
RESEARCH ARTICLE

Genomic variants reveal differential

evolutionary constraints on human

transglutaminases and point

towards unrecognized significance of

transglutaminase 2
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Abstract

Transglutaminases (TGMs) catalyze Ca2+-dependent transamidation of proteins with speci-

fied roles in blood clotting (F13a) and in cornification (TGM1, TGM3). The ubiquitous TGM2

has well described enzymatic and non-enzymatic functions but in-spite of numerous studies

its physiological function in humans has not been defined. We compared data on non-syn-

onymous single nucleotide variations (nsSNVs) and loss-of-function variants on TGM1-7

and F13a from the Exome aggregation consortium dataset, and used computational and

biochemical analysis to reveal the roles of damaging nsSNVs of TGM2. TGM2 and F13a

display rarer damaging nsSNV sites than other TGMs and sequence of TGM2, F13a and

TGM1 are evolutionary constrained. TGM2 nsSNVs are predicted to destabilize protein

structure, influence Ca2+ and GTP regulation, and non-enzymatic interactions, but none

coincide with conserved functional sites. We have experimentally characterized six TGM2

allelic variants detected so far in homozygous form, out of which only one, p.Arg222Gln, has

decreased activities. Published exome sequencing data from various populations have not

uncovered individuals with homozygous loss-of-function variants for TGM2, TGM3 and

TGM7. Thus it can be concluded that human transglutaminases differ in harboring damag-

ing variants and TGM2 is under purifying selection suggesting that it may have so far not

revealed physiological functions.

Introduction

Transglutaminases (TGM) are a family of Ca2+-dependent protein transamidating and cross-

linking enzymes implicated in variety of biological processes. So far eight active and one inac-

tive member (F13a, TGM1-TGM7, and Band 4.2) have been identified in humans. F13a plays
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a pivotal role in blood coagulation by crosslinking fibrin, TGM1 is essential for proper cornifi-

cation in the skin with contribution from TGM3 and TGM5, and TGM4 seems to have a role

in prostate function [1, 2]. The role of TGM6 and TGM7 are not known. The most studied

TGM2 is widely expressed exhibiting transamidase, isopeptidase, protein disulphide isomer-

ase, protein kinase, GTP and ATP binding and hydrolyzing activities [1, 2]. Its transamidase

activity is reciprocally regulated by GTP and Ca2+ binding, which are followed by a large con-

formational change resulting in either an inactive closed or a potentially active opened confor-

mation, respectively [3]. TGM2 interacts with many other interacting partners including

fibronectin and can act as a protein scaffold (reviewed in [4]). TGM2 is involved in a broad

range of cellular processes (including transmembrane signaling, mitochondrial functions,

gene expression regulation, autophagy, and apoptosis) and has been related to pathological

conditions such as inflammation, autoimmune disease, cancer progression, and neurodegen-

erative disorders (reviewed in [5]). TGM2 knock out mice are born and live without any obvi-

ous phenotype—although they have decreased defense to some environmental stress and

diseases which develop by age (reviewed in [5, 6]). Understanding the physiological functions

of TGM2 in humans is still awaited since no TGM2 deficiency or dominant TGM2 mutant has

been observed and systematic inhibitor studies could not be carried out.

After the completion of the human genome project and large scale exome sequencing

presented in various databases, it has become evident that vast majority of our proteins are

polymorphic to various genomic changes including single nucleotide variations and loss-of-

function alterations. Rapid population growth coupled with inefficient and weak natural se-

lection has led to excessive rare variants in our genome, some are associated with severe patho-

logical phenotypes as a result of damaging mutations [7]. They can affect protein function and

are implicated in both Mendelian and complex diseases [8]. In general, out of 13,000 exonic

variants present per person, about 60% are non-synonymous [9]. Non-synonymous single

nucleotide variants (nsSNVs) located in protein cores and protein-protein interfaces are

disease-causing [9] owing to protein misfolding or instability or altered protein-protein in-

teractions. Recent whole-genome and exome sequencing data from different populations,

including bottlenecked and consanguineous ones, have revealed a large number of genes with

homozygous or compound heterozygous loss-of-function (LOF) variants leading to human

knockouts and efforts are underway to find phenotypic consequences of these knockouts [10,

11, 12]. In addition, new genome editing technologies made it possible to knock out human

protein coding genes one by one and to test which are essential for cell proliferation and sur-

vival in culture highlighting approximately 2000 such genes [13, 14, 15].

We noticed earlier in limited exome sequence data sets that the protein coding sequence of

human TGM2 has the lowest variability when compared to other members of the transgluta-

minase family [16]. In the present study we analyzed large scale population genomics data in

an effort to understand evolutionary forces that have shaped this family of enzymes in human

populations. We have screened the Exome Aggregation Consortium (ExAC) database for sin-

gle nucleotide variant types in the transglutaminase family and compared the TGM2 variants

with other members of the family. We focused on the potential impact of damaging TGM2

nsSNVs on protein stability, secondary structure, functional sites including calcium, fibro-

nectin and GTP binding sites. We also studied intrinsically disordered regions (IDRs) which

affect protein dynamics and could interfere with conformational changes as well as harbor

short linear motifs (SLiMs) for protein interactions and modifications. To this aim, the evolu-

tionary constraints on TGMs and population frequencies of the homozygous transglutaminase

nsSNVs have been compared. The homozygote allele variants with nsSNVs available in public

datasets were produced, analyzed and tested in biochemical assays. We have also searched for

data to see the prevalence of transglutaminase LOF variants and human knock outs as well as
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disease causing mutations in different populations to see how essential these proteins are for

humans.

Materials and methods

All materials were purchased from Sigma (St Louis, MO, USA) unless otherwise indicated.

The FLpepT26 peptide was obtained as published in Ref. [17] and S100A4 (GST) as published

in Ref. [18].

Databases

For single nucleotide variation data we used the Exome Aggregation Consortium browser

(beta version) ([11]; Exome aggregation consortium (ExAC), Cambridge, MA (URL: http://

exac.broadinstitute.org/) accessed August 2016). The ExAC is a coalition of investigators seek-

ing to aggregate and harmonize exome sequencing data from a wide variety of large-scale

sequencing projects, and to make summary data available for the wider scientific community.

The data set provided on the above mentioned website spans 60,706 unrelated individuals

sequenced as part of various disease-specific and population genetic studies and 17 projects

contribute to the data.

Short linear motifs were identified using the Eukaryotic Linear Motif (ELM) resource [19].

For information about catalogue of human mutations and related genetic disorders, the Online

Mendelian Inheritance in Man1 was used (Online Mendelian Inheritance in Man, OMIM1.

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore,

MD), {07/16/2016}. World Wide Web URLs: http://omim.org/). MIM Numbers and accession

dates: F13a: {134570}{07/16/2016}; TGM1: {190195}{07/16/2016}; TGM5: {603805}{07/16/

2016}; TGM6: {613900}{05/08/2016}. This article only uses anonymous human data from

freely available public databases that have been obtained in a manner conforming to the

respective IRB and/or granting agency ethical guidelines.

The mis_z scores were taken from the ExAC dataset [11]. In order to create a constraint

metric and to contrast observed and expected number of variants per gene, mis_z scores were

calculated. The mis_z score is based on a previous mutational model of probabilities of muta-

tion for regional genomic divergence between humans and macaques [20] but with some mod-

ifications [11]. In Lek et al. [11] instead of probability of mutation, the expected number of

variants were adjusted for depth of sequencing coverage for each exon. This depth adjusted

correction was implemented to account for poorly sequenced regions with fewer variants than

expectation. Across canonical transcripts all exon level variant counts were added and then a

chi-squared value (Chi-square is a statistical test commonly used to compare observed data

with data one would expect to obtain according to a specific hypothesis) for each mutational

types (synonymous, missense, and protein-truncating) was calculated. If the observed variants

are smaller than expected the square root of the chi-squared values were multiplied by 1 and if

the observed variants are greater than expected then the values were multiplied by -1 to create

a Z score. Finally, a corrected missense z score was created by dividing all missense z scores

by standard deviation of the mirrored distribution. Mirrored or Gumbel distribution is an

Extreme Value distribution Type-I; it is used for modelling extreme values of a random vari-

able when the mean of smaller and larger values are farther apart.

Gene damage index (GDI) scores were taken from [21]. GDI is a metric which defines the

non-synonymous mutational load in each protein-coding gene in the general population [21].

The damage caused to the exonic regions of the gene was predicted by calculating GDI score

for each human gene g with n minor alleles (minor allele frequency < 0.5). For Phred I-score

the ranking of the gene of interest i relative to all other human genes T = 19,558 genes, with
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values ranging from 0 (lowest Phred) to 42.91 (highest Phred) was calculated: Ii = −10[log 10(i/

T)].

Bioinformatic tools

To predict the possible impact of single amino acid substitutions on the structure and function

of a human protein, Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant From Tol-

erant (SIFT) analyses were applied for nsSNVs in the ExAC database. If more than one change

is present at an amino acid residue and both having same scores, PANTHER (Protein ANalysis

THrough Evolutionary Relationships) prediction was carried out to determine which of the

two was the damaging nsSNV [22]. The deleterious, possibly or probably damaging nsSNVs

are mentioned as damaging in the text.

GORIV was used to predict the secondary structures (https://npsa-prabi.ibcp.fr/cgi-bin/

npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 15 March 2016) of wild type and

mutant human TGM2 proteins. Stability analysis was performed by algorithm FoldX [23]

using default parameters of the program. Changes in the overall stability of the proteins (ΔΔG

[kcal/mol]) for damaging nsSNVs were calculated in both opened (PDB ID: 2Q3Z) and closed

(PDB ID: 1KV3) forms. TGM2 involving residues 1–14 and 323–326 for which the coordinates

in either or both crystal structures are not available were excluded from the stability analysis.

Homology modelling of TGM2

Homology models of TGM2 to represent one Ca2+ and a three Ca2+-bound states were built

with SWISS-MODEL using the X-ray crystal structures of either FXIIIa (pdb: 4KTY) or

TGM3 (pdb: 1L9M), respectively, as templates [24, 25, 26]. The models were then repaired for

energy minimization using the FoldX forcefield. The R222 residue was mutated to glutamine

using FoldX and the structures were visualized with the help of the FoldX plugin in YASARA

[27, 28]. Figures were prepared using PyMol Molecular Graphics System (version 1.8 Schrö-

dinger LLC).

Transglutaminase enzyme preparations

The TGM2 variants were constructed using the QuikChange II Site-Directed Mutagenesis Kit

Manual (Stratagene, La Jolla, California, USA) and were checked by restriction analysis and

DNA sequencing (Capillary sequencing runs were performed by Genomic Medicine and Bioin-

formatics Core Facility at University of Debrecen). Wild-type TGM2 and homozygous nonsy-

nonymous variants were expressed in N-terminally (His)6-tagged form (pET-30 Ek/LIC-TGM2)

and purified by Ni-NTA affinity chromatography as described previously [29]. The protein

concentrations were determined based on Bradford method (Bio-Rad Protein Assay, Bio-Rad,

München, Germany). Finally, protein purity was checked after staining of SDS-polyacrylamide

gels by PageBlue Protein Staining Solution (Thermo Fisher Scientific, Waltham, Massachusetts,

USA). GenBank Accession Number of the wild-type TGM2 used in this study: RefSeq NM_004613.

The dbSNP identifiers of the TGM2 homozygous nonsynonymous variants: p.Arg76His

(rs41274720), p.Arg222Gln (rs200551434), p.Arg433Gln (rs142184177), p.Val542Phe

(rs115436227), p.Pro612Thr (rs199563008), p.Asp671Asn (rs141236503).

Transamidase assays

The kinetic amine incorporation assay was performed with slight modification of a previously

published procedure [29]: The reaction mixture contained 50 mM Tris-HCl buffer pH 7.5, 0.5

mM dansyl-cadaverine, 2 mg/ml N,N’ dimethylated casein, 3 mM DTT, and 3 mM CaCl2 or

Genomic variants in human transglutaminases
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10 mM EDTA. The reaction volume was 100 μl and the assay was started with the addition of

20 μl enzyme (100 nM TGM2 final concentration). The reaction rate was calculated based on

the initial slopes of the kinetic curves (Ex/Em: 360/490 nm; at 37˚C) using GraphPad Prism ver-

sion 7.00 for Windows (GraphPad Software, La Jolla, California USA, www.graphpad.com).

A real time fluorescence anisotropy assay was also used to measure the crosslinking activity

[17]. The crosslinking of FLpepT26 into S100A4 (GST) by TGM2 was monitored by increase

in the fluorescence anisotropy. The volume of the reaction mixture was 35 μl and performed

for 30 mins at 37˚C with 100 nM FLpepT26, 13.15 μM S100A4 (GST), 10 nM TG2, and 3 mM

CaCl2 (5 mM EDTA was used as negative control). The reaction buffer contained 20 mM

Tris–HCl, pH 7.5, 150 mM NaCl, 5 mM DTT, and 0.01% Tween 20. A 384-well untreated

Polystyrene Black Microplate was used (Nunc, Thermo Scientific, Denmark, cat. no. 262260)

and the change of the fluorescence anisotropy was measured by Synergy H1 microplate

reader (GreenFP filter cube, excitation 485 nm, emission 528 nm; BioTek, Winooski, VT,

USA). The reaction rate was calculated from the initial slopes of the kinetic curves using

GraphPad Prism version 7.00 for Windows (GraphPad Software, La Jolla California, USA,

www.graphpad.com).

Isopeptidase assays

The basis of the Zedira assay is that transglutaminase cleaves the isopeptide bond in the syn-

thesized substrate releasing the dark quencher (2, 4-dinitrophenyl) linked to the cadaverine

spacer followed by the increase of fluorescence from the N-terminally attached fluorophore

2-aminobenzoyl (2-Abz). The reaction was performed based on previously published method

[29]. In detail the reaction mixture was: 50 mM MOPS buffer, pH 6.8, containing 5 mM

CaCl2, 100 mM NaCl, 0.1% (w/v) PEG8000, 100 nM TGM2, 50 μM A102 isopeptidase assay

substrate (Zedira, Darmstadt, Germany), and 2.8 mM DTT (added with the starting solution

which contained the enzyme). The reaction was monitored at 37˚C by a Synergy H1 micro-

plate reader (Ex/Em: 318/413 nm) and the activities were calculated from the initial slopes of

the kinetic curves.

The isopeptidase assay using novel crosslinked protein–peptide substrate was carried out

using previously published real-time fluorescence method [18]. The cleavage of the isopeptide

bond on FLpepT26–S100A4 (GST) substrate by TGM2 was followed by decrease in fluores-

cence anisotropy. The volume of the reaction was 35 μl and performed for 60 mins at 37˚C

with 0.5 μM FLpepT26–S100A4 (GST), 300 nM TGM2, and 5 mM CaCl2 or EDTA. The reac-

tion buffer contained 20 mM MOPS (pH 6.8), 150 mM NaCl, 6 mM glycine methyl ester, 5

mM DTT, and 0.1% Tween 20. A 384-well untreated Polystyrene Black Microplates (Nunc,

Thermo Scientific, Denmark, cat. no. 262260) and Synergy H1 microplate reader (GreenFP fil-

ter cube, excitation 485 nm, emission 528 nm; BioTek, Winooski, VT, USA) was used to mea-

sure changes of fluorescence anisotropy. The reaction rates were calculated from the initial

slopes of the kinetic curves in terms of anisotropy per minute using GraphPad Prism version

7.00 for Windows (GraphPad Software, La Jolla California USA, www.graphpad.com).

BODIPY FL GTPγS nucleotide binding assay

500 nM BODIPY FL GTPγS, (Invitrogen, Carlsbad, CA, United States) [29] a GTP analog was

used to compare nucleotide binding to increasing amounts of TGM2 variants in the presence

of 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1 mM TCEP, 0.05% Tween-20, 0.1 mM EGTA,

and 1 mM MgCl2. There is an increase in fluorescence when BODIPY FL GTPγS binds to

GTP-binding proteins providing a non-radioactive alternative tool to analyse protein-nucleo-

tide interactions.

Genomic variants in human transglutaminases
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Fibronectin binding assay

The fibronectin-binding property of the variants was tested using a previously published direct

ELISA assay [16] with the following modifications. After fibronectin coating and washing,

0.3 μg TGM2 wild-type or variant was incubated in each well for 1 h at room temperature in

TTBS buffer containing 2.5 mM CaCl2. The amount of bound TGM2 variants were detected

using CUB7402 (1:5,000, Neo markers, Fremont, CA) monoclonal antibodies and then anti-

mouse IgG/ HRP (1:7,500) with TMB substrate at 450 nm.

Results

Synonymous, non-synonymous and LOF nucleotide variants in genes of

the human transglutaminase family

Recent advances in next-generation sequencing technologies and initiatives such as the 1000

Genomes and other exome sequencing projects have uncovered a broad range of genetic varia-

tions among individuals. For analysis of variants in the transglutaminase enzyme family the

ExAC database was chosen as a source of SNV data. As of August 2016 it contained high qual-

ity exon sequencing data from 60,706 unrelated individuals displaying one variant at every

eight bases [11]. There were 5,766 SNV entries for transglutaminases of which 3623 SNVs fall

under synonymous, non-synonymous or LOF categories in exons (Table 1). Out of the total

entries only 4.5–6% of SNVs in case of each family were non-synonymous SNVs. TGM2,

TGM4, TGM5 had the lowest and TGM6 had the highest number of nsSNVs (Table 1). The

range of loss-of-function (LOF; including frameshift, splice acceptor and stop gained) variants

were from 19 in TGM1 to 40 in TGM5, while TGM2 had 29 LOF variants (Table 1). The num-

ber and percentage of residues polymorphic to nsSNVs in each family was also calculated.

F13a, TGM1, TGM2, and TGM5 had less percent of such residues while TGM3 and TGM6

had the highest (Fig 1A).

Table 1. Number of different single nucleotide variants and gene constraints in human transglutaminase genes.

Gene Synonymous Non-synonymous Loss-of-Function n_mis exp_mis mis_z GDI GDI-Phred I

F13a 120 283 22 252 269.8 0.53 4254.7 12.9

TGM1 163 320 19 314 349.2 0.92 277.2 3.5

TGM2 148 272 29 270 290.5 0.59 240.6 3.3

TGM3 144 313 20 304 271.9 -0.95 1529.8 7.2

TGM4 121 279 39 264 232.6 -1.0 3544.7 11.4

TGM5 95 273 40 261 255.9 -0.15 2224.6 8.6

TGM6 136 336 39 320 287.7 -0.92 764.5 5.4

TGM7 91 293 28 283 263.3 -0.59 698.4 5.2

Number of synonymous, non-synonymous and LOF variants were determined based on data available in ExAC database. The n_mis, and exp_mis scores

[11], and GDI and GDI-Phred I values [21] were taken from datasets published previously. See methods section for brief description and ref. [11] and [21] for

detailed explanation of calculations and determination of the scores. Frameshift mutations, splice acceptor, splice donor, stop gained are included under

LOF category. Definition of values and scores shown in the table is as follows. The n_mis scores: number of rare (minor allele frequency (MAF) <0.1%)

missense variants found in ExAC r0.3 database. The exp_mis scores: depth adjusted number of expected rare (MAF <0.1%) missense variants. The

mis_z scores: corrected missense z scores. The z score is a constraint metric to contrast observed and expected number of variants per gene [11]. The

number of nsSNVs in columns 3 and 5 differ because for mis_z score calculation only nsSNVs with MAF < 0.1% are taken into account (n_mis, column 5).

GDI is a metric used to score accumulated mutational damage on human genes [21]. GDI-Phred I: the GDI ranking of the gene relative to all other human

genes.

doi:10.1371/journal.pone.0172189.t001
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Fig 1. Analyses of non-synonymous variants in the transglutaminase family. (A) Amino acid residues polymorphic to non-synonymous

variants. The percentage of polymorphic residues was obtained as a ratio of the total number of amino acid residues polymorphic to nsSNVs and the

sequence length. The percentage of polymorphic residues is shown. (B) Proportion of damaging and benign non-synonymous variants by the

PolyPhen score. Ratio of damaging nsSNVs: F13a (42.8%), TGM1 (60.8%), TGM2 (43.7%), TGM3 (52.2%), TGM4 (51%), TGM5 (55.3%), TGM6

(52.5%), and TGM7 (49.5%). (C) Location of damaging nsSNVs in amino acid sequence of TGM2 by PolyPhen/SIFT scores. Lane 1: sequence

of human TGM2, Lane 2: damaging nsSNVs in human TGM2. Functional regions of human TGM2: Intrinsically disordered regions (dark red) [4], amino

acid clusters in light blue [30], fibronectin binding sites (FN) (green) K30, R116, and H134 [31], GDP binding residues (orange) S171, K173, R476,

R478, V479, R580, Y583 [32], catalytic residues (pink); non-canonical Ca2+-binding sites: S4: 149–159, S1: 228–236, S3A: 305–311, S3B: 326–333,

S2A: 395–401, S5: 432–440, and S2B: 445–455 (underlined and bolded) [33]. Domains of human TGM2 are presented vertically: β sandwich (1–139),

catalytic core (147–460), β-barrel 1 (472–583), and β-barrel 2 (584–687).

doi:10.1371/journal.pone.0172189.g001
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TGM1, TGM2 and F13a show evolutionary constraint to non-

synonymous variants

In order to determine the constraint on a particular gene, mis_z scores were calculated for non-

synonymous variations of each gene in the ExAC dataset [11]. The mis_z values for the trans-

glutaminase nsSNVs are given in Table 1. Increased constraint is indicated by positive mis_z

scores and decreased constraint with negative mis_z scores. TGM1, TGM2 and F13a had posi-

tive, highest mis_z scores and, therefore, they had fewer variants than expected but other mem-

bers had negative mis_z scores indicating that they had more variants than expected (Table 1).

Recently, by using gene level approach, load of disease causing mutations and mutational

damage on protein-coding human genes was estimated by gene damage index scores (GDI)

[21]. The genes with low GDI score tend to be under strong purifying selection and biologi-

cally indispensable and thus harbor fewer mutations. But those with high GDI scores are

under less purifying selective pressure and are likely biologically redundant with more muta-

tions. Based on Phred I-score, the ranking of the gene of interest i relative to all other human

genes (T = 19,558 genes used in the analyses in ref [21]) was also calculated to estimate the

damaged human genes. Lowest Phred I-score refers to least damaged human gene with lowest

GDI and highest Phred I-score refers to most damaged human gene. The GDI and GDI-Phred

I values are listed for transglutaminases in Table 1. Among transglutaminases, TGM2 and

TGM1 with lowest values are under strong selective pressure as they cannot tolerate more

mutations. Mutations are tolerated by other transglutaminases, particularly TGM4 and F13a

with highest Phred I-score. F13a is under less purifying selection based on the GDI values, but

F13a deficiency results in bleeding disorder [34].

TGM2 and F13a have lowest ratio of damaging non-synonymous SNVs

The SIFT and polymorphism phenotyping scores provided in the ExAC database were used.

According to SIFT analysis, F13a and TGM6 have lowest and highest ratios of damaging

nsSNVs, respectively (data not shown). PolyPhen analysis revealed that TGM2 and F13a have

the lowest, while TGM1 and TGM5 have the highest ratios of damaging nsSNVs (Fig 1B).

Around 45% of nsSNVs in TGM2 are damaging and out of these 54% are concentrated in the

catalytic core domain and 17% in the β-sandwich domain (Fig 1C).

Effect of damaging nsSNVs on TGM2 structure and function

The damaging nsSNVs affect the stability and biochemical functions of the native proteins [35].

We analyzed how rare PolyPhen or SIFT predicted damaging nsSNVs (indicated in Fig 1C) influ-

ence protein stability, secondary structure and functional sites including novel amino acid clusters,

IDRs, SLiMs, and LC3 (microtubule-associated protein light chain) interacting regions (LIRs).

Influence on stability and secondary structures. Stability effects of mutations are crucial

for understanding the sequence–structure relationships and predicting the evolutionary

dynamics of proteins [36]. FoldX analysis to assess the impact of damaging nsSNVs on TGM2

stability was performed using both the opened (PDB ID: 2Q3Z) and closed (PDB ID: 1KV3)

conformations of TGM2. Mutations had equal impact on relative stability (ΔΔG) of the opened

and closed conformation. Accordingly, 24.4% of nsSNVs in the opened conformation and

28.6% in the closed conformation were found to be destabilizing (ΔΔG> 1 kcal/mol), 26.7%

and 23.5% were highly destabilizing (ΔΔG> 3 kcal/mol) in opened and closed conformation,

respectively. The highly destabilizing damaging nsSNVs are dominantly located in the catalytic

core domain, in accord with the observation that mutations affecting the function of a protein

are highly destabilizing [37].

Genomic variants in human transglutaminases
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Based on GORIV predictions only eight damaging nsSNVs had a minor impact on the sec-

ondary structure propensities: only the insertion of a helix-breaking proline at position 12

induced helix to coil transition (S1 Table). The persistence of secondary structures after gener-

ation of nsSNVs also underscores the stability of the human TGM2 structure. Variants, p.

Arg214His and p.Trp337Leu had destabilizing ΔΔG values in the opened and closed confor-

mations and p.Arg377His in the closed conformation (S1 Table). The ΔΔG value of p.Val283-

Met is highly destabilizing in the opened conformation.

Effect on conserved functional and interaction sites. Damaging nsSNVs are not present

at active site residues (W241, C277, H335, and D358) and at recently described novel amino

acid clusters emerged in humans [30]. We have previously identified additional residues

around the active site, which are crucial for transamidase (W278) or isopeptidase (W332)

activity [29] and there are no damaging nsSNV at these sites either. Localization and function

of TGM2 in the extracellular space is critically determined by its interaction with fibronectin;

there is no nsSNVs at the recently described fibronectin binding residues in TGM2 [31].

Damaging nsSNVs p.Ser171Leu, p.Arg476Gln, and p.Arg478Cys slightly influence the

GDP binding sites [32] and all of the described non-canonical calcium binding sites [33] are

affected (Fig 1C). Studies indicate that non-enzymatic protein-protein interactions of TGM2

have important physiological and pathological outcomes (reviewed in [4]). The described

interaction sites in TGM2 were checked for the presence of damaging nsSNVs. Syndecan-4,

which functions as a receptor for intracellular signaling is reported to interact with sequence
202KFLKNAGRDCSRRSSPVYVGR222 of TGM2 [38, 39] which has six nsSNVs. Likewise,

interaction sites of various proteins in TGM2 enclose damaging nsSNVs: the α1-adrenoceptor

interaction sites L547-I561, R564-D581, and Q633-E646 [40, 41] embed eleven nsSNVs, the

PLCδl interaction sequence V665-K672 [42, 43] has three nsSNVs, BAX and BAK interaction

sequence 204–212 [44] embeds one, 14-3-3 binding protein interaction sequence 209–223 [45]

has seven nsSNVs and three SUMO motifs detected on TGM2 sequence 327–329, 364–366,

and 468–470 [46] has two nsSNVs. Therefore, presence of nsSNVs in regions targeted by sev-

eral interacting partners might influence cellular TGM2 functions in transmembrane signal-

ing, cell adhesion, migration, Ca2+ regulation of transamidation, cell death induction, and

protein turnover.

The damaging p.Met330Arg nsSNV is among the three reported heterozygous missense

mutations in the TGM2 gene associated with early-onset type 2 diabetes in a small disease

cohort [47, 48]. It should be noted that association of TGM2 mutations and dysfunction has

not been confirmed in larger diabetes patient cohorts so far and TGM2 KO mice have no

impairment in glucose-stimulated insulin secretion by pancreatic islets relative to wild-type lit-

termates [6].

TGM2 has a pivotal role in celiac disease pathogenesis through generating immunogenic

peptides from gliadin and because of the appearance of pathologic anti-TGM2 antibodies dur-

ing the course of the disease. It is interesting to see that there is practically no damaging

nsSNV located in the identified celiac epitope relevant amino acid residues, namely epitope 1

which is composed of Lys30, Arg116, His134 and epitope 2 consisting of Arg19, Glu153,

Glu154, Met659 [49, 50].

Occurrence of nsSNVs at intrinsically disordered regions embedding short linear

motifs. The sequences of many proteins contain short, loosely-defined protein interaction

sites that mediate recognition and targeting activities and provide wide range of functionality

to proteins [51]. These interaction sites are called Short Linear Motifs (SLiMs) composed of

low complexity short peptide regions (3–20 residues long) which mediate post-translational

modifications and protein-protein interactions. Mostly SLiMs are embedded in polypeptide

segments that lack well-defined tertiary structure. These unstructured regions are referred to

Genomic variants in human transglutaminases
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as intrinsically disordered regions (IDRs) and they are involved in diverse functions. About

22% of human disease mutations occur in intrinsically disordered regions [51]. Recently we

reported 13 IDRs embedding 39 SLiMs in human TGM2 [4] and we looked for the presence of

damaging nsSNVs in these regions. The damaging nsSNVs located in IDRs embedding SLiMs

are given in Table 2. They target 8 IDRs embedding 27 SLiMs and most of the nsSNVs are con-

centrated in the IDRs 208–217, 411–414, and 428–473 located in the catalytic core domain

(Table 2).

Occurrence of nsSNVs at LC3 interacting regions. Autophagy was initially considered

to be a nonselective process for bulk breakdown of cytosolic material. However, recent evi-

dence points towards a selective mode of autophagy mediated by the so-called selective autop-

hagy receptors [52]. Interaction between selective autophagy receptors and proteins of the

autophagy-related protein 8 families are mediated by short linear sequence motifs called LIRs

which ensures the targeting of autophagy receptors to LC3 or other autophagy-related protein

8 family proteins anchored in the phagophore membrane. The canonical LIR motif consists of

Table 2. Damaging nsSNVs located in ID regions embedding SLiMs in TGM2.

IDR Short linear motifs Explanation Damaging

nsSNVs

65–74 • LIG_SH3_3 [59–65] SH3 binding domain • p.Gly64Ser

208–

217

• DOC_MAPK_1 [213–220]

• DOC_WW_Pin1_4 [213–218]

• MOD_GSK3_1 [209–216]

• MOD_CK1_1 [212–218]

• MOD_PKA_2 [212–218]

• MOD_ProDKin_1 [213–219]

Docking interaction in MAP kinase cascade (exemplified cJun); binds WW domains,

involved in proline directed phosphorylation signaling pathways; phosphorylation motifs

(CK1, GSK3,PKA, proline-directed kinase)

• p.Arg209Cys

• p.Arg213Cys

• p.Arg214His

• p.Val218Ala

• p.Val220Met

358–

367

• DOC_WW_Pin1_4 [357–362]

• LIG_FHA_2 [358–364]

• LIG_TRAF2_1 [360–363]

• LIG_TRAF6 [359–367]

• MOD_CK2_1 [357–363]

• MOD_ProDKin_1 [357–363]

Binds WW domains, involved in proline directed phosphorylation signaling pathways;

TRAF2 and TRAF6 binding motif; CK2 and proline-directed kinase phosphorylation motif

• p.Thr360Met

• p.Glu366Lys

411–

414

• LIG_ACTIN_WH2_2 [409–427]

• MOD_GSK3_1 [408–415]

• MOD_PLK [408–415]

Actin binding motif (WH2 domains); GSK3 and PLK phosphorylation site; • p.Asp409Val

• p.Asp409Gly

• p.Gly410Glu

• p.Lys414Thr

428–

473

• DOC_USP7_1 [446–450]

• MOD_CK1_1 [427–433]

• MOD_CK2_1 [446–452]

USP7 binding motif; CK1 and CK2 phosphorylation motif • p.Glu447Lys

• p.Gly448Glu

• p.Val431Leu

• p.Val431Met

597–

602

• TRG_LysEnd_APsAcLL_1

[599–604]

• TRG_NLS_MonoExtN_4 [597–

604]

• DOC_CYCLIN_1 [601–604]

• DOC_MAPK_1 [601–609]

Sorting and directing signal to lysosomal endosomal compartment; NLS; cyclin recognition

signal; MAPK docking motif

• p.Arg601Cys

626–

647

• DEG_APCC_DBOX_1 [650–

658]

• DOC_MAPK_1 [649–657]

• LIG_FHA_1 [633–639]

APCC binding destruction signal; MAPK docking motif; FHA binding motif • p.Pro656Leu

• p.Thr635Met

685–

687

• DOC_MAPK_1 [674–684] MAPK docking motif • p.Ala675Pro

• p.Val676Ala

• p.Arg680Pro

• p.Ile684Thr

Column 1 indicates the position of IDRs; column 2 shows the names of SLiMs and their coordinates in square brackets; column 3 provides explanation for

the function of the given SLiM; column 4 lists damaging nsSNVs in TGM2.

doi:10.1371/journal.pone.0172189.t002
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a short tetrapeptide sequence WxxL (where x could be any residue), which interact with two

distinct hydrophobic pockets of LC3 [52]. As TGM2 was shown to be involved in autophagy

[53], SNVs in LIRs motifs could impact this process. LIR motifs and 11 damaging nsSNVs in

TGM2 are shown in Table 3. Two damaging nsSNVs target xLIR motif 352EGWQAL357 and

WxxL motifs are targeted by nine damaging nsSNVs (Table 3). Non-synonymous SNVs present

within LIRs might have functional implications in autophagic process, given the role of TGM2

in autophagosome maturation [53] and its interaction with autophagy cargo proteins [54].

Population scale occurrence of non-synonymous SNV in TGMs

The influence of nsSNVs of proteins arising in the human population is significantly deter-

mined by their penetrance. The nsSNV allele counts in the population covered in the ExAC

dataset are the highest for TGM3 and TGM4 (over 0.2 million) and lowest for TGM2 and

TGM1 (2601 and 5174, respectively) (Table 4). Common variants are typically defined as those

found with> 5% allele frequency and rare variants as those found with< 0.5% allele frequency

[55]. The F13a, TGM3, TGM4, TGM5, and TGM6 have common nsSNV variants, TGM1 and

TGM7 nsSNV variants occur in frequencies less than 5%. The allele frequency value for the

three most frequent variants in case of each family member is showed in Fig 2. All the TGM2

nsSNVs were rare with allele frequency values less than 0.5%. The TGM2 nsSNV with highest

allele frequency values are p.Arg76His (0.47%), p.Val542Phe (0.38%), p.Glu366Lys (0.11%),

Table 3. Damaging nsSNVs located in potential LC3 interacting regions.

MOTIF START END LIR sequence TGM2 damaging nsSNV

xLIR 352 357 EGWQAL • p.Glu352Lys

• p.Gly353Val

WxxL 38 43 PFWLTL • p.Leu43Arg

WxxL 133 138 GHFILL • p.Leu137Phe

WxxL 278 283 WVFAAV • p.Ala282Thr

• p.Val283Met

WxxL 392 397 FVFAEV • p.Ala395Val

WxxL 514 519 VSYNGI • p.Asn517Ser

WxxL 677 682 KGFRNV • p.Arg680Trp

• p.Arg680Pro

• p.Arg680Gln

Column 1 represent the LIR and WxxL motifs, column 2 and 3 represent the start and end of each motif in TGM2, column 4 represent the sequence of LIR

motifs and human TGM2 damaging nsSNVs are underlined in bold text.

doi:10.1371/journal.pone.0172189.t003

Table 4. Summary of population frequencies of nsSNVs alleles of transglutaminases in the ExAC database covering 60,706 individuals.

Genes Total number of nsSNV types Allele count Number associated with homozygotes Number of homozygote individuals

F13a 283 88654 9 9214

TGM1 320 5174 13 25

TGM2 272 2601 6 12

TGM3 313 205153 12 73495

TGM4 279 265931 17 66931

TGM5 273 27038 12 2206

TGM6 336 111028 23 47462

TGM7 293 11585 13 170

Column 2 shows the total number of nsSNVs; column 3 has the observed allele counts for the nsSNVs; column 4 presents the number of nsSNVs

associated with homozygotes; column 5 contains the number of homozygote individuals

doi:10.1371/journal.pone.0172189.t004
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p.Arg433Gln (0.10%) and p.Glu469Gly (0.10%); of these only p.Val542Phe has potentially

damaging PolyPhen score.

Homozygous occurrence of TGM2 non-synonymous SNVs

Since damaging TGM2 nsSNVs occur at some functional sites of the protein we have decided

to screen databases to see whether homozygous occurrence of nsSNVs is tolerated by individu-

als as compared to nsSNV variants of the other transglutaminase family members. Further-

more, we wanted to learn how the protein products of TGM2 nsSNVs alleles found in

homozygotes function in biochemical tests.

The current ExAC dataset contains the revealed existing homozygous nsSNVs for transglu-

taminase family members (Table 4). TGM3, TGM4, and TGM6 have the highest (in the range

of 47 to 73 thousands), while TGM2, TGM1, and TGM7 have the lowest (12, 25, and 170

respectively) numbers of such homozygous occurrences (Table 4). The number of nsSNV

alleles associated with the homozygotes is lowest for TGM2 and F13a. There are only six

TGM2 nsSNVs which occur all together in 12 individuals in homozygous form in various pop-

ulations in the World, by far the lowest number in the TGM family (Table 5). Amidst these,

three nsSNVs have probably damaging PolyPhen scores (p.Arg222Gln, p.Val542Phe and p.

Pro612Thr), p.Pro612Thr is destabilizing in both closed and opened conformations, whereas

p.Val542Phe and p.Asp671Asn mostly affect the closed conformation (Table 5).

Biochemical analysis of homozygous non synonymous TGM2 variants

Since homozygous nsSNVs can be associated with various diseases we analyzed the functional

impact of TGM2 homozygous nsSNVs. We produced all the six homozygous occurring TGM2

Fig 2. Allele frequencies of three most frequent non-synonymous variants in transglutaminase family

genes. Values were calculated based on the ExAC database. For each family, nsSNVs with top three allele

frequency (%) values are shown. F13a: p.Pro565Leu (21%), p.Glu652Gln (20.8%), p.Val35Leu (20.6%);

TGM1: p.Val518Met (1.04%), p.Glu520Gly (0.56%), p.Ser42Tyr (0.40%); TGM2: see in text; TGM3: p.

Gly654Arg (28.7%), p.Thr13Lys (19%), p.Ser249Asn (11.2%); TGM4: p.Glu313Lys (49%), p.Val409Ile

(44.7%), p.Arg372Cys (42.8%); TGM5: p.Ala352Gly (14.8%), p.Val504Met (1.4%), p.Gln521Arg (1.25%);

TGM6: p.Met58Val (9.2%), p.Arg448Trp (2.80%), p.Ala141Glu (0.9%); TGM7: p.Pro564Leu (3.4%), p.

Val103Leu (1.07%), p.Val515Leu (0.82%).

doi:10.1371/journal.pone.0172189.g002
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variants containing the respective nsSNVs by site directed mutagenesis and tested them in bio-

chemical assays. We measured transglutaminase activity of the variants using two previously

published kinetic assays [17, 56]. Except p.Arg222Gln, the transamidase activity of variants is

comparable in the two assays. p.Arg222Gln was completely active in amine incorporation

assay but inactive in the protein crosslinking assay (Fig 3). The variant p.Arg76His showed

increase in transamidase activity compared to the wild type enzyme and variant p.Val542Phe

showed 40% less activity than wild type TGM2 in both assays. Compared to the wild type, p.

Pro612Thr variant showed 40% less activity in the amine incorporation assay but only 18%

less activity in the protein crosslinking assay. Interestingly both p.Val542Phe and p.Pro612Thr

variants have predicted damaging PolyPhen/SIFT scores (Table 5). Calcium dependence of the

transamidase reaction was also measured based on the amine incorporation assay (Fig 3). Var-

iant p.Arg76His exhibited high transamidase activity and variants p.Val542Phe, p.Pro612Thr

had less activity than wild type at both measured Ca2+ concentrations (Fig 3). Variants p.

Arg433Gln, p.Asp671Asn manifested a several fold increase in transamidase activity compared

with wild type at 0.25 mM Ca2+ concentration. Variant p.Arg222Gln showed the lowest effi-

ciency at 0.25 mM calcium concentration, increasing of which restored activity. It is known

that Ca2+ and nucleotides reciprocally regulate transglutaminase reactions. The nucleotide

binding of the variants were examined using an analog, BODIPY FL GTPγS. At 250 nM

enzyme concentration, 18% higher GTP binding was observed for p.Arg76His and p.

Asp671Asn than wild type and 24% lower GTP binding in case of p.Pro612Thr (Fig 3).

TGM2 also possess isopeptidase activity when previously formed isopeptide bonds are

cleaved. The isopeptidase activity of the six variants was also compared using a commercially

available small chemically produced substrate and a recently published protein based real-time

kinetic method [18]. The p.Arg222Gln variant is only 15% active in the commercial Zedira

assay and completely inactive in the protein based method (Fig 3). Compared to wild type, the

variants p.Val542Phe and p.Pro612Thr showed less isopeptidase activity in the Zedira assay

but normal activity in the protein based method. While variants p.Arg76His, p.Asp671Asn

Table 5. The 12 human TGM2 homozygotes related to 6 nsSNVs.

Position and

Change

Allele Frequency

[%]

Domains Stability ΔΔG [kcal/mol] PolyPhen/ SIFT Number of Homozygote

Individuals

Population

Closed

Form

Open

Form

R76H 0.47 β-

sandwich

0 0.57 Benign 5 • 2 East

Asian

• 3 Latino

R222Q 0.048 Catalytic -0.98 0.71 Probably

damaging

1 • South Asian

R433Q 0.10 Catalytic 0.67 0.51 Benign 1 • South Asian

V542F 0.38 β-barrel 1 2.29 -1.11 Probably

damaging

3 • 2 East

Asian

• 1 African

P612T 0.018 β-barrel 2 2.26 3.83 Probably

damaging

1 • South Asian

D671N 0.013 β-barrel 2 1.17 0.10 Benign 1 • African

Column 1 homozygous nsSNVs in TGM2; column 2 allele frequency of the given nsSNV; column 3 shows domain location in TGM2; column 4, 5 stability

values in closed and opened conformation; column 6 PolyPhen/SIFT scores; column 7 presents number of homozygote individuals for each nsSNV and

column 8 indicates population distribution of the 12 homozygote individuals. The dbSNP identifiers of the TGM2 homozygous nonsynonymous variants: p.

Arg76His (rs41274720), p.Arg222Gln (rs200551434), p.Arg433Gln (rs142184177), p.Val542Phe (rs115436227), p.Pro612Thr (rs199563008), p.

Asp671Asn (rs141236503).

doi:10.1371/journal.pone.0172189.t005
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showed increase in activity compared to the wild type in both the assays. Since interaction of

TGM2 with fibronectin has a crucial role in scaffolding processes in the extracellular matrix of

the cells, the fibronectin-binding property of the variants was tested by an ELISA method. The

variants p.Val542Phe, p.Pro612Thr showed 15% less fibronectin binding but other variants

bound fibronectin similarly to the wild type enzyme (Fig 3).

Homozygous variants p.Arg76His and p.Asp671Asn with high transamidase, isopeptidase

activities and GTP binding ability do not coincide with any of the functional sites, predicted

IDRs, novel clusters and have benign or tolerated scores. The p.Arg433Gln variant with almost

Fig 3. Biochemical characterization of the six homozygous nsSNVs of TGM2. Kinetic characterization of

the transamidase activity of TGM2 variants and wild type at 3 mM CaCl2 concentration using amine

incorporation assay [56] and protein crosslinking assay [17]. Calcium dependence of kinetic transamidase

reaction with 0.25 and 1 mM calcium concentrations using amine incorporation assay. Comparison of the

kinetic isopeptidase activity of TGM2 variants at 5 mM CaCl2 concentration using Zedira assay and

crosslinked protein substrate [18]. The relative activities are calculated as a percentage of the activity values

of the wild type TGM2. Comparison of BODIPY FL GTPγS binding of variants and wild type TGM2 proteins

with different concentrations of TGM2 (50 and 250 nM). The change in the fluorescence intensity (Ex/Em:

485/520 nm) was determined after 15 minutes of incubation. Binding is shown as a percentage of maximum

binding in case of wild type TGM2 [29]. The Fibronectin binding property of the TGM2 variants was tested

using a previously published direct ELISA assay [16]. Data are presented as means with ± standard

deviations from three separate experiments done in triplicate. All the data were analyzed by GraphPad Prism

7.

doi:10.1371/journal.pone.0172189.g003
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normal activity compared to wild type is part of the Ca2+ binding site S5 (432–440) and IDR

(428–473) embedding SLiMs like USP7 binding motif, TRAF2 binding motif, and CK1 and

CK2 phosphorylation motif. A PolyPhen damaging variant with decreased activity is p.

Val542Phe located within the MOD CK1 phosphorylation site and MOD PLK site phosphory-

lated by polo like kinases. Another potentially damaging variant p.Pro612Thr with less transa-

midase, isopeptidase and GTP binding is near to an IDR (597–602) and a novel amino acid

cluster PVA (613–615) [30]. The homozygous variant p.Asp671Asn is located in the C-termi-

nal class 3 PDZ-binding motif.

The PolyPhen damaging variant p.Arg222Gln, located to the catalytic core domain near

Ca2+ binding site S1 (226–233) and the SLiM, STAT5 Src Homology 2 (SH2) domain binding

motif, has very low transamidase activity at physiological Ca2+ concentration. Moreover, the

isopeptidase activity of this variant is completely lost. To assess the effect of the p.Arg222Gln

allele on the structure we compared the situations where of the calcium binding sites none,

only site 1, or all three are occupied by metal using the existing crystal structures and newly

built homology models of TGM2 (Fig 4). We attribute the observed behavior of the Q222 vari-

ant to a disrupted H-bond network that leads to altered conformation of the loop, P359-G372,

and consequently to reduced calcium affinities at site 1 and 2, and to a topology which disfa-

vors proper interaction with a protein amine donor. Taken together, biochemical data demon-

strates that only one of the very rarely occurring homozygous nsSNVs containing variant of

TGM2 lead to significant decrease of one of its basic functional properties.

Heterozygous and homozygous LOF variants of TGMs

The very rare generation of damaging nsSNVs alleles of TGM2 in humans and the observation

that even the so far found homozygous TGM2 nsSNVs keep their basic biochemical properties

(with one exception with decreased activities), prompted us to check the population frequency

of its LOF variants compared to the other genes. Disease causing TGM2 LOF variants have not

been reported so far in humans. Neither TGM2 nor the other TGMs are among the 3230 genes

of the ExAC database which are unable to function normally after loss of one copy of the gene,

even if the other copy is intact (haploinsufficiency) [11]. In general, large-scale sequencing

projects revealed a surprisingly large number of LOF variants and fully knocked out (homozy-

gous or compound heterozygous) genes in genomes of healthy individuals [57]. We compiled

the LOF variants of transglutaminase family members from different populations with avail-

able data (S2 Table). Heterozygous LOF variants for all the transglutaminases were identified

in the dataset of the Atherosclerosis Risk in Communities (ARIC) cohort study (S2 Table)

[58]. In the ExAC dataset (where full knock outs can be found), LOF heterozygotes were iden-

tified for all the members of the family but in homozygous form only for TGM4 and TGM6

[11]. Transglutaminase LOF variants with highest allele frequency values were observed for

TGM4 (0.83%) and F13a (0.24%) while the LOF (MAF) values were very low for the others:

TGM1 (0.03%), TGM2 (0.015%), TGM3 (0.003%), TGM5 (0.006%), TGM6 (0.04%), TGM7

(0.017%). Exon sequencing data from 185 individuals as part of the pilot phase of the 1000

Genomes Project was analyzed and 2951 LOF variants, rare and likely deleterious LOF alleles

(including 26 known and 21 predicted severe disease-causing variants) were reported [57];

this dataset contains a homozygous TGM6 LOF variant. A list of autosomal genes that are

completely knocked out in the Icelandic bottlenecked population by rare LOF mutations

have been published [10]; these data show that 7.7% (1171) of protein coding genes are

completely knocked out by loss-of-function variants including TGM1, TGM4, and TGM5

(S2 Table). Recently, 3222 exomes of British adults of Pakistani heritage, a consanguineous

population, was sequenced and 1111 rare gene knockouts in 781 genes were identified finding
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one homozygous TGM4 LOF variant [12]. A homozygous TGM4 LOF variant was also identi-

fied in the Simons Simplex Collection (SSC) dataset, a project aimed to improve the under-

standing and research of autism spectrum disorders [59]. TGM2, TGM3, and TGM7 LOF

variants in homozygous or compound heterozygous form have not been identified in any of

these datasets.

Summary of transglutaminase mutations listed in OMIM database

Allelic variations responsible for human inherited diseases are listed in the Online Mendelian

Inheritance in Man (OMIM) database, an Online Catalog of human genes and genetic disor-

ders. We collected OMIM data for transglutaminase family which is shown in S3 Table. F13a

autosomal recessive mutations lead to F13a deficiency [60, 61, 62], TGM1 has disease causing

mutations in autosomal recessive congenital ichthyosis [63, 64], TGM5 homozygous LOF

mutations cause acral peeling skin syndrome [65, 66, 67] and TGM6 mutations are associated

with spinocerebellar ataxia 35 [68]. Data have not been found for inherited disease related to

TGM2, TGM3, TGM4, and TGM7 mutations.

Fig 4. Structural interpretation of the effect of the p.Arg222Gln variation on enzyme activity. We analyzed the interactions of R222 in a

homology model of TGM2 containing three bound calcium ions (pink spheres), which supposedly corresponds to the active form (cyan: N-

terminal, grey: catalytic, green and red: first and second beta barrel domains respectively). The squared area in the left panel is magnified on the

right. R222 is located in the middle of the solvent accessible surface of the α-helix leading up to calcium binding site S1 (226–233). R222 is at

the core of an H-bond network (light blue dashed lines) that serves to bundle neighboring structural elements of TGM2 together. Upon binding of

calcium to site 1, H-bonds between E232, N229 and backbone atoms of Y369, and H-bonds of R222 to S365, E366, G372, and D389

cooperatively tether the flexible loop, P359-G372. The changing conformation of this loop leads to reorganization of another non-covalent

interaction network near calcium binding site 2, including a directly calcium binding residue, N306, for metal binding, and to honing of the charge

relay duad, E305-E363 that has recently identified importance for catalysis [26]. The Q222 variant (wheat) fails to establish the critical H-bonds

with S365, E366, and E389, thus the calcium binding of both sites are impaired and the charge relay system is also negatively affected. The

same loop, most probably, also contributes residues to the amine substrate binding surface and controls access to the active site (C277/H335/

D358), likely explaining that the Q222 enzyme has conserved transamidase activity for a small molecular amine, but compromised cross-linking

activity towards a protein amine donor and lost isopeptidase activity for a protein-peptide conjugate.

doi:10.1371/journal.pone.0172189.g004
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Discussion

Large scale exome sequencing has opened a new avenue to study molecular background of

polymorphism and to understand unsolved Mendelian and non-Mendelian genetic disorders

[7, 69, 70, 71]. Our survey reveals that human transglutaminase genes harbor about the same

number of nsSNV types in accord with the assumed generational mutation rate of ~1–

1.5 × 10−8 for single-base substitutions, but differ very much in their response to purifying

selection. Deleterious variants are expected to have lower allele frequencies than neutral ones,

due to negative selection. Genomic changes in F13a, TGM3, TGM4, and TGM6 are most toler-

ated with highest nsSNV allele frequency values, allele number and homozygote individuals

but are least tolerated in TGM1, TGM7 and particularly TGM2 with low population frequen-

cies. Evolutionary constraints are also indicated by mis_z and GDI scores for TGM1 and

TGM2 in the human population. These differences are even more intriguing knowing that

TGM6, TGM3 and TGM2 are located close to one another on chromosome 20q11-12. We pre-

sume that based on population frequencies and other predicted values, human TGM2 must be

under high selective pressure not allowing generation of even heterozygous common variants.

The similarly high evolutionary constraint on human TGM7 is a surprising finding and may

initiate further studies, especially to learn the physiological function of TGM7 about which

there is no available information.

Rare, deleterious non-synonymous variants can be lethal and are also connected to human

diseases [72]. Caution should be taken while addressing damaging variants as some previously

identified disease-causing variants were actually benign occurring at high frequencies [11].

Recent studies have disclosed rare, homozygous LOF variants or knockouts in genomes of

healthy individuals [57]. So far, 1717 genes have been reported to be implicated in various

Mendelian recessive disorders (the most common is cystic fibrosis) [73–76]; the lack of most

of these genes is compatible with life albeit with the consequence of disease phenotypes. Based

on available datasets, F13a, TGM1-TGM7 have LOF variants in heterozygote state but homo-

zygous LOF variants have been seen only for TGM1, TGM4, TGM5, and TGM6. From classi-

cal clinical and genetic studies it has been known that humans with knock out, homozygous

LOF transglutaminase genes with disease phenotype in the case of F13a (bleeding disorder,

prevalence 1 in 2 millions) [60, 61, 62, 77, 78], TGM1 (lamellar ichthyosis, prevalence 1 in 150

thousands) [63, 64], and TGM5 (acral peeling skin, prevalence <1 in 1 million) [65, 66, 67]

deficiencies. It is important to note that TGM2, TGM3, and TGM7 nsSNVs do not seem to be

associated with any pathological phenotype except perhaps TGM2 heterozygous mutations

associated with early-onset type 2 diabetes, an observation which has not been confirmed in

animal experiments and large clinical cohorts [6, 47, 48, 79]. The most plausible explanation of

this remarkable purifying selection, at least for TGM2, is its multifunctional nature. TGM2 is

able to catalyze transamidation, esterification, GTPase, protein disulphide isomerase, and

hydrolysis reactions [1, 2], and interacts with a large number of ligands and proteins in almost

all compartments and outside of cells (reviewed in [4, 5]). It is likely that almost all amino

acids in the sequence have structural and functional importance and loss of any of them mani-

fested in homozygotes would lead to deleterious consequences–even preventing full embry-

onic development. This conclusion and the fact that TGM2 knock-out mice are viable and are

fertile raise the possibility that when compared to rodents, human TGM2 (and possibly also

TGM3, TGM7) gained vital functions which have not been fully revealed, yet.

Information from literature unveil that disease causing SNVs are concentrated at the core

of a protein [80]. Our study also shows that most of the TGM2 damaging nsSNVs are concen-

trated to the catalytic core domain. The core of the protein is hydrophobic in nature, so muta-

tion of a hydrophobic residue to a charged or polar residue could destabilize the protein. Our
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stability analysis revealed that most of the highly destabilizing damaging nsSNVs are in the

catalytic core domain. TGM2 nsSNVs in homozygous state so far found in humans and tested

by us resulted in minor changes in biochemical activities but there were no deleterious con-

sequences in basic structural and functional features. Only the p.Arg222Gln variant had

reduced transamidase and isopeptidase activities in assays where the amine donor was a pro-

tein (S100A4). This variant also showed diminished responsiveness in the amine incorporation

assay to a low but physiologically relevant range of Ca2+ concentration. We attribute this to the

importance of the non-covalent interaction network around R222 in positioning the loop,

P359-G372. This loop carries residues, which are engaged in calcium binding at site 1 as well

as substrate interactions. Without stabilizing interactions with site 1 and 2 and R222 most of

this loop is intrinsically disordered and highly dynamic. The disrupted H-bond network in

the Q222 variant leads to altered conformation of the loop and in consequence, probably, to

reduced Ca2+ affinities at sites 1 and 2, and to a topology which disfavors proper interaction

with the protein amine donor.

None of the homozygous nsSNVs are located in conserved or unique novel functionally

important sites of TGM2 which are not affected by other damaging nsSNVs either. The first

cloned human recombinant TGM2 has glycine at position 224 [81] opposed to valine in the

endogenous sequence present in the available genomic databases. We reported that the V224

variant of the enzyme has higher calcium-binding affinity, transamidation activity and isopep-

tidase activity [82] and it is important to note that there has been no nsSNV detected in the

human population so far at this conserved Val224 residue either.

IDRs and SLiMs play a vital role in protein function, they provide conformational flexibility

and facilitate diverse post-translational modifications and protein-protein interactions [83].

Recent studies have shown that disease-related mutations [84] and nsSNVs [85] are enriched

in SLiMs in IDRs and they occur more frequently at functionally important residues of

SLiMs [85]. Our study could reveal TGM2 damaging nsSNVs within IDRs embedding SLiMs

(Table 2) suggesting that sequence variability at these sites may have functional significance,

although almost all of these nsSNVs occur as heterozygous alleles. A damaging nsSNV in the

β-sandwich domain affects the IDR 65–74 and a SLiM motif recognized by SH3 domains.

In the catalytic core, series of six nsSNVs are located in IDR 208–217 and the SLiM motifs

involved in proline directed phosphorylation signaling pathways. Moreover, IDR 428–473

with SLiM USP7, which acts as a deubiquitination enzyme has four nsSNVs and IDRs 597–

602, and 626–647 embedding series of SLiMs in the β-barrel 2 domain has three nsSNVs.

There are several other nsSNVs that overlap with IDR-associated SLiMs (Table 2), which

might interfere with protein interactions and have possible functional consequences. Presence

of heterozygous damaging nsSNVs within the LIR motifs of TGM2 may be also interesting to

study since TGM2 is reported to play a role in autophagosome maturation [53] and it also

interacts with autophagy cargo protein p62 to remove the ubiquitinated proteins [54].

Recent studies have identified core genes (~10% of the ~20,000 genes) essential for life in

human cells in a context dependent manner [13, 14, 15]. These genes are highly conserved, do

not duplicate during evolution, code for abundant proteins with multiple interactions in cells

and show less than average polymorphism and deleterious mutations indicating strong purify-

ing selection. Based on similar features one may consider TGM2 (and perhaps TGM7) also as

an essential gene in humans; it is highly abundant in some cells (e.g. endothelial and smooth

muscle cells) [1, 5], has broad interaction potential [4] and as shown above displays low poly-

morphism in the population scale. However, none of the transglutaminases are listed [13, 14,

15] as essential for at least proliferation and maintaining of immortalized human cell lines in

culture. Much more population genomic data need to be generated and analyzed to decide

whether there are TGM2 functions which are essential for the existence of the whole organism
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as implied by the data discussed here. It is still possible that disease causing very rare TGM2

variants will be found as full genome or exon sequencing becomes even more widely accessi-

ble. Studying these cases and continuation of systematic biochemical and in vivo investigations

will be needed to answer the question what TGM2 functions reported and proposed so far are

critical for human physiology.

Supporting information

S1 Table. Sequence and structure based predictions for single mutant human TGM2 pro-
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umn 9. The stability values calculated for the opened and closed forms are shown in column
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nsSNVs, only 8 nsSNVs mentioned in this table had minor effects on secondary structure and

others did not influence the secondary structure.
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S2 Table. Transglutaminase heterozygous and homozygous LOF types from literature.

Column 1 Transglutaminase genes; other columns represent different populations with num-

ber of homozygote individuals given in brackets except for column 5 (ARIC dataset) were het-

erozygote individuals are mentioned in brackets and 1 homozygote individual for TGM4. In

case of ExAC dataset (column 6) only TGM4 and TGM6 had homozygote individuals and as

there are no exact data available about heterozygote individuals, allele count is shown. Column

2 indicates Icelandic population study involving 104,220 individuals [10]; column 3 indicates

study involving 3222 British-Pakistani-heritage adult individuals living in the UK [12]; column

4 denotes data from study involving 6970 individuals: (1496 cases and 5474 controls)

sequenced to characterize rare complete knockouts in Autism spectrum disorders cases [59];

column 5 denotes data from study involving Atherosclerosis Risk in Communities [58]; and

column 6 from ExAC datasets showing the allele count for F13a, TGM1-TGM7 and homozy-

gote individuals for TGM4 and TGM6 [11].

(PDF)

S3 Table. Transglutaminase mutations in OMIM database. The OMIM database was

accessed on July 2016. Mutations are cataloged in OMIM in the allelic variants section of gene

entries. Only selected examples listed in OMIM database is shown here. If a particular variant

is present in homozygotes then it is mentioned in brackets. Full list of transglutaminase related

references, are available in OMIM database.

(PDF)
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33. Király R, Csosz E, Kurtán T, Antus S, Szigeti K, Simon-Vecsei Z, et al. Functional significance of five

noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagene-

sis. FEBS Journal. 2009; 276(23): 7083–7096. doi: 10.1111/j.1742-4658.2009.07420.x PMID:

19878304
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