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1. Introduction

As it is well-known, separation theorems play a crucial role in many fields of Analysis and Geometry, 
and they can be interesting on their own right. Let us quote here the convex separation theorem of Baron, 
Matkowski, and Nikodem [1], one of our main motivations:

Theorem. Let D be a convex subset of a real vector space X, and let f, g : D → R be given functions. There 
exists a convex separator for f and g if and only if

f

(
n∑

k=0

tkxk

)
≤

n∑
k=0

tkg(xk) (1)

holds for all n ∈ N, x0, . . . , xn ∈ D and t0, . . . , tn ∈ [0, 1] with t0 + · · · + tn = 1. Moreover, if X is 
finite-dimensional, then the length of the involved combinations can be restricted to n ≤ dim(X).
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The necessity part of the statement is a straightforward calculation in both cases. To prove sufficiency in 
the dimension-free case, the convex envelope of g has to be used. Surprisingly, the most delicate issue is suffi-
ciency in the finite-dimensional setting: An important tool of Convex Geometry, the classical Carathéodory 
Theorem [5] has to be applied.

The convex separation theorem above still motivates researchers. In a recent paper [13], the authors 
present an extension for functions defined on complete Riemannian manifolds. Unfortunately, their gener-
alization is false: As it can easily be seen, the two-dimensional cases of the main results of [1] and [13] do 
not coincide.

The authors in [13] construct a set as the union of segments joining pairs of points of an epigraph. 
Then they claim (without explanation) its convexity (page 164, line 7, displayed formula). Clearly, such a 
construction, in general, does not result in a convex set. Thus the original intent of [13] remains a nice and 
nontrivial challenge: Extend the convex separation theorem of [1] to Riemannian manifolds.

In this challenge, one has to face two crucial problems. Firstly: What kind of structures should be 
used to have convexity without convex combinations? Secondly: What is the corresponding form of (1) in 
lack of algebraic manipulations? The proper choice to the structure turns out to be Birkhoff systems, the 
generalizations of Cartan–Hadamard manifolds. Inequality (1) has to be replaced by another one, in order 
that an iteration process can be applied.

2. Convex separation in Birkhoff systems

The precise axiomatic discussion of Euclidean geometry is due to Hilbert [7]; a nice and simplified 
presentation can be found in the book of Hartshorne [6]. Later Birkhoff initiated [3] and then together with 
Beatley elaborated [4] an elegant and didactic approach which is based on the ruler and the protractor. In 
what follows, we shall need some of their notions and axioms.

Assume that X is the set of points with at least two elements. Consider a family L of subsets of X
whose elements are termed lines. Let further d : X2 → R be a given function called a metric. We require 
two axioms: The postulate of incidence and the postulate of the ruler.

• Any two distinct points determine a unique line containing them.
• For each � ∈ L there exists a bijection c : R → � such that d

(
c(t), c(s)

)
= |t − s|.

In this case, we say that (X, L , d) is a reduced Birkhoff system. A bijection c : R → � satisfying the 
condition in the second postulate is called a ruler for �. The postulate of the ruler implies immediately that 
the cardinality of each line is continuum.

Moreover, we can introduce a ternary relation called betweenness on X: the point b is between the points 
a and c if a, b, c are three different collinear points, and d(a, c) = d(a, b) + d(b, c). Using the abbreviation 
(abc) to this fact, one can prove that the axioms of abstract betweenness are satisfied:

• If (abc), then a, b, c are pairwise distinct and collinear; further, (cba).
• For distinct points a, b, there exists c such that (abc).
• If (abc), then (acb) and (bac) do not hold.

Using betweenness, the notion of line segment [a, b] spanned by the points a, b can be defined in the 
following way. If a = b, then [a, b] := {a}; otherwise,

[a, b] := {t ∈ X | (atb)} ∪ {a, b}.
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If a �= b, and � is the unique line passing through them, then let c : R → � be a ruler for � such that c(α) = a

and c(β) = b. Then we call the bijection

c̃ : [0, 1] → [a, b], c̃(t) := c((β − α)t + α)

the standard parametrization of the segment [a, b]. Clearly, c̃(0) = a, and c̃(1) = b. When there is no risk of 
confusion, we shall also denote a standard parametrization simply by c, without tilde. Note that, unlike a 
ruler, a standard parametrization does not need to be distance preserving (unless d(a, b) = 1).

Once having segments, we have convexity concepts. A set K ⊆ X is convex if [a, b] ⊆ K holds for all 
a, b ∈ K. The family of convex sets is denoted by C (X). It turns out that C (X) is a convex structure indeed 
in the abstract sense of van de Vel [14]. That is,

• X and ∅ are convex sets;
• the intersection of convex sets is convex;
• the union of nested convex sets is convex.

The convex hull of H ⊆ X, as usual, is the smallest convex set that contains H:

conv(H) :=
⋂

{K ∈ C (X) | H ⊆ K}.

It can be proved that segments are convex, and a set H is convex if and only if conv(H) = H. Moreover, the 
mapping conv: P(X) → P(X) is a hull operator, that is, an idempotent, monotone and extensive map. 
For further precise details, we refer to the paper [2] or to the excellent monograph [14]. Convex hulls are 
finitely inner represented in the following sense:

Lemma 1. If (X, L , d) is a reduced Birkhoff system and H ⊆ X, then

conv(H) =
⋃

{conv(F ) | F ⊆ H, card(F ) < ∞}.

Proof. Denote the right-hand side of the formula above by K. Then H ⊆ K holds evidently; moreover, for 
each finite set F ⊆ H, we have that conv(F ) ⊆ conv(H). Thus K ⊆ conv(H). To complete the proof we 
have to show that K is convex.

If a, b ∈ K, then a ∈ conv(Fa) and b ∈ conv(Fb) with suitable finite subsets Fa and Fb of H. The 
set F = Fa ∪ Fb is finite; furthermore, conv(Fa) ⊆ conv(F ) and conv(Fb) ⊆ conv(F ) hold. Thus [a, b] ⊆
conv(F ) ⊆ K, which was to be proved. �

Note that convex hulls are finitely inner represented in any convex structure. The proof of this fact 
is based on transfinite methods, and can be found in the monograph [14]. When convexity is defined via 
segments, the presented elementary approach can also be followed.

Unfortunately, neither the definition, nor Lemma 1 provides a constructive method for finding the convex 
hull of a concrete set. Especially for finite sets, the formula of Lemma 1 terminates in a ‘circulus vitiosus’. 
Therefore the fixed point theorem of Kantorovich [9] will play a distinguished role for us. Its iteration process 
is a constructive method to approximate convex hulls.

Lemma 2. Let (X, L , d) be a reduced Birkhoff system, and let H be an arbitrary subset of X. Consider the 
Kantorovich iteration

H1 := H, Hn+1 :=
⋃

{[x, y] | x, y ∈ Hn}.



4 M. Bessenyei et al. / J. Math. Anal. Appl. 500 (2021) 125108
Then,

conv(H) =
⋃
n∈N

Hn.

Proof. Clearly, A := {Hn | n ∈ N} is an increasing chain, and H ⊆
⋃

A . The iteration process guarantees 
that 

⋃
A is a convex set. Let C ⊆ X be a convex set such that H1 = H ⊆ C. Then H2 ⊆ C by the 

convexity of C. By induction, Hn ⊆ C for all n ∈ N. Thus 
⋃

A ⊆ C. In other words, 
⋃

A is the smallest 
convex set containing H, and the proof is completed. �

Assume that (X, L , d) is a reduced Birkhoff system, and let X∗ := X×R. For arbitrary elements (x0, y0)
and (x1, y1) of X∗, the first projections determine a line � in L provided that x0 �= x1. Let c : R → � be a 
ruler for � such that c(s0) = x0 and c(s1) = x1 hold, and define c∗ : R → X∗ by

c∗(t) =
(
c(at(s1 − s0) + s0), at(y1 − y0) + y0

)
,

where

a := 1√
(s0 − s1)2 + (y0 − y1)2

.

Then �∗ := {c∗(t) | t ∈ R} is called the line connecting (x0, y0) and (x1, y1). If x0 = x1, and y0 �= y1, then 
let c : R → X be the constant mapping given by c(t) = x0, and then define the line connecting (x0, y0) and 
(x1, y1) by the same formulae as above. In this way, we can specify the lines of X∗ denoted by L ∗.

Finally, define the metric on X∗ by

d∗
(
(x0, y0), (x1, y1)

)
:=

√
d2(x0, x1) + (y0 − y1)2.

The triple (X∗, L ∗, d∗) obtained in this way will be called the vertical extension of the reduced Birkhoff 
system (X, L , d). The most important property of vertical extensions is subsumed by the following lemma.

Lemma 3. The vertical extension of a reduced Birkhoff system is a reduced Birkhoff system.

Proof. It can easily be checked that the postulate of incidence is valid in the vertical extension. Keeping 
the previous notations, consider a line �∗ determined by (x0, y0) and (x1, y1) with distinct first projections. 
We claim that c∗ serves as a ruler for �∗. Indeed, since c is a ruler for �, we arrive at

d∗(c∗(t), c∗(s)) =
√
a2(t− s)2(s1 − s0)2 + a2(t− s)2(y1 − y0)2

= |t− s|a
√

(s0 − s1)2 + (y0 − y1)2 = |t− s|.

If x0 = x1, the case of vertical lines, can be handled similarly. �
Assume that D is a nonempty convex subset in a reduced Birkhoff system. We say that a function 

ϕ : D → R is segment convex, or simply: convex, if

ϕ(c(t)) ≤ (1 − t)ϕ(x0) + tϕ(x1)

holds for all x0, x1 ∈ D and for all t ∈ [0, 1], where c : [0, 1] → D is the unique line determined by the 
properties c(0) = x0 and c(1) = x1.
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Our main result gives a sufficient condition for the existence of a convex separator. To formulate it, we 
need the following concept. We say that a reduced Birkhoff system (X, L , d) is drop complete if, for each 
convex set K ⊆ X and for all x0 ∈ X, the usual drop representation holds:

conv({x0} ∪K) =
⋃

{[x0, x] | x ∈ K}.

Now we can formulate our main result, the adequate version of the Baron–Matkowski–Nikodem convex 
separation theorem. We point out that it is not a direct copy of the classical result: contrary to (1), both
functions have to be involved in the upper estimation. The mixed form enables us to iterate our inequality 
recursively.

Theorem 1. Let D be a convex set in a reduced Birkhoff system (X, L , d) whose vertical extension is drop 
complete. If, for all n ∈ N, x0, . . . , xn ∈ D, x ∈ conv{x1, . . . , xn}, and for all t ∈ [0, 1], the functions 
f, g : D → R satisfy the inequality

f
(
c(t)

)
≤ (1 − t)g(x0) + tf(x), (2)

where c : [0, 1] → D is the segment joining x0 = c(0) and x = c(1), then there exists a convex function 
ϕ : D → R fulfilling f ≤ ϕ ≤ g.

Proof. Let E := conv(epi(g)). First we show that f(x) ≤ y whenever (x, y) ∈ E. By Lemma 1, each point 
of E belongs to the convex hull of some finite subset of epi(g). If (x, y) belongs to a singleton, then f(x) ≤ y

holds trivially. Assume that the desired inequality holds if (x, y) belongs to the convex hull of any n element 
subset of epi(g). Consider the case when

(x, y) ∈ conv{(x0, y0), . . . , (xn, yn)} and g(x0) ≤ y0, . . . , g(xn) ≤ yn.

The vertical extension is a drop complete reduced Birkhoff system, thus there exists a point (x∗, y∗) and 
t ∈ [0, 1] such that

(x∗, y∗) ∈ conv{(x1, y1), . . . , (xn, yn)} and (x, y) =
(
c(t), (1 − t)y0 + ty∗

)
,

where c : [0, 1] → D is the segment fulfilling c(0) = x0 and c(1) = x∗. Using the inductive assumption and 
(2), we arrive at

f(x) = f
(
c(t)

)
≤ (1 − t)g(x0) + tf(x∗) ≤ (1 − t)y0 + ty∗ = y,

which was our claim. This property ensures that the formula

ϕ(x) := inf{y ∈ R | (x, y) ∈ E}

defines a function ϕ : D → R. Clearly, f ≤ ϕ ≤ g. Finally we prove that ϕ is convex. Let x0, x1 ∈ D be 
arbitrary and choose y0, y1 ∈ R such that (x0, y0) and (x1, y1) belong to E. Since E is convex,

(
c(t), (1 − t)y0 + ty1

)
∈ E

holds for all t ∈ [0, 1], where c : [0, 1] → D is the segment fulfilling c(0) = x0 and c(1) = x1. By the definition 
of ϕ, we have that ϕ

(
c(t)

)
≤ (1 − t)y0 + ty1. Taking the infimum at y0 and y1, we get the convexity of ϕ, 

and this completes the proof. �
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Assume that the underlying reduced Birkhoff system is a vector space. Then, using induction, one can 
check easily that (2) implies (1). Unfortunately, the converse implication is not valid. Thus our main results 
(the previous and the next theorems) are only sufficient conditions for the existence of a convex separator. 
However, under this generality, a full characterization cannot be expected.

Consider a reduced Birkhoff system (X, L , d), and let

K := {k ∈ N | ∀H ⊆ X, ∀x ∈ conv(H) : ∃F ⊆ H : x ∈ conv(F ), card(F ) ≤ k}.

If K is not empty, then κ := minK is called the Carathéodory number of the system; and if K is empty, 
then the Carathéodory number is defined to be +∞. Equivalently, the Carathéodory number can be defined 
as the least κ such that the representation of Lemma 1 remains valid if we allow only the convex hulls of 
sets with at most κ elements on the right-hand side, or as +∞ if there is no finite κ with this property. If 
the Carathédory number of the vertical extension is known, we can strengthen the statement of Theorem 1. 
The proof is essentially the same, thus we omit it.

Theorem 2. Keeping the conditions of the previous theorem, assume that the Carathéodory number of the 
vertical extension is κ. Then the size of the involved convex hull can be reduced to n ≤ κ.

If X is a finite-dimensional vector space, the classical separation result of [1] restricts the length of 
the involved combination to dim(X) + 1, while the Carthéodory number of the vertical extension is κ =
dim(X) + 2. In other words, the reduction of Theorem 2 can be improved in the finite-dimensional setting.

The drop completeness of the vertical extensions is required both in Theorem 1 and Theorem 2. Clearly, 
this assumption makes the underlying reduced Birkhoff system drop complete as well. Thus the question 
arises, quite evidently: Does the extension inherit drop completeness from the original system? In order to 
justify the conditions of the main results, we will give a negative answer in the last section.

3. Convex separation in Cartan–Hadamard manifolds

The celebrated theorem of Hopf states that each simply connected, complete Riemannian manifold of 
positive sectional curvature is compact. In contrast to this behavior, nonpositive curvature results in an 
opposite feature according to the theorem of Cartan and Hadamard:

Theorem. The exponential map at any point of a simply connected, complete Riemannian manifold of non-
positive sectional curvature is a global diffeomorphism between the tangent space at the given point and the 
manifold.

These manifolds are called Cartan–Hadamard manifolds. In particular, by this theorem, each Cartan–
Hadamard manifold is homeomorphic to a Euclidean space. Moreover, geodesics can be parametrized along 
the entire set of reals, and two geodesics can have at most one common point. This means that the postulate 
of incidence and the postulate of ruler are satisfied, and we can formulate the next statement.

Lemma 4. Each Cartan–Hadamard manifold is a reduced Birkhoff system.

By Lemma 3 and Lemma 4, the vertical extension of a Cartan–Hadamard manifold is a reduced Birkhoff 
system. Moreover, now the vertical extension has a very close relation with the product Riemannian metric. 
In fact, exactly this relation (formulated in the next lemma) has motivated the notion of vertical extensions. 
For the technical background of the proof, we refer to the monograph of Sakai [12].
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Lemma 5. If M is a Cartan–Hadamard manifold, then M × R is also a Cartan–Hadamard manifold with 
respect to the product Riemannian structure, and the induced Birkhoff structure coincides with the vertical 
extension of the Birkhoff structure of M .

Proof. Let d be the dimension of M , and denote the components of the metric tensor by gij. Then the 
metric tensor and its inverse of the product manifold M ×R are represented as

(Gij) =
(

(gij) 0
0 1

)
and (Gij) =

(
(gij) 0

0 1

)
.

Clearly, the product manifold is a simply connected and complete Riemannian manifold. Moreover, using 
the Koszul formulae

Γk
ij = 1

2G
kl

(
∂Gjl

∂xi
+ ∂Gli

∂xj
− ∂Gij

∂xl

)

for the Christoffel symbols of M × R, we can conclude that Γk
ij = 0 whenever (d + 1) ∈ {i, j, k}. Consider 

now a geodesic c∗ in the product manifold M × R. Since its coordinate functions satisfy the second-order 
differential equations

c∗k
′′

+
(
Γk
ij ◦ c∗

)
c∗i

′
c∗j

′
= 0

and the Christoffel symbols have the previously mentioned properties, c∗(d+1)′′ = 0 follows. Thus the last 
component of c∗ is affine. Furthermore, by the behavior of the Christoffel symbols and by the geodesic 
differential equation again, the first projection of c∗ results in a geodesic of M . Therefore any geodesic c∗

connecting the points (x0, y0) and (x1, y1) of the product manifold M ×R can be parametrized as

c∗(t) =
(
c(t), (1 − t)y0 + ty1

)
,

where the geodesic c of M connects the points c(0) = x0 and c(1) = x1. Note also that this parametrization 
is a global one in case of Cartan–Hadamard manifolds. This shows that the product manifold M ×R is the 
vertical extension of M .

In particular, the vertical extension is a simply connected and complete manifold, as well. Now we show 
that its sectional curvature is nonpositive. Let σ ⊂ T(x,y)(M × R) = TxM ⊕ R be an arbitrary plane, and 
let b1, b2 be a base in σ. If TxM ∩ σ = {0}, then dim(T(x,y)(M × R)) = d + 2, which is a contradiction. 
Thus dim(TxM ∩ σ) ≥ 1, and we may assume that the second direct component of b2 is zero. Then b1 has 
a direct decomposition b1 = b11 + b12. Recall that the sign of the sectional curvature depends only on the 
sign of R(b1, b2, b2, b1), where R is the Riemannian curvature tensor. Since its components can be obtained 
by

Rijkl =
(
∂Γm

jk

∂xi
−

∂Γm
ik

∂xj
+ Γr

jkΓm
ir − Γr

ikΓm
jr

)
Glm,

we arrive at Rijkl = 0 provided that (d + 1) ∈ {i, j, k, l}. Thus R vanishes if one of the arguments contains 
b12. Therefore,

R(b1, b2, b2, b1) =R(b11 + b12, b2, b2, b11 + b12) =

R(b11, b2, b2, b11) + R(b12, b2, b2, b11)+

R(b , b , b , b ) + R(b , b , b , b ) = R(b , b , b , b ) ≤ 0,
11 2 2 12 12 2 2 12 11 2 2 11
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since the second direct components of b11 and b2 are zero and the sectional curvature of M is nonpositive. 
This completes the proof. �

For more details on Cartan–Hadamard manifolds, we recommend the book of Jost [8]. As direct conse-
quences of Theorem 1 and Theorem 2, we can formulate the next two corollaries.

Corollary 1. Let D be a convex set in a Cartan–Hadamard manifold M whose vertical extension is drop 
complete. If, for all n ∈ N, x0, . . . , xn ∈ D, x ∈ conv{x1, . . . , xn}, and for all t ∈ [0, 1], the functions 
f, g : D → R satisfy (2) where c : [0, 1] → R is the geodesic segment joining x0 = c(0) and x = c(1), then 
there exists a convex function ϕ : D → R fulfilling f ≤ ϕ ≤ g.

Corollary 2. Keeping the conditions of the previous theorem, assume that the Carathéodory number of the 
vertical extension is κ. Then the size of the involved convex hull can be reduced to n ≤ κ.

Cartan–Hadamard manifolds and Euclidean spaces are quite “close” relatives. Hence one may expect that 
the Carathéodory number of a Cartan–Hadamard manifold M , accordingly to the Euclidean case, can be 
expressed as κ = dim(M) + 1. However, as far as we know, this is still an open problem posed by Ledyaev, 
Treiman, and Zhu [10].

4. The exotic behavior of convex hulls

The aim of this section is to prove that drop completeness of the vertical extension cannot be changed 
to drop completeness of the underlying system in Theorem 1 and Theorem 2. The main reason is the exotic 
behavior of convex hulls: It may occur that the convex hull of three points in a Cartan–Hadamard manifold 
is not contained in a two-dimensional submanifold. To construct such an example, let us recall here some 
basic facts in hyperbolic geometry. For references, see the book of Ratcliffe [11].

The hyperbolic plane, denoted by H2 in the forthcomings, is a two-dimensional Cartan–Hadamard man-
ifold with constant sectional curvature −1. We will use two of its several models. The first one is the 
Beltrami–Klein model (known also as the Cayley–Klein model): Here the plane is the open unit disc, and 
the lines are its Euclidean chord segments. The distance of this model will not be used.

The second model is the Poincaré half-plane model. The plane is the upper open Cartesian half-plane 
R ×R+; lines are either circles with center on the boundary line or vertical Euclidean half-lines. Its metric 
plays a key role in our investigation. The distance of a = (a1, a2) and b = (b1, b2) is given by

d(a, b) = 2 ln
√

(a1 − b1)2 + (a2 − b2)2 +
√

(a1 − b1)2 + (a2 + b2)2

2
√
a2b2

. (3)

In particular, if a1 = b1, this formula can be simplified (which will be quite convenient for us):

d(a, b) = | ln a2 − ln b2|. (4)

If (x0, y0) and (x1, y1) are points of the vertical extension H2 ×R, and c : [0, 1] → H2 is the unique geodesic 
fulfilling c(0) = x0 and c(1) = x1, then the unique geodesic segment c∗ : [0, 1] → H2 × R which connects 
(x0, y0) and (x1, y1) is given by

c∗(t) =
(
c(t), (1 − t)y0 + ty1

)
.

Since geodesics are of constant speed, we have d(x0, x) = td(x0, x1) for all t ∈ [0, 1], where x = c(t). Thus 
we can reconstruct the points (x, y) between (x0, y0) and (x1, y1) from x as
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(x, y) =
(
x, y0 + d(x0, x)

d(x0, x1)
(y1 − y0)

)
. (5)

Theorem 3. The hyperbolic plane is drop complete, while its vertical extension is not.

Proof. The Beltrami–Klein model shows that the convex structure of H2 can be identified with the convex 
structure of the open disc inherited from R2. In particular, the drop representation is valid in H2.

Now we prove that the vertical extension H2 × R is not drop complete. We will illustrate it using the 
convex hull of the points

A = ((0, 3), 0); B = ((4, 5), 1); C = ((−4, 5), 1).

Consider their projections a, b, c and the additional points p, q, r on H2:

a = (0, 3), b = (4, 5), c = (−4, 5); p = (1, 4), q = (−1, 4), r = (0,
√

41).

It is immediate to check that p ∈ [a, b] and q ∈ [a, c], furthermore r ∈ [b, c] (the segments here are meant in 
the hyperbolic geodesic sense: they are arcs of circles). Finally, we need the intersection of [p, q] and [a, r], 
which turns out to be x = (0, 

√
17). The next figure shows these choices:

Let P and Q be the points on [A, B] and [A, C] in the vertical extension, whose first projections are p
and q, respectively. Now we reconstruct their last coordinates from the projections. By the distance formula 
(3),

d(a, b) = 2 ln
√

20 +
√

80
2
√

15
= ln 3 and d(a, p) = 2 ln

√
2 +

√
50

2
√

12
= ln 3 − ln 2.

Thus the second common projection of P and Q is obtained via (5) as

ε1 := d(a, p)
d(a, b) = 1 − ln 2

ln 3 <
2
5 .

The estimation above can be checked even by hand. Moreover, the points of the segment [P, Q] share this 
common last component. Therefore,
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X1 :=
(
(0,

√
17), ε1

)
∈ [P,Q] ⊆ conv{A,B,C}.

Clearly, R = ((0, 
√

41), 1) ∈ [B, C]. Now we determine the point of the vertical extension whose first 
projection is x and belongs to the segment [A, R]. Using (4) and (5), its last component turns out to be

ε2 := ln
√

17 − ln 3
ln

√
41 − ln 3

= ln 17 − 2 ln 3
ln 41 − 2 ln 3 >

2
5 .

This estimation, with a bit more effort, can also be checked by hand. Thus,

X2 :=
(
(0,

√
17), ε2

)
∈ [A,R] ⊆

⋃
{[A,D] | D ∈ [B,C]}.

Since X1 �= X2, we can conclude that the drop representation involving {A} and [B, C] does not cover 
the entire convex hull of A, B, C, which was to be proved. �

The Beltrami–Klein open sphere model and the first part of the argument show that the geodesic convex 
structure of hyperbolic space is compatible with the Euclidean convex structure of the open ball. In particular, 
the hyperbolic space is drop complete in any dimension, and its combinatorial invariants coincide with the 
standard Euclidean ones. Using the Cartan–Hadamard theorem or the results of [2], it can be proved that 
these properties are also true for two-dimensional Cartan–Hadamard manifolds.

As we have already mentioned, the greatest advantage of Lemma 2 is that it can be implemented. In 
fact, the theorem above was conjectured via a computer algorithm. In what follows, we sketch briefly its 
pseudo code.

We shall need two functions. The first one, geod calculates a point of a geodesic between two points:

geod : (H2 ×R) × (H2 ×R) ×R → H2 ×R

so that geod(A, B, 0) = A and geod(A, B, 1) = B hold. The function dist calculates the hyperbolic distance 
of two points in H2:

dist(a, b) : H2 ×H2 → R.

The list ConvexHull collects the points of the convex hull as an ordered list. Initially we put the points of the 
set whose convex hull is to be computed into ConvexHull. ConvexHull[i] is the ith element in ConvexHull. 
Indexing starts with 0. The parameter iterations is the number of iterations. Finally, the parameter res
is the hyperbolic distance between points to be calculated along geodesics.

The algorithm takes two points A and B from ConvexHull and adds the points of the geodesic from A to 
B with hyperbolic distance res from each other to ConvexHull. The point B is chosen so that repetitions 
are avoided.

• The variables size and previoussize keep track of the number of points calculated in the convex hull. 
Initially
– size := |ConvexHull|.
– previoussize := 0.

• The following loop is to be performed iterations many times.
– For i = 0, . . . , size− 2, perform the following:

∗ For j = max(previoussize, i + 1), . . . , size− 1, perform the following:
· A := ConvexHull[i].
· B := ConvexHull[j].
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· d := dist(A, B).
· For k = 1, 2, . . . while k · res < d,

add geod(A, B, k · res/d) to ConvexHull.
– previoussize := size;
– size := |ConvexHull|.

Using our algorithm, we can illustrate some points of conv{A, B, C} in the proof of Theorem 3. The first 
figure is the intersection of the approximation of the convex hull with the plane [a, r] ×R:

The second figure is the intersection of the approximation with [p, q] ×R:

In each case, iterations = 2 and res = 0.006. In the concrete implementation, points are plotted whose 
distance from the planes is at most 0.01.

The program is available and freely downloadable from the homepage below:

http://shrek .unideb .hu /~ftzydk /convex/
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