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Abstract

An unified shell modelschemeis introducedthat evaluates simultaneously the contributionsof boundsingle-particle states,
Gamow resonancesandantiboundstates to processesoccurring in the continuum part of nuclear spectra. This new scheme
allowsusto studytheeffectof theantiboundpoleandtheremainingpart of thecomplex continuumseparately. Thecalculations,
performedin thecomplex energy plane,areapplied to thestudyof weakly boundnuclei. Theinfluenceof antiboundstatesupon
physicalquantitiesin light aswell asin heavy nuclei is assessed.
 2004ElsevierB.V. All rights reserved.

PACS: 25.70.Ef; 23.50.+z; 25.60.+v; 21.60.Cs

1. Introduction

One major difficulty related to the microscopical
description of nuclei closeto thedrip linesis the treat-
mentof the continuumcoupling.Thefirst attempts to
introducethecontinuumcoupling intoshell modelcal-
culationswere donemorethan forty yearago in the
framework of the continuumshell model (CSM) [1].
In CSM calculationsone considers usually at most
oneparticle scattered into the continuumpart of the
single-particle spectrum. For more complicated con-
figurations, with two or more particles moving in the
continuum,the CSM calculationsbecomeunfeasible
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due to the extremely large dimensions of the shell
modelbasis. Thesizeof the CSM basis canbeeven-
tually reducedto manageabledimensionsif onecould
restrict the calculationsto that continuumconfigura-
tions based on single-particle resonantstates, which
carry the most important contribution of the contin-
uumcoupling. However, in positive energy represen-
tations, as the one used in the CSM, there is not a
unique wave function associated to a given single-
particle resonance.Such unique(discrete) wave func-
tions, the so-called Gamow functions[2], canbe de-
fined only in the complex energy plane. They cor-
respond to the outgoing solutions of the one-body
Schrödingerequation [3]. TheGamow states, together
with a set of scattering statesbelonging to a contour
in the complex energy planeform a complete repre-
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sentation, the Berggrenrepresentation [4]. Based on
this representation a shell model in the complex en-
ergy plane(CXSM) wasrecentlypresented[5–8].

In its initial form the CXSM was formulated
starting from a Berggren representation consisting
of bound states, Gamow resonancesand complex
scattering states.In this Letterwe will further extend
the CXSM including also the antiboundstates in the
single-particle basis. Thatis, theantiboundstateswill
bepartof thesingle-particlerepresentation in thesame
fashion as boundstates are in standardshell model
calculations. Thisnew formalismallowsus to analyze
the role of the antibound state separately from the
remaining part of the (complex) continuum.Within
this representation we will investigate,from the shell
modelperspective, the effect of the antiboundstates
on the structure of exotic nuclei, particularly the ones
which form neutron halos. But we want to stressthat
it isnot the intention of thiswork to providea general
theory of nuclear halos but rather to show how to
include the antibound states in the CXSM and the
influencethatantiboundstatesmayhaveuponnuclear
properties.

2. Formalism

The shell model in the complex energy plane
is based on the Berggren representation. Although
this representation and its use in shell model type
calculationshasbeendescribedbefore[4–10],wewill
briefly present it hereagain for clarity of presentation.

The Berggren representationis a completebasis
formedby adiscretesetof wavefunctionscorrespond-
ing to thepolesof theS-matrix, plusasetof scattering
stateswith energiesbelonging to a continuouspath in
the complex energy plane.In this representationthe
completenessrelation canbewrittenas [4]

δ(r − r ′)=
∑

n

wn(r)wn(r
′)

(1)+

∫

L+

dE u(r,E)u(r ′,E).

The summation in the expression above runsover all
the boundstatesandover those polesof the S-matrix
which are enclosed by the real energy axis and the
contourL+.

An important feature of the Berggrenrepresenta-
tion is that the scalar productis defined as the inte-
gral of thewave function timesitself, and not its com-
plex conjugate. Therefore,the related metric, i.e., the
Berggrenmetric, isnot Hermitian. As aresult, thema-
trix elements corresponding to any operator between
the vectorsof the Berggrenbasis may becomecom-
plex numbers. However, observable(physical) quanti-
tiesremainreal if all basis vectorsare includedin the
Berggrenrepresentation.

Thecontour in the complex energy planecanhave
in principle any form [10]. Nevertheless, as shown
in Refs. [5,6] for the caseof two-particle systems,
a particular class of rectangular contours is much
moreappropriate for CXSM calculations. Thereason
is that such contours cangenerate in the two-particle
complex energy plane a region free of two-particle
uncorrelated states. This property is very important
both for the identification and the calculation of two-
particle resonantstates[6].

As an illustration,we show in Fig. 1 a rectangular
contour in the complex energy plane that encloses
three Gamow resonances. The contour is defined
by the verticesVi and the energies of the Gamow
resonancesaregivenby the pointsGi . In thecase of
the figure the contour finishesat the point V5. This
cut-off of high lyingstatesisa commonfeatureof the
shell model, whereonly a limited numberof shellsare
included.

In order to treat numericallythe scatteringstates
one discretizes the contour integral of Eq. (1) such
that [9]

(2)

∫

L+

dE u(r,E)u(r ′,E)=
∑

p

hpu(r,Ep)u(r
′,Ep),

where Ep and hp are defined by the procedure
oneuses to performthe integration. In the Gaussian
method Ep are the Gaussian points and hp the
corresponding weights. Therefore,the orthonormal
basisvectorsaregivenby theset of boundandGamow
states, i.e., 〈r|ϕn〉 = {wn(r,En)} and the discretized
scatteringstates, i.e., 〈r|ϕp〉 = {

√
hp u(r,Ep)}. This

definestheBerggrenrepresentationused in theCXSM
calculations.

As in any standard shell model, in CXSM the mul-
tiparticle basisstatesare formedby thetensorial prod-
uct of the orderedsingle-particle statesbelonging to



50 R. Id Betan et al. / PhysicsLetters B 584(2004)48–57

Fig. 1. One-particlecomplex energy plane.Thebroadline indicatesthecontour. ThepointsVi aretheverticesdefiningthecontour. Theopen
circles labelledby Gi indicatethecomplex energy of theGamow resonancesenclosedby thecontour.

the chosen Berggrenrepresentation. The matrix ele-
ments of the residual interaction are calculatedwithin
this representation by using theBerggrenmetric. Thus
for a separableinteractionthe matrix elementshave
the form:

(3)〈k̃l;α|V |ij ;α〉 = −Gαfα(kl)fα(ij),

whereGα is thestrengthof theforce.Onecanseethat
due to the Berggrenmetric on the r.h.s. appearsthe
form factor fα(kl) andnot fα(kl)∗ asin the standard
Hilbert metric. Consequently, thestandarddispersion
relation for a two-particle system corresponding to a
separable forcebecomes[5,6]

(4)−
1

Gα
=

∑

i�j

f 2
α (ij)

ωα − εi − εj
,

where ωα are the correlated energies. One notices
againthat dueto theBerggrenmetric in thedispersion
relation appearsthesquareof the form factorsfα and
not the square of its absolute value. For more details
see Ref. [6].

In the CXSM calculationsdoneuntil now theonly
complex energy poles considered in the Berggren
representation are the Gamow resonances. The new
elements that we will include in this Letter are the

antiboundstates(they are also known in the literature
asvirtualstates).

The antibound states are the outgoing solutions
of the Schrödingerequation with negative imaginary
wave numbers, i.e., k = −i|k|. Thus the energy cor-
responding to anantiboundstate is realandnegative,
asfor theboundstates, but the tail of thecorrespond-
ing wave function divergesexponentially at large dis-
tances.

An antibound state close to threshold manifests
itself on the real energy axis throughthe localization
propertiesof the low-lying scattering states.This can
beshown [11] by considering a meanfield that hasan
antibounds-statewith energy E0 (k0 = −i|k0|) lying
nearthreshold.Onethusfindsthat theradial scattering
wave function with energiesE = h̄2k2/2µ (k realand
positive) close to zerocanbeapproximated inside the
meanfield regionby

(5)Rl(kr)≈

√
2k|k0|a

k2 + |k0|
2
Rl

(
|k0|r

)
,

wherea is a constant dependingon the normalization
chosen for the wave function Rl(|k0|r). This expres-
sion shows that close to threshold the radial depen-
denceof thescatteringwavefunctionsinsidethemean
field regiondependsupontheenergy only throughthe



R. Id Betan et al. / PhysicsLetters B 584(2004)48–57 51

Fig. 2. One-particlecomplex energy plane.Thebroadline indicatesthecontourembracingtheantiboundstateA, indicatedby anopencircle.
ThepointsVi aretheverticesdefiningthecontour. ThepointsBi indicateboundstates.

squareroot factor. This factor ismaximumat k = |k0|.
Therefore,in an energy interval located around|E0|

the scatteringstateshave an increased localization.
Thesescatteringstateswill representindirectlytheef-
fect of the antiboundstate in any type of continuum
shell model calculationsbased on real energy repre-
sentations.

In the framework of the CXSM onehasthe pos-
sibility to includethe antibountstatesdirectly in the
Berggrenbasis and treat them formally on the same
footing as the boundstates and Gamow resonances.
This can be doneby choosing a contour as the one
shown in Fig. 2. In this figurethepointsVi define the
contourwhile theopencircleA correspondsto theen-
ergy of theantiboundstate.

In theBerggrenrepresentationto eachpartialwave
correspondsa contour. These contoursmay bediffer-
ent to eachother. In theextendedCXSM calculations
presented in the next section the Gamow resonances
andthe antiboundpoleswill beenclosedby the con-
toursshown in Figs. 1 and2.

3. Applications

To show the convenienceof the formalism pre-
sentedabovewewill apply it to caseswhereantibound

statesareknown to be important. This is particularly
the caseof halo type nuclei. In what follows we will
first consider thetypicalcaseof 11Li.

Theexistenceof a low-lying virtual s-statein 10Li
hasimportant consequencesfor thecorrelationsdevel-
opedin 11Li [12]. As discussed above, an antibound
state close to the continuum threshold enhancesthe
localization of the low-lying scattering states.There-
fore, the s-wave content of the groundstate of 11Li
is also increased, reachingthe corresponding(large)
experimental value. Moreover, the antiboundstate in
10Li can affect the excited spectrumof 11Li as well
as the ground state. These effects of the antibound
stateswill be studied herefrom the viewpoint of the
CXSM.

It is by now well-known that in the description of
11Li the two relevant single-particle states,as speci-
fied by the experimental spectrum of 10Li , consist of
a low-lying antibound(or virtual) s1/2 state at about
−50keV, andap1/2-resonanceat about540keV [13].
A p resonanceat around0.250MeV is also consid-
eredin Ref. [14]. Thetwo-bodycorrelationsinducea
boundgroundstate in 11Li at about−0.295MeV. No-
tice that we are hereusing the shell-modellanguage,
wherethecore(9Li) is consideredasinert, thesingle-
particlestatesaregivenby 10Li andthetwo-bodynu-
cleusis 11Li [15].
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In the first step of the CXSM one evaluates the
single-particle states of the unboundnucleus 10Li.
As in Ref. [16,17], for the central field we choose
a Woods–Saxon potential with different depths for
even and odd orbital angular momenta l. One thus
simulate the effect of core polarisation upon single-
particle states[16,18]. In order to study the influence
of the p1/2 resonanceupon the halo properties, we
will perform two calculations corresponding to the
energies200keV and 500keV of the 0p1/2 resonant
state. We will start studying the 200 keV case and
afterwards the 500 keV case will be presented.At
the end we will compare the results and discuss the
similaritiesand differencesbetweenthe two cases.

For the 200 keV case we use the Woods–Saxon
potential given by a = 0.67 fm, r0 = 1.27 fm, V0 =

50 (36.9) MeV and Vso = 16.5 (12.624) MeV for
l even (odd). With these parameters we found the
single-particle bound states 0s1/2 at −23.278 MeV
and0p3/2 at −2.589MeV forming the 9Li core.The
valence poles are the low lying resonances0p1/2 at
(0.195,−0.047) MeV and 0d5/2 at (2.731,−0.545)
MeV andthewideresonance0d3/2 at(6.458,−5.003)
MeV. Besides, the state1s1/2 appearsas an antibound
state1 at −0.050 MeV. We thusreproducethe exper-
imental single-particle energiesgiving from the very
beginning unequivocal endorsementto the low lying
s-state asdueto anantiboundstate.

We also found other resonancesat high energies.
However, we include in thebasissingle-particle states
lying up to 10 MeV of excitation energy only. We
foundthatexpandingthebasisfrom this limit doesnot
produceany effect uponthe calculation up to the six
digitsof precision thatwe require.

The next step in the calculation is to adopt a
residual interaction. We will use a separable force
and, therefore, the Hamiltonianmatrix reducesto the
dispersion relation giveby Eq. (4). For the field in the
separable interaction we use the form:

f (r)=
f0

1+ exp((r −R′)/a′)
,

1 The principal quantumnumber n labelling the single-particle
statesindicatesthat thecorrespondingwave functionsarelocalized
in a region inside thenucleusandthat its realparthasin thatregion
n nodes, excluding theorigin.

wheref0 = 35, R′ = 18 fm anda′ = 1.3 fm. To eval-
uate the groundstate of 11Li we adjust the strength
G of the separable interaction to reproducethe cor-
responding energy, i.e.,−295 keV. We thusobtained
G= 0.00194MeV.

With the mean field and the two-body interac-
tion thus established we evaluated the ground state
wave function. First, we performedthe calculations
by choosing the realenergy asa contour. In this case
the wave function is spreadover many components.
The largest of these components correspondsto con-
figurationsp1/2 ⊗ p1/2 lying close to 400 keV (i.e.,
abouttwice the energy of the 0p1/2 resonance)and
s1/2 ⊗ s1/2 lying closeto threshold (i.e.,closeto twice
the energy of the antiboundstate). The wave func-
tion consists of 44% s-states,48% p-statesand 8%
d-states, asexpected[13,19].

If we keepthe strength constant at G = 0.00194
MeV and leave out either the antiboundpole or the
l = 0 contour encircling thepole, the l = 0 contentof
the wave function increasesto 77%. If, however, we
readjust thevalueof G in order to get the stateat the
correct position at −295 keV then the l = 0 content
of thewavefunction increasesfurtherup to 98%. This
showsthattheantiboundpoleandthescatteringstates
alongthe l = 0 complex path areadding up with very
strong destructive interferenceand this reducesthe
l = 0 content of the wave function somewhat below
the l = 1 content.

A remarkablefeatureof the calculationis that the
antiboundstate exerts such a strong effect upon the
two-particle wavefunction. From a CXSM point of
view this is because the energy correspondingto the
configuration (1s1/2)2 is very close (in the complex
energy plane) to the two-particle energy. But it can
also be understood from a continuum shell-model
point of view. As discussed in the previoussection,
an antiboundpole close to the continuum threshold
inducesa largelocalization of the low-lying scattering
states inside the nucleus. This feature canbe seenin
Fig. 3, wherewegive the localization of thescattering
states, L(E), defined as

(6)L(E)=

1.2RN∫

0

R
2
l=0(kr)r

2dr,

whereRN = 2.6 fm is thecorenuclearradius. Asseen
in Fig. 3, there is a strong increaseof the localization
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Fig. 3. LocalizationL(E), Eq. (6), in thepresenceof low-lying antibound(a) and bound(b) s-states. The numberslabelingthecurvesarethe
energiesof thepolesin MeV.

as the energies of the poles approachesthreshold.
Thisproperty isalso responsiblefor asimilar increase
in the elastic cross section (seeFigs. 12 and 13 of
Ref. [20]). From Fig. 3 one notices also that the
localization of thescatteringstatesdoesnotdependon
whethertheS-matrix poleE0 correspondsto a bound
or to an antiboundstate. This strong localization of
the scattering states generates, through the matrix
elementsof the residualinteraction,largecomponents
of the s-wave in the two-body wave function. This
property shows that the nuclear halo should not be
tracedbackto theappearanceof anantibounds-state
close to threshold since weakly bounds-statewould
give a similar effect. That is, halos may be induced
by a strong pairing interaction in the presence of
antibounds-statescloseto threshold or weakpairing
interaction in the presenceof weakly bounds-states.
We would like to stressagain that in this work we
proposeatheoreticalframework to treatthefirst option
correctly andnotto provideageneraltheoryof nuclear
halos.

So far wehaveshown theadvantagesof theCXSM
to evaluate theeffectof theantiboundstate on already
known properties of the ground state of the halo
nucleus11Li. However, thetransparency of themethod
becomesessential in the searchfor other physically

meaningful two-particle states in the continuum. In
what follows we discuss theproblemof low-lying 0+

excitationsandtheir influenceupontheneutronhalo.
Within theCXSM two-particle resonancesareeasy

to calculate since they appear as a result of the
diagonalizationof theHamiltonian(which in ourcase
reducesto the solution of the dispersion relation)
in the complex energy plane. Thus we found that
the first excited state (i.e., the state 0+

2 ) appears
at the complex energy (0.202,−0.137) MeV. The
correspondingwave function consists of nearly 100%
p-states,with a small admixtureof s-states.

It is interesting to analyzehow this stateis built up
by the two-body interaction starting from the zeroth-
orderconfiguration (0p1/2)

2. For this weincreasedthe
interaction gradually starting from G = 0, asseenin
Fig. 4. As theattractive interactionincreasesthereso-
nancebecomesnarrower andapproachesthreshold,as
expected from perturbation theory. However, a point
is reachedwhere continuum configurationsbecome
important andthe resonancewidens. This happensat
G = 0.0005MeV in the figure.Up to this point the
resonanceisapurely (0p1/2)

2 stateand,therefore,it is
localizedinsidethe nucleus. That is, it is a physically
meaningful resonance.But from here on other con-
figurations becomeimportant. These configurations
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Fig. 4. Evolution of the energies of the two-particle resonance11Li (0+
2 ) as a function of G (in MeV) for the 200 keV case. The numbers

labelingtheopencirclesarethevaluesof G× 104 MeV. Thestrengthadjustedto obtainthegroundstateisG0 = 19.4× 10−4 MeV.

areoverwhelmingly those whereoneof the particles
movesin thecontinuumandtheotherin theresonance
0p1/2. Morespecifically, in thetwo-particleresonance
that we arestudying the most important states in the
continuumarethosecorrespondingtop1/2 waveswith
energiescorresponding to the points on the segment
V1 − V2 in Fig. 1. At G=G0 = 0.00194MeV, corre-
sponding to theG-valuefitting thegroundstate,there
is a strongmixing with the continuumconfigurations.
IncreasingG farthertheconfiguration (0p1/2)

2 looses
its importance,the resonanceis split in a numberof
piecesand eventually dissolves into the continuum.
However, sincethese configurationsvirtually include
only p-waves the wavefunctions still consist of only
p-states.

Theanalysisthatwehavedoneso far isbasedupon
the assumption that thep resonancein 10Li is located
at 200 keV. To see the influenceof this resonance
on the structure of the halo we will now analyze the
ground and the excited states of 11Li by using the
500keV case. For this we adoptedthe Woods–Saxon
depth V0 = 35.366 MeV for odd l-values, keeping
all other parameters asbefore.We thusobtainedthe
energy (0.470,−0.197)MeV for the state0p1/2. The
state 0p3/2, belonging to the core, is found now at
−2.016MeV. Theother odd l-valuepoleslie beyond

the rangeof energiesincludedhere.But, nevertheless,
wehavecheckedthatthey donotaffect theresults.

We kept the two-particle interaction used in the
previous case, except that now R′ = 7.9 fm and the
strength necessary to adjust the energy of 11Li(gs) is
G= 0.00694MeV.

As before,we found that on the real energy axis
the ground state wave function is spread in many
components. Thelargest of themlieclose to threshold
for the configurationss1/2 ⊗ s1/2 andaround1 MeV
for thep1/2 ⊗ p1/2 configurations. Thewave function
consists of 49% s-states, 39% p-states and 12%
d-states, which is also within the rangeof accepted
values[13,21].

Since the position of the p1/2 pole seemslikely
to correspond to the present 500 keV case [21], we
will analyzeheretheeffects of theantiboundandthe
Gamow polesuponthe groundstate of 11Li by using
the contours of Figs. 1 and 2. We thereforepresent
in Table 1 the contribution of differentconfigurations
to that ground state. The corresponding complex
amplitudesdependon the chosen contoursand have
no direct physical meaning. But the total content of
a given partial wave in the boundgroundstate wave
function,whichisaphysicalquantity, doesnotdepend
upon the chosen contour. From Table 1 we can see
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Table 1
Thecontribution of partialwaveconfigurations(s1/2)

2, (p1/2)
2 and(d5/2)

2 to thegroundstatewavefunctioncalculatedin thecomplex energy
plane.For eachpartial wave are given thesquareamplitude of thepole–poleterm and thesum of the squareamplitudescorrespondingto the
pole–scatteringandscattering–scattering terms. The total contribution of eachpartialwave is given in thelast line

(s1/2)
2 (p1/2)

2 (d5/2)
2

Pole–pole (12.936,−0.039) (0.642,−0.204) (0.127,0.011)
Pole–scat. (−29.365,0.079) (−0.279,0.221) (−0.031,−0.018)
Scat.–scat. (16.921,−0.040) (0.022,−0.017) (−0.002,0.007)
Total (0.492,0.0) (0.385,0.0) (0.094,0.0)

Fig. 5. As Fig. 4 for the500keV case exceptthatthenumbersarethevaluesof G× 103 MeV andG0 = 6.94× 10−3 MeV.

that for thep andd waves theconfigurationsarebuilt
mainly on the correspondingGamow resonances. The
situation is dif ferent for the s-wave since apartfrom
the configurationsbuilt uponthe antiboundstate there
is also an important contribution coming from the
complex scatteringstates. This contribution is given
mainly by those s scattering states located on the
segments(0,0)–V1 andV1–V2 of Fig.2,which arethe
closest to theantiboundstate.

Up to this point there is not much difference
betweenthe 200 andthe 500 keV cases, which may
explain why various studies of the halo structure of
11Li(gs) with the common feature of having low-
lying s- andp-states,providesimilar results [21]. This
is because the wave function of 11Li(gs) is mainly
controlled by low-spin single-particle states lying

close to thecontinuumthreshold.Theexactpositions
of the resonancesdo not influencethe wave function
very much. However, the position of the single-
particle polesmay have a fundamental importanceto
determine the physically meaningful excited states.
The statesarising from the particles moving in the
continuum are not localized inside the nucleus and,
therefore,will be weakly affectedor not affectedat
all by the interaction. This can be seen in Fig. 5,
where we present the evolution of the state0+

2 as a
function of the strength G. The 0p1/2 resonanceis
now wider and higher in energy than before. As a
result, the point corresponding to G = 0 in thefigure
iscloserto pointscoming fromthecontinuumcontour.
Yet, these continuumstatesdo not seemto affect the
resonanceas G increases. That is, the behaviour of
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Table 2
Squareof thewavefunctionamplitudeX((nlj)2), where (nlj) indicatesthequantumnumberof thesingle-particleresonance,andthesum S(l)

correspondingto thephysical resonanceof Fig. 5. Thevaluesof G are in MeV andG0 = 0.00694

G X2((1s1/2)
2) S(0) X2((0p1/2)

2) S(1)

0.001 (0.00,0.00) (−0.00,0.00) (1.00,0.00) (0.00,−0.00)
0.003 (0.05,0.02) (−0.10,0.10) (1.06,0.06) (0.00,−0.05)
0.005 (−0.01,0.11) (−0.25,−0.12) (0.59,0.30) (0.47,−0.19)
G0 (−0.04,0.02) (−0.00,−0.11) (0.23,0.18) (0.74,−0.12)

0.008 (−0.03,0.01) (0.01,−0.08) (0.18,0.14) (0.79,−0.10)

the resonanceas G is varied is very similar to that
in Fig. 4 as well as to resonancesin non-halo nuclei
[6]. The reason for this is that those points, label
“ s-states” in the figure,correspondto configurations
of the type cs1/21s1/2, where “c” labels points in
the segments (0,0)–V1 and V1–V2 of Fig. 2. The
overlap betweenthese configurationsandthe mainly
(0p1/2)

2 configuration of theresonanceissmall. Only
at large valuesof G (aboveG = 0.004 MeV in the
figure),theresonancestarts to feelthepresenceof the
continuumstates. Theremarkablefeatureof thefigure
is thesuddenturningdown of thecurvecorresponding
to the physical resonanceat G = 0.005 MeV. As
G increases in this region the continuum plays a
mounting role. As in the 200 keV case above, the
most important of the continuum configurations are
those in which oneparticle moves in the continuum
and the other in the 0p1/2 resonance.There could
be many comparatively large configurationsof these
type and it would not be useful to give all of them.
More instructive is to show their contribution to the
normalization of thewave function in thiscasewhere,
in contrast to the ground state case of Table 1, the
zerothorderenergiesarenot very close to theenergy
of the state 0+

2 . We thus define S(l) as the sum
of the squaresof the amplitudes corresponding to
configurationswhereat least oneof the two particles
moves in continuum states. On the real energy axis
the sum of S(l = 1) andX2((0p1/2)

2), where X is
the wave function amplitude, is the probability of the
p-content of the wave function. This is a quantity
that we evaluated above for the ground state. The
dependenceof these quantitiesuponG corresponding
to the state 0+

2 is shown in Table 2. Since we are
studying stateswith complex energies thenumbersS
as well asX2 are complex in this table. Moreover,
their absolute valuescould be larger than1 although
the sum of all possible l-contributionsis normalized

to (1,0). This isagoodexampleof thenon-Hermitian
characterof theBerggrenmetric.

One sees in this table that the two-particle res-
onancestarts to mix with the continuum at G =

0.005MeV and atG = G0 it is composedmainly of
continuum configurations. Therefore,at this point it
hasalreadylost its localizationfeatures. It hasbecome
a partof thecontinuumbackground.

Wearenow in aposition to recognizeothersystems
wherehalos may be present. We thuslooked for nu-
clei which may beconsideredshell-modelcoreslying
on the neutron drip line with low-lying single-particle
resonancescarrying low-spin. Following the trendof
single-particle statesin the relativistic meanfield cal-
culationswefoundthatZ = 20,N = 50maybesucha
core. In order to simulatethe orderof the singleparti-
clestatesgivenby therelativistic calculationsweused
a Woods–Saxon potential defined by a = 0.67 fm,
r0 = 1.27 fm, V0 = 39 MeV andVso = 22 MeV. With
this potential theantibound2s1/2 state (note thatn=

2) appearsagainat−0.050MeV. But now thenext va-
lence shells are 1d5/2 at (0.469,−0.048) MeV, 1d3/2
at (2.080,−1.525) MeV, 0g7/2 at (6.739,−0.738)
MeV and 0h11/2 at (5.344,−0.102) MeV. The states
in thecoreareorderedasusual. Asexpected,thehigh-
estof theseis the state0g9/2, lying at −2.276 MeV.
Using the same separable interaction as before and
assuming again that the groundstate of 72Ca lies at
−295 keV, we obtainedfor the strength of the inter-
action the value G0 = 0.00174 MeV. Close to this
G0 valuewe foundalso a low-lyingtwo-particle reso-
nancewith the energy of about(0.550,−0.350)MeV.
Thebehaviourof this0+

2 resonanceasafunction of G
is very similar to the500keV case of Fig. 5. Thedis-
cussion performedthereis also valid hereand,there-
fore, we will not analyzedthis ratheracademiccase
farther. But it is important to point out that in this and
the other casespresentedhere,we have beencareful
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to choose contours that leave the region around the
two-particle resonancesin the complex energy plane
freeof continuumconfigurations. We thusestablished
an “allowed” region [6]. Otherwise the two-particle
resonancewould be embeddedin a see of continuum
states, makingthecalculationsdifficult andtheevalu-
atedquantitiesunreliable.

4. Summary

In conclusion, we have presented in this Letter a
new formalism to treat antiboundstates exactly and
on the samefooting as boundstatesandGamow res-
onances. The antiboundstates and the Gamow res-
onancesare selected by appropriate contours in the
complex energy plane. Due to the complex single-
particle representation used in thepresentshell model
formalism, the contribution of the pole–pole, pole–
continuumandcontinuum–continuumconfigurations
in the two-particle systems can be easily analyzed.
The effects inducedby antiboundstatesandthe con-
tinuumencircling thepolescanbestudiedseparately.
The advantage of the formalism was illustrated for
the halo type nuclei 11Li and 72Ca. We confirm that
antiboundstateslying close to the continuumthresh-
old are of a fundamental importanceto build up the
halo. But we found that in the ground state of the
11Li the large contribution of the antiboundpole is
partly cancelled by the complex continuum.We also
found that an excited low-lying two-particle reso-
nancemay exist in these nuclei. For the case of 11Li
this low-lying resonantappearsin the energy range
of 0.2–0.5MeV, which is the sameas the one sug-
gested in previousstudiesbased on real energy rep-
resentations [22–24]. However, the CXSM calcula-
tions exhibit a very drastic changein the structure
of the resonant excited state when the strength of
the force is approaching the value used for the de-
termination of the ground state. This indicates that
the excited state is strongly mixed with the contin-
uumbackground.It is thereforeratherdifficult to con-
cludeat this stageof the calculationswhetherthis is
a physical two-particle resonanceor not. More de-
tailed investigations of the behaviour of two-particle
resonantstates in halo type nuclei would require the
application of theCXSM with non-separable residual

forcescommonly used in other models. This work is
in progress.
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