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Kivonat: A cikk egyoszlopos magasraktdri felrakogépek végeselem modellezési lehetéségeivel foglalkozik. A
kiilsé gerjeszté hatdsok és tomegerdk kiovetkeztében az ilyen berendezések vizszerkezetében nem kivinatos
oszloplengések alakulhatnak ki. Ezek a lengések csokkenthetik a berendezés poziciondlasi pontossdagat és
stabilitdsdt, valamint az egész anyagmozgato rendszer ciklusidejének novekedését is okozhatjak. A bemutatott
okok miatt sziikséges ezen lengések részletes vizsgalata. Az elmult idészakban szamos példa jelent meg a
nemzetkozi szakirodalmakban magasraktari felrakégépek dinamikai modellezésével kapcsolatban. Jelen cikkben
az ugynevezett kétdimenzios gerendaelem (2D BEAM) tomeg —és merevségi matrixai kertilnek levezetésre. Ennek
az elemtipusnak a segitségével egy végeselem modellt allitunk éssze egyoszlopos magasraktari felrakogépek
dinamikai modellezése céljabol. A dinamikai modell dllapottér reprezentdcioja és atviteli fiiggvénye is
bemutatdsra keriil.

Kulcsszavak: magasraktari felrakégép, végeselem modszer (VEM), végeselem analizis, dllapottér reprezentdcio,
awviteli fiiggvény

Abstract: This paper presents the finite element modeling possibilities of stacker cranes with single-mast
structure. Because of the external excitation or inertial forces undesirable mast-vibrations may arise in the
frame structure of stacker crane. These vibrations can reduce positioning accuracy and stability of the machine
and increase the cycle time of the whole material handling system. Because of the reasons mentioned before it is
necessary to model and investigate these vibrations. In the last few years several kinds of dynamical modeling
methods of stacker cranes have been introduced in the literature. In this paper the derivation of mass and
stiffness matrices for the so called two dimensional beam element (2D BEAM) is presented. By the help of this
element type a finite element model of single-mast stacker cranes is constructed. The state space representation
and transfer function of the model are also introduced.

Keywords: stacker carne, finite element method (FEM), finite element analysis (FEA), state space
representation, transfer function

1. INTRODUCTION

The advanced stacker cranes in automated storage/retrieval systems (AS/RS) have the requirement of
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fast working cycles and reliable, economical operation. Today these machines often dispose of 1500
kg pay-load capacity, 40-50 m lifting height, 250 m/min velocity and 2 m/s? acceleration in the
direction of aisle with 90 m/min hoisting velocity and 0,5 m/s® hoisting acceleration. Therefore the
dynamical loads on mast structure of stacker cranes are very high, while the stiffness of these
structures due to the dead-weight reduction is relatively low. Thus undesirable mast-vibration may
arise in the frame structure during operation. The high amplitude mast-vibration reduces stability and
positioning accuracy of the stacker crane and in extreme case it may damage the structure.

Practically the mast structure has two fundamental configurations: the so-called single-mast and
twin-mast structures. In our work we analyze the single-mast structures since this configuration is
more responsive to dynamical excitations. A schematic drawing of single-mast stacker crane with its
main components is shown in Figure 1.
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Figure 1. Single-mast stacker crane

Estimation of structural vibrations during design period of stacker cranes, dynamical investigation
of an existing structure as well as reduction of these effects requires dynamical modeling of the frame
structure. In our paper we introduce a finite element model for modeling dynamical behavior of single-
mast stacker cranes. The finite element modeling (FE modeling) is a widely used modeling technique
of engineering structures and it has extensive international [4-8] as well as Hungarian [9-14] literature.
However in the literature of stacker cranes only a few examples can be found for FE modeling of these
machines. In [1] the author introduces a beam model for calculating static deformations of a single-
mast stacker crane. Schiller investigates in his work [2] a 3D beam model for dynamical modeling and
structural optimization of stacker cranes. Kiihn applies in his thesis [3] FEM for determination the
dynamical behavior of load handling system with telescopic fork during hoisting movement.

This paper presents the dynamical modeling capabilities of single-mast stacker crane structures
based on FE modeling techniques. The main features of 2D beam elements and determination of mass
and stiffness matrices of these elements are also introduced. As an example, in our paper we introduce
a finite element model (FE model) with 2D beam elements for dynamical modeling mast-vibrations of
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single-mast stacker cranes. Finally the main features of our model are presented. The most important
parameters of the investigated stacker crane are shown in Table 1.

Denomination Denotation Value
Payload: My 1200 kg
Mass of lifting carriage: My 410 kg
Mass of hoist unit: Mg 470 kg
Mass of top guide frame: Myt 70 kg
Mass of bottom frame: Mgp 2418 kg
Mass of entire mast: Mg 8148 kg
Lifted load position: h, 1-44m
Il 29m
Length of sections (lifted :2 335mm
load is in uppermost 3 2
position): Ly 115m
I 29 m
I Im
A A 0,03900 m”
Cross-sectional areas: Az Ay 0,02058 m?
As Ag 0,01518 m’
La: 1o 0,00152 m*
Second moments of areas: lys; s 0,00177 m*
lLs; Lg 0,00106 m*

Table 1. Main parameters of investigated stacker crane
2. BASIC FORMULATION OF FEM

In the theory of elasticity FEM has two fundamental forms: the so-called flexibility or force method
and the stiffness or displacement method. In practice the displacement method is more frequently
used. More detailed information about displacement method can be found in references [4-14]. This
method is based on the principle of minimum potential energy, which states: for conservative systems,
of all the kinematically admissible u displacement fields the actual displacement field (which satisfies
the equilibrium conditions) is the one that minimizes the potential energy function. Kinematically
admissible displacement field is the one that satisfies the boundary conditions and compatibility
conditions (strain-displacement equations). Thus the basic equation of displacement method is:

or7
au 0 @)
where 77is the potential energy of the systemand u is the exact solution of elasticity problem
presented above.

In FEM the investigated elastic continuum is represented by separating the continuum into a
number of finite elements. The elements are interconnected at a number of discrete points called
nodes. The U nodal displacement vector is the basic unknown of the problem, which is the
approximation of the exact u solution. Thus the basic equation of FEM is:

617=0

U 2)

The potential energy of the system is the sum of the 77 strain energy and the 77, work potential.
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The strain energy is calculated by means of the ¢ normal strain and o normal stress:
1r(.r
1, =— J.(g G)dV . 4)
2)

The work potential is the sum of works done by external nodal (F,), surface (P) and body (Q) forces
(these works are assumed to be negative).

1, =-U"F, - [[lPhA- [(WQkv . (5)
() )

In case of dynamic analysis the — poli inertial force (d’Alambert force) also must be taken into

account. This force can be assumed as the part of body forces. By means of this force the augmented
form of work potential is:

17, =-U"F, - [[iPRA- [Tl + [T sl . (6)
(A) V) V)
The constitutive law (stress-strain relationship) with the material matrix D in general form is:
o=D¢ . (7
The compatibility equation is:
e=Lyu , (8)

where L4 is a differential operator depends on the actual problem. Substituting (7) and (8) into (4) the
potential energy of system is:

H=% JurioLupy -UTF, - [WTPlA- [k + [T v . )
V) (A) V) V)
In FEM the real u displacement field is approximated by the following equation.
u~xNU | (10)
where N is a matrix of special interpolation functions called shape functions or base functions (in most

cases polynomials). With this approximation:

H=%UT J(NTLEDL N VU ~UTF, -UT [(NTPA-
\%

V) (A) (11)

~UT [(NTQRV +UT [(oNTN v *U
) @)

(v
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Thus the basic equation of FEM applying the LN = B denotation is:

%g<=j@TDBbV*U+IQNTNhV*U—Fn—jmTPﬁA—I@NQhV:O. (12)
) ) () )

The first integral in equation (12) is the so-called element stiffness matrix (S.), the second one is the
element mass matrix (M.) and the other three terms are the external forces reduced into nodes (F).
Thus the dynamic equation of motion for the investigated element is:

MU+SU=F, . (13)
3. INTRODUCTION OF THE LINE ELEMENTS OF FEM
In our work we use line elements to model the dynamical behavior of single-mast stacker cranes, see
in Figure 2. It means that the approximated differential equation of these elements has one
independent spatial variable (i.e. it is ordinary differential equation). In our model the transversal

displacements are approximated by the expressions of so-called bending beam elements, while the
longitudinal displacements are approximated by truss elements.

Ty

AV: Vo A
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1 2
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Figure 2. Line element
3.1. Bending beam elements

The displacement state of bending beam is represented by the v(x) transversal deflection function of
the beam. This deflection function is approximated by a p(x) single-variable polynomial, which order
is equal to the order of base functions. In the first step we determine the compatibility equation. From

strength of materials it is known that: o, =My and o, =Eg,. Thus: ¢, :%y. From the

z Z

2

2
Euler-Bernoulli beam theory: aav(x)z_l\l/l(é). With the last two equations the compatibility
X z

equation in this case is:

o%v(x)
&, =— 14
=Y (14)
Thus the differential operator of the bending beam problem is:
62
Ly=-y— . 15
d y axz ( )

The operator presented here prescribes second order differential operation. As can be seen in
expression (11) the Ly operator acts on the N matrix of base functions. This enables us to determine the
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main properties of base functions (base polynomials). Let us assume that the Ly operator is nth-order
differential operator. If the nth (or previous) derivation performed on the base functions (polynomials)
of N matrix results zero, then the stiffness matrix will singular. In this case the fundamental equation
of static finite element analysis is unsolvable. The degree of polynomials in the N matrix (the order of
approximation) therefore must be at least n.

In our investigations we apply line elements with two nodes at its endpoints and cubic
approximation polynomials (see in [12]). Applying cubic polynomials means that we have to
determine four independent parameters during determination of the polynomials. At the same time this
specifies also the so-called fitting order of elements if the number of nodes is fixed. In case of two
node elements for determination of the four independent parameters we have to specify at connection
points of elements not only the continuity of approximation functions but the continuity of its
derivatives (C'-continuous fitting). Therefore in the vector U beside nodal displacements the nodal
angular deflections also appear:

Vi

¢

Vv,

,

U= (16)

The interpolation polynomials and their matrices are as follows (the detailed derivation of these
polynomials see in [12]):

NV(X):[NI(X) Nz(x) Ns(x) N4(X)] : 17)
x> 2x% o2 X,

N, (x)=1- TR Nz(x)_x—TJr?,

N3(X)=3t—z—2i—z; N4(x)=—X—L2+)C—z : (18)

Because of the one dimensional state of stress the material matrix is simplified as:
D=E . (19)

Using the expression (15) the B matrix in the element stiffness matrix is:

0?
B=L,N=|-y— N, . 20
d ( anZJ v ( )

Thus:

T _ y2 aZNV ' m
on- e[ (2. o

With the equations presented before the stiffness matrix of C*-continous bending beam element can be
expressed as:
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2 T/ 2 T/ .2
S, = I(BTDB)dszjy%lAj(a '\i] {a '\Z'Vdezlej(a '\Z'J [a '\Z'V]dx . (@
V) W L X oX L) X ox
12 6L -12 6L
6L 41> —-6L 2L°
_LE _ (23)

¢ 13 |-12 -6L 12 -6L
6L 212 —6L 4L°

The mass matrix of this kind of element is:

M, = ij(NVT (N, (x))ix . (24)

3L 112 9L 1317
35 210 70 420
I R o
M —oA 210 105 420 140 | o5

1oL 132 13l 11 =

70 420 35 210
_13L2 _L_3 _11L2 L3

420 140 210 105 |

3.2. Truss elements

The displacement state of truss elements is represented by the u(x) elongation function. This
elongation function here is also approximated by a p(x) single-variable polynomial, which order is
equal to the order of base functions. In the first step we determine the compatibility equation and its
differential operator from the definition of elongation per unit length.

g, = a‘gg(x) . (26)
B
L, = (27)

As can be seen in this case application of linear interpolation polynomials is suitable for the
approximation of displacement field. The fitting order of this element is C°-continous. The matrix of
interpolation polynomials in this case is as follows (see in [12]):

X X
Nu(x){l—E ﬂ : (28)

The material matrix is the same as in expression (19) due to the one dimensional state of stress. Thus
determination of the stiffness and mass matrices of truss element can be performed as follows:

B:LdNu(x)z[—% ﬂ:%[—l 1 . (29)
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ren. L[] g E[1 -1
B DB_LZ[JE[ 11]= L{_l J . (30)
T _ T _E 1 -1
sez(J)(B DB)dV—A(L(B DB )dx =" {_1 J . (31)
11
M, :pAJ‘(NuT(X)Nu(X)}jXZPAL ? ? (32)
(L) ==
6 3

3.3. Two dimensional beam elements (2D BEAM)

By means of the results presented in previous sections the stiffness and mass matrices of 2D beam
element can be constructed. As mentioned before in this line element the transversal displacements are
approximated by C'-continous interpolation polynomials, while the longitudinal displacements are
approximated by C%-continous interpolation polynomials. The nodal displacement vector (nodal
generalized coordinate vector) can be as follows:

U= bl (33)

Taking the order of coordinates in the vector above into account the element stiffness and mass
matrices are:

00 0 0 0 0] (1 00-100]

0 12 6L 0 -12 6L 000000
s _1LE|0 6L 4L 0 -6L 2L° | AE{0 00 0 00 (34)
* *joo 000 O L|-100 100

0-12 -6L 0 12 -6L 000000

|10 6L 2L° 0 —6L 4L° | |0 000 0O0]
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Lo o & o 0
3 6
o 1L 1wt oo 13
35 210 70 420
o Wt o1
M =pa 210 105 © 420 140 (35)
- 0 0 - 0 0
6 3
o 9L 18 13 117
70 420 35 210
B S S b
420 140 210 105 |

4. COORDINATE TRANSFORMATION AND ELEMENT ASSEMBLY

In the previous section results of investigation i.e. the stiffness or mass matrices of elements and force
vectors correspond to the local coordinate systems of each element. To determine the global matrices
and vectors of the complete frame structure, a common global coordinate system must be established
for all structural elements. The choice of this coordinate system can be arbitrary.

Before the element assembly (merge of elements) the matrices and vectors of each element must be
transformed into common global coordinate system. Thus we need a transformation method between
the local and global coordinate systems. In Figure 3. a beam element is shown with its local and global
nodal displacements. Let us denote the nodal generalized coordinate vector in the local system by U as

well as in the global system by U .

Figure 3. Beam element in local and global coordinate systems

By means of Figure 3. the desired coordinate transformation can be expressed as follows:

[u,(t)] [cosa sina 0 0 0 Ofa(t)]

v(t)| |-sina cosa 0 0 0 0| %(t)

#(t) 0 01 0 0 0f¢(t)

u,)| | o 0 0 cosa sina 0| 0,lt) (36)
v, (t) 0 0 0 —sina cosa 0| V,(t)

st [0 o0 o o 150

u(t)=ru(t)

In global coordinate system let us denote the element stiffness and mass matrices by K, and M, as
well as the force vector by Ife With the transformation matrix 7; the desired operation can be
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performed as presented in the following expressions.

M, =7"M.I; . (37)
Se=1,"S. T, . (38)
F=IF, . (39)

Thus the dynamic equation of motion for the transformed element is:

MU +S0 =F, . (40)

After transformation of element stiffness and mass matrices into a common global coordinate system
the assembly of element matrices must be performed in order to determine the global matrices of the
whole system. The scheme for the assembly of global system matrices from element matrices is shown
in Figure 4. As can be seen in the figure first the element matrices must be positioned in the global
system matrix. After that the overlapping parts of element matrices must be added. A detailed
derivation of element assembly can be found in [4].

— Sel T — Mel T
X X X X
Sez M e2
X X X X X X
S= X X M= X X
L] L]
L] L]

Figure 4. Element asse?bly
5. FE MODELS OF SINGLE MAST STACKER CRANES

With the 2D beam elements introduced in the previous sections FE models are defined for dynamical
modeling of single mast stacker cranes shown in Figure 5. For construction and investigation of these
models numerical algorithms, functions of Matlab software are applied, more information about
Matlab can be found in [15]. In the following figure every sections of mast and bottom frame with its
length and the number of elements (in curly brackets) as well as the lumped masses are shown. In
these models we take the upper and lower lifted load positions into consideration. Some of the nodes
between elements are denoted by solid dots.
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Figure 5. FE models of single-mast stacker cranes
The number of elements for both models is:
6
Ne=DN;. (41)
i=1
With the previous equation the number of nodes and the degrees of freedom are:
6
Ne=D N;+1=N,+1 , (42)
i=1
6
N por =3£2Ni+1]=3Nc . (43)
i=1

After coordinate transformation and element assembly for the final form of dynamic equation of
motion the determination of constraints (boundary conditions) is also necessary. These constraints
prevent the vertical movement in the endpoints of bottom frame (see in Figure 5.). In case of fixed
boundary conditions in the global system matrices the rows and columns corresponding to fixed
degree of freedom have to be deleted since the actual displacement in these directions is zero. Thus the
degree of freedom of constrained model equals to Ny =3N, —2 and the global vector of generalized

coordinates is:

qz[u1 Uy Vy By s Uy ¢NC]T . (44)
The dynamic equation of motion for the whole constrained system is:

Mi+Sq=F . (45)

In the first part of the model investigations the analysis of free vibrations is carried out. In this case the
external excitation forces are zero, thus the basic equation of motion is:
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M@+Sg=0

(s-a?My=0.

Analytical solution of equation (46) leads to the (47) generalized eigenvalue problem. The number of
eigenvalues of this problem equals to the degree of freedom of system (46). The o?

shown in Table 2.

The first four mode shapes in case of upper and lower lifted load position are shown in next Figures.

Upper lifted load
position:

Lower lifted load
position:

o, =33661 a0/

o, =25684 rad/

o, =16836 rad/

o, =15044 Tad//

o, = 43527 rad//

o, =40439 rad/

Table 2. Natural frequencies

Sajétkorfrekvencia
2.5684
[rad/sec]

L : : : : : L L
3 2 1 [ 1 2 3 4

5

Sajétkorfrekvencia:
40.4391

[rad/sec]

Figure 6. Mode shapes (upper lifted load position)

]

Sajatksrirekvencia
15.0436
[radsec]

Sajatkdrirekvencia:
79.984

[rad/sec]
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eigenvalues are
the squares of natural frequencies of the dynamic system. Since our investigated model is a free
model, i.e. it has rigid body motion facility (unconstrained degree of freedom), thus the smallest a§

eigenvalue equals to zero. The corresponding eigenvectors are also known as the mode shapes of the
dynamic system. The first three natural frequencies in case of upper and lower lifted load position are
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Sajétkrirekvencia: Sajatkdrirekvencia:
3.3661 sl 16.8355

[rad/sec] [rad/sec]

Sajétkorfrekvencia Sajatkorfrekvencia
5 435266

5k 83.908
[rad/sec] [rad/sec]
o 4 L

Figure 7. Mode shapes (lower lifted load position)

6. STATE SPACE REPRESENTATION AND TRANSFER FUNCTION OF MODELS

For the investigation of excited vibrations of the flexible structure it is necessary to express the motion
equations in state space representation and to derive the transfer function of excited system. The
matrix motion equation of structures subject to external excitation forces is as shown in equation (45).
In this section we investigate a single-input and single-output (SISO) system. The input signal of our
model is the external force acting in the direction of g, generalized coordinate. Let’s denote the input
signal by F;=u and the degree of freedom of the constrained model by Ng4. The output signal of our
model is the vertical position of mast-tip i.e. the value of generalized coordinate gy .

Let us introduce the so called state vector and its derivative respectively:

Sh]

Generally the state space representation can be expressed in the following form:
X=Ax+bu . (49)

y=c'x , (50)

where A, b, ¢ are the matrix and vectors of the system, u is the input and y is the output of the system.

By means of (48-50), the matrix and vectors of state space representation of the system can be
expressed as follows:

67



Debreceni Miiszaki Kozlemények 2014/1 (HU ISSN 2060-6869)

0, -M7s
A{ 3 } | (5)
ly, Oy,
1
M0
b= . . 52
Mk @
0]y,
c'=[0 01, (53)

where 0y isazero matrix and I is an identity matrix with the corresponding size.

The transfer function of the model is determined by Laplace-transform of the state space
representation. If we denote the Laplace operator by s, then the transfer function of the model can be
expressed by the matrix and vectors of state space representation as follows.

G(s)=c"(sl —A)'b . (54)

With the substitution s=iw into transfer function we get the G(iw) frequency response function (FRF)
of the system. The magnitude of FRF as a function of angular frequency, i.e. the Bode magnitude
diagram is shown in the following Figures.

Bode Diagram

N )x\
SERIIPAN

Magnitude [d8]

[

10'
Frequency [rad/sec]

Figure 8. Bode diagram (upper lifted load position)
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Bode Diagram

Magnitude [d8]

o

=

10° 10' 10°
Frequency [radisec]

Figure 9. Bode diagram (lower lifted load position)

7. SUMMARY

In our paper we presented a modeling technique based on finite element modeling approach. After the
introduction of the basic formulation of finite element method the main properties of line elements
were presented. With this kind of element a simple two dimensional finite element model was
generated to investigate the dynamical behavior of single mast stacker cranes. Beside the natural
frequencies and mode shapes of this model the Bode-diagram of frequency response function was also
provided. These investigations can be performed with various lifted load positions. The modeling
technique presented here can be useful during the design period of stacker cranes as well as in
investigation of existing structures.
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