all v 2
V. For a G-subordinated Markov kernel P this formula, the so-called global balance equation,

can be expressed as:

X

u:u!v

pupuv þ pvpvv ¼ pv; v 2 V: ð2Þ

Fig 3 presents a Markov kernel with its s.d. on the road network in Fig 1.

The stationary distribution can be derived by solving the linear Eq (2) numerically. Since

the state space (the road network) is finite there exists at least one stationary distribution.

However, in some cases, the stationary distribution is not uniquely defined by these equations.

We show that there is a direct connection between the uniqueness of s.d. of a Markov kernel

P on V and the strongly connected property of the physical road network G if the Markov and

graph structures are compatible with each other. The Markov kernel P on V is called G-com-

patible if, for any u, v 2 V such that u 6¼ v, puv> 0 if and only if (u, v) 2 E. Note that the G-

compatibility implies the weak G-subordination for a Markov kernel P, however the converse

is not true.

Clearly, if P is G-compatible then the strong connectivity of G implies that the associated

graph GP to the Markov kernel P is also strongly connected. In this case, the Markov kernel

Fig 3. A Markov kernel (on edges) with its stationary distribution (on vertices) on the road network in Fig 1.

https://doi.org/10.1371/journal.pone.0246062.g003
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(the transition matrix) P is called irreducible. Thus, by Theorem 1 in [64], see also Theorem

3.1 and 3.3 in Chapter 3 of [63] the following theorem holds.

Theorem 1. If a road network G is strongly connected then there is a unique stationary dis-

tribution π to any G-compatible Markov kernel P. Moreover, this distribution satisfies πv> 0

for all v 2 V.

The main consequence of this theorem is that, in case of any physical road network aug-

mented by the ideal vertex 0, all of the Markov kernels defined on the road network that has

positive transition probability on all roads have unique stationary distribution. Thus, it is rea-

sonable to suppose that a real traffic which follows a Markovian dynamic has a local unique

stationary distribution in a short time period that can be explored by observing the traffic.

Markov random walk and Markov traffic on road networks

Let ðO;A;PÞ be a probability space. Then a V-valued random variable (r.v.) is a X: O! V
measurable function, i.e., X� 1ðvÞ 2 A for all v 2 V. In this case, X is a random function on the

set V of vertices. For example, X can be the random position of a vehicle on the road network

G, where the position refers to the actual vertex which the vehicle belongs to. Then,

PðX� 1ðvÞÞ ¼ PðX ¼ vÞ denotes the probability that a vehicle is at the vertex v 2 V. By

πXðvÞ≔PðX ¼ vÞ, v 2 V, a r.v. X induces a p.d. πX on V.

A sequence fXtgt2Zþ
(Zþ ¼ f0; 1; 2; . . .g) of V-valued r.v.’s is a Markov chain on the state

space V if the Markov property holds:

PðXt ¼ vtjXt� 1 ¼ vt� 1; . . . ;X0 ¼ v0Þ ¼ PðXt ¼ vtjXt� 1 ¼ vt� 1Þ

for all t 2 N, v0, . . ., vt 2 V. If X, X0 are V-valued r.v.’s then for the conditional distribution P =

(pvv0)v,v02V, pvv0≔PðX ¼ vjX0 ¼ v0Þ, v, v0 2 V, we shall also use the notation X|X0. Clearly, X|X0

is a Markov kernel on V.

The main concepts of this paper are the Markov random walk and the Markov traffic

defined in the following way.

Definition 2. Let the road network G be strongly connected and let P be a G-compatible

Markov kernel on V with unique s.d. π. Moreover, let fXtgt2Zþ
be a Markov chain on V such

that πX0
¼ π and Xt|Xt−1 * P for all t 2 N. Then, fXtgt2Zþ is called Markov random walk on

the road network G with Markov kernel P.

The set ffXi
tgt2Zþ

; i ¼ 1; . . . ; kg of k (k 2 N) mutually independent Markov random walks

on G with Markov kernel P is called a Markov traffic of size k and it is parametrized by the

quadruple (G, P, π, k).

The s.d. π of fXtgt2Zþ
can be considered as a categorical distribution (generalized Bernoulli

distribution) onF by formula πðf Þ ¼
Q

v2Vπ
fv
v where f 2 F is an indicator function, i.e., fv =

1 for a fix v 2 V and 0 otherwise, see page 75 in [65]. Since the Markov traffic

ffXi
tgt2Zþ

; i ¼ 1; . . . ; kg consists of k mutually independent Markov random walks its s.d.

becomes the k-fold convolution π
�k onF , where � denotes the convolution. The p.d. π

�k fulfills

π�kðf Þ≔k!
Y

v2V

πfv
v

fv!
ð3Þ

where f 2 F is non-negative integer valued and satisfies the constraint ∑v2V fv = k. In this

case, f can be considered as traffic configuration where fv counts the vehicles at vertex v. In

fact, π
�k corresponds to the multinomial distribution with parameters k and π, see Chapter 35

in [66]. Moreover, the r.v. Yv
t ≔
Pk

i¼1
IðXi

t ¼ vÞ follows the binomial distribution with
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parameters k and πv for all t 2 Zþ and v 2 V, respectively. Note that the process fYv
t gt2Zþ

denotes the (random) number of vehicles at vertex v in the Markov traffic.

A similar model to Markov random walk is proposed in [67] where binary-coded edge-val-

ued r.v.’s are considered (as dual view) instead of our vertex-valued r.v.’s (as primal view).

Note that if P is the uniform Markov kernel on G then we obtain the standard random walk of

the graph theory, see the survey [68].

A Markov random walk is an individual Markov traffic with k = 1 in the sense that it

describes the movement of a random vehicle which follows the stochastic rules defined by the

Markov kernel. On the other hand, the Markov traffic provides a mathematical model for

describing the traffic of k vehicles on a road network. Note that the independence assumption

seems reasonable and not too strong because the vehicle controls are working separately form

each other. For a pair u, v 2 V the notation u) v will mean that (u, v) 2 E [ S, i.e., either u!
v or u = v. If X1, X2 are random functions on V then X1) X2 means that the two-dimensional

distribution of (X1, X2) is concentrated on E [ S. Clearly, for any Markov random walk

fXtgt2Zþ we have Xt) Xt+1) . . .) Xt+n for all t and n 2 N. One can also call fXtgt2Zþ as a

first-order random walk on the road network where a vehicle moves from vertex u to vertex v
with probability puv. The second-order Markov random walk (traffic) on the line road net-

work, where the vehicles move from edge to edge, can also be defined similarly, see [58].

Using the concept of two-dimensional s.d. a Markov traffic can be reparametrized in the

following way. Introduce the two-dimensional distribution Q = (quv) on V × V as quv≔ πu puv,

u, v 2 V. Then, Q is a two-dimensional s.d. on G in the following sense:

Definition 3. A matrix Q = (quv)u,v2V is called two-dimensional stationary distribution

on G if (i) quv� 0 for all u, v 2 V and quv = 0 for all u, v 2 V such that (u, v) =2 E [ S (i.e., Q is

weakly G-subordinated); (ii) ∑u,v2V quv = 1 (i.e., Q is a normalized matrix on V); and (iii) ∑v2V

quv = ∑v2V qvu for all u 2 V (i.e., Q has equidistributed marginals).

A two-dimensional s.d. Q on G is called (strictly) positive if quv> 0 for all u, v 2 V such that

(u) v) u! v.

Property (iii) states that the two (row-wise and column-wise) marginal distributions of a

two-dimensional s.d. on G coincide with each other. Clearly, for a Markov traffic, Q defined

above is a positive two-dimensional distribution on G. Q can also be considered as a p.d. on

the state space E [ S, i.e., if we extend the set V0 of vertices of L(G) as V0 = E [ S, on the line

digraph. Thus, Q can be interpreted as the distribution of the vehicles on the edges of the

road network, i.e., on the line digraph, see formula (11) in [21]. The distribution Q can also

be visualized on the edges, see, Fig 4 for the simple example in Figs 1 and 11 in case of the

Porto example discussed later. However, the converse of this statement is not true because

there is p.d. on the line digraph which does not satisfy (iii). If fXtgt2Zþ is a Markov random

walk then the two dimensional distribution of any consecutive pair (Xt, Xt+1), t 2 Zþ, corre-

sponds with Q.

Denote byQ the set of two-dimensional s.d. on G. One can easily see thatQ is closed with

respect to the affine combination. Namely, if Q1;Q2 2 Q then λQ1 þ ð1 � λÞQ2 2 Q for all λ
2 [0, 1].

Conversely, for a positive Q 2 Q, let us define

pu≔
X

v2V

quv ¼
X

v2V

qvu; u 2 V;

puv≔
quv

pu
; u; v 2 V:

ð4Þ

Then, P = (puv) defines a G-compatible Markov kernel with s.d. π = (πu) on G. Thus, a Markov
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traffic defined by the quadruple (G, P, π, k) can be introduced by an equivalent way through

the triplet (G, Q, k). However, it will turn out later that, from a statistical point of view, the

parameter matrix Q can be estimated in a computationally more efficient way than the pair of

transition matrix P and its s.d. π.

Ergodicity of Markov traffic

The simulation method proposed in this paper is based on the ergodicity of Markov traffic

which follows from the ergodic theory of finite Markov chains.

Let π0 be an initial distribution on V and define the n-th absolute p.d. πn by the recursion

π>n ¼ π>n� 1
P, n 2 N. Clearly, π>n ¼ π>

0
Pn, where the product of two Markov kernels P and Q on

V is defined as (PQ)uw≔ ∑v2V puv qvw, u, w 2 V. If G is strongly connected and we start from

the unique s.d. π0 = π of P, see Theorem 1, then π>n ¼ π>Pn ¼ π> for all n 2 N. Thus, in this

case, πn! π as n!1. However, in general, the sequence ðπnÞn2N does not converge to the s.

d. for all initial distribution π0 even if the s.d. is unique. However, if we consider the average of

the n-th absolute p.d.’s in time, we have the convergence to the unique s.d. The Markov kernel

which satisfies this property is called ergodic.

The following result is based on Theorem 4.1 in Chapter 3 of [63]. If a road network G is

strongly connected then any G-compatible Markov kernel P is ergodic and the average Markov

kernel An converges, i.e.,

An≔ðnþ 1Þ
� 1
ðI þ P þ . . .þ PnÞ ! P≔1π>

as n!1, where π is the unique s.d. of P. Moreover, the limiting probabilities of the time aver-

ages of the absolute p.d.’s satisfy

ðnþ 1Þ
� 1
ðπ0 þ π1 þ . . .þ πnÞ ! π ð5Þ

as n!1 for all initial p.d. π0.

In applications, along absolute p.d.’s, we may also be interested in some functionals of these

distributions, e.g., the number of vehicles in a region of the road network. Define the func-

tional f(π) ≔ ∑v2V fv πv of p.d. π, where f 2 F . Then, (5) can be extended that

n� 1
Pn

i¼1
FðπiÞ ! FðπÞ as n!1, see Theorem 4.1 of [63].

Fig 4. The two-dimensional s.d. (on edges) with its equidistributed marginals (on vertices) on the road network in

Fig 1 for the Markov kernel in Fig 3. One can easily check that the sums of probabilities written on the edges in and

out each vertex are equal, respectively.

https://doi.org/10.1371/journal.pone.0246062.g004
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Instead of time averages, in order to achieve the convergence of n-th absolute p.d.’s we need

the additional assumption of aperodicity for G, see Theorem 2.1 in Chapter 4 of [63]. If G is an

aperiodic, strongly connected road network and P is a G-compatible Markov kernel on it, then

the sequence of Markov kernels Pn, n 2 N, converges to the limiting Markov kernelP. More-

over, the limit of the sequence of n-th absolute p.d. πn is the unique s.d. π to the Markov kernel

P which is independent of the initial p.d. π0. For any functional F we also have that F(πn) con-

verges to F(π) as n!1 on an aperiodic, strongly connected road network.

The ergodicity of Markov traffic with any G-compatible Markov kernel is derived in the

same way. Let πi
0

and πi
n denote the initial distribution and n-th absolute p.d., respectively, for

the ith vehicle, i = 1, . . ., k. Then, the ergodic property of Markov traffic, similarly to (5), can

be formulated as

ðnþ 1Þ
� 1
Xn

i¼0

ðπ1

i � . . . � πk
i Þ ! π�k ð6Þ

if n!1, i.e., the time average of the probability of complex traffic events converges to a con-

stant which corresponds to their stationary probability. Since the mean of the multinomial dis-

tribution with parameters k and π is calculated as kπ one can see that the probabilities in s.d. π
on V can be unfolded by the limit of state-space and time averages as

ððnþ 1ÞkÞ� 1
Xn

i¼0

X

f2F

fv � ðπ
1

i � . . . � πn
i Þðf Þ ! πv ð7Þ

as n!1 for all v 2 V. Note that the left hand side of (7) is the average of the number of vehi-

cles at vertex v in time divided by the size of the traffic (k).

The convergence results (6) and (7) guarantee that the unique s.d. of a G-compatible Mar-

kov kernel can be approximated and thus explored by long run behavior of the traffic flow on

the road network. A visualization of the convergence of Markov traffic simulation to its s.d. is

presented in Fig 10.

Trajectories from public datasets

For our experiments, we needed a dataset of real-life traffic trajectory data. In our terminology,

a trajectory is a sequence of data that provides information about the path of a vehicle moving

from a start to an end point, associating geographic coordinates with timestamps. We required

a dataset that satisfies the following criteria:

1. Contains complete trajectories, i.e., the availability of only the start and end points is not

sufficient, intermediate trajectory points must also be available.

2. The trajectory points must be sampled at a high enough frequency, so that the distance

between consecutive points should not be too large, (e.g., an average distance of the order

of 10 meters is acceptable, but an average distance of the order of 100 meters is definitely

not).

3. The dataset is sufficiently large. It should cover a long enough period of time, preferably

uniformly. The number of trajectories per day should be of the order of thousands.

4. Trajectories should cover a relatively small geographic area, e.g., a city or a district.

5. Vehicles should not follow a fixed route, e.g., public transport bus trajectories are not

suitable.

6. Publicly available for research purposes.
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These requirements were satisfied by the Taxi Trajectory Prediction (TTP) dataset from

Kaggle. The dataset covers a period of one year from July 1, 2013 to June 30, 2014. It is split

into a training and a test set, the former contains 1,710,670 trajectories, and the latter contains

320. The trajectories were collected in the city of Porto, Portugal, with a sampling rate of 15

seconds. First, we created a subset of the dataset, filtered to coordinates between W8.6518,

W8.5771, N41.1129, N41.1756, see Fig 5. The data samples’ features that were not relevant to

the research, such as origin of call, identifiers for individual taxi or customers, and type of day

(i.e. workday, weekend, holiday) were omitted. The processed format included the time of

departure, both as a timestamp and as distinct date attributes, the length of the trajectory, and

the points of the trajectory, represented as a list of GPS coordinates. Some data samples con-

tained incomplete trajectories, these were discarded. Because of the properties of the proposed

simulation model, the data was filtered to include only those samples that had a time of depar-

ture between 8-9 am. As a result, 82,345 trajectories remained. Although the length of trajecto-

ries had a wide range (the longest has 2,324 sample points), long trips were rare. Fig 6 shows

the distribution of the length of trajectories. Most routes were around a length of 41 sample

points, and routes with over 150 points were less than 1% of the dataset, see Fig 7. The distribu-

tion of the trajectory points (all, difference of start and end points, histogram of the difference)

is shown in Fig 8. The descriptive statistics of the dataset is shown in Table 1.

Building graphs from OpenStreetMap data

OpenStreetMap (OSM) is a community project to build a free map of the world to which any-

one can contribute. Data is available under the Open Data Commons Open Database License

(ODbL). The representation and storing of map data is based on a simple but powerful model,

that uses only three modeling primitives, namely, nodes, ways, and relations: 1. A node repre-

sents a geographical entity with GPS coordinates. 2. A way is an ordered list of at least two

nodes. 3. A relation is an ordered list of nodes, ways, and/or relations. All of these modeling

elements can have associated key-value pairs called tags that describe and refine the meaning

of the element to which they belong. Users can export map data at the OSM web site manually,

selecting a rectangular region of the map. Alternatively, map data can be extracted via web ser-

vices, see http://wiki.openstreetmap.org/wiki/API. OSM uses two formats for exporting map

data, namely OSM XML and PBF. Software libraries for parsing and working with OSM data

are available for several programming languages, see https://wiki.openstreetmap.org/wiki/

Frameworks.

We started our processing by building a graph from the OSM map of Porto, with the same

bounding box as the filtered dataset. Specific nodes of the OSM file become the nodes in the

graph. Because we only need those nodes that can be reached via vehicles, we had to filter the

OSM file and collect only specific types of way nodes. In the OSM file, a way is a sequence of

OSM nodes, so naturally, the nodes of ways become nodes in the graph. For every node we

store the node’s OSM ID, and its coordinates. We also insert an edge into the graph between

every nodes in way. The weight of an edge is given by the squared distance between the nodes,

which we calculate from the OSM file’s data. We used pyosmium library for processing the

OSM files and the NetworkX Python library for building the graph.

After building the graph we process the list of trajectories. Because the trajectories are given

in GPS coordinates, we first have to translate those coordinates into OSM node IDs. For every

coordinate in a trajectory, we search for the closest way node’s coordinates in the built graph,

so the result nodes have the same domain as the built graph’s nodes. Obviously, the original

trajectories made up of GPS coordinates does not have the same scaling as the OSM map. The

coordinates in the trajectory are sampled in regular, but larger time intervals than the OSM, so
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Fig 5. The map of the observed area. The graph created from the OSM data has 33,961 nodes, 53,126 edges, and covers a total of 857.26 km of road. The size of

the area is about 43.68 km2. (Base map and data from OpenStreetMap and OpenStreetMap Foundation. Reprinted from OpenStreetMap under a CC BY license,

with permission from OpenStreetMap, original copyright 2020. ©OpenStreetMap contributors).

https://doi.org/10.1371/journal.pone.0246062.g005
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they are not aligned. In order to match a trajectory to a way in our graph, we had to perform

an interpolation on the result list of node IDs, so we ran a Dijkstra’s shortest path algorithm

on our graph between every node IDs for every trajectory. Because the OSM database contains

errors, it can happen that in real life a route exists between two given places, but in the OSM

database, there are no existing routes between those nodes that are representing the given

places. In this case, we cut the faulty trajectories into pieces. The result of this process is an ape-

riodic strongly connected road network augmented by the ideal vertex 0, with a set of trajecto-

ries on the road network.

Statistical inference for Markov traffic using mobile sensors

The statistical analysis of a traffic systems described by the Markov traffic model means the

estimation of the quadruple (G, P, π, k) or the triplet (G, Q, k) using observed data. To estimate

Fig 6. Histogram of trajectory lengths. The rightmost bar represents trajectories longer than 12,500 meters. The average trajectory length is 3,628.93

meters.

https://doi.org/10.1371/journal.pone.0246062.g006
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G we have to explore the road system under study by identifying the set V of vertices and the

set E of directed road segments. Fortunately, this exploring has already been done by a few

organizations, see, e.g., the Google Maps and the OpenStreetMap. However, we should note

that, in case of GPS-based trajectory data, we have to fit the data to the applied map system

which is not an evident task at all. In the present paper, we propose a method for estimating

the two-dimensional stationary distribution Q immediately instead of the pair (P, π) of a tran-

sition matrix and its stationary distribution using mobile sensor data which may be gathered

by vehicles, passengers etc. In this case, we have trajectories data which consists of the

sequences of consecutive vertices, like in the TTP dataset. By (4), the estimators for P and π
can be easily derived from an estimator of Q. Finally, it is supposed that the size k of the traffic

is known.

Fig 7. Histogram of number of sample points per trajectories. The rightmost bar represents trajectories with more than 200 sample points. On the

average, a trajectory consists of 40 sample points and takes 10 minutes.

https://doi.org/10.1371/journal.pone.0246062.g007
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Suppose that, for a Markov traffic, we observed a random sample of trajectories {Xi}, i = 1,

. . ., k, of size k defined by Xi
1
) Xi

2
) . . .) Xi

ni
, i = 1, . . ., k, where ni denotes the length of

the i-th trajectory. Let n≔ n1 + . . . + nk be the total sample size. Define the total two-dimen-

sional consecutive empirical frequencies as:

nuv≔
Xk

i¼1

ni
uv; ð8Þ

Fig 8. Distribution of trajectory points of the filtered dataset. a: Distribution of all trajectory points shown in a 2D

histogram (number of bins: 80 × 80). b: Difference of trajectory starting and endpoints shown in a 2D histogram

(number of bins: 80 × 80). The color of each bin represents the number of trajectory starting points minus the number

of trajectory endpoints that fall in that bin. c: Histogram of the difference of trajectory starting and endpoints.

https://doi.org/10.1371/journal.pone.0246062.g008
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u, v 2 V, where the trajectory-wise two-dimensional consecutive empirical frequencies, i = 1,

. . ., k, are defined as

ni
uv≔

Xni � 1

j¼1

IðXi
j ¼ u;Xi

jþ1
¼ vÞ;

u, v 2 V. Plainly, ni
uv denotes the number of consecutive (u, v) (u, v 2 V) pairs in the i-th trajec-

tory. One can see that since {Xi} is a proper Markov random walk we have ni
uv ¼ 0 for all (u,

v)=2E [ S. Thus, the support of the two-dimensional frequency matrices N≔ (nuv)u,v2V,

Ni≔ðni
uvÞu;v2V , i = 1, . . ., k, is a subset of E [ S, i.e., they are weakly G-subordinated matrices.

Clearly, N ¼
Pk

i¼1
Ni and we have

X

u;v:u)v

nuv ¼ n � k; ð9Þ

where n − k is the corrected sample size. Introduce

sv≔
Xk

i¼1

IðXi
1
¼ vÞ; ev≔

Xk

i¼1

IðXi
ni
¼ vÞ;

v 2 V, i.e., sv denotes the number of trajectories which start at vertex v and ev denotes the num-

ber of trajectories which terminate at vertex v, respectively. Denote the one-dimensional mar-

ginal frequencies of N by nv+ ≔ ∑u2V nvu and n+v≔ ∑u2V nuv, v 2 V. We obtain that

nvþ þ ev ¼ nþv þ sv ¼ nv≔
Xk

i¼1

Xni

j¼1

IðXi
j ¼ vÞ ð10Þ

for all v 2 V, where nv denotes the number of vertex v in all trajectories. Finally,

X

v2V

sv ¼
X

v2V

ev ¼ k: ð11Þ

Define the vectors s and e on V as s≔ (sv)v2V and e≔ (ev)v2V, respectively. Then, (11) implies

that 1>(e − s) = 0, i.e., the vectors e − s and 1 are orthogonal.

The traditional maximum likelihood (ML) estimator bPML of the transition matrix P is given

by the maximization of the conditional loglikelihood

log L ¼
X

u)v

nuv log puv

Table 1. Descriptive statistics of lengths of trajectories. (82,345 total trajectories).

Name of statistics Dist in points Dist in meters

Mean 39.53 3,628.93

Median 35 3,176.786

Mode 34 0

Standard Deviation 31.64 2,408.93

Kurtosis 473.28 9.9

Skewness 12.11 1.78

Minimum 2 0

Maximum 2,324 61,055.58

https://doi.org/10.1371/journal.pone.0246062.t001
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in parameters puv, u, v 2 V such that u) v, under the constraints pu+ = 1 for all u 2 V. A solu-

tion of this constrained optimization problem is bpML
uv ¼ nuv=nuþ for all u, v 2 V if nu+ > 0 and

bpML
uv ¼ duv if nu+ = 0 where δ denotes the Kronecker delta. The maximum likelihood estimator

bπML of the stationary distribution π is derived by the solution of the global balance equation

π> ¼ π>bPML in π. Thus, the maximum likelihood estimator bQML ¼ ðbqML
uv Þ of Q is given by

bqML
uv ¼ bπ

ML
u bp

ML
uv , u, v 2 V. In the sequel, a direct method is proposed for estimating the two-

dimensional stationary distribution Q.

A naı̂ve estimator for the two-dimensional stationary distribution Q based on the two-

dimensional consecutive empirical frequency matrix N is bQnâıve≔ðn � kÞ� 1N. Clearly, bQnâıve, as

a non-negative matrix on V, satisfies the properties (i) and (ii) of Definition 3. However, the

problem with this naı̂ve estimator is that its row and column marginals are not necessarily

equal, i.e., in general, it does not satisfy the asumption (iii) of Definition 3. Hence, we have to

introduce a new estimator bQ which belongs toQ and is optimal in some sense.

The optimality of the proposed estimator is defined by means of the least squares distance

between matrices over G. Let A = (auv)u,v2V and B = (buv)u,v2V such that auv = buv = 0 for all u,

v 2 V where u⇏v, i.e., let A and B be weakly G-subordinated matrices. The distance between A
and B is defined as

kA � BkG≔
X

u;v:u)v

jauv � buvj
2

 !1=2

:

In fact, k�kG is the Frobenius norm of the matrices of dimension |V| × |V| which vanish on the

entries outside of E [ S.

To formulate the objective function for estimating the two-dimensional stationary distribu-

tion it is convenient to weaken the assumptions of Definition 3 by leaving the normalizing

assumption (ii). In the sequel, let M = (muv) denote a non-negative parameter matrix on G
which satisfies assumptions (i) and (iii) of Definition 3, i.e., M is weakly G-subordinated and

∑v2V muv = ∑v2V mvu for all u 2 V. Then, one can easily derive a two-dimensional stationary

distribution Q from M by its normalization defining as Q≔ (1>M 1)−1 M.

Based on k number of trajectories, using the Frobenius norm, the optimality criterion is

defined as the weighted sum of squared errors (SSE):

SSEðM;w jNÞ≔
Xk

i¼1

w� 1

i kNi � wiMk
2

G; ð12Þ

where M is a non-negative parameter matrix satisfying assumptions (i) and (iii) of Definition

3, w = (wi)i=1,. . .,k are non-negative unknown weights, with
Pk

i¼1
wi ¼ 1, and N≔ (Ni)i=1,. . .,k

denotes the data, where Ni is the two-dimensional consecutive empirical frequency matrix for

the ith trajectory, see (8). The statistical inference for a Markov traffic means the minimization

of the objective function SSE in its parameters M and w deriving the weighted least squares

(WLS) estimators bMWLS and bwWLS. Then, the WLS estimator of Q is defined as bQWLS≔n� 1
eff
bMWLS

where neff≔ð1> bMWLS1Þ is the so-called effective sample size. Here, bQ can be interpreted as the

estimated two-dimensional stationary distribution which describes the individual Markov traf-

fic in time. On the other hand, neff gives the equivalent sample size related to the independent

case which may be thought of as the information content of the observed data. Note that neff is

not necessarily an integer and is different from n and n − k. Finally, wi gives the importance of

the ith trajectory in the sample. One can see that longer trajectory implies higher weight.
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To formulate our result on WLS estimation of Markov traffic we need some basic facts on

the spectral theory of directed graphs, see [69] for details. The symmetric unnormalized graph

Laplacian matrix L of a digraph G is defined as

L≔D � A � A>

where A denotes the adjacency matrix of G and D≔ diag{d+ + d−} is a diagonal matrix. Note

that for the road graph G, since there is no loop, we have lvv = dvv = deg+(v) + deg−(v) for all v
2 V. The main theorem of this paper is the following.

Theorem 2. There is a unique pair ð bMWLS; bwWLSÞ which minimizes the weighted sum of

squared errors SSE defined in (12). These WLS estimators are derived as

bwi
WLS≔

kNikG
Pk

j¼1
kNjkG

;

i = 1, . . ., k, and

bMWLS≔N þ ð1λ> � λ1>Þ � A;

where λ 2 F is called Lagrange vector and defined as a unique solution to the linear equation

L λ = s − e which satisfies the constraint 1> λ = 0 (i.e., ∑v2V λv = 0) and � denotes the entrywise

(Hadamard) product of matrices.

Based on the previous theorem, by (9), the effective sample size is given as

neff≔ðn � kÞ þ ðd� � dþÞ>λ; ð13Þ

i.e., neff depends only on the graph structure of the road network, which is independent of the

data, the traffic direction vector s − e, and the corrected sample size. However, it does not

depend on the data which are inside the trajectories.

The WLS estimators proposed above can be considered as a kind of composite (or quasi-)

likelihood estimators for Markov chains, see [54]. The composite likelihood method is widely

applied in complex statistical models when the full ML method can be difficult to apply or may

not be robust enough. In our method, the objective function is based on pairwise marginal dis-

tributions, however, instead of formula (2) in [54], the quasi-likelihood function is a square

function, the logarithm of the normal probability density with heteroscedastic variance which

depends on the length of trajectories. The latter will be more clear by introducing the mean

squared error (MSE) as

MSE≔n� 1
eff SSE ¼

Xk

i¼1

ni
effkðn

i
effÞ
� 1Ni � Qk2

G; ð14Þ

where ni
eff≔wineff denotes the effective sample size of the ith trajectory, i = 1, . . ., k. The param-

eters of the objective function MSE are the effective sample sizes fni
effg and the two-dimen-

sional s.d. Q. The heuristic explanation of the need to use weights in formulas (12) and (14) is

the following. By the Central Limit Theorem, for large ni, the trajectory-wise two-dimensional

consecutive empirical frequency matrix Ni can be approximated as Ni � niQþ n1=2

i ξi, where ξi
is a normally distributed random matrix on V for all i = 1, . . ., k, which is a heteroscedastic

equation between the observed Ni and the parameter matrix Q. Hence,

kNi � niQk
2

G � nikξik
2

G, where kξik
2

G, i = 1, . . ., k, are independent identically distributed r.v.’s.

Thus, we have to normalize the trajectory-wise squared errors proportionally to their lengths,

respectively, in order to get balanced error terms.
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The estimation theory of finite Markov chains goes back for a long time, see [70]. In the

traditional ML approach the estimators of the transition and stationary probabilities are

derived by corresponding relative frequencies, respectively. However, these estimators have

a few problems which imply that they can be applied with limited success for estimating the

Markov traffic on a road network. Firstly, they are based on only one long trajectory (or real-

ization). However, in a real traffic dataset there is a large number of relatively short trajecto-

ries, i.e., the set {ni, i = 1, . . ., k} are bounded, where k is large or tends to infinity. In our

example, for the TTP dataset, the number of trajectories is above 80K with the mean length

40 and maximum length 2K, see Table 1. Secondly, they are asymptotic estimators in the

sense that, for finite sample size, the estimated stationary distribution does not satisfy the

global balance equation given by the estimated transition probability matrix. The global bal-

ance equation holds only asymptotically, i.e., when the sample size tends to infinity. In fact,

the inaccuracy in the global balance equation is not too large, however, this little bias can

cause significant discrepancy from the “true” stationary distribution in the simulation.

Thirdly, the trajectories are biased during a short time period in the sense that they are start-

ing from some parts of the road network and ending at other parts. For example, in the

morning period the vehicles are moving from the residential districts to the business dis-

tricts of the city and they are moving back in the afternoon period. In other words, the traffic

has a definite direction on the road network. To demonstrate this behavior in the case of

TTP dataset, Fig 8c shows the distribution of the elements of the traffic direction vector s − e
while Fig 8b shows their spatial distribution. Neither distributions are concentrated around

the zero. The known improvements of the ML estimators, e.g., by using the bootstrap, see

[71], do not solve these problems. However, the WLS estimator of the two-dimensional sta-

tionary distribution proposed in this paper is able to handle all of these problems. The esti-

mator bQWLS is taking account of more than one trajectory with their length. It determines

uniquely both the transition probability matrix and its stationary distribution by (4) which

satisfy the global balance equation obviously. Finally, by taking account of the traffic direc-

tion vector in the estimator, it can correct the bias due to the unbalanced sampling of trajec-

tories on the road network.

The fundamental statement of Theorem 2, as one of the main result of this paper, is that

the estimator bQWLS (or bMWLS) consists of two parts: the first part is the naı̂ve estimator for

the distribution of the consecutive pairs in trajectories based on the empirical frequencies,

while the second part is a correction term ensuring that bQWLS (or bMWLS) has equidistributed

marginals. The second part also depends on two components. The first one is the Laplacian

matrix of the road graph which depends only on the graph structure of the road network

and independent from the trajectory data. The second one is the traffic direction vector

which depends only on the trajectory data. Note that all sufficient statistics, namely the total

two-dimensional consecutive empirical frequencies and starting and ending empirical fre-

quencies, can be computed by counting, which is numerically very effective and can be exe-

cuted even for big data.

The computationally intensive part of WLS estimator is the numerical solution of sparse

linear equation system given for the Lagrange vector λ in Theorem 2. This can be performed

in a numerically effective manner by the eigenvalues-eigenvectors decomposition of the sym-

metric unnormalized (or normalized) graph Laplacian matrix, see Proposition 1 and 2 in [72].

Remark that the first few significant eigenvalues and eigenvectors, being independent from the

data, can be computed and stored in advance for a simulation program. Finally, one can also

see that, similarly to the Google’s PageRank algorithm, see Chapter 15 in [73]), a linear recur-

sion could be computationally more efficient in large-scale problems.
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Results

To evaluate the performance of the proposed WLS estimation method by comparing it to the

traditional ML one discussed above, a simple simulation study was conducted at different sam-

ple sizes for small and medium road network. In the simulations, in order to mimic the real

traffic, we tried to keep the length of trajectories low and the number of trajectories high com-

pared to the size of the road network, similarly to the Porto example. The absolute bias of an

investigated estimator bQ for the two-dimensional s.d. Q as a parameter is defined by kbQ� QkG.

The empirical absolute bias and its standard error (SE) correspond to the mean and standard

deviation of absolute biases in 100 replications, respectively. All simulations were carried out

in Python using the PyDTMC library developed for analysing discrete time Markov chains

(https://pypi.org/project/PyDTMC/). The codes and datasets of our simulation are available

upon request.

Table 2 displays the simulation results for the small road network in Fig 1 using the Markov

kernel of Fig 3 (We implemented this example in Python, see: https://github.com/rbesenczi/

Crowd-sourced-Traffic-Simulator/blob/master/model-sources/Markovkernel/example_graph.

py). The simulation parameters were k = 100, 200, 500, and 1000 number of trajectories with

n = 3, 5, and 10 length. The absolute bias and its standard error do not depend on the length n
and they are decreasing as k is increasing for both estimation methods. The latter is an

expected result. Moreover, while for relatively small k the performance of the WLS and ML

methods are similar, in the case of relatively large number of trajectories the ML estimator out-

performs the WLS one a little bit. This phenomenon could be due to the asymptotic optimality

of the ML estimator because the parameter k is enough large (1000) compared to the size of

the road graph (5).

In the second simulation scenario, a strongly connected subgraph, which contains 1000 ver-

tices, of Porto’s road network was chosen (exported from the OSM, as well, GPS coordinates

W8.6137, W8.5991, N411573, N41.1437). The entries of Markov kernel were generated ran-

domly. The simulation parameters were k = 1000, 3000, and 5000 with n = 3, 5, and 10. In this

scenario, the absolute bias and its standard error depend also only on k and are independent of

the length n. However, there are significant differences between the performances of the two

estimation methods (ML and WLS) related to the parameter k. On the one hand, the absolute

bias of ML estimator is decreasing as k is increasing while it is constant for WLS estimator. On

the other hand, the WLS estimator is better than the ML one in case of k = 1000 but worse in

Table 2. Simulation results, absolute bias and SE (inside parenthesis), for the Markov kernel in Fig 3 on the road

network in Fig 1. (k—number, n—length of trajectories).

k n ML WLS

100 3 0.034 (0.0103) 0.034 (0.0109)

100 5 0.035 (0.0106) 0.034 (0.0103)

100 10 0.033 (0.0095) 0.033 (0.0094)

200 3 0.024 (0.0066) 0.026 (0.0066)

200 5 0.023 (0.0064) 0.024 (0.0067)

200 10 0.024 (0.0071) 0.025 (0.0070)

500 3 0.015 (0.0046) 0.017 (0.0049)

500 5 0.015 (0.0041) 0.017 (0.0049)

500 10 0.016 (0.0047) 0.017 (0.0049)

1000 3 0.010 (0.0032) 0.013 (0.0041)

1000 5 0.011 (0.0034) 0.015 (0.0044)

1000 10 0.010 (0.0030) 0.014 (0.0040)

https://doi.org/10.1371/journal.pone.0246062.t002
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case of k = 5000. Since the former parameter setting is closer to the real traffic, this simulation

corroborates the superiority of WLS method based on two-dimensional s.d. against the tradi-

tional maximum likelihood. Finally, in this scenario, the scale of the SE’s indicates that the

WLS estimator is more stable than the ML one See Table 3.

We have also implemented the model in the OOCWC system in order to apply our simula-

tion method for real large-scale problems. First, we have filtered the TTP dataset. Then, we

have created the Markov kernel from the filtered dataset, so all nodes of the simulation graph

will have the corresponding transition probability vector. We should note, however, that not

all nodes can be found in the Markov kernel, because it can happen that the dataset does not

completely cover the whole map, i.e., not all nodes are part of a trajectory. In this case, we set

uniform distribution for the corresponding node. Finally, we had to modify the basic opera-

tion of the simulation algorithm. In the original implementation, the cars are moving on the

map quite randomly. Now, a car selects the next node based on the transition probability vec-

tor of the current node. For this, we use the pseudo-random number generation engine from

the Boost Random library that is based on the method presented in paper [74].

Let’s consider an example. We are at the graph vertex (or intersection) of OSM node ID

1110673569 (with GPS coordinates 41.1752185, -8.6231927). The total transitions of this node

(i.e. the total trajectories that cross this intersection) in the dataset is 1,649. The transitions to

the neighbor nodes are shown in Table 4. Please note that the actual transition probability

(TP) is not the same as the ratio of the transitions to the neighbor node and the total transi-

tions of the node which is called frequency (or ML) based transition probabilities. The actual

transition probability comes from the Markov kernel of the whole graph. The two kinds of

transition probabilities are also compared in Table 4 where the WLS based transition probabil-

ities have been derived by our method. One can already see in this simple example that the dif-

ference between the two methods could be huge. This small example can be observed in Fig 9,

as well.

Table 3. Simulation results, absolute bias and SE (inside parenthesis), for a part of Porto’s map with 1000 vertices.

(k—number, n—length of trajectories).

k n ML WLS

1000 3 0.166 (0.0559) 0.025 (0.0007)

1000 5 0.184 (0.1214) 0.025 (0.0007)

1000 10 0.169 (0.0938) 0.025 (0.0008)

3000 3 0.064 (0.1725) 0.023 (0.0005)

3000 5 0.070 (0.1665) 0.023 (0.0005)

3000 10 0.063 (0.1705) 0.023 (0.0005)

5000 3 0.016 (0.0150) 0.023 (0.0004)

5000 5 0.014 (0.0055) 0.023 (0.0004)

5000 10 0.014 (0.0126) 0.023 (0.0003)

https://doi.org/10.1371/journal.pone.0246062.t003

Table 4. Transitions of intersection 1110673569. (TP—transition probability).

Neighbor node # of transitions ML based TP WLS based TP

1471136241 1449 0.879 0.6

1110673512 170 0.103 0.382

1837918561 30 0.018 0.018

Sum 1649 1 1

https://doi.org/10.1371/journal.pone.0246062.t004
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Fig 9. A visual explanation of transitions of intersection 1110673569. TP means transition probability, red dots indicate nodes. (Base map and data from

OpenStreetMap and OpenStreetMap Foundation. Reprinted from OpenStreetMap under a CC BY license, with permission from OpenStreetMap, original

copyright 2020. ©OpenStreetMap contributors. Annotated by the authors).

https://doi.org/10.1371/journal.pone.0246062.g009
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The initialization phase of the simulation adds traffic units to the map. Each unit is placed

to an OSM node, i.e., on a vertex of the simulation graph. There exist two ways to do this, one

is following a prescribed distribution (e.g. uniform), the other is following measured data. In

our test case, we initialized simulations with fictional measured data. We put units only to the

streets Rua de Antero de Quental, Rua da Constituição and Rua da Boavista (25.6%, 51.4%,

23% of the cars, respectively), i.e., the simulation starts from the traffic configuration which is

concentrated on three nodes of the road graph. In addition, we can set the number of the simu-

lation units. We run simulations with k = 5, 000, 10, 000, 20, 000, 30, 000 and 50, 000 units.

The simulation starts when all simulation units are added to the map. Fig 10 shows the change

of the distribution of cars during the simulation.

The RCE produces a logfile that contains the position of every simulation unit in every sim-

ulation step. From this file, we calculate the number of cars by streets in every minute, so we

can observe the change of distribution of the cars. In addition, we calculated the s.d. of cars for

streets in the city of Porto, see Fig 11. This latter one tells us, what is the probability that a car

is on a given street. It is worth noting the similarity between this figure and Fig 8a. The ticker

line on Fig 11 corresponds to increasingly hot color on Fig 8a.

To obtain a quantitative measure that describes the “goodness” of our simulation algorithm,

we applied the Pearson’s chi-squared test. We expect, by the ergodicity of the Markov traffic,

that during the simulation, independently from the initial distribution, within a certain time

period, the distribution of the cars become close to the previously calculated stationary distri-

bution. Fig 12 shows the test results. We can observe that in the first few minutes the test statis-

tic is significantly high, meaning that the distribution of the cars is still far from the steady-

state. However, after a time period that depends on the number of cars, the test statistic

becomes low, meaning that the distribution became steady. One can observe that it takes more

time to reach the steady-state with more traffic units, which is reasonable. Another notable

trend is the case of 5,000 cars, where the line is elevating after reaching the steady-state. This

can be caused by the low number of cars. The number of individual streets (named or

unnamed, e.g. motorway junctions) is 2,194. 5,000 cars are simply not enough to reach and

hold a steady-state in this type of simulation.

Finally, we should note some implementation details and possible drawbacks of this model

that may have an impact on the model’s overall performance.

In small and medium graphs, the proposed algorithm and its implementation performs

as it is expected. But in the case of our Porto example, where the graph has 33,961 nodes and

53,126 edges and the TP matrix is very sparse, numerical problems may occur. One problem

can occur when we calculate the bQWLS estimator and then TP matrix. For matrices with this

size (34,000 x 34,000), we cannot solve the linear equation of the Lagrange vector in Theo-

rem 2 always numerically, thus we could only use the least square solution for a numerically

stable calculation. In some cases, this causes impossible numbers to present in the TP matrix,

e.g. for a node, the TP vector is [1.17489, -0.174894], which is obviously impossible. It is

interesting to note that the sum of these “malfunctional” TP vectors are 1 all the time, and

mostly occurs if the node has a low number of transitions (less than 20). In such cases, we

use the frequency based TP. Another numerical problem can occur when we calculate the s.

d. π, namely, negative values may present in the results. We need to handle this problem

when we calculate the Pearson’s chi-squared test. We chose to shift every value of π until we

get a sum of 1 for π.

Some minor issues can occur with the map database and the differences between the Porto

dataset and the OSM data. In some cases, we could not calculate a route between two consecu-

tive trajectory points using OSM data. This can happen because of the imperfection of the
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Fig 10. The change of the distribution of cars during the simulation (5,000, 10,000, 20,000 and 50,000 cars). The

thickness of the street is proportionate with the number of cars on the street. a: Initial step (5,000 cars). b: After 30 mins

(5,000 cars). c: After 60 mins (5,000 cars). d: Initial step (10,000 cars). e: After 30 mins (10,000 cars). f: After 60 mins

(10,000 cars). g: Initial step (20,000 cars). h: After 30 mins (20,000 cars). i: After 60 mins (20,000 cars). j: Initial step

(50,000 cars). k: After 30 mins (50,000 cars). l: After 60 mins (50,000 cars).

https://doi.org/10.1371/journal.pone.0246062.g010
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OSM data or false GPS measurement. We handle this case by splitting the trajectory into

pieces.

Another minor issue arises in the calculation of the Pearson’s chi-squared test. Since the

OSM Porto map and the trajectory dataset do not cover each other perfectly, we only know the

s.d. π for a subgraph of the whole map. During the simulation the units can traverse the whole

map graph, so, it can happen that a traffic unit reaches an edge which is not part of the sub-

graph where we know the s.d. π. During the calculation of the Pearson’s chi-squared test, we

consider only those cars that are present on the road network, where the s.d. π is known.

Conclusions

In this paper, we have described our traffic simulation model that is called “Markov traffic”

based on tools from graph theory and Markov modeling. The aim was to provide a simulation

Fig 11. The stationary distribution of cars in Porto based on the TTP dataset.

https://doi.org/10.1371/journal.pone.0246062.g011

PLOS ONE Markov traffic simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0246062 February 9, 2021 26 / 31

https://doi.org/10.1371/journal.pone.0246062.g011
https://doi.org/10.1371/journal.pone.0246062


method that is able to keep the distribution of the cars on the map in a steady-state on a large

scale road network. We have proven that, under general assumptions, the stationary distribu-

tion (s.d.) is unique for any Markov transition mechanism on a wide class of road networks.

An explicit formula has also been derived for the s.d. and the ergodicity of Markov traffic has

also been proved.

We have shown that the s.d., with the related transition mechanism, can be explored from

observed data based on sample trajectories. We have provided a statistical method and proved

its optimality by simulation with which we can create the Markov kernel necessary to obtain a

Markov traffic on a given road graph. Using this kernel, we can initiate traffic simulations that

provide a s.d. of the cars on the map.

To provide an example for creating this kernel file, we have used a publicly available dataset,

namely the Taxi Trajectory Prediction dataset. Our simulation uses OpenStreetMap, a free

map database.

To test our theories, we have implemented the proposed model in our simulation program

(RCE). We have run simulations and it has been proved to provide a s.d. on the map graph of

Porto, Portugal. The whole project (including the RCE) is available for download (see https://

github.com/rbesenczi/Crowd-sourced-Traffic-Simulator/blob/master/justine/install.txt).

Some simulation video is available at the YouTube channel of the first author at http://bit.ly/

2FRpPxL.

Future work will focus on the further validation of the assumptions of the Markov traffic

model in cases of real traffic data and the possible applications of our simulation approach,

Fig 12. Chi-square test results.

https://doi.org/10.1371/journal.pone.0246062.g012
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e.g., modelling the pollution or energy consumption in a city due to multi-modal traffic with

gasoline, diesel, electric and plug-in hybrid vehicles, as well as public transportation.
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17. Bátfai N, Besenczi R, Ispány M, Jeszenszky P, Major RS, Monori F. Markov modeling and simulation of

traffic flow. In: Data Science, Statistics & Visualisation, DSSV 2018; 2018. p. 61. Available from: http://

cstat.tuwien.ac.at/filz/BoA.pdf.

18. Nagel K, Schreckenberg M. A cellular automaton model for freeway traffic. Journal de Physique I

France. 1992; 2(12):2221–2229. https://doi.org/10.1051/jp1:1992277

19. Horni A, Nagel K, Axhausen KW. The Multi-Agent Transport Simulation MATSim. Ubiquity Press Lon-

don; 2016.

20. Krajzewicz D, Erdmann J, Behrisch M, Bieker L. Recent Development and Applications of SUMO—

Simulation of Urban MObility. International Journal On Advances in Systems and Measurements. 2012;

5(3&4):128–138.

21. Crisostomi E, Kirkland S, Shorten R. A Google-like model of road network dynamics and its application

to regulation and control. International Journal of Control. 2011; 84(3):633–651. https://doi.org/10.1080/

00207179.2011.568005

22. Faizrahnemoona M, Schlote A, Maggi L, Crisostomi E, Shorten R. A big-data model for multi-modal

public transportation with application to macroscopic control and optimisation. International Journal of

Control. 2015; 88(11):2354–2368. https://doi.org/10.1080/00207179.2015.1043582

23. Faizrahnemoon M. Real-data modelling of transportation networks. Hamilton Institute, National Univer-

sity of Ireland Maynooth; 2016.

24. Dabrowski C, Hunt F. Using Markov chain and graph theory concepts to analyze behavior in complex

distributed systems. U.S. National Institute of Standards and Technology; 2011.

25. Cavers M, Vasudevan K. Spatio-temporal complex Markov Chain (SCMC) model using directed

graphs: Earthquake sequencing. Pure and Applied Geophysics. 2015; 172(2):225–241. https://doi.org/

10.1007/s00024-014-0850-7

26. Lesne A. Complex Networks: from Graph Theory to Biology. Letters in Mathematical Physics. 2006;

78:235–262. https://doi.org/10.1007/s11005-006-0123-1

27. Lee S, Fambro DB. Application of subset autoregressive integrated moving average model for short-

term freeway traffic volume forecasting. Transportation Research Record. 1999; 1678(1):179–188.

https://doi.org/10.3141/1678-22

28. Stathopoulos A, Karlaftis MG. A multivariate state space approach for urban traffic flow modeling and

prediction. Transportation Research Part C: Emerging Technologies. 2003; 11(2):121–135. https://doi.

org/10.1016/S0968-090X(03)00004-4

PLOS ONE Markov traffic simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0246062 February 9, 2021 29 / 31

https://doi.org/10.1073/pnas.1800474115
https://doi.org/10.1073/pnas.1800474115
http://www.ncbi.nlm.nih.gov/pubmed/30530677
https://doi.org/10.1371/journal.pone.0161738
http://www.ncbi.nlm.nih.gov/pubmed/27657738
https://doi.org/10.1007/s11432-012-4725-1
https://doi.org/10.1007/s11432-012-4725-1
https://doi.org/10.1109/MCOM.2017.1600238CM
http://cstat.tuwien.ac.at/filz/BoA.pdf
http://cstat.tuwien.ac.at/filz/BoA.pdf
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1080/00207179.2011.568005
https://doi.org/10.1080/00207179.2011.568005
https://doi.org/10.1080/00207179.2015.1043582
https://doi.org/10.1007/s00024-014-0850-7
https://doi.org/10.1007/s00024-014-0850-7
https://doi.org/10.1007/s11005-006-0123-1
https://doi.org/10.3141/1678-22
https://doi.org/10.1016/S0968-090X(03)00004-4
https://doi.org/10.1016/S0968-090X(03)00004-4
https://doi.org/10.1371/journal.pone.0246062


29. Ghosh B, Basu B, O’Mahony M. Multivariate short-term traffic flow forecasting using time-series analy-

sis. IEEE Transactions on Intelligent Transportation Systems. 2009; 10(2):246. https://doi.org/10.1109/

TITS.2009.2021448

30. Xue J, Shi Z. Short-time traffic flow prediction based on chaos time series theory. Journal of Transporta-

tion Systems Engineering and Information Technology. 2008; 8(5):68–72. https://doi.org/10.1016/

S1570-6672(08)60040-9

31. Wang Y, Papageorgiou M. Real-time freeway traffic state estimation based on extended Kalman filter:

A general approach. Transportation Research Part B: Methodological. 2005; 39(2):141–167. https://

doi.org/10.1016/j.trb.2004.03.003

32. Ngoduy D. Low-rank unscented Kalman filter for freeway traffic estimation problems. Transportation

Research Record. 2011; 2260(1):113–122. https://doi.org/10.3141/2260-13

33. Davis GA, Nihan NL. Nonparametric regression and short-term freeway traffic forecasting. Journal of

Transportation Engineering. 1991; 117(2):178–188. https://doi.org/10.1061/(ASCE)0733-947X(1991)

117:2(178)

34. Smith BL, Williams BM, Oswald RK. Comparison of parametric and nonparametric models for traffic

flow forecasting. Transportation Research Part C: Emerging Technologies. 2002; 10(4):303–321.

https://doi.org/10.1016/S0968-090X(02)00009-8

35. Turochy RE, Pierce BD. Relating short-term traffic forecasting to current system state using nonpara-

metric regression. In: Proceedings of the 7th International IEEE Conference on Intelligent Transporta-

tion Systems; 2004. p. 239–244.

36. Smith BL, Demetsky MJ. Traffic flow forecasting: Comparison of modeling approaches. Journal of

Transportation Engineering. 1997; 123(4):261–266. https://doi.org/10.1061/(ASCE)0733-947X(1997)

123:4(261)

37. Messer CJ. Advanced freeway system ramp metering strategies for Texas. Texas Transportation Insti-

tute, College Station, TX; 1993.

38. Castro-Neto M, Jeong YS, Jeong MK, Han LD. Online-SVR for short-term traffic flow prediction under

typical and atypical traffic conditions. Expert Systems with Applications. 2009; 36(3):6164–6173.

https://doi.org/10.1016/j.eswa.2008.07.069

39. Nicholson H, Swann CD. The prediction of traffic flow volumes based on spectral analysis. Transporta-

tion Research. 1974; 8(6):533–538. https://doi.org/10.1016/0041-1647(74)90030-6

40. Jiang X, Adeli H. Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transpor-

tation Engineering. 2005; 131(10):771–779. https://doi.org/10.1061/(ASCE)0733-947X(2005)131:10

(771)

41. Xie Y, Zhang Y. A wavelet network model for short-term traffic volume forecasting. Journal of Intelligent

Transportation Systems. 2006; 10(3):141–150. https://doi.org/10.1080/15472450600798551

42. Cheng Y, Zhang Y, Hu J, Li L. Mining for similarities in urban traffic flow using wavelets. In: 2007 IEEE

Intelligent Transportation Systems Conference; 2007. p. 119–124.

43. Jeong YS, Byon YJ, Castro-Neto MM, Easa SM. Supervised weighting-online learning algorithm for

short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems. 2013; 14

(4):1700–1707. https://doi.org/10.1109/TITS.2013.2267735

44. Chan KY, Dillon TS, Singh J, Chang E. Neural-network-based models for short-term traffic flow fore-

casting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm. IEEE Transactions

on Intelligent Transportation Systems. 2012; 13(2):644–654. https://doi.org/10.1109/TITS.2011.

2174051

45. Park B, Messer CJ, Urbanik T. Short-term freeway traffic volume forecasting using radial basis function

neural network. Transportation Research Record. 1998; 1651(1):39–47. https://doi.org/10.3141/1651-

06

46. Dia H. An object-oriented neural network approach to short-term traffic forecasting. European Journal

of Operational Research. 2001; 131(2):253–261. https://doi.org/10.1016/S0377-2217(00)00125-9

47. Sun S, Zhang C, Yu G. A Bayesian network approach to traffic flow forecasting. IEEE Transactions on

Intelligent Transportation Systems. 2006; 7(1):124–132. https://doi.org/10.1109/TITS.2006.869623

48. Lv Y, Duan Y, Kang W, Li Z, Wang FY. Traffic flow prediction with big data: A deep learning approach.

IEEE Transactions on Intelligent Transportation Systems. 2015; 16(2):865–873.

49. Brameier MF, Banzhaf W. Basic concepts of linear genetic programming. Linear Genetic Programming.

2007; p. 13–34.

50. Iokibe T, Mochizuki N, Kimura T. Traffic prediction method by fuzzy logic. In: Second IEEE International

Conference on Fuzzy Systems; 1993. p. 673–678.

PLOS ONE Markov traffic simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0246062 February 9, 2021 30 / 31

https://doi.org/10.1109/TITS.2009.2021448
https://doi.org/10.1109/TITS.2009.2021448
https://doi.org/10.1016/S1570-6672(08)60040-9
https://doi.org/10.1016/S1570-6672(08)60040-9
https://doi.org/10.1016/j.trb.2004.03.003
https://doi.org/10.1016/j.trb.2004.03.003
https://doi.org/10.3141/2260-13
https://doi.org/10.1061/(ASCE)0733-947X(1991)117:2(178)
https://doi.org/10.1061/(ASCE)0733-947X(1991)117:2(178)
https://doi.org/10.1016/S0968-090X(02)00009-8
https://doi.org/10.1061/(ASCE)0733-947X(1997)123:4(261)
https://doi.org/10.1061/(ASCE)0733-947X(1997)123:4(261)
https://doi.org/10.1016/j.eswa.2008.07.069
https://doi.org/10.1016/0041-1647(74)90030-6
https://doi.org/10.1061/(ASCE)0733-947X(2005)131:10(771)
https://doi.org/10.1061/(ASCE)0733-947X(2005)131:10(771)
https://doi.org/10.1080/15472450600798551
https://doi.org/10.1109/TITS.2013.2267735
https://doi.org/10.1109/TITS.2011.2174051
https://doi.org/10.1109/TITS.2011.2174051
https://doi.org/10.3141/1651-06
https://doi.org/10.3141/1651-06
https://doi.org/10.1016/S0377-2217(00)00125-9
https://doi.org/10.1109/TITS.2006.869623
https://doi.org/10.1371/journal.pone.0246062


51. Li L, Lin WH, Liu H. Type-2 fuzzy logic approach for short-term traffic forecasting. In: IEEE Proceed-

ings-Intelligent Transport Systems. vol. 153. IET; 2006. p. 33–40.

52. Zhang Y, Ye Z. Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelli-

gent Transportation Systems. 2008; 12(3):102–112. https://doi.org/10.1080/15472450802262281

53. Necula E. Dynamic traffic flow prediction based on GPS data. In: IEEE 26th International Conference

on Tools with Artificial Intelligence; 2014. p. 922–929.

54. Hjort NL, Varin C. ML, PL, QL in Markov chain models. Scandinavian Journal of Statistics. 2008; 35

(1):64–82. https://doi.org/10.1111/j.1467-9469.2007.00559.x

55. Bang-Jensen J, Gutin GZ. Digraphs: Theory, Algorithms and Applications. Berlin Heidelberg New

York: Springer Science & Business Media; 2008.

56. Pan B, Zheng Y, Wilkie D, Shahabi C. Crowd sensing of traffic anomalies based on human mobility and

social media. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems. ACM; 2013. p. 344–353.

57. Crovella M, Kolaczyk E. Graph wavelets for spatial traffic analysis. In: IEEE INFOCOM 2003. Twenty-

second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat.

No.03CH37428). vol. 3; 2003. p. 1848–1857.

58. Wu Y, Zhang X, Bian Y, Cai Z, Lian X, Liao X, et al. Second-order random walk-based proximity mea-

sures in graph analysis: Formulations and algorithms. The VLDB Journal. 2018; 27(1):127–152. https://

doi.org/10.1007/s00778-017-0490-5

59. Porta S, Crucitti P, Latora V. The Network Analysis of Urban Streets: A Dual Approach. Physica A.

2006; 369:853–866. https://doi.org/10.1016/j.physa.2005.12.063

60. Faizrahnemoona M, Schlote A, Crisostomi E, Shorten R. A Google-like model for public transport. In:

International Conference on Connected Vehicles and Expo (ICCVE); 2013. p. 612–613.

61. Horn RA, Johnson CR. Matrix Analysis. Cambridge: Cambridge University Press; 2012.

62. Asmussen S. Applied Probability and Queues. vol. 51 of Applications of Mathematics (New York). New

York: Springer-Verlag; 2003.
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