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1. Introduction

1.1 Investigated problems

The existence of discontinuous additive functions (or higher or-
der monomial functions) was an open problem for many years. Math-
ematicians could neither prove that all additive functions are con-
tinuous, nor give an example to a discontinuous additive function.
G. Hamel [24] succeded in proving that there exist discontinuous ad-
ditive functions.

In this dissertation we study monomial functions f of degree
2 < n €N, defined as diagonalizations of n-additive functions (func-
tions that are additive with respect to each of their n variables) in
Section 2.1. It is well known that such a function f is continuous if,
and only if, it can be given as

f(z) = ca™ (x € R) (1.1)

with some real number ¢. The existence of discontinuous monomial
functions follows, for example, from the above cited theorem of Hamel.

Clearly, any function of the form (1.1) satisfies the identity

y'f(x) = 2" f(y) (1.2)

for all z,y € R. Conversely, identity (1.2) implies (1.1) with ¢ = f(1)
even if we assume only that (1.2) is fulfilled for y = 1 (and every z €
R). On the other hand, if we assume (1.2) only for y = z, we do not
obtain any information about the function f at all. Our main purpose
is to answer the following question for various particular algebraic (or
some specific transcendental) curves S C R? and reasonably small n :
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Let us suppose that f: R — R is a monomial function of degree n
that satisfies the additional equation (1.2) for every (x,y) € S. Does
it imply that f is continuous? We provide affirmative answers in
several particular cases. However, for a natural choice of .S, we obtain
a counterexample.
Since the calculation becomes more difficult as n increases, we

obtain the continuity of f in the following particular cases:
e 2<ne&Nand Sisgiven by ¥y = apnz™ +ay,_12™ 1+ -+ a1z +ay

with m €N, a; R, i =0,...,m, ag # 0 (the curve does not pass
through the origin);
e ne{2,3}and S is given by y =2™ with m € Z, |m| > 2;
e n=2and S is given by 22 & y2 = 1 (two cases);
e ne {2, 3} and Sisgiven by y =e€” (or x = ¢Y).
When S denotes the hyperbola given by the equation xy = 1, we
obtain counterexamples for any 2 < n € N. For this curve, in case
n =2 (i.e., when f is quadratic), a considerably non-trivial necessary
condition is obtained.

Generalizing the problem to a pair of monomial functions f,g of
degree n € N, n > 2 related by the functional equation

y"f(z) =2"g(y) (1.3)

under the condition P(z,y) = 0 for some fixed polynomial P of two
variables, we find that in most (but not all) examined cases f and g

are equal and continuous.

1.2 Motivation

In this section we introduce the necessary notations and we present
some preliminary results.
Let R, Q, Z, and N denote the set of all real numbers, rationals,
integers and positive integers, respectively. Let RT denote the set
of positive real numbers. We call a function f : R — R additive if
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flz +y) = f(x) + f(y) holds for all z,y € R. The function f is
called Q-homogeneous if the equation f(qr) = qf(x) is fulfilled by
every ¢ € Q and x € R. As it is also well-known [29, Theorem 5.2.1],
if f: R — R is additive, then f is Q-homogeneous as well.

We define the following sets:

SO :{(xuy) ER2|am$m+am_1xm_l+~--—|—a1x+a0:y}
with meN, a; € R, 1=0,....m, a,, #0, ag #0,

Si ={(z,y) e R*|2™ =y} withmeZ, |m|>2,
Sy ={(z,y) € R* |2y = 1},

Ss ={(z,y) e R?|2® —y* =1},

Sy ={(z,y) e R?*|2* +y* = 1},

S5 ={(z,y) € R2|IE >0 and logz =1y},

Se ={(z,y) € R*| " =y}

We note that the sets Sy and S; depend on some parameters (the
positive integer m, the real numbers a;,7 = 0,...,m, and the integer
m , respectively), so our statements with respect to these sets are valid
for all admitted values of these parameters, unless otherwise stated.

The motivation for our investigations are some problems solved for
additive functions.

The problem is the following:
Suppose that f : R — R is an additive function. If f satisfies the
additional equation

zf(y) = yf(x) (1.4)

for the pairs (z,y) € S;, i =0,1,2,4, does it imply that f is continuous
(i.e., linear)? In these cases the continuity of the additive function was
proved.

Case (x,y) € Sy: the affirmative answer can be found in [12].

Case (z,y) € S1: in 1968 A. Nishiyama and S. Horinouchi [35] proved
that every additive mapping f : R — R, which satisfies (1.4) for all
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(x,y) € S is of the form f(z) = f(1)x for all z € R.
Case (z,y) € Sy: the problem was posed by I. Halperin in 1963
(communicated in J. Aczél [1]). To Halperin’s question S. Kurepa [30]
has given the answer in the affirmative by proving, among others, a
theorem which contains a more general result and leads to f(z) =
f(1)x. W. B. Jurkat [25] has obtained independently the same result.
Several authors extended this result in various directions. Among
numerous further publications they provided generalizations in [29,
Theorem 14.3.3], [27], and [31].
Case (z,y) € Sy the problem was formulated by W. Benz [5] in
1989. This question, together with a similar one for derivations, was
answered in the affirmative by Z. Boros and P. Erdei [6].

B. Ebanks [12] generalizes the problem to a pair of additive func-
tions f, g related by the functional equation

yf(x) = xg(y) (1.5)

for all points (x,y) on a specified curve. He finds that for many (but
not all) types of curves this forces f and g to be equal and linear (in-
cluding S;, i = 0,4,5,6).

The motivation of such investigations is the possible representation
of the solutions of various functional equations in terms of additive
functions. When the investigated functional equation is obtained from
the axiomatic description of certain mathematical models in applied
mathematics, some additional algebraic condition might be obtained
from the same theory as well. In such a case, it is an essential question
whether the additional condition implies the linearity of the additive
function appearing in the aforementioned representation.

As it was shown by M. A. McKiernan [34] for real functions and
by L. Székelyhidi [37] in quite general context, solutions of a wide
class of linear functional equations are generalized polynomials, which
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can be represented as the sum of generalized monomials. It is there-
fore reasonable to extend the above cited investigations to generalized
monomials, that can be considered as generalizations of additive func-
tions.

Z. Kominek, L. Reich and J. Schwaiger [28] investigated additive
functions that satisfy the additional equation

f@)f(y) =0 (1.6)

for every (x,y) € S, considering various subsets S of R?. In several
cases, involving S = Sy, they obtained f(z) = 0 for every z € R.
This particular result was extended by Z. Boros and W. Fechner [7]
to the situation when f is a generalized polynomial. On the other
hand, P. Kutas [32] has recently established the existence of a non-
zero additive function f : R — R fulfilling (1.6) for all (z,y) € S;.
The case of bounded f(x)f(y) on Sy was investigated by these authors

8).

1.3 Structure of the dissertation

The dissertation is divided into six structural units.

The first chapter includes the general problem statement and gives
a brief overview of relating results: we investigate monomial functions
fig: R — R of degree n € N, n > 2 which satisfy the additional
equation (1.2) or (1.3) for all points (z,y) on a specified curve.
The second chapter contains the display of tools and we present some
related concepts and results.
The next four chapter contain the main results, classified by curves:

e In Chapter 3 we investigate monomial functions that satisfy ad-
ditional equations involving polynomial functions whose graphs
do not pass through the origin: we find that if f, g are monomial
functions of degree n € N, n > 2 which satisfy the additional



1.

Introduction 6

equation (1.3) for all points (z,y) € Sy, then f and g are iden-
tical and continuous.

Chapter 4 contains results for quadratic and cubic functions sat-
isfying conditional equations involving the power function: we
obtain that if f is a monomial function of degree n € {2,3} and
f satisfies the additional equation (1.2) for the pairs (z,y) € Sy
then f is continuous. In the particular case n = 2, m = 2, a
modified version of the condition (1.2) admits a discontinuous
quadratic solution f. Introducing a second quadratic function
in case n = 2 and m = 2 we find that there exist discontinuous

solutions.

In Chapter 5 we study additive, quadratic and higher order
monomial functions that satisfy subsidiary equations along hy-
perbolas or the unit circle. We give counterexamples to demon-
strate that there exist discontinuous solutions f, when f is a
monomial function of degree n € N, n > 2 which satisfies the ad-
ditional equation (1.2) under the condition xy = 1. Nonetheless,
we prove that if f, g satisfy the additional equation (1.3) for all
points (z,y) € S3 (f, g are additive or quadratic) or (z,y) € Sy
(f, g are quadratic), then f and g are identical and continuous.
Furthermore, we prove an interesting necessary condition for a
quadratic function f which satisfies the additional equation (1.2)
under the condition xy = 1.

Chapter 6 contains results for quadratic and cubic functions that
satisfy conditional equations involving logarithmic (exponential)
function: we find that if f, g satisfy the additional equation (1.3)
for all points (x,y) € S5 or (z,y) € Sg, then f and g are identical
and continuous.



2. Preliminaries

2.1 Multiadditive functions and generalized mono-

mials
Let n € N. A function F': R" — R is called n—additive if, for every
ie{1,2,...,n}and for every zi,...,z,,y; € R,
F (Il, ey i1, T4 —+ Yiy, Lit1y .- - ,In)
= F (i[}l, e Lj 15, L5, it 1y - - - ,xn)+F (i[)l, e L1, Yiy i1y - - - ,.fl:'n) y
i.e., F is additive in each of its variables z; e R, i =1,...,n. We call

1-additive functions simply additive, 2-additive functions biadditive.
Further, constant functions will be called 0-additive.

Clearly, an n—additive function is also Q-homogeneous in each vari-
able.

Given a function F' : R — R, by the diagonalization (or trace) of
F' we understand the function f : R — R arising from F' by putting
all the variables (from R) equal:

f(x)=F(x,..., ) (x € R). (2.1)

If, in particular, f is the diagonalization of an n—additive function
F :R" — R, we say that f is a monomial function (or generalized
monomial) of degree n. In such a case we obtain f(rz) = r"f(z)
whenever x € R and r € Q. Monomial functions of degree 3 are
called cubic functions, quadratic functions are generalized monomials
of degree 2. Further, additive functions are generalized monomials of
degree 1 and real constants are generalized monomials of degree 0. For
y € R we define ([29], Chapter 15) the linear difference operator A,
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on R by
Nyf(x) = flr+y)— f(z), forall f:R—RandzeR

and, for an arbitrary natural number n > 2

Ay1 ----- yn71,ynf(x) = Ayl ----- Yn—1 (Aynf(l‘)) .

Ify; =yo = ... =y, =y, instead of A, ., f(x) we write A7 f(z).
As one can easily verify by induction,

n

Ay f(x) = Z(—l)"‘k <Z)f(x+ky), forall f:R — R and z,y € R.

k=0

Let F denote the symmetric part of F': R® — R | i.e.,

1
Fs(x17x27~”7In):mZF(IU(1)7xU(2)7'--7‘7:0(71))

O’GPn

for every (z1, o, ..., x,) € R", where P, denotes the set of all per-
mutations of the index set {1,2,...,n}. Clearly, if f is defined by
(2.1), then we have f(x) = Fs(xz, z, ..., x) (for all z € R) as well.
Moreover, if F' is n—additive, then F§ is also n—additive. Therefore, if
f: R — R is a generalized monomial of degree n, then there exists
a symmetric n—additive function F' : R™ — R such that (2.1) holds.
Furthermore, as it is also well known [29, Lemma 15.9.2], in that case
we have

Ay f@)=nF(y1, .0, Y1,y Yn) (2.2)

for every x, y1, ..., y, € R. This shows the uniqueness of F'

It is a consequence of the identity (2.2) that any generalized mono-
mial f: R — R of degree n satisfies the n-monomial functional equa-
tion
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if@) = nlf(y) (oY) (2.3
In fact ([29, Chapter 15], [38, Chapter 1]), generalized monomials

of degree n are characterized as the solutions of the n—-monomial func-
tional equation (2.3).

In case n = 2, writing x — y in place of z, equation (2.3) can be
formulated as

flx+y) + flx—y) =2f(z) +2f(y)  (z,y €R), (2.4)

which is the so called norm square equation or parallelogram law.
Therefore, quadratic functions are characterized by the functional
equation (2.4).

As it is well known ([2], [3, Section 11.1]), we can (and, in the
rest of this dissertation, we shall) associate with a quadratic function
f: R — R the biadditive and symmetric functional F': R x R - R,
given by the formula

Flae,y) = 3 1f(x +9) — Fx) ~ )] (25)

for all z;y € R. It is not very difficult to verify that F'is, in fact,
biadditive (i.e., the mappings

t— F(t,z) and t+— F(z,t) (t€R)

are additive for each x € R), and f is obtained as the diagonalization
of F (ie., f(z) = F(x,z) for all z € R). Applying the Q-homogeneity
of additive functions, we have

F(rx,sy) =rsF(z,y) and f(rz) = F(raz,rx) = r*F(z,x) = r’f(z)

for every r,s € Q and x,y € R. In particular, f(0) = 0. On the other
hand, applying equation (2.5) and induction on n, one can easily prove
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the identity

f(Zuk> => flu)+2 Y Flu, uy) (2.6)

0<i<j<n

for every n € N and ug, uy, ..., u, € R.

In order to present our tools and arguments, it is convenient to intro-
duce the following notations. If F': R® — R is symmetric, x, y € R
and k € Z such that 0 < k < n, let

and

Now we can formulate the well known analogue of the celebrated
binomial theorem and its extension to several variables for generalized
monomials (established, for instance, in the above cited monograph
by L. Székelyhidi [38, Chapter 1]).

Lemma 2.1. (Binomial Theorem): Ifn € N, FF : R* — R is a
symmetric n—additive function and f: R — R is defined by (2.1),
then

n

) =3 () el s 2.)

k=0

forall x,y € R.

Lemma 2.2. (Polynomial Theorem): Ifn € N, FF: R" — R is
a symmetric n-additive function and f: R — R is defined by (2.1),
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then

flor+ao+- +ay) =

= Z WFQQ]M [y 5o [mm]km) (2.8)

ki+ka+-+km=n
for any positive integer m and for all xv,x9, -+ ,x,, € R.

Clearly, we extended our former notations such that, in the last
term of equation (2.8), the argument of the function F' in n variables
consists of k; copies of the real variable z; (j =1,2,...,m).

We shall also make use of the following observation, motivated by
Ebanks [12, Lemma 7.3].

Lemma 2.3. (Z. Boros and E. Garda-Matyds [9]). If F is a field,
n € N, X is an arbitrary set, V- C F contains at least n+ 1 elements,
and the functions Hy: X —F (k=0,1,...,n) satisfy the equation

Z Hy(z)r* =0 (2.9)

for every x € X and r € V', then Hy(x) = 0 for every x € X and
ke{0,1,...,n}.

Proof. For each fixed z € X, Y} Hi(z)r" is a polynomial of degree
at most n, with the coefficients Hi(x) € F (k = 0,1,...,n), with
respect to the variable r. According to equation (2.9), this polynomial
takes the value zero at each r € V. Since V' contains at least n + 1
elements, this polynomial has to be identically zero. O]

In this dissertation, we shall apply Lemma 2.3 for X = F = R and
V=Q.
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2.2 Derivations

We say that f: R — R is a derivation if f satisfies the system of
functional equations

flx+y) = f@)+ f(y) (2.10)
flzy) = fl@)y+xf(y) (2.11)

for every x,y € R. The family of derivations f: R — R is denoted by
D(R) in the sequel.

Clearly, equation (2.10) expresses that f is additive, while equation
(2.11) is motivated by the differentiation rule for the product of two
differentiable functions (however, here the arguments are real numbers
instead of functions). It is an immediate consequence of the definition
that any derivation f fulfills f(2?) = 2z f(x) for all z € R. Obviously,
equation (2.11) implies f(1) = 0. Hence, any linear derivation is
identically zero. On the other hand, it is also well known (and easy to
prove) that the graph of any non-linear additive function f: R — R
is dense in R?. In particular, the graph of any non-trivial (i.e., not
identically zero) derivation f: R — R has to be dense in R%. The
existence of such functions is established, in a more general setting,
for instance, in [40] (and in [29, Section 14.2]). Moreover, one can
easily prove the following statement.

Proposition 2.1. If K € R and f: R — R is an additive mapping
that satisfies the equation

f(z%) = Kaf(x) (x € R) (2.12)
as well, then either f =0 or K € {1,2}. Moreover, if K =1, then f
18 linear, while, if K = 2, then f is a derivation.

The characterization of linear functions or derivations among addi-
tive mappings via functional equations in a single variable (which are
generalizations of (2.12)) is the main topic of articles by Nishiyama
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and Horinouchi [35], Kannappan and Kurepa [26], Grzaslewicz [17],
Halter-Koch [21, 22], and some recent papers by Ebanks [13], [14]
and Gselmann [19]. A characterization of derivations via a single
functional equation has been provided by Gselmann [18]. A func-
tional B: R x R — R is called a bi-derivation if the mappings t
B(t,x) and t+— B(xz,t) (t € R) are derivations for each z € R.
An additive mapping f: R — R is called a derivation of order 2, if
there exists a (symmetric) bi-derivation B: R x R — R such that

flxy) —xf(y) — f(x)y = B(z,y) (z,y €R).

The set of derivations of order 2 will be denoted by Dy(R). Since the
identically zero mapping from R x R into R is a bi-derivation, we have
D(R) C Dy(R). The terminology is motivated by the observation that
the composition of two derivations on R belongs to the class Dy(R).

In particular, if d: R — R is a not identically zero derivation and
f=dod, then

B(z,y): =f(zy) —xf(y) — f(z)y =
= d(zd(y) + d(x)y) — xd(d(y)) — yd(d(x)) = 2d(x)d(y)

((z,y) € R x R) is a not identically zero bi-derivation, hence f €
D,(R)\ D(R).

The concept of derivations of higher order was introduced and char-
acterized via functional equations by Unger and Reich [39]. The theory
has been developed by Reich [36], Halter-Koch and Reich [23], Ebanks
[11], and quite recently by Gselmann, Vincze and Kiss [20].

As consequences of [15, Proposition 2.2] and [11, Proposition 4.6]
(the same equations are listed as equivalent conditions for additive
mappings to belong to the class of second order derivations), and as
a particular case of [20, Proposition 3], we have the following charac-
terization of Dy(R).
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Proposition 2.2. Let ¢: R — R be an additive mapping. Then ¢ €
Ds(R) if, and only if,

¢ (2°) = 3w (2%) +32%p (z) =0 (r €R). (2.13)

As an application of Proposition 2.2, we can prove the following
lemma, which appears in [11, Proposition 4.6], as well.

Lemma 2.4. Let ¢: R — R be an additive function. Then ¢ € Do(R)
iof, and only if,

o(x) = 622p(2?) — 830 (7) (x € R). (2.14)

Proof. If ¢ € Dy(R), then there exists a symmetric bi-derivation
B: R xR — R such that

¢ (2%) — 2zp(z) = Bz, z) (x € R).

Substituting z? in place of z in the latter equation and applying the
identity f (x?) = 2z f(x) fulfilled by any real derivation f (cf. (2.11)),
we obtain

© (m4) — 2m2g0 (:L‘2) =B (m2, x2)

= (2:)3)23(113, (ﬂ) = 4$QB($’ :E)
= 42” (p (2?) — 2zp(x)) = 4a2p

(2%) — 82 (),

which yields (2.14).

Now we assume that ¢: R — R is additive and it satisfies equation
(2.14) as well. Substituting z = 1 into (2.14) we obtain p(1) = 0. Let
x € Rand r € Q. Replacing = with x + r in equation (2.14) we have

0 = o(@+r)) —6(z+7)20((x+7)) +8x+r)Yplx+r)
= p(a?) +dro®) + 6r°p(a?) + 4rp(z) +rip(1)
— 6 (2% +2rz +1?) (p(a%) + 2ro(z) + r*p(1))
+ 8(2” + 3ra® + 3r%z 4+ r?) (p(z) + re(1)) .
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Here, for each fixed z € R, we obtain a polynomial with respect to
r on the right side of the equation. Hence we may apply Lemma 2.3.
The equality of the coefficient of r with zero for every z € R, in view
of p(1) = 0, finally leads to equation (2.13). Therefore, the statement
follows from Proposition 2.2. O]
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3. Conditional equations involving

polynomial functions

In this chapter we investigate monomial functions f,g: R — R of
degree n € N, n > 2 that satisfy conditional equations involving poly-

nomial functions:

SO :{(‘T’y) 6R2|amxm+am_1$m_l+"'+a1$+0,0:y}
with meN, a; € R, 1=0,....,m, a, #0, ag #0.

We know that if f,g : R — R are additive functions and satisfy the
additional equation (1.5) for the pairs (z,y) € Sp, then f and g are
the same linear function ([Theorem 4.3] in [12]).

Theorem 3.1. Suppose that f: R — R and g: R — R are gener-
alized monomials of degree n € N that satisfy the additional equation

y"f(x) = a"g(y) for the pairs (x,y) € So. Then f(x) = g(x) = 2" f(1)
forallz e R.

Proof. We can associate with the generalized monomial g an n—additive
and symmetric functional G : R" — R, such that

g(x) =G(z,z,...,z) (z€R)
holds. The additional equation is:

(am®™ +am_12™ 4+ @+ ag)" f(z) =

0 (3.1)
= xng (amxm + CLm—1$m +...tax+ CLQ) .

17
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We know that

(ama™ + aporz™ "+ ar +ag) =

ioliq! - i R SR
dotittotim=n m

Due to the Polynomial Theorem, we have

(A ™ a1 2™ L aw +ag) =

Z n! io mio Im—1 i1 gim (3.2)

n!
= 2. Kolky! -« k! (3.3)

-G ([amxm]ko : [am,lxmfl}kl ey [ao]km> :

With (3.2) and (3.3), the additional equation (3.1) can be written in

the following form:

n! iy ; , -
[ mu tm—1,.%m—1 %m _
D ey f() =
do+i1+Fim=n O LTI
|
2. Folky! - -+ ko)

ko+ki+...+km=n

-G ([ammm]ko ; [am_lxmfl]kl e [ao]km) )

If x € R, re€Q, and we replace z with rz in equation (3.4), we get

| . . . . .
E 1 |n' ' |a13(rx)mm a" (o) ey f(ra) =
L . 10:%1: Uy

0+i1+...Fim=n

n n!
=00 Y T

ko+ki+...+km=n

-G ([am(rx)m]ko ) [am,l(rx)m’l}kl e [ao]km) :
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Using f(rx) =r"f(x) and

G ([am(m)m]ko s ama (re)™ [ao]km> —

__ .mko,.(m—1)k1 km—1 m m—1
= p™mkop ceep G ([lamz ]ko ; [am_lx ]k1 e [GO]km ,
we obtain
nl . . .
E : Tn-l—mzo—f—(m—l)ll +.otim—1,

iolig! - dp!
ig+i1+...Fim=n 0-%1 m

g™l f () =

|
kolky! - k!
ko+ki+..+km=n 01 "
—1
-G <[amxm]k0 , [am_1$m Lﬂ IR [ao]km) )
and thus
n! ; i ;
0— Z —rn+mzo+(m—l)11+--~+lm—l.
Tolig! i)

to+i1+...Fim=n
10 ,.ML0 Im—1 4 —1 %
alga™ - al g f () -

3.5
Z n! ntmko+(m—1)k1+...+km—1 (3.5)

kolky!- - - kp,!

"

-G ([amxm]ko : [am,lxmfl]kl ey [ao]km> :

On the right side of equation (3.5), for each fixed z € R, with
respect to the variable r, we obtain a polynomial (of degree at most
(m+ 1)n) that equals zero for every r € Q. According to Lemma 2.3,
each coefficient of this polynomial must be zero (for each x € R).

For the coefficient of r™ this observation yields

0=ayf(z)—2"g(ap).
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Hence

_ ng(a())
fa) =)
For x = 1 we have f(1) = %, therefore f(z) = z"f(1) for all
r e R.

Considering the coefficient of r(m+h»

we obtain
0=arz™f(z) —z"g (amz™).

Substituting f(z) = 2" f(1) in the latter equation then dividing the
equation by z" if x # 0 we get

g (amz™) = (amz™)" f(1).

If m is odd, then the range of a,,2™ (with a,, # 0) is the set of real
numbers. If m is even, then the range of a,,2™ (with a,, # 0) is the
set of non-negative or non-positive real numbers, depending on the
sign of a,,. But since ¢ is rationally homogeneous of degree n, then
g(—u) = (=1)"g(u), consequently

for all z € R. O

Remark 3.1. If a,, = a1 = ... = a1 = 0 then y = ag is constant.

Therefore we have
ag f () = 2"g (ao)
and thus

but we have no further information about g other than g (ag) = ag f(1).

Remark 3.2. In the particular case y = a1 (ap = 0) the conditional
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equation has the form

ajz" f(v) = a"g (a1),

i.e., g (a1x) = a} f (x). We note that, if a; = 0 then this equation yields
no information, so f and g can be any monomial functions. In the case
ay; # 0, let f be any discontinuous real monomial function. Then it

follows from the conditional equation that ¢ is also discontinuous.

If we tighten the study to a single function f: R — R, we have an
immediate consequence of the above theorem, without the restriction

apy, 7 0:

Corollary 3.1. If a monomial function f: R — R of degree n € N
satisfies the additional equation y"™ f(z) = 2" f(y) for the pairs (x,y) €

So, then f(x) =a"f(1) for allz € R.

Proof. It a,, = ay,_1 = ... = a; =0 the implication is trivial.
If a,, # 0, we can apply the above theorem. n

Remark 3.3. In case m = 1, the implication in Corollary 3.1 does not
hold if ag = 0. In this case, if, for instance, a; # 0, the conditional
equation (1.2) takes the form

ayz" f(z) = " f (mz),

ie., f(a1x) = al f (x). Indeed, there exists a discontinuous example of
the form f(x) = (h(z))" (x € R), where h : R — R is a discontinuous
additive function, such that the homogeneity field of h contains a;.

Though in this project we mainly concentrate on functions defined
on the real line, we would like to note that monomial functions of de-
gree n can be defined in more abstract settings in the same way, i.e.,
as diagonalizations of n-additive mappings. The proof of Theorem 3.1
(and Corollary 3.1) can be applied to the somewhat more general case
when the domain of f and g is a subring E of real numbers such that
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E contains all rational numbers (for instance, an arbitrary subfield of
R), assuming that all coefficients a; € E (j =0,1,...,m).

In the particular case m = 1 we can give an independent, algorithmic
proof for the Corollary 3.1. In this case we have y = a1x+ag, a1,aq €
R\ {0}, and (1.2) takes the form

(a1 + ag)" f(z) = 2™ f (amz + ag) - (3.6)

This proof admits an even more general domain for f.

Theorem 3.2. Let D be a subring of R such that 1/2 € D (i.e., D is
divisible by 2) and let ag,a; € D\ {0}. If f: D — R is a monomial
of order n that satisfies the additional equation (3.6) for every x € D,
then f(z) = x™f(1) for all x € D.

Proof. We know that
n - n n— n—
(a1 + ap)" = (k>a1 FamRak.
=0

Based on this and from (2.7), the equation (3.6) can be written in the
following form:

> (Z) i ) =0 (Z)F (laraly, lao), ). (37)

k=0 k=0

The following algorithm is used for the proof:

Step 1: Let be p = 0.

Step 2: Replace x by 7 in last equation.

Step 3: Multiply the resulting equation with 2277,

Step 4: From the resulting equation subtract the last numbered equa-
tion.

Step 5: Omit the zero value members of the sum

Step 6: Number the last equation
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Step 7: If p <n—1 then p=p—+1 and go to Step 2, otherwise end of
the algorithm.

It can be observed, that steps 2 through 7 are performed n times.
Let us see how the algorithm works:

1). p=0

If we replace by § in equation (3.7), we obtain

S (1)t (2) = > (1) ([02], o)

k=0 p
ie.
n n—k n n
) gkt . T n\ 1
kzzo (/{;) i B GOQ_nf(JI) = on 2 (k;) ﬁF ([alw]k , [ao]nik) )

Multiplying the last equation with 22", we obtain

i (Z) a2 ah f(w) = o i (Z) 2" FF ([arz], , [ao),_4) -

k=0 k=0

Subtracting the equation (3.7) from the last equation, we get
Z (Z) aiFa"Fag f(z) (28 - 1) =
k=0
n n o
- Z (k)F ([alx]k 5 [ao]n_k) (2 ko 1) .

Observe that on the left hand side for £ = 0, we have (2k —-1) =
0, on the right hand side for k£ = n, we have (2% —1) = 0.
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Therefore
Z (Z) ay*z" Faf f(z) (28— 1) =
k=1
1 (3.8)
=3 () Pl ol ) (2 )
k=0
2). p=1

If we replace x by § in equation (3.8), we obtain

S (oot (5) (1) -

k=1

i.e.

Multiplying the last equation with 22"~ we obtain

Z (Z) al R f(x) (28 — 1) =
k=1
n—1

_ 2_ k:: (Z) Q%F ([arz]y , [ao),,—y,) (27" = 1).

= " (Z) 2R ([agal,,  aol, ) (277F — 1) .

k=0
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Subtracting the equation (3.8) from the last equation, we get

kzn; (Z) Ak hak fla) (28 — 1) (26 = 1) =

n—1

g H( ) (laxa, 2 ao], ) (2" — 1) (21 —1).

Observe that on the left hand side for k = 1, we have (257! — 1) =
0, on the right hand side for k = n—1 we have (2%t — 1) =
Therefore

:22 (Z) ARl f(x) (2F — 1) (26 = 1) =

xz()( ) (laxa, 2 ao), ) (2" — 1) (21 —1).

Increasing the value of p by 1 each time, the algorithm runs similarly
to the previous cases.
Having p = n — 1, we obtain the final equation:

ajflz)(2"—=1 (2" -1 (2" *-1)...2-1) =
=2"F ([aiz]y, [ao), o) (2" —1) (2" = 1) (2" 2 = 1) ...(2 = 1).

It follows that
agf(z) = a"F ([alx]o ; [aO]n—O) :
But F ([a12],, [ao),_o) = f (ao). Thus
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For x =1,

hence f(z)=a"f(1).
[

Note that the constraint ag # 0, i.e. that the curve does not pass
through the origin, plays an important role. Otherwise, it brings a
lot of complications even in a simple case, as we can see in the next

chapter.



4. Conditional equations involving the

power function

In this chapter we investigate quadratic functions f,g: R — R and
cubic functions f: R — R that satisfy conditional equations involving
the power function:

Sy ={(z,y) eR*|z™ =y} withmeZ, |m|>2

We know that all additive functions f: R — R fulfilling the condition
(1.4) for all points (z,y) € Sy are linear ([35]). If the additive functions
f,9 : R — R satisfy the equation (1.5) for all points (z,y) € Sp, then
there exist ¢ € R and a derivation d : R — R such that f(z) =
d(x) + cx, g(x) = ~d(x) + cx (z € R) ([26]).

T m

4.1 Equations for quadratic functions

In this section we investigate quadratic real functions f that satisfy
the additional equation (1.2) for the pairs (z,y) € 5.

In this case the additional equation has the form 2™ f(z) = 22 f(z™),
with |m| > 2, m € Z . Dividing this equation by z? if x # 0, and tak-
ing f(0) = 0 (fulfilled by any quadratic function f) into consideration

as well, we obtain
fla™) =2*" 7 f(x) (4.1)

for every x € R.

Theorem 4.1. If2 < |m|, m € Z and the quadratic function f: R —
R satisfies (4.1) for every x € R, then there exists C' € R such that

flx)=C-2* (z€R).

27
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Proof. First we prove it for 2 < m € N:
Let x € R and r € Q. Replacing x with z + r in equation (4.1) we
obtain

Fl@+r)™) =@+ f(z+7r). (4.2)

Let F': R x R — R be given by (2.5). Expanding the powers of sums
on both sides, equation (4.2) can be written as

f(gé(z)Ika>::

_ ( > (777 m) (S@)+ 1) +2F(@7).

=0

Applying the identity (2.6) to the left side of this equation and the
rational homogeneity properties of F' and f to the right side, we obtain

- m R pm—k m pipm—i m pipm=i ) —
Sr((i)ret)ee 2w (T (7))

_ Z_ <2ml— 2> plp2m—2-1 (f(x) + 7,2]0(1) +2rF(z, 1)) :

=0

and thus
m m 2
0 = Z< k) r2 ) f(a*) (4.3)
k=0
+ 2 Z (m) (m)r2mijF(xi, )
0<icj<m N J
2m—2

_ EIGmfﬂﬂW%w@%m+mF@U+ﬂ@W

=0

It is clear that on the right side of equation (4.3), for each fixed z € R,

with respect to the variable r, we obtain a polynomial (of degree at
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most 2m) that equals zero for every r € Q. According to Lemma 2.3,
each coefficient of this polynomial has to equal zero (for each = € R).
The coefficient of r*™ equals f(1) — f(1) = 0, so the degree is, in fact,
smaller than 2m. However, for the coefficient of 72™~! this observation

yields

0 = 2@) <T)F(1,I) - <2m0_ 2> 2F (z,1) — <2m1_ 2>xf(1)

= (2m—2)(F(1,z) —xf(1)).
Since m > 2 implies 2m — 2 > 0, we obtain
F(l,z)=f(1)-x (4.4)

for every x € R. The equality of the coefficient of r?™~2 to zero can

be written as

- (i) ()
&

2m = ) (2’"1_ 2>x 2F(2,1) — <2m2_ 2) 22 f(1) =
— ) f(z) +m(m —1)F(1,2%) —4(m — 1)asF(1,z) —

(
m — 1)(2m — 3) f(1)2?

= (m*
(

Applying property (4.4), this equation can be reformulated as

0= (m—1)(m+1) (f(x) - f(1)a),

which implies f(z) = f(1) - 2% for every z € R.
Case =2 >m € Z: .
Let s=—m, whence s e N, s > 2. Theny=2"°= —.

:ES
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Hence equation (1.2) with n = 2 has the form

=i =21 ()

for z # 0. Multiplying the last equation with 272, we obtain

al 0 =1 (). w3

l-S

Replacing = with £7° in equation (4.5) we have

252542 f (%) _f <$52> ‘

Now from (4.5), we get

52 S 1 82
o Wf(x):f<$ >,

- 222 f () = f (x) . (4.6)

For every 2 < s € N there exists p € N,p > 2 such that p = s2.

Replacing s? with p in equation (4.6) we get the condition (4.1) for

2 < p € N in place of m, and we have already proved this case.
Hence f(x) = z?f(1) for all z € R. O

We note that in case m = 0 the same implication is trivial, while
in case m = 1 condition (4.1) becomes a trivial identity that does not
imply any restriction for f (hence f can be discontinuous as well).
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4.2 Related problems, admitting quadratic func-
tions generated by derivations

In this section we discuss, in the particular case m = 2, a modified
version of the condition (4.1), admitting a discontinuous quadratic
solution f. Then we examine quadratic real functions f, g that satisfy
the conditional equation (1.3) for the pairs (z,y) € Sy with m = 2.

We can formulate an analogy of Proposition 2.1 for quadratic map-

pings.

Theorem 4.2. Let K € R. If a quadratic function f : R — R
satisfies the additional equation

f(a?) = Ka* f(x) (4.7)

for every x € R, then either f =0 or K € {1,2,4}. In the latter
cases, we have the following representations for f.

e A quadratic mapping f: R — R fulfills (4.7) with K =1 if, and
only if,
fla)=f(1)-2*  (z€R).

e A quadratic mapping f: R — R fulfills (4.7) with K = 2 if, and
only if, there exists ¢ € Dy(R) such that

f(z) =dzp(z) — p(z®)  (z €R). (4.8)
o [f B: R XR — R is a symmetric bi-derivation, then
f(z) = B(x,x) (x € R)

is a quadratic solution of the equation (4.7) with K = 4.

Proof. Let x € R and r € Q. Replacing x with z+ 7 in equation (4.7)
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we obtain

f(+r)?)=K@+r)flz+r). (4.9)

Let F': R x R — R be given by (2.5). Expanding the powers of sums
on both sides, equation (4.9) can be written as

(@4 2re+ %) = K (% + 2rz + 1) - (f(z) + f(r) + 2F(z,7)).

Applying the identity (2.6) to the left side of this equation and the
rational homogeneity properties of F' and f, we obtain

f(@®) +4r?f(z) +rf(1) + 4rF (2%, 2) + 2r* F (23, 1) + 4r° F(2,1) =
= K2?f(x) + 2Kraf(x) + Kr* f(z) + Kr*a? f(1) + 2KrPz f(1)+
+ Krtf(1) + 2Kr2? F(x,1) + 4Kr?zc F(z,1) + 2Kr* F(x, 1),

and thus

0 = (K—-1)f()r*+2[(K —2)F(z,1) + Kf(1)x]r?
+ [(K=4)f(z)+ Kf(1)2® + AKzF(z,1) — 2F (2%, 1)] r?
+ 2[Kaf(z)+ Ka?F(x,1) — 2F (2%, 2)| r + [K2? f(z) — f(2?)] .

Applying Lemma 2.3, we obtain, besides (4.7), the equations

(K —1)f(1) = 0,(4.10)

(K —2)F(z,1) + Kf(l)z = 0,(4.11)

(K —4)f(z)+ Kf(1)2® + 4Kz F(z,1) — 2F (2%, 1) 0,(4.12)
Kxf(zr) + Ka?F(z,1) — 2F(2%,2) = 0.(4.13)

for every x € R.

Equation (4.10) implies K = 1 or f(1) =0. If K = 1, we may apply
Theorem 4.1 with n = 2 (or directly (4.11) to get F(z,1) = f(1)x
and then (4.12)) to obtain f(z) = f(1)-2? for all z € R. Clearly,
f(z) = Cx* (z € R) is, in fact, a quadratic solution of (4.7) with
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K =1 for any real coefficient C'.
In the rest of this proof, we consider the case K # 1, hence we have
f(1) = 0. Then equation (4.11) has the form

(K —2)F(z,1)=0 (x€R). (4.14)

This implies K =2 or F(z,1) =0 (z € R). If K = 2, equation (4.12)
implies (4.8) with the additive mapping

o(x) = F(z,1) (x € R).

Substituting (4.8) into f(z?) = 22%f(z) (z € R), we obtain (2.14).
Hence, due to Lemma 2.4, we have ¢ € Dy(R).

It is easy to verify that, for each ¢ € Dy(R), the function f defined
by (4.8) is quadratic. In order to show that f fulfills equation (4.7)
with K = 2, let B: R x R — R denote the symmetric bi-derivation
satisfying

p(zy) — zo(y) — p(x)y = B(z,y)
for every z, y € R. In particular, B(z,x) = ¢(2?) — 2z¢(z) (z € R),

hence we have
F(@) = dwp(w)—p(a?) = 20p(x)— Bz, ) = p(*)~2B(z,3) (¢ € R).
Since B is a bi-derivation, it fulfills
B(2*,y*) = 4ayB(z,y) (x,y € R), (4.15)
and thus
f(2*) = 22%p(2®) — B(2?, 2%) = 22%p(2%) — 42° B(z, ) = 22° f ()

for every x € R.
If K € R\ {1, 2}, equation (4.14) yields F(z,1) = 0 (z € R).
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Hence equation (4.12) has the short form
(K —4)f(z)=0 (z €R). (4.16)

If f is not identically equal to zero, this implies K = 4. Now, it follows
from property (4.15) of bi-derivations that the trace f(z) = B(zx,x)
(r € R) of a (symmetric) bi-derivation B fulfills f (z?) = 422 f(x) for

every x € R and, of course, such a function f is also quadratic. O

Remark 4.1. If ¢ € D(R), then equation (4.8) yields f(x) = ¢(z?)
(x € R). This observation ensures the existence of a non-zero quadratic
solution f of (4.7) for K = 2. The existence of such solutions in the
cases K =1 and K = 4 is an obvious consequence of Theorem 4.2.

Remark 4.2. We can observe that, in case K = 4, Theorem 4.2 pro-
vides only a sufficient condition for f to satisfy equations (2.4) and
(4.7). It is an open question whether this condition is necessary.

However, we can prove a somewhat weaker necessary condition in
that case.

Theorem 4.3. If a quadratic function f: R — R satisfies the addi-
tional equation

f(2?) = 42*f(x) (4.17)

for every x € R, then f is the trace of a symmetric bi-derivation of
order 2.

Proof. Equation (4.14) yields
F(z,1) =0, (4.18)

for all z € R.
Putting = + 1 in place of z in equation (4.17), we have

f@®+22+1)=4(2+20+1) f(z+1).
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Applying the identity (2.6) to the left side of this equation and the
rational homogeneity properties of ' and f, we obtain

f (:v2) +4f(x)+ f(1) +4F (a:z,a:) +2F (1’2,1) +4F (x,1) =
=4 (2®+ 20+ 1) [f(z) + f(1) + 2F(z,1)].

Substituting (4.17) and (4.18) into the latter equation, we obtain
F (2, z) =2z (). (4.19)

Let z,y € R and r € Q. Substituting x + ry in place of x in equation
(4.19), we get

F (mg + 2rzy 4+ r?y?, T + ry) =2(z+ry)f(z+ry).
Rearranging the latter equation and using (4.19) we obtain

0 =2rF(xy,z)+ r’F (y2, x) +rF (xQ, y) + 27‘2F(:Ey, y)—
— 2r2xf(y) —drzF(x,y) — 2ryf(x) — 47‘2yF(m, ).

Thus we get a polynomial in r. The coefficient of r! equals
2F (zy, x) = 4aF(z,y) + 2yf(z) — F (2°,y) . (4.20)
Replacing x by x? in equation (4.20), we have
2F (xzy,xZ) = 42°F (IZ,y) +2yf (x2) —F (x4,y) .
Applying (4.17), this equation can be reformulated as
2F (2*y,a”) = 42®F (2%, y) + 82y f (z) — F (z*y) . (4.21)

Let z,y € R and r € Q. Replacing = with x + ry in equation (4.17)
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we obtain
f((+7ry)?) =4(x+ry)’flz+ry). (4.22)
Expanding the powers of sums on both sides, equation (4.22) can be
written as
f(x2—|—2m:y+ r?y? ) =
=4 (x + 2ray +r yQ) f(@) + flry) + 2F (z,ry)] .

Applying the identity (2.6) to the left side of this equation and the
rational homogeneity properties of F' and f, we obtain

(@) + 42 fay) + 0 f () +
+4rF (:BQ,xy) + 2r%F (gsz,yz) + 473 F (:Ey,yQ) =
= 4 f(x) + 8ray f(x) + 4> f(x) + 4r2® f(y) + 8rPzy f (y)+
+4rty? f(y) + 8ra® Fx, y) + 16r°xy F(x, y) + 8r°y* F(z,y),

and thus

0=[4f(y) = (V")) " + [8xyf(y) + 8y°F (x,y) — 4F (wy,y?)] r°
+ [4°f (x) + 42 f(y) + 162y F(x,y) — 4f (xy) — 2F (xz,yz)] r’
+ [8xyf(x) + 822 F (z,y) — 4F (mQ,xy)} r+ [4x flz)—f (a: )}

Applying Lemma 2.3 for the coefficient of r* we obtain
4F (2%, zy) = 8y f(z) + 82°F(, y).

Replacing y by xy in the latter equation, then dividing the resulting
equation by 2, we get

2F (2%, 2%y) = 42’y f (x) + 42°F (z, zy).
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Substituting (4.20) into the latter equation, we obtain

2F (m2, ny) = 42y f(x) + 227 [4mF(m, y)+2yf(z) — F (mZ, y)} =
=42y f(x) + 42y f(2) + 82° F (2, y) — 22°F (9(:2, y) ,

ie.,
2F (2%, 2%y) = 82%yf(z) + 82°F(z,y) — 22°F (2°,y) . (4.23)
From the equality of the left sides of (4.21) and (4.23), we have

42°F (2, y) + 8%y f (x) — F (a*,y) =
— 822y f(x) + 82 F(x,y) — 22°F (22, y)

therefore
F (2%, y) = 62°F (2°,y) — 82°F(x,y). (4.24)

Equation (4.24) holds for a fixed y € R, for each 2 € R. By Lemma 2.4
F'is a derivation of order 2 in x. Since F' is a symmetric, bi-additive
function, it follows that F' is a derivation of order 2 in each variable,
so F'is a symmetric bi-derivation of order 2. O]

The significance of the previous results is highlighted by the follow-

ing theorem, where two quadratic functions are involved.

Theorem 4.4. The quadratic functions f,g: R — R satisfy the
additional equation y*f(z) = x?g(y) for the pairs (x,y) € S1 with
m = 2 if, and only if, there exist an additive function ¢: R — R and
a quadratic function h: R — R satisfying the condition

h(z?*) = 42°h(x) (x € R)
such that

F(e) = hia) +pla?) and g(x) = h(x) + wo(z)
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forallz € R.

Proof. In this case the conditional equation takes the form

2 f(z) = g (7). (4.25)

Let z € R and r € Q. Replacing = with = + r in equation (4.25) we
obtain
(+r)flz+r)=g((x+7)?). (4.26)

Expanding the powers of sums on both sides, equation (4.26) can be
written as

(2 + 2rz +r7) (f(z) + f(r) + 2F (2, 7)) =
= g(2?) + 4r%g(x) + rtg(1) + 4rG(2?, ) + 2r°G(2*,1) + 473G (z, 1).

In view of Lemma 2.3, the coefficients of each power of r have to be
equal on the two sides. For the coefficients of r*, we get f(1) = g(1).
Considering the coefficient of 3 we obtain 2F (x, 1)+2x f(1) = 4G(z, 1),
that is

2G(z,1) = F(z,1) + zf(1).

Hence
2G (2°,1) = F (2,1) + 22 f(1). (4.27)

The equality of the coefficients of 72 can be written as
f(z) +4zF(z,1) + 2* (1) = 4g(z) 4+ 2G (2°,1) .
Substituting (4.27) in the latter equation we obtain
49(z) = f(z) — F (2*,1) + 42 F (z,1). (4.28)

Substituting 2 in place of z in equation (4.28) and applying the iden-
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tity (4.25), we obtain

f (x2) = 42 f(2) — 42*F (xQ, 1) + F (x4, 1) ,
ie.

f(2?) = F(2*,1) =42 [f(z) — F (2%, 1)] .
Now, we define a map h: R — R by h(x) := f(z) — F (2% 1).

h(z?) = f(2°) = F (2*,1) = 42” [f(2) — F (2%, 1)] = 42”h(z).

Substituting A in (4.28), we have

The converse is easily verified. O

4.3 Equation for cubic functions

In this section we investigate cubic functions f: R — R that satisfy
the additional equation (1.2) for the pairs (z,y) € S;.

Theorem 4.5. If f: R — R is a generalized monomial of degree 3 that

satisfies the additional equation y3 f(x) = 23 f(y) under the condition
(z,y) € Sy, then f(x) =23f(1) for allz € R.

Proof. First, we prove the theorem in case of positive m.
Let m > 2, m € N. The additional equation is: z3™ f(z) = 23 f (z™).
Dividing this equation by z® if x # 0 , and taking f(0) = 0 into

consideration as well, we obtain

F (@) = 2 f () (4.29)

for all x € R.



4. Conditional equations involving the power function 40

Replacing = with x + r in equation (4.29) we obtain
fll+r)™) =@+ flz+r). (4.30)

Expanding the powers of sums on both sides, equation (4.30) can
be written as

f (é (TIZ) xkrm_k> = 3:”2;3 <3m z_ 3) el (e ). (4.31)

Applying the identity (2.8) to the left side of this equation and the
rational homogeneity properties of F, we have

f (kgm% (7:) kak> _

31
- 2 Kolky! - k!

(1 [ ] ()] ) -

3! mko,.(m—1)k1 (m—m)km
ko+-++km=3
m
F([l]k0,|:<1>l':| ,...,[(L‘m]km> =
k1
_ Z 3! p3m—(k1+2ko 4 mkm)
kolki!- - k,,!

F ([1]k0, {(T)x] kl""’[xm]’“’“> .

Then applying (2.7) to the right side of equation (4.31) and the rational
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homogeneity properties of F', we have

3m—3

Z (3ml— 3) a3 () =

=0
3m—3

S (o e ()t -

0

S () WZ()F oy [y

=0

Thus, the equation (4.31) can be written in the form

O — Z 3| T3m—(k1+2k2+m+mkm)'

1 l. .. |
wors e otk !

F ([1],%, KT) x] e [a:m]km> - (4.32)

3m—3 3

S () () ke

On the right side of equation (4.32), for each fixed x € R, with respect
to the variable r, we obtain a polynomial (of degree at most 3m) that
equals zero for every r € Q. According to Lemma 2.3, each coefficient
of this polynomial has to equal zero (for each x € R). The coefficient
of r*™ equals f(1) — f(1) = 0, so the degree is, in fact, smaller than
3m. However, for the coefficient of r3™~! this observation yields
0= %F(l, 1,mx) — [3F(z,1,1) + (3m — 3)x f(1)].
Thus
3(m —1)F(x,1,1) =3(m — 1)z f(1).
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Since m > 2 implies m — 1 > 0, we obtain
F(z,1,1) =xf(1) (4.33)

for all z € R. The equality of the coefficient of r3™~2 to zero can be

written as
3! 3! —1
0= Esz(l,l’,x) + E%F (1, 1,1,’2) —

(3m — 3)(3m — 4)

— |3F(z,2,1) + 3(m — 1)32F(x,1,1) + 5 22 f(1)] .
Applying property (4.33), after some computation we have
3(m*—1) F(z,z,1) =3 (m* — 1) 2% f(1),
i.e.
F(z,z,1) = 2°f(1) (4.34)
for all x € R. The equality of the coefficient of 733 to zero can be
written as
3! 2(m—1

0= ym?’F(x,a:, x)+ 3!%)F (1,1:, :C2) +
3lm(m — 1)(m — 2) ,
o T F(1,1,2%) -

(3m — 3)(3m — 4)

5 32°F(x,1,1)—

— f(z) — (3m — 3)3zF(x,x,1) —
(3m — 3)(3m — 4)(3m — 5)

— i 23 f(1).

In case m < 3, the third member of the right side of equality is elimi-
nated.
Applying properties (4.33) and (4.34), this equation can be written in



43 4.3. FEquation for cubic functions

the form

m(m —1)(m — 2)

m® f(z)+3m*(m — 1)F(1 (1, z,2%) + 5 2 f(1) =
= f(a)+ (om — 0)a (1) + LN
N (9m? — 21m + 12) (3m — 5)$3f(1)‘

6

After some computation we have

(3m3 — 3m2)F (1,x,a:2) =

=— (m®=1) f(z)+ (4m® — 3m* — 1) 2 f(1). (4.85)

The equality of the coefficient of 7™~* to zero can be written as

2(m — 1)(m — 2 3lm?(m — 1
0= 3!m (m 3!)(m )F(l,x,x?’) + E%F (x,x,xQ) +
3Im?(m — 1)? 5 o 3lm(m —1)(m —2)(m —3)
to F(l,x,x)+§ 2 :

P (e 1,1) — (3m — 3 f(x) — O 3>2(3m )

3m—3)3m —4)(3m —5)_ 4
YO e =D g g gy

(3m — 3)(3m — 4)(3m — 5)(3m — 6) ,

- 1l " f(1).

322 F(x,2,1)—

In case m < 4, the first member and the fourth member of the right
side of equality are eliminated.
Applying properties (4.33) and (4.34), this equation can be written in
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the form

m*(m —1)(m — 2)F (1,z,2°) + gm3(m — 1)F (z,z,2%) +

+ Zm2(m o 1)21’4f<1) + 3m(m — 1)(;n4_ 2)(m — 3) 1’4f(1) _

9(m —1)(3m — 4)

=3(m —1Dzf(x)+ 5 2t f(1)+
L 3m - 1)(3m2— 4)(3m — 5>a:4f(1)+
N (m—1)(3m — 4)5(33m —5)(3m — 6)a:4f(1).

After some compuation we get

6zf(x)— 3m*F (z,z,2?) — (2m® —4m?) F (2, 23,1) =
= (=5m3 +4m? +6) 21 f(1). (4.36)

Replacing = with = + 1 in equation (4.36) we have

6(z+1)f(z+1)—3m°F (z+ Lo+ 1,2° + 22+ 1) —
—(2m® —4m?) F (4 1,2° + 32° + 3z + 1,1) = (4.37)
(=5m?® +4m® + 6) (z + 1)* f(1).

fle+1)= f(z)+ (32* + 3z + 1) f(1),

F(I+1,I+1,x2+2x+1) =
= F (z,z,2%) + 2F (1,z,2°) + 2f (z) + (62 + 4z + 1) f(1),

F(z+1,2°+32° +3z+1,1) =
= F(:v,x?’,l) + 3F (:v,xg,l) + (903+6902+490+1) f(1).
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Substituting these in equation (4.37), we obtain

6(z+1) [f(z)+ (32> + 3z +1) f(1)] —

—3m® [F (z,2,2%) + 2F (1,z,2°) + 2f(z) + (62° + 4z + 1) f(1)] —
— (2m® —4m?) [F (z,2°,1) + 3F (z,2°,1) +

+ (2% + 62 + 4z + 1) f(1)] = (=5m® + 4m” + 6) (z + 1)* f(1).

Using equation (4.36), we get

6f(z) 4+ 6(x+ 1) (32° + 3z + 1) f(1)—

—3m® [2F (1, z,2%) + 2f(x) + (62° + 4z + 1) f(1)] —

— (2m3 — 4m2) [BF (x, z?, 1) + (x3 + 622 + 4o + 1) f(l)} =

= (=5m® +4m* 4+ 6) z* f(1) + (=5m® + 4m”® +6) (z + 1)* f(1).

After some computation we have

6 (m® = 1) f(x) =4 (3m® = 3m?) F (1,2,2%) =
= (6:63 — 18m3a® + 12m2x3) f(1).

Now, we use equation (4.35),

—6 (m® —1) f(z)—4 [ (m* = 1) f(z)+ (4m® = 3m* — 1) 2° f(1)] =
= (62° — 18m*z® + 12m*2®) f(1),

.€. i (m3 B 1) f(l‘) _ (—2m3x3 —|—2£L‘3) f(l)

Hence, in case m > 2
flz) =2*f(1)
for all x € R.
If m < —2, thenlet { = —m, whencel € N, 1 > 2. Theny =z~ = %
Hence equation (4.29) has the form
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f(z™) =273 f(). (4.38)

Replacing = with 7! in equation (4.38) we have
f (xm) = I f () |

Now from (4.38), we get

f (xﬂ) _ x’l(’3l’3)x’3173f(x),

i.e. ; <$12> _ $3l2_3f($)- (4.39)

For every 2 < [ € N there exists p € N, p > 2 such that p = [%.
Replacing [? with p in equation (4.39) we get equation (4.29). Hence
flx) =23f(1) for all z € R. O



5. Equations along conic sections

In this chapter we investigate additive, quadratic and higher order
monomial functions f,¢g: R — R that satisfy conditional equations
along hyperbolas or the unit circle:

Sy ={(z,y) eR* |2y =1},
Sy ={(z,y) e R*|2* —y* =1},
Sy ={(z,y) € R?*|2* +y* = 1}.

We begin with a summary of what is already known about additive
functions satisfying conditional equations along hyperbolas or the unit
circle.

Every additive mapping f : R — R, which satisfies

1(3) =

for all z # 0 is of the form f(z) = f(1)x for all x € R (Theorem II. in
[25] and Corollary 2 in [30]). If f,¢g: R — R are additive functions and
satisfy (1.5) for all z # 0 with (x,y) € S, then there exists a derivation
d: R — R for which f(z) = d(z) + 2 f(1) and g(x) = —d(x) + xf(1)
(Theorem 4 in [30]). If the real additive map f satisfies (1.4) for all
points (z,y) € Sy then f is linear (Corollary 2.2 in [6]). Theorem
3.1 in [12] generalizes the latter case by introducing a second additive
mapping, that is every additive functions f,g : R — R, which satisfy
(1.5) for all points (z,y) € Sy are equal and linear.

47
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5.1 Counterexamples for the hyperbola xy =1

If f: R — R is a generalized monomial of degree n € N, n > 2,
f satisfies (1.2) for all (x,y) € S, it is easy to see, that there exist
discontinuous solutions.

The conditional equation is

flx)=a™"f <1> . (Va#0).

X

1. Example. If d: R — R is a not identically zero derivation, then

a discontinuous solution f can be given in the following way:

2 (d(z))"™" if nis an odd number,

(d(x))" if n is an even number.

If n is an odd number, then
flx) = a (d()" "

1
Putting — in place of z, we get
x

d (3 - é (d (%))1 = i (—%d(gg))“

1 1 T

= @) = (@) = ()

T m?n—?

If n is an even number, then
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()~ () - (2w -

= 5 (@) = 4 f (@),

2. A larger family of examples of discontinuous generalized mono-

mials of degree n € N, n > 2 is given by:
flz) =" (d(2))*  (z €R),

where d: R — R is a not identically zero derivation, k € {1,...,
[n/2]}.

Putting — in place of z, we get
x

() () () ()

o ) = () =
= " (A (@) = g f ()

It is an open problem, what is the general monomial solution f: R —
R that satisfy the additional assumption y"f(x) = z"f(y), for all
(.T, y) € S2~

5.2 Partial results for the hyperbola xy =1

In this section we study quadratic real functions that satisfy the
additional assumption (1.2) for all (x,y) € Ss. Though the conti-
nuity of f does not follow from this assumption, we can obtain some

interesting results for the mappings = +— F(z,1) and z — F(z,1/z).

Lemma 5.1. If a quadratic function f: R — R satisfies the additional
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equation y* f(z) = 22 f(y) for the pairs (x,y) € Sy then
Fa,1) = zf(1) (5.1)

forall z € R.

Proof. The additional equation is

f@=a(3). et (52)

Using this equality for x # —1,0,1 we write f < ’ 1) in two ways:

xr —

() - () () - () 100 -

(525 oo -2 (1) -
= (x_11)4 [m4f(1)+f(a:) —2'F 61” ,
but
(752) =7 () -
1
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From the equality of the two last equations, it follows that

I%O%ﬁﬂ@—2ﬁF(%@):
= (z— D' f(1) + 1) + f(z) — 2F (2, 1) + 2(z — 1)*F (x i 1’1> |

thus

(x — 1)'F (x ! o 1) —F(x,1) +2'F 61) = 53)
= (22° = 32% + 22— 1) f(1). |

Putting  + 1 in place of = in last equation, and rearranging the equa-

tion, we get

(x+1)'F (%H 1> Pz, 1) + ' (é 1) _
= (227 + 32* + 22 + 1) f(1).

Adding the last two equations, we obtain

($—1>4F( 111)” “>4F(x;+1’1): (5.4)

=2F(z,1) — 22'F (i, 1) + (42® + 42) f(1).
On the other hand,
r+1 r+1 x—1 xr+1 2
f(x—l):(:v—l)f(x+1):<x—1)f<l_x+1):
z+1 1
-(553) T () - or (5501)] -
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However, we may also write

r41 2 2 2
f(x_l):f(1+x_1):f(1)+f E)+2F<$_1,1):

+4(x—1)4F<x_1,1>}.

Hence, it follows that

(z+ D) +4[f(z) + f(1) +2F(z,1)] — 4(z + 1) 4F<

)
)

(93—1)4F(x_1,1>+(x+1)4F(ng_1,1>: (55)
= 4F (z,1) + (22° + 2z) f(1). |

= (z— D*F(1) +4[f(2) + (1) — 2F (2, D] + 4(z — 1)*F

thus

From the equality of the left sides of (5.4) and (5.5) we obtain

2F (z,1)—22"'F G 1>+(4$3 +4z) f(1) = 4F (z, 1)+ (22° 4 22) f(1),
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therefore

W (i 1> = F(e,1) + (¢ + ) f(1). (5.6)

Putting x — 1 in place of x in this equality, we get

(x —1)*F (xilg) =

= —F(z, 1)+ f(1) + (2* = 32> + 3z — 1+ 2 — 1) f(1),

1.e.

(x —D*F ( ! 1> = —F(z,1) + (2° = 32% + 42 — 1) f(1). (5.7)

r—1
Substituting the equations (5.6) and (5.7) in (5.3), we get
—F(z,1) + (2* = 32° + 4z — 1) f(1) — F(2,1) — F(z,1)+

+ (2® +2) f(1) = (22° — 32> + 22 — 1) f(1),

F(z,1) =z f(1).

The last equation is also true for x = —1,0, or x = 1. O
Lemma 5.2. If a quadratic function f: R — R satisfies the additional
equation y2 f(x) = 22 f(y) for the pairs (z,y) € Sa, then

f(2%) = 22'F (x, %) + 627 f(x) — T2t f(1) (5.8)

for all x € R\ {0} .

Proof. Obviously, (5.8) holds for z = —1 and = = 1.
For x # —1,1 we have

11 1 1
2—-1 2\z—-1 zx+1
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Substituting these in equation (5.9), we obtain

1 1 1
= @_1) [f(x) + (1 —22)f(1)] + §(x +1)*

1) {f (2) + (1 —22%) f(1) + (2" + 1) f(z) — 22*F (g: 1)}

T

[f(x) + (1 +22) f(1)

].
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Multiplying the last equation with (22 — 1)*:

Xz

f(@®)+ (1=22%) fF(1) + (2* + 1) f(z) — 22'F (x 1) =
=5 D [F(@) + (1= 20) ()] 4 5 (@ — D [£(2) + (14 20)F(1)].
After some computation, we get
f(2®) + (1—22%) f(1) + (2" + 1) f(z) — 22'F (:c i) =
= (2 +62° +1) f(z) + (—72" —22° + 1) f(1),

and thus

f(2%) =22'F (x é) + 627 f(x) — Tt f(1).

O
Lemma 5.3. If a quadratic function f: R — R satisfies
1\ _ f(z)
F Z) = 1
(x, x) o (5.10)

for every x # 0, then
flz) =2?f(1)
forallz e R.

1
Proof. Replacing x by — in (5.10), we get
x

P(r) = (G)

From the equality of the left sides of the last equation and (5.10) we
obtain that f satisfies the additional equation (1.2) (n = 2) for the
pairs (x,y) € Ss.
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According to Lemma 5.2 and using (5.10) for every = # 0,

f(2%) = 22*F (:c, i) + 622 f(x) — Tt f(1) =
= 22° f(z) + 62 f(x) — T2* f(1),

thus
f(2%) =82 f(x) — T2 f(1).
This equation is also true for x = 0.

Putting x — 1 in place of x in this equality, then = 4+ 1 in place of z,
and using Lemma 5.1 we get

f((z=1)) =8z —1)°flz —1) = T(x = 1)*f(1) =
= 8(z — 1) [f(x) + (1 — 22) f(1)] = T(x — 1)* f(1) =
=8(z — 1)*f(2) +8(x — 1)*(1 — 22) f(1) = T(z = 1)*f(1) =
= (82% — 16z + 8) f(z) + (—7z* + 122% — 22 — 4z + 1) f(1),

fz+1)?) =8+ 1)>f(z+1)—T(z+1)"f(1) =
= 8o 12 [f(@) + (14 20)f(1)] — Tl + 1) (1) =
=8(z+ 1)2f(z) +8(x + 1)*(1 +22)f(1) = 7(z + D*f(1) =
= (82% 4 162 + 8) f(z) + (—7z* — 122° — 22 + 4z + 1) f(1),

F((x+1)2,(:v—12):F(x2+1—|—2x,x2+1—23:):

(2 +1) — f(22) =

(%) + (1+24%) £(1) — 45 (x) =

2 f(z) + (=72 + 14 22%) f(1) — Af(z) =
8% — 4) f(x) + (—72" +22° + 1) f(1).
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Now use 4z = (x + 1) — (z — 1)? to obtain

16f(x) = f(4z) = [ ((z+1)* = (z = 1)*) =
=f((z+1*)+f((x—1)?%) —2F ((z + 1)*, (z — 1)?) =
= (82% — 162 + 8) f(z) + (=72 + 122° — 22° — 4o + 1) f(1)+
+ (822 + 167 + 8) f(x) + (72" — 122% — 227 + 4o + 1) f(1)—
— (162° = 8) f(z) — (—14a" + 42® +2) f(1) =
= 24f(x) — 82*f(1).

Hence

forallz e R. O

5.3 Equations along the hyperbola 2% — 3> =1

In this section we investigate additive and quadratic functions f, g
that satisfy additional equations along the hyperbola 22 —? = 1. We
start with the additive case:

Theorem 5.1. Let f,g: R — R be additive functions. If f,g satisfy
the additional equation (1.5) for the pairs (x,y) € S, then f(z) =
g(x) =xf(1) forallz € R.

Proof. Setting

_ dx+3y U_3x+5y
4 4

we obtain (u,v) € S3. Thus we have vf(u) = ug(v). Expanding the
latter equation we get

(3z +5y) [5f(z) + 3f(y)] = (5x + 3y) [3g(z) + 5g(y] - (5.11)
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Then setting

2T — 3y w 3xr — by

4 7 4 7

we obtain (z,w) € S3. Thus we have wf(z) = zg(w). Expanding the
latter equation we get

(3z —5y) [5f(z) — 3f(y)] = (52 — 3y) [3g(x) — 5g(y] - (5.12)

Subtracting (5.12) from (5.11), then dividing by 2, we get

25y f(z) + 97 f(y) = 9yg(z) + 25xg(y).

Now using (1.5) to replace xg(y), we get

rf(y) = yg(w). (5.13)

Adding (5.12) and (5.11), then dividing by 30 we have

zf(x) +yf(y) = zg9(x) + yg(y).

Using (1.5) and (5.13) to replace g(z) and g(y) in the latest equation,
we obtain

zf(y) = yf(x). (5.14)

Since 2% — y? = 1, it follows

1
rT+y=——.

Therefore, by (5.14) we have

Tty

fle+y) = f@) + fy) = f@) + 2 f(a) /().
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Since

thus

Tty
—-p Ty
le. . )
1(753) ~ ey

Putting t instead of x + y in the latest equation, we get

r(3) =m0

for all ¢t # 0. By Theorem II. in [25] and Corollary 2 in [30] we know
that f(z) = xf(1). Substituting this in equation (1.5), we obtain

9(y) = f(My = f(y). O

Now let us examine the quadratic case with a single quadratic func-

tion:

Theorem 5.2. If a quadratic function f: R — R satisfies (1.2) for
all (z,y) € Ss, then f(x) =x*f(1) for all z € R.

Proof. The additional equation is

f (x/:pz - 1) _ - Lr@), Vo e R~ (=1,1). (5.15)

12

Take an arbitrary x € R~ (—1,1) and choose a y such that x> —y* = 1.
Setting

o + 3y 3T + 5y
U= v =
4 7 4
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we observe that

s o (5 43y’ —(Bx+5y)? 162 —16y°  , 2
u? —v? = e = T =2 —y* =1

Thus we have y*f(z) = 2%f(y) and u?f(v) = v*>f(u). Clearly, the
latter equation implies

(5x—|—3y)2f (3x+5y> B (3x+5y)2f <5:L‘—|—3y>
16 4 16 4 ’

1.e.

(52 + 3y)* f(3x + 5y) = (3z + 5y)* f(5x + 3y),

which yields

(2527 + 9y* + 30zy) [9f (x) + 25f(y) + 30F (2, y)] =
= (92° + 25y° + 30zy) [25f(x) + 9f (y) + 30F (z, )]

and thus
Flo,y) = 2y /() — F(y) = 2y [f(x) - y—f(a:)]

and hence F(z,y) = gf(x), ie.
T

F <x g 1) - F(x). (5.16)
Applying (5.15) and (5.16), we get

f<x+m> :f(x)—l—f(\/m)—f—QF x, m2—1> =

x?—1 2 —1

= f(@) + —5—f(2) +2
(x+m)2f

VRS

fz) =

(),
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and

(2= Va=1) = fa)+ f (Va? = 1) = 2F (2,Va? = 1) =

x?—1 2 —1

= fla)+ T ) -2

fz) =

Hence

(¢ V1) f (et Va2 1) =

9 (5.17)
= <x+\/x2—1) f(:v— x2—1).
Observing the identity
1
r+vVrt—1= ———
xr—va?—1
and taking u = x — /22 — 1, (5.17) yields
Fo) =i, we (oo -UE1  (38)
— ) =—f(u), ue (—o0,— : :
u u4 ) Y ?
If u=2—+2%2—1, then
! ! +vaz—-1 €[-1,00U][l,00)
—= =+ VvV’ - -1, ,00).
u  x—yat-1
. 1. :
Replacing u by —, if necessary we can verify (5.18) for every u # 0.
u
From
F(x—\/xz—l,:v+\/x2—1> :f(.r)—f< x2—1> =
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and

we obtain

1 4u? |
Pl (a)
U (u?2+1) 2u
Due to equation (5.18) we get
1 u 1
2401 F (uy— ) =4 f [ =+ — | =
(uv”+1) us u’f 5+ 5

1

— [Zf(u) o f) + o F (u é)] -

=’ f(u) + %f(u) + 2u*F (u, %) .

(ut + 1) F (u %) = (w4 1) S,

F (u%) - fg), Vu # 0.

Hence, according to Lemma 5.3

ie.,

fla) =2 f(1)
for all z € R. O
We generalize this result by using a second quadratic function.

Theorem 5.3. Let f,g: R — R be quadratic functions. If f, g satisfy
the additional equation (1.3) for the pairs (z,y) € Ss, then f(z) =
g(z) =22f(1) for allz € R.

Proof. The additional equation is

v’ f(z) = 2g(y), (5.19)
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for z,y € R fulfilling 22 — y?> = 1. Setting

u_5x—|—3y U_3x+5y
47 4

we observe that u? —v? = 1.
Thus we have v2f(u) = u’g(v). Expanding the latter equation we get

(922 425y + 302y) [25f(x) + 9f (y) + 30F (2,9)] =

(5.20)
= (252”4 9y* + 30zy) [99(x) + 259(y) + 30G (x,y)] .

Let

ox — 3y 3x — by
g w =

. 1 A

we observe that 22 — w? = 1.
Thus
(92°4-25y* — 30zy) [25f (x) + 9f(y) — 30F (z,y)] =

(5.21)
= (2527 + 9y — 30zy) [99(x) + 25g(y) — 30G (=, y)].

Subtracting (5.21) from (5.20), then dividing by 60, we get

252y (f(x) — 9(y)) + 92y (f(y) — g(x)) =

5.22
=25 (2°G(z,y) — y*F(z,y)) + 9 (y*G(z,y) — 2*°F(z,y)) . (5.22)

Similarly let

_ dx+4y
==

_dx+ 5y
3

Uy U1

we observe that u? —v? = 1.
Therefore

(1622 + 25¢* + 402y) [25f (z) + 16 f(y) + 40F (z,y)] =

(5.23)
= (2527 4 16y® + 40zy) [16g(x) + 25¢(y) + 40G(z, y)] .
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Let

Sr — 4y 4x — Dy
) wy, =
3 3

21 =

we observe that 27 — w? = 1.
Thus

(162 + 25y — 40xy) [25f (z) + 16 f(y) — 40F (v, y)] =

2 i (5.24)
= (2527 + 16y* — 40zy) [16g(x) + 25¢(y) — 40G (2,y)] .

Subtracting (5.24) from (5.23), then dividing by 80, we get

25zy (f(z) — g(y)) + 162y (f(y) — g(x)) =

= 25 (22G(x, y) — v*F (2,y)) + 16 (*G(,y) — 2 F(2,7)) . (5.25)

Subtracting (5.25) from (5.22) we have

vy (f(y) = 9(@)) = y*G(z,y) — 2*F(z,y). (5.26)
Substituting equation (5.26) in (5.22) we get

ry (f(x) = 9(y)) = 2°Gl(w,y) =y’ F(x,y). (5.27)
Adding the last two equations, we obtain

vy (f(@) + f W) = 9(x) = 9(v) = (2" +°) [G(2,y) = F(x,y)].
(5.28)
Let h = f — g. Then h is quadratic and from (5.28) we have

zy (h(z) + h(y)) = — (* +y*) H(z,y). (5.29)
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Substituting the previously used v and v into equation (5.29), we get

(152% 4 15y° + 34xy) [34h(z) + 34 (y) + 60H (z,y)] =
= — (342% + 34y + 60zy) [L5h(z) + 15h(y) + 34H (z,y)] .

After some computation and using (5.29), we obtain
(2% +97°) (h(2) + h(y)) = —dwyH(z,y).

Substituting h(z) + h(y) from (5.29) in the latest equation, we have
H(z,y)=0,1i e. F(z,y)—G(z,y) =0. It follows

Gz, y) = Flz,y). (5.30)
Substituting (5.29) in (5.27)
vy (f(x) = g(y)) = (2* = ¢?) F(z,y) = F(z,y). (5.31)
Using (5.19), we get from (5.31)
Flr,y) = 2f(x). (5.32)
Substituting (5.30) and (5.32) in equation (5.26), we obtain
v'g(x) = f(z) + 2 f(y). (5.33)

Substituting the previously used u and v into equation (5.33), then
multiplying with 162, we get

(251'2 + 9% + 30xy) 25¢g(x) +9g(y) + 30G(z,y)| =
=400f(x) + 144f(y) + 480 F (x, y)+
+ (2527 + 9y + 30zy) [9f () + 25f(y) + 30F (z,y)] .
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Using (5.19), (5.30), (5.32) and (5.33), after some computation we
have

y'f(@) = 2% f(y).

Therefore by Theorem 5.2 f(x) = x?f(1). Substituing f in equation
(5.19), we get

5.4 Equations along the unit circle

In this section we investigate quadratic real functions that satisfy
conditional equations for the pairs (x,y) € S;. First we examine the
case, when the conditional equation is with a single quadratic function,
then we generalize the problem by introducing a second quadratic
function.

We shall also make use of the following observation.

Lemma 5.4. (Z. Boros and P. Erdei [6]) Let p be an integer fulfilling
p > 1. Then, for every x € R\ {0}, there exist r € Q \ {0} and
t € (0,1) such that

re=t++/p* =1+t (5.34)

Theorem 5.4. If a quadratic function f: R — R satisfies y*f(x) =
22 f(y) for the pairs (z,y) € S, then f(x) = x*f(1) for all v € R.

Proof. The additional equation is
22 f (\/1 - x2> = (1-2¥)f(x), Vze(0,1). (5.35)

Let z € R\ {0}. According to Lemma 5.4, there exist r € Q \ {0}
and t € (0,1) such that rx = t + y/p* — 1+t holds. We will use
Lemma 5.4 to p = 2.
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Applying (5.35) for the pairs

<t, V1-— t2> , (%\/3 + 12, %\/1 — t2> € Sy,

LR = (VImE) =4y (3TmE) - s (Vi)

t? 3+ 2

therefore
) F(V3+82)
2 342
Hence

5.36)
3+t -3 (
= f(t) - t—Qf(t) = t—gf(t)-
We observe the identity
R .
t+V3+1¢2

2,2 3 3
Take rz =t + 3+ t2, then t = re =2 _ T o Substituting

2rx 2 rT
these in (5.36), we get

1 -3 2rx 2 rT 3
3F (=) = F(re, =) = =3 (=2 r_ 2
3 (x, x) (rw, rx) 3 (7’2;1:2 — 3) / ( 2 27’x)

Therefore
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1 1 1
(r2x2 — 3)2 F (a:, —) = r*2? f(z) + 927 (—) — 6r22*F (x, —) ,
x x x

thus

F<x,1>_ AT f(l). (5.37)

) " Tt 9 rizt + 97 \ &
1
Putting — in place of z in last equation, we get
x
1 ria? 1 92
F —l=—f- —_ .
(x’x) r4—|—9x4f (m) +7“4—|—9:E4f(x>
From the equality of the left sides of the last two equations we obtain
4 ay |42 2,01
(r* + 9z%) [r 2 f(z) + 927 f (E)} =
1
= (r4x4 + 9) {7“43:2]“ (—) + 9:1:2f(x)} ,
x
ie.
8,2 4,6 4,2, (1 6, (1
rextf(x) + 92’ f(z) + 9tz f (= ) +8la°f | — | =
x x
8 60 (1 s2p (1 4,6 2
=72 f (= )+ 92" f [ = | +9r°2” f(x) + 81z f(x),
x x

thus
(r8x2 — 81172) f(z) =2* (T8m2 — 81x2) f <l> ,

which implies the identity (5.2).
Substituting (5.2) in (5.37) we obtain

F(x,l) ﬁf@)+9—x2 1f(m): f(fl?)'

x :r4x4+9 rigt 49 7t
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Hence, according to Lemma 5.3,

flz) =2*f(1)
for all x € R. O

We generalize this result by using a second quadratic function.

Theorem 5.5. If f,g: R — R are quadratic functions that satisfy
the additional equation (1.3) for the pairs (z,y) € Sy, then f(x) =
g(x) = 2%f(1) forallz e R.

Proof. For n = 2 the additional equation is
' f(z) = 2%g(y), (5.38)

for z,y € R fulfilling 2* +¢y* = 1.
Interchanging = and y in equation (5.38) we have

2*fy) = y*g(x). (5.39)
Adding (5.38) and (5.39) we have
2* (f(y) +9(y)) = y* (f(2) + g(2)).
Let h = f 4+ ¢g. Then h is quadratic and we have
z*h(y) = y*h(x)
for the pairs (z,y) € Sy. By Theorem 5.4 h(x) = z?h(1) with

h(1) = f(1) +9(1).
Subtracting (5.39) from (5.38)

v (f(x) —g(x) = =22 (f(y) —9(y)).
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Let d = f — g. Then d is quadratic and we have
yid(z) = —2*d(y), (z.y) € S,
that is, for every z € (0,1),
(% — V)d(z) = 2%d (m) (5.40)

holds.
Applying (5.40) for the pairs

<t, V1-— t2> , (%\/3 + 12, %\/1 — t2> € Sy,

-l —d (\/th2> — 4d (%m) _E- id(m) ,

12 3+1

therefore

dit)  d(V3+¢2)

2 342
Introducing the biadditive mapping

D(u,w) = = (d(u + w) — d(u) — d(w)) ((u, w) € ]R2) ,

N | —

we obtain D (t —V3+ 2 t+V3+12) = ;—f’d(t), which is equation
(5.36). Hence, by the proof of the previous theorem, it follows that
d(z) = 2*d(1), with d(1) = f(1) — g(1).

From h(z) + d(x) we have f(x) = z%f(1) and from h(z) — d(x) we
have g(x) = x?g(1). Substituting these in equation (5.38), we get
7(1) = g(1). Hence (x) = g(x) = (1) a

5.5 Further results for the hyperbola zy =1

In Section 5.2 we proved some initial results for quadratic functions
f: R — R that fulfill the additional equation (5.2). Then we applied
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those statements in Sections 5.3 and 5.4, where we elaborated the in-
vestigations of quadratic functions satisfying an additional condition
for 22 £ 9y* = 1. In this section we consider further tools from the
literature of functional equations, involving very recent results as well,
that finally make us possible to prove an interesting necessary con-
dition for a quadratic function f to satisfy the additional condition
(5.2).

Definition 5.1. The identically zero map is the only derivation of
order zero. For each n € N, an additive mapping ¢: R — R is called
a derivation of order n, if there exists B: R x R — R such that B is a
(symmetric) bi-derivation of order n — 1 (that is, B is a derivation of
order n — 1 in each variable) and

plry) —zply) —p@)y = B(r,y)  (v,y €R).
The set of derivations of order n will be denoted by D,,(R).
For every n € N, it is seen, that D,,_1(R) C D,(R).

Proposition 5.1. Derivations of order 3 (Unger and Reich [39] and
Ebanks [11]).
Let o: R — R be an additive function. Then ¢ € D3(R) if and only if

¢ (2%) — 4z (2°) + 62°¢ (2°) — 4a®p (z) =0
for all x € R.

We also need the following Lemma:

Lemma 5.5. (Amou [4]). Let ¢: R — R be an additive function such
that

® (ZL‘S) — l4ztp (:L‘4) + 5625 (x2) —642"p(z) =0, z € R.  (5.41)

Then ¢ € D3(R).
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Let f: R — R be a quadratic function, which satisfies the additional
equation y*f(x) = 2%f(y) under the condition zy = 1. We define a
map H: R xR — R by

H(z,y) == F(z,y) — 2y f(1). (5.42)

H is certainly symmetric and biadditive, with the trace h(x) := H(z, z).
Then

h(z) = f(z) = 2*f(1). (5.43)
Replacing y with 1 in equation (5.42) we have

n(e )= () s o

From (5.43) we have h(1) = 0, then from Lemma 5.1 and (5.42) we
obtain
H(z,1) = F(z,1) —zf(1) =0. (5.45)

The conditional equation (5.2) has the form

o)+ o270 = [0 (1) + a0

1.e.

T

h(z) = 2*h <1> (a0, (5.46)

Lemma 5.6. If a quadratic function f: R — R satisfies the additional
equation y* f(z) = 2 f(y) under the condition xy = 1, then

F(2*,z) =2xf(z) — 2°f(1). (5.47)

for all z € R.

Proof. By Lemma 5.2 we have (5.8) for all z € R\ {0} . We rearrange
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equation (5.8) in the following form
f(a?) —a'f(1) = 22 {F (a: i) - f(l)} + 62 [f(2) — 22 f(1)] .

Let h(z) = f(x) — 2%f(1). Then h(2?) = f (2*) — 2* f(1). Then with
(5.44), equation (5.8) has the form

h(xz)::lﬁf{(x,é)«+6x2h@ﬂ. (5.48)

Using (5.48) for = # 0,1, we write h ((z — 1)?) in two ways:

1

—

h((z—1)°) =2(x—1)'H ( )+6x—1 (z —1).

From (5.45) we have h(z—1) = h(z) and H (z — 1, 25) = H (=, -15),
SO

h((z—1)%) = 2@—14H( 11)+6x—1 (),

but

h(z—1)?)=h(2®>—22+1) =h(2* —22) =
= h (2%) +4h(z) — 4H (2%, 2) .

From the equality of the two last equations, it follows that

@_I)H(%x—l): (5.49)
= Sh () + (307 + 62 — 1) h{a) — 2 ()
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Using (5.46) for z # 0,1, now we write h (z? — z) in two ways:

M) = (@ =) n (s ) =t - 0t (- 1) =

=2tz - 1)* {h (x;) +h(%) —2H <I x_lﬂ
— iz — 1) {ﬁh(m—l)—i—éh( )—ZH(; x_l)} _
= 2*h(z) + (z — D)*h(z) — 22*(x — 1)*H (l, ! )

z x—1

But
h(z® —z) = h (2%) + h(z) — 2H (2°, ) .

From the equality of the two last equations, it follows that

1 1
vt (x —1)*H (—, ) =
r r—1

1 (5.50)
= _Qh (2) + (2" — 22° + 32® — 22) h(z) + H (2°, ) .
Replacing x with % in equation (5.50),
1 (x—1)* 1
_ = H ) =
zt ot (x, T — 1)
B 9 (1—2x—|—3x2—2x3) 11
Multiplying the latter equation by —a®, we get
4 1
(x—1)"H | =, =
r—1
(5.51)

2?2 x

- %h (332) + (2:)&3 — 32 + 22 — 1) h(z) — 2°H (i 1) .
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From the equality of the left sides of (5.49) and (5.51) we obtain

(—3352 + 6 — 1) h(x) —2H (;UQ, ) =

11
= (22° — 32* 4+ 22 — 1) h(z) — 2°H (— —> :

2 x

therefore
2 3 8 11
2H (2%, x) = (—22° +4z) h(z) + 2°H | =, — | . (5.52)
2’z

Putting % in place of x in this equality, we get

11 —2 4\ 1 1.,
2H (ﬁ,g) = <F + E) Eh($) + EH (iL‘ ,1’) .
Substituting H (5, 1) in equation (5.52), we obtain
1
2H (2%, 2) = (—22° + 42) h(z) + (—z + 22°)h(z) + §H (2%, 2),

therefore
H (2*,z) = 2zh(z), (5.53)

i.e.

F(2*,z) =2zf(x) —2°f(1).
[

Lemma 5.7. If a quadratic function f: R — R satisfies the additional
equation y* f(x) = 22 f(y) under the condition xy = 1, then

f(z*) = 202" f (2%) — 642° f () + 452° f(1). (5.54)
for all x € R.

Proof. Let h(zx) = f(z) — 22f(1).
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Replacing = with  — 1 in equation (5.48), we obtain
g x

((2)) (- 2) Gty
(1))

On the other hand,

From the equality of the two last equations, it follows that
1 1\’ 11
2H<x2,—2>:2(a:——> H(IL‘——, 1)+
x x xx— =
) . v . (5.55)
1
+6(x——) h(m——)—<l+—8>h(3:2).

x x x

Using (5.48) for z # —1,0, we write h ((z + 1)?) in two ways:

h((z+1)?) =2(z+1)'H (m + 1, ) +6(x + 1)?h(z + 1).

r+1
From (5.45) we have h(z+1) = h(z) and H (z + 1, w—_lH) = H (=, %H),

SO
1

z+1

h((z+1)?) =2(z+1)'H (x ) +6(z + 1)*h(x),
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but using (5.53), we have

h((z+1)%) (a2 420 +1) = h (2 +20) =

=h
= h (2%) +4h(z) + 4H (2%, 2) = h (z*) + (82 + 4)h(x).
From the equality of the left sides of the last two equations we obtain

(x+1)*H <x - Jlr 1) = %h (z*) — (32® + 2z + 1) h(z).  (5.56)

Using (5.46) for x # —1,0, now we write h (2% + z) in two ways:
2 2 4 1 4 4 1 1
h(2® + ) = (2 + 2) h<x2+x) =z (z+1) h<5_x—|—1> -

et () () e (2] -

— iz 1) [%h(az)jtﬁh(xjtl)—QH (éa;-luﬂ _
— (0 + 1)*h(x) + 2'h(z) — 20 (x + 1) H (i - i 1) .

But using (5.53), we have
h(2®+z) = h(2®) + h(z) +2H (2*,2) = h (2®) + h(z) + 4zh(2).

From the equality of the two last equations, it follows that

2 (z+1)'H (i - Jlr 1) — —%h (2®) + (¢* + 22° + 32%) h(z). (5.57)

Using (5.53) in equation (5.49), we obtain

(z—1)*H (x ) = %h (z*) + (=32 + 2z — 1) h(z). (5.58)

r—1
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Using (5.53) in equation (5.50), we have

vt (x—1)*H <l, ! > = —%h (2) + (z* — 22° + 32%) h(z). (5.59)

r x—1

Now we write
4 11 4 1z
2(3:2—1)H<:U——, 1):2(932—1)111(:1;_5,1_2_1):
o (22— 1) _Lri 1 _
=2 (z 1)H<a; m,Q(x_1+x+1)>_
4 1 4 1
— (2> 1) H(m,x_1)+($2_1) H(m,x+1)_
e nta (L L) oyt (L
(« 1)H($,x_1) (2 1)H(x,x+1).

Substituting (5.56),(5.57),(5.58) and (5.59) into the latter equation,
after some computation, we get

2(x2—1)4H<x—§, 1 1) =

xr — =
x

(z* + 622 +41) (z* +1) h(2?) - (5.60)
T
2(32% + 122° 4 227 4 1222 + 3) hz)

T2

Substituting (5.60) in equation (5.55), we have

1 (z* + 622+ 1) (2* + 1)
2 _ 2
2H(w,x2>— = h(2?) —

8 6 4 2
C2(32° +122° + 22% + 120 +3)h(m)+ (5.61)

16

+6(x—%)2h(x—é)—<1+$)h(z2).
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Expressing H (z, 1) from equation (5.48), we get

h(x—i) :h(:c)+h<£>—2H(:r;,§):

1 1 6
2t 4+ 622 +1 1
= T ) - b ().

Substituting this in equation (5.61), after some computation we obtain
1 7 32
H (332, ;) = —h (2%) — =h(z). (5.62)

Replacing x with 22 in equation (5.48), we have

T

1
h (:c4) =22%H (x2, —2> + 62*h (132) :
Finally we substitute (5.62) in the latter equation to obtain
h(z*) = 202*h (2*) — 642°h(z).

The statement of the Lemma follows from this equation and the defi-
nition of A, i.e.

f (1'4) —28f(1) = 202" [f (%) - l'4f(1)} —642° [f(z) — 2°f(1)]
hence
f (:)34) =20z f ([E2> — 642° f (z) + 4525 f(1).
O
Theorem 5.6. If a quadratic function f: R — R satisfies the ad-
ditional equation y*f(x) = x%f(y) under the condition xy = 1, then

there exists a symmetric bi-derivation H of order 8 for which f(z) =
H(z,z) +2?f(1).
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Proof. Let h(x) = f(x) — 22 f(1). From Lemma 5.6 we have
H (2°,2) = 2zh(z), (5.63)

Let x,y € R and r € Q. Substituting x + ry in place of x in equation
(5.63), we get

H (2° + 2ray 4+ r*y®, x + ry) = 2(z + ry)h(z + ry).
Rearranging the latter equation and using (5.63) we obtain

0 =2rH(zy,z)+r*H (y2, 93) +rH ($2, y) +2r2H (zy, y)—
—2rzh(y) — 4reH (z,y) — 2ryh(z) — 4r?yH(x,y).

Thus we get a polynomial in 7. The coefficient of r! equals zero, hence

we obtain
2H (zy,z) + H (2*,y) = 4zH (z,y) + 2yh(x). (5.64)
From Lemma 5.7 we have
h(z*) =202*h (z*) — 642°h(z). (5.65)

Let z,y € R and r € Q. Replacing = with x + ry in equation (5.65)

we obtain
h((z+ry)?) =20(z+ry)*h ((x + ry)?) —64(z+ry)°h(z+ry) . (5.66)

Expanding the powers of sums on both sides, equation (5.66) can be
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written as
(0 )=(ilv)
ch(a® + 2ray + Py i()anqnqh(SC-i-Ty)

Applying the identity (2.6), the rational homogeneity properties of H
and h, equation (5.45), and using h(1) = 0, we obtain

(e
g s——

0<i<y<

—920 z;() 2yt 41 [h(x2)+4r2h(xy)+7"4h(y2)+

+4rH (2, zy) +4r°H (y°, zy) + 2r°H (2%, y%) ]+

(5.67)

+ 64 ZO (2) 2999079 [h(z) + 2rH (z,y) + r*h(y)] .

The coefficient of 7! equals zero, hence we obtain

- (rnrm [()miers (et
+ 64 (g) 2°yh(z) + 64 (g) 292H (2, y) =

=8H (m3y, x4) — 802*yh (mQ) — 802*H (xQ, xy) +
+ 3842°yh(x) + 1282°H (z, ).
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Thus
H (x3y, :U4) =10z3yh (562) + (5.68)
+ 102" H (2%, zy) — 482°yh(z) — 162°H (2, y)
Replacing y with xy in equation (5.68), we get
H (x4y,x4) =102*yh (x2) + (5.69)
+102*H (2%, 2y) — 482°yh(x) — 162°H (x, zy)
Putting 22 in place of z in equation (5.64) we have
2H (z%y,2”) = —H (2%, y) + 42°H (2%, y) + 2yh (27) . (5.70)
Substituting H (z%y, z*) into the equation (5.69), we obtain
H (x4y, x4) =202*yh (xz) +202°H (xZ, y) — (5.71)

— 5zH (x4, y) — 962%yh(x) — 322°H (2, zy).

Expressing H(x, zy) from equation (5.64), then substituting into equa-
tion (5.71), we get

H (:U4y,x4) =20zyh (xZ) +282°H (x2, y) —

5.72
—52*H (z*,y) — 642°yh(z) — 322 H(z, y). (5:72)

Now we replace x with #? in equation (5.64)
2H (z'y,2") = —H (2% y) + 42" H (2*,y) + 2yh (2*) . (5.73)

And finally, from the equality of the left sides of (5.72) and (5.73),
with (5.65), we obtain

H (2®,y) — 142*H (a;4,y) +562°H (2%,y) — 642" H(z,y) = 0.
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The latter equation holds for a fixed y € R, for each z € R. By
Lemma 5.5 H is a derivation of order 3 in z. Since H is a symmetric,
biadditive function, it follows that H is a derivation of order 3 in each

variable, so H is a symmetric bi-derivation of order 3. O
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6. Conditional equations involving

transcendental functions

In this chapter we investigate quadratic and cubic functions f,¢g: R —
R that satisfy conditional equations involving logarithmic and expo-
nential functions:

Ss = {(z,y) €R2|$>O and logx =y},
Se = {(z,y) € R?*|e” = y}.

All additive functions f,g: R — R fulfilling the condition (1.5) on
R* for all points (z,y) € S5 respectively (z,y) € Sg are identical and
linear (Theorem 6.1 and 6.2 in [12]).

Theorem 6.1. Suppose f,g: R — R are monomial functions of degree
n € {2,3} and f, g satisfy the additional equation (1.3) on Rt for the

pairs (x,y) € S5, then f(x) = g(x) = 2™ f(1).

Proof. The additional equation is
(logx)"f(z) = 2"g(logx), x € RT. (6.1)

Replacing = by z? in (6.1) and using properties of logarithmic and

monomial functions, we have
2"(logz)" f (2%) = 2"2*"g(logz), =« € R™.
Dividing by 2" and using (6.1), we obtain

(logz)" f (2%) = 2" (log )" f(x),
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therefore
f(2?) =a"f(z), =zeR%

This equation holds also for x = 0. For z = —t < 0:

f@®) = f@&) =t"ft) = (=D"(=t)"(=1)"f(-1)
= (=1)*a"f(x) = 2" f(z).
Therefore f (z?) = 2™ f(z) for all x € R. By Theorem 4.1 (n = 2, m =

2) and Theorem 4.5 (n = 3, m = 2) we know that f(z) = 2" f(1).

From equation (6.1) we get

g(logz) = (logz)"f(1), x€RY,
therefore g(t) = t"f(1) = f(¢t) for all t € R. O

Remark 6.1. The results of the above theorem can be transferred to the
case of exponential functions, that is (z,y) € Se, since the exponential

and logarithmic functions of the same basis are inverses of each other.

We note that both the base of the logarithm, and the base of the
exponential can be any positive real number except 1.



7. Summary

In this PhD dissertation we study monomial functions f,g: R — R of
degree n € N, n > 2 which satisfy the conditional equation y" f(x) =
" f(y) or y" f(x) = x™g(y) for all points (z,y) on a specified curve.
The above question was motivated by similar problems solved for ad-
ditive functions, see the papers [1, 5, 6, 12, 30, 25, 35].

Our investigations were carried out along the following curves:

SO:{(x7y>eRZ’amxm‘i‘amflxmil+"'+CL1.CC—|—CLO:y}
with meN, a; €R, 1=0,...,m, a, #0, a9 #0,

)
Sy = {(z,y) € R?*|zy = 1},
Sy = {(z,y) e R*|2? —y* =1},
Sy ={(z,y) e R*|2* 4+ y* = 1},
S5 ={(z,y) €ER*|2 >0 and logz =y},
Se = {(z,y) € R?|e* =y}

Before summarizing our theorems, let us look at the necessary termi-
nology.

We call a function f : R — R additive if f(x +vy) = f(z) + f(y)
holds for all z,y € R. A function F' : R* — R (n € N) is called
n-additive if F' is additive in each of its variables. Given a function
F :R" — R, by the diagonalization of F' we understand the function
f R — R arising from F' by putting all the variables (from R) equal.
If, in particular, f is the diagonalization of an n—additive function
F : R" —» R, we say that f is a monomial function ( or general-

ized monomial) of degree n. Generalized monomials of degree 2 are
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called quadratic functions, cubic functions are generalized monomials
of degree 3. Quadratic functions are characterized by the functional

equation

flx+y)+fle—y)=2f(x) +2f(y) (v,y €R), (7.1)

which is the so called norm square equation or parallelogram law.
The biadditive symmetric functional F' that generates the quadratic

function f is given by the formula

Fla.y) = 3 1f(x +9) — F(2) ~ ()]

for all x,y € R.

We say that f: R — R is a derivation if f is additive and satisfies
the functional equation f(xy) = f(z)y + xf(y) for every z,y € R.
The family of derivations f: R — R is denoted by D(R). A functional
B: R xR — R is called a bi-derivation if the mappings t — B(t,x)
and t — B(x,t) (t € R) are derivations for each x € R. For each
n € N, an additive mapping f: R — R is called a derivation of or-
der n, if there exists B: R x R — R such that B is a (symmetric)
bi-derivation of order n — 1 (that is, B is a derivation of order n — 1
in each variable) and f(zy) —zf(y) — f(x)y = B(x,y) (z,y € R). The
identically zero map is the only derivation of order zero. The set of
derivations of order n will be denoted by D, (R).

Our main results are presented in four chapters, classified by curves.
In Chapter 3 we investigate the continuity of monomial functions
satisfying additional equations involving polynomial functions whose

graphs do not pass through the origin. We get the following result.

Theorem 7.1. Suppose that f: R — R and g: R — R are gener-
alized monomials of degree n € N that satisfy the additional equation

y" f(x) = a"g(y) for the pairs (x,y) € So. Then f(x) = g(x) = 2" f(1)
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forallz € R.

Remark 7.1. If a,, = a1 = ... = a; = 0 then y = ay is constant.
Therefore we have

and thus

but we have no further information about g other than g (ag) = af f(1).

Remark 7.2. In the particular case y = a1z (ap = 0) the conditional
equation has the form

ayz" f(v) = a"g (a17),

i.e., g(aix) = alf (x). We note that, if a; = 0 then this equation yields
no information, so f and g can be any monomial functions. In the case
a1 # 0, let f be any discontinuous real monomial function. Then it
follows from the conditional equation that g is also discontinuous.

If we tighten the study to a single monomial function f: R — R,
we have an immediate consequence of the above theorem, without the
restriction a,, # 0:

Corollary 7.1. (Z. Boros and E. Garda-Matyds [10]). If a monomial
function f: R — R of degree n € N satisfies the additional equation

y" f(x) = a™f(y) for the pairs (z,y) € Sy, then f(x) = a™f(1) for all
reR.

Remark 7.3. In case m = 1, the implication in Corollary 7.1 does not
hold if ag = 0. In this case, if, for instance, a; # 0, the conditional
equation takes the form

ara" f () = 2" f (arz) ,



7. Summary 90

Le., f(a1z) = a} f (x). Indeed, there exists a discontinuous example of
the form f(z) = (h(x))" (x € R), where h : R — R is a discontinuous
additive function, such that the homogeneity field of A contains a;.

Chapter 4 contains results for quadratic and cubic functions satisfy-
ing conditional equations involving the power function. First we study
the case when there is a single quadratic function in the conditional
equation.

Theorem 7.2. (Z. Boros and E. Garda-Mdtyds [9], E. Garda-Mdtyds
[16]). If 2 < |m|, m € Z and the quadratic function f : R — R
satisfies

fl@™) =22 f(z)
for every x € R, then there exists C' € R such that

flx)=C-2* (z €R).

We note that in case m = 0 the same implication is trivial, while
in case m = 1 the additional equation becomes a trivial identity that
does not imply any restriction for f (hence f can be discontinuous as
well).

In the particular case m = 2, but with a modified version of the
additional equation, we find discontinuous solutions.

Theorem 7.3. (Z. Boros and E. Garda-Mdtyds [9]). Let K € R. If
a quadratic function f: R — R satisfies the additional equation

f(a*) = Ka* f(x) (7.2)

for every x € R, then either f =0 or K € {1,2,4}. In the latter
cases, we have the following representations for f.

e A quadratic mapping f: R — R fulfills (7.2) with K =1 if, and

only if,
f@) = f(1) -2  (weR).
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e A quadratic mapping f: R — R fulfills (7.2) with K = 2 if, and
only if, there exists ¢ € Dy(R) such that

f(z) = dwp(x) — p(a?)  (z €R). (7.3)
e I[f B:R xR — R is a symmetric bi-derivation, then
f(x)=B(z,z)  (z€R)

is a quadratic solution of the equation (7.2) with K = 4.

Remark 7.4. If ¢ € D(R), then equation (7.3) yields f(z) = ¢(z?)
(x € R). This observation ensures the existence of a non-zero quadratic
solution f of (7.2) for K = 2. The existence of such solutions in the
cases K = 1 and K = 4 is an obvious consequence of the last theorem.

Remark 7.5. We can observe that, in case K = 4, this theorem pro-
vides only a sufficient condition for f to satisfy equations (7.1) and

(7.2). It is an open question whether this condition is necessary.

However, we can prove a somewhat weaker necessary condition in
that case.

Theorem 7.4. If a quadratic function f: R — R satisfies the addi-
tional equation

f(a%) = 42*f ()

for every x € R, then f s the trace of a symmetric bi-derivation of
order 2.

The significance of the previous results is highlighted by the follow-
ing theorem, where two quadratic functions are involved.

Theorem 7.5. The quadratic functions f,g: R — R satisfy the
additional equation y*f(x) = z%g(y) for the pairs (x,y) € S; with
m = 2 if, and only if, there exist an additive function p: R — R and
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a quadratic function h: R — R satisfying the condition
h(z?*) = 42°h(x) (x € R)
such that

F() = hia) + () and g(x) = {h(x) + wp(x)
forall z € R.

And finally, extending the study to cubic functions, we get the fol-

lowing result.

Theorem 7.6. (Z. Boros and E. Garda-Matyds [10]). If f: R —
R is a generalized monomial of degree 3 that satisfies the additional
equation 1> f(x) = 23 f (y) under the condition (x,y) € Sy, then f(z) =
23f(1) forallz € R.

In Chapter 5 we investigate the continuity of additive, quadratic
and higher order monomial functions that satisfy subsidiary equations
along hyperbolas or the unit circle.

We start with a negative result along the hyperbola given by the
equation xy = 1. If f: R — R is a generalized monomial of degree

n € N,n > 2, f satisfies the additional equation

f@ =i (1), aro,

it is easy to see, that there exist discontinuous solutions.
For example, if d: R — R is a not identically zero derivation, then a

discontinuous solution f is
f(z) = 2" (d(2))* (v €R),

where ke {1,2,...,[n/2]}.
Although we know that for all n > 2 there are discontinuous solutions
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of monomial functions satisfying the additional equation y"f(x) =
™ f(y) for all (z,y) € S2, we continue our investigations for quadratic
functions. In this case, the conditional equation has the form

f@) =27 (1), (e ro) (7.4

Despite the fact that the continuity of f does not follow from this
assumption, we can obtain some interesting and important results for
the mappings z — F(x,1) and x — F(z,1/x). Using these results
hereinafter, we prove the continuity of quadratic functions in several
related cases.

Lemma 7.1. (E. Garda-Madtyds [16]). If a quadratic function f: R —
R satisfies the additional equation (7.4) then

Fz,1) =z f(1)

forallz € R.

Lemma 7.2. (E. Garda-Mdtyds [16]). If a quadratic function f: R —
R satisfies the additional equation y* f(z) = x*f(y) for the pairs (z,y) €
Sy, then

1
f(2%) =22'F (x, —> + 622 f(x) — Tz f(1)
x
for all z € R\ {0}.
Lemma 7.3. (E. Garda-Madtyds [16]). If a quadratic function f: R —

R satisfies
x x

for every x # 0, then f(x) = 22f(1) for allz € R.

Thereafter we investigate the continuity of additive and quadratic
functions satisfying additional equations along the hyperbola given by
the equation 22 — y? = 1. Our first result relates to the additive case.
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Theorem 7.7. Let f,g: R — R be additive functions. If f,qg satisfy
the additional equation yf(x) = xg(y) for the pairs (x,y) € Ss, then

f(z) =g(x)=xf(1) for allz € R.

Our next result applies to the quadratic case with a single quadratic

function.

Theorem 7.8. (E. Garda-Madtyds [16]). If f: R — R is a quadratic
function that satisfies the conditional equation y*f(x) = x*f(y) for all
(z,y) € Ss, then f(z) = 2*f(1) for all z € R.

We generalize this result by using a second quadratic function.

Theorem 7.9. Let f,g: R — R be quadratic functions. If f, g satisfy
the additional equation y? f(x) = 2%g(y) for the pairs (z,y) € Ss, then
f(x)=g(x)=22f(1) for allz € R.

We continue our investigations with quadratic real functions that
satisfy conditional equations along the unit circle. When the condi-
tional equation is with a single quadratic function, we have the follow-

ing result.

Theorem 7.10. (E. Garda-Mdtyds [16]). If a quadratic function
f: R — R satisfies y>f(x) = 2*f(y) for the pairs (x,y) € Sy, then
f(x) =22f(1) for all v € R.

Generalizing this result by using a second quadratic function, we

obtain the following theorem.

Theorem 7.11. If f,g: R — R are quadratic functions that satisfy
the additional equation y* f(x) = x?g(y) for the pairs (x,y) € Sy, then
f(x) =g(x)=22f(1) for allz € R.

Finally, considering further tools from the literature of functional
equations, which include very recent results as well, we get an in-
teresting necessary condition for quadratic functions that satisfy the
additional equation (7.4).
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Theorem 7.12. If a quadratic function f: R — R satisfies the ad-
ditional equation y>f(x) = x®f(y) under the condition vy = 1, then
there exists a symmetric bi-derivation H of order 8 for which f(z) =

H(z,z)+22f(1).

In Chapter 6 we investigate quadratic and cubic functions
f, g: R — R that satisfy conditional equations involving logarithmic
and exponential functions. In these cases, we prove the equality and
continuity of the quadratic and cubic functions f, g.

Theorem 7.13. Suppose f,g: R — R are monomial functions of de-
green € {2,3} and f, g satisfy the additional equation y™ f(x) = 2"g(y)
on RT for the pairs (x,y) € S5, then f(x) = g(x) = 2" f(1).

Remark 7.6. The results of the above theorem can be transferred to the
case of exponential functions, that is (z,y) € Se, since the exponential
and logarithmic functions of the same basis are inverses of each other.

We note that both the base of the logarithm, and the base of the

exponential can be any positive real number except 1.
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8. ésszefoglalé

Ebben a PhD értekezésben olyan f,g: R — R n-edfoki monom fiigg-
vényeket tanulményozunk (n > 2), amelyek teljesitik az y"f(z) =
" f(y) vagy y"f(z) = a"g(y) feltételes egyenletet egy adott gorbe
Osszes (x,y) pontjéra.

A fenti kérdést az additiv fiiggvényekkel kapcsolatban megoldott ha-
sonl6 problémék indokolték, 14sd [1, 5, 6, 12, 30, 25, 35].
Vizsgéalatainkat a kovetkezd gorbék mentén végeztiik:

SOZ{('r’y)ER2|amxm+am_1xm_l+"'+a1$+a0=y},
meN, a, R, i1 =0,....m, a, #0, ay #0,
€ R*|2™ —y} meZ, |m|>2

Tételeink 6sszefoglalasa elott felidézziik az eredmények megfogalmaza-
sahoz sziikséges terminoldgia fontosabb elemeit.

Az f : R — R fliggvényt additiv fiiggvénynek nevezziik, ha barmely
valos x,y esetén f(x +y) = f(x) + f(y) teljesil. Az F : R" —
R (n € N) figgvényt n—additiv figgvénynek nevezziik, ha F' min-
den valtozojaban additiv. Adott F' : R" — R fiiggvény esetén az
F diagonalizdltjanak nevezzik azt az f : R — R fiiggvényt, ame-
lyet az F-bol kapunk az 6sszes (R-beli) valtozo egyenlvé tételével.
Sajatos esetben, ha f az F : R" — R n-additiv fliggvény diago-
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nalizéltja, akkor azt mondjuk, hogy f dltaldnositott n -edfoki monom.
A masodfoku altalanositott monomokat kvadratikus fiiggvényeknek
nevezziik, a kobfiiggvények a harmadfokud altalanositott monomok. A
kvadratikus fiiggvényeket az

flx+y) + flz—y) =2f(r) +2f(y)  (z,y €R), (8.1)

fiiggvényegyenlet jellemzi, amely az tigynevezett norma-négyzet eqyen-
let.

Az f kvadratikus fiiggvényt generald biadditiv szimmetrikus F' fligg-
vényt a kovetkezo képlet adja:

Fle,) = 5lf(e+9) ~ £() ~ )]

barmely x,y € R esetén.

Az f: R — R fliggvény derivdcid, ha f additiv és teljesiti az f(xy) =
f(z)y+zf(y) fiiggvényegyenletet barmely z,y € R esetén. Az f: R —
R derivaciék halmazat D(R)-rel jeldljik. A B: R x R — R fuggvényt
bi-derivdcionak nevezziik, ha a t — B(t,x) és t — B(x,t) (t € R)
leképezések derivaciok minden x € R esetén. Minden n € N esetén,
egy f: R — R additiv leképezést n-edrendl derivacionak neveziink,
ha létezik B: R x R — R 1gy, hogy B egy (n — 1)-edrend{i (szim-
metrikus) bi-derivicié (vagyis B (n — 1)-edrendii derivacié mindkét
véaltozojaban) és f(zy) — zf(y) — f(z)y = B(z,y) (z,y € R). Az
azonosan nulla leképezés az egyetlen nulladrendl derivacié. Az n-
edrendii derivaciok halmazét D,,(R)-nel jeloljiik.

Legfontosabb eredményeinket négy fejezetben mutatjuk be, gorbék

szerint csoportositva.

A 3. fejezetben olyan monom fliggvények folytonossigat vizsgéaljuk,
amelyek nem nulla konstans taggal rendelkez6 polinomfiiggvényeket

tartalmazoé feltételes egyenleteket teljesitenek.
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A kovetkez6 eredményeket kapjuk.

8.1 Tétel. Tegyiik fel, hogy f: R — R és g: R — R dltalanositott
n-edfoki monomok (n € N), amelyek teljesitik az y"f(x) = x"g(y)
kiegészité egyenletet az (x,y) € Sy pdrokra. Akkor f(z) = g(x) =
2" f(1) minden x € R esetén.

8.1 Megjegyzés. Ha a,, = ap,—1 = ... = a; = 0, akkor y = a( konstans.
Ekkor a feltételes egyenlet

ag f () = 2"g (ao)

alaku, és igy

de a g fiiggvényrdl nincs tovébbi informécionk a g (ag) = af f(1)-en
kiviil.

8.2 Megjegyzés. Az m = 1, ag = 0 sajatos esetben, vagyis ha y = a1,
a feltételes egyenlet

arz" f () = 2"g (a1)

alaku, azaz g (a1z) = al' f (z).

Ha a; = 0, akkor ez az egyenlet nem nyujt informéciét, igy f és g
barmilyen monom fiiggvény lehet.

Abban az esetben, ha a; # 0, legyen f barmilyen nem folytonos vals
monom fiiggvény. Akkor a feltételes egyenletbol adodik, hogy g sem
folytonos.

Ha a vizsgélatot egyetlen f: R — R monom fiiggvényre sziikitjiik,
akkor a fenti tétel azonnali kovetkezményeként kapjuk:

8.1 Kovetkezmény. (Z. Boros és E. Garda-Matyds [10]). Ha az
f: R = R n-edfoki (n € N) monom figgvény teljesiti az y" f(x) =
x"f(y) kiegészitd egyenletet az (x,y) € Sy pdrokra, akkor f(z) =
" f(1) barmely x € R esetén.
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A fenti kovetkezményben nincs sziikség az a,, # 0 korlatozésra.
G = Q1 = ... = a1 = 0 esetén az allitas trividlisan igaz.
8.8 Megjegyzés. A 8.1. Kovetkezményben m = 1, ag = 0 esetén az
implikaci6 nem &ll fenn. Ebben az esetben, ha példaul a; # 0, a
feltételes egyelet

ayz" f (x) = 2" f (arz)

alakd, vagyis f(a;x) = al'f(x). Valoban, létezik f(z) = (h(z))"
(x € R) alaki nem folytonos példa, ahol h : R — R egy nem folytonos
additiv fiiggvény, gy, hogy a h homogenitasi teste tartalmazza a;-et.

Megjegyezziik, hogy az ag # 0 korlatozas, vagyis hogy a gérbe nem
halad at az origon, fontos szerepet jatszik. Egyébként még egyszerii
esetben is sok komplikacio 1ép fel, ezt lathatjuk a kovetkezo fejezetben.

A 4. fejezet a hatvanyfiiggvényt tartalmazéd feltételes egyenlete-
ket teljesité kvadratikus és kobfliggvények eredményeit tartalmazza.
El6szor azt az esetet tanulmanyozzuk, amikor a kiegészité egyenletben
csak egy kvadratikus fliggvény talalhato.

8.2 Tétel. (Z. Boros és E. Garda-Matyas [9], E. Garda-Madtyds [16]).
Ha2 < |m|, m€Z és az f: R — R kvadratikus fiigguény teljesiti az

fa™) = a* 2 f(x)
eqyenletet barmely x € R esetén, akkor létezik C' € R gy, hogy
flx)y=C-2* (z €R).

Megjegyezziik, hogy az m = 0 esetben ez a kovetkeztetés trividlis,
vagyis maga a kiegészité egyenlet az f folytonossagat adja, mig m =
1 esetén maga a feltétel trividlis azonossagd valik, azaz nem jelent
semmilyen korlatozdst az f szdmdara (ezért f lehet nem folytonos is).

Az m = 2 sajatos esetben, de a kiegészité egyenlet moddositott

valtozataval nem folytonos megoldasokat talalunk.
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8.3 Tétel. (Z. Boros és E. Garda-Mdtyds [9]). Legyen K € R. Ha
eqy f : R — R kvadratikus figguény teljesiti az

f(a?) = Ka*f(x) (8.2)

kiegészitd egyenletet barmely x € R esetén, akkor vagy f = 0, vagy
K e{1,2,4}. Ez utébbi esetekben f-nek a kovetkezd reprezentdcici

vannak.

e Az f: R — R kvadratikus leképezés a K = 1 esetben akkor és
csak akkor tesz eleget a (8.2) feltételnek, ha

fl@)=[f(1)-2*  (z€R).

o Az f: R — R kvadratikus leképezés a K = 2 esetben akkor és
csak akkor tesz eleget a (8.2) feltételnek, ha létezik ¢ € Dy(R)

ugy, hogy
f(@) =4dzp(z) —p(z®) (v €R). (8.3)
e Ha B: R xR — R egy szimmetrikus bi-derivacio, akkor
f@)=B@,a) (t€R)

a (8.2) egyenlet egy kvadratikus megolddsa K = 4 esetén.

8.4 Megjegyzés. Ha p € D(R), akkor a (8.3) egyenletbdl f(x) = p(x?)
(x € R) kovetkezik. Ez a megfigyelés biztositja a (8.2) egyenlet egy
nem nulla kvadratikus f megolddsanak 1étezését K = 2 esetén. Az
ilyen megoldasok létezése K = 1 és K = 4 esetén az utolsod tétel

nyilvanvalé kévetkezménye.

8.5 Megjegyzés. Megfligyelhetjiik, hogy K = 4 esetén ez a tétel csak
elégséges feltételt biztosit az f szaméra ahhoz, hogy teljesitse a (8.1)
és a (8.2) egyenleteket. Nyitott kérdés, hogy ez sziikséges feltétel-e.
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Ebben az esetben azonban valamivel gyengébb sziikséges feltételt
tudunk bizonyitani.

8.4 Tétel. Ha egy f: R — R kvadratikus fiiggguény teljesiti az
f(2?) = 4a?f(2)

kiegészito egyenletet barmely x € R esetén, akkor f egy mdsodfoki

szimmetrikus bi-derivacio diagonalizdltja.

Az el6z6 eredmények jelentéségét a kovetkezo tétel emeli ki, ahol
két kvadratikus fiiggvény szerepel.

8.5 Tétel. Az f, g: R — R kvadratikus figguények akkor és csakis
akkor teljesitik az y*f(x) = 2%g(y) kiegészité egyenletet az (z,y) €
Sy pdrokra m = 2 esetén, ha létezik eqy p: R — R additiv figguény
és eqy h: R — R kvadratikus fiigguény, mely teljesiti a

h(z?*) = 42°h(x) (x € R)

egyenletet gy, hogy

minden © € R esetén.

Es végiil, kobfliggvényekre kiterjesztve a vizsgédlatot a kovetkezo
eredményt kapjuk.

8.6 Tétel. (Z. Boros és E. Garda-Mdtyds [10]). Ha f: R — R egy
dltaldnositott harmadfokid monom, amely teljesiti az y° f(x) = 23 f(y)
kiegészitdé egyenletet (x,y) € Sy feltétel mellett, akkor f(x) = 23f(1)
minden x € R esetén.

Az 5. fejezetben olyan additiv, kvadratikus és magasabb rendi

monom fiiggvények folytonossiagat vizsgaljuk, amelyek a hiperboldk
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vagy az egységkor mentén teljesitenek kiegészito egyenleteket.
Negativ eredménnyel kezdiink az xy = 1 egyenlet altal adott hiperbola
mentén. Ha f: R — R egy n-edfokud altalanositott monom fiiggvény
(2<neN), f eleget tesz az

fw) = o (i) (¥ 2 £0)

kiegészito egyenletnek, konnyen belathatd, hogy léteznek nem folyto-
nos megoldasok.

Példaul, ha d: R — R egy nem azonosan nulla derivacio, akkor egy
nem folytonos f megoldas az

f(z)=2"" (d(@)"  (z€R),

ahol ke {1,2,...,[n/2]}.

Habar tudjuk, hogy minden n > 2 esetén vannak nem folytonos megol-
dédsai az y" f(z) = 2™ f(y) kiegészit6 egyenletet teljesité monom fliggvé-
nyeknek az (x,y) € Sy feltétel mellett, folytatjuk a vizsgdlatainkat
kvadratikus fiiggvényekkel. Ebben az esetben a feltételes egyenlet

fo)=o'r (1) (o ro) (5.4)

alakid. Annak ellenére, hogy az f folytonossdga nem kovetkezik ebbol a
feltevésbol, érdekes és fontos eredményeket kaphatunk az x — F(z,1)
és x +— F(x,1/x) leképezésekre. Fzeket az eredményeket felhasznélva
a tovabbiakban igazoljuk a kvadratikus fiiggvények folytonossagat tobb
kapcsolodo esetben.

8.1 Lemma. (E. Garda-Madtyds [16]). Ha egy f: R — R kvadratikus
fligguény teljesiti a (8.4) kiegészitd egyenletet, akkor

F(a,1) =z f(1)
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minden © € R esetén.

8.2 Lemma. (E. Garda-Matyds [16]). Ha egy f: R — R kvadratikus
fiigguény teljesiti az y* f(x) = 2% f(y) kiegészitd egyenletet az (x,y) €

Sy pdrok esetén, akkor
1
f(2%) = 22'F (x, ;) + 622 f(x) — T f(1)

minden x € R\ {0} -ra.

8.3 Lemma. (E. Garda-Matyds [16]). Ha egy f: R — R kvadratikus
fugguény eleget tesz az
1
p(nd) - L2
x x

feltételnek barmely x # 0 esetén, akkor f(x) = z2f(1) minden v € R -
re.

Ezutédn a kiegészitd egyenleteket az 22 — y?> = 1 egyenletii hiper-
bola mentén teljesité additiv és kvadratikus fiiggvények folytonossagat

vizsgaljuk. Elsé eredményiink az additiv esetre vonatkozik.

8.7 Tétel. Legyenek f,g: R — R additiv fuggvények. Ha f, g teljesitik
az yf(x) = xg(y) kiegészitd egyenletet az (x,y) € Ss pdrok esetén,
akkor f(z) = g(x) = xf(1) minden x € R -re.

A kovetkez6 eredményiink a kvadratikus esetre vonatkozik, egyetlen

kvadratikus fiiggvénnyel.

8.8 Tétel. (E. Garda-Mdtyas [16]). Ha egy f: R — R kvadratikus
fiigguény eleget tesz az y>f(x) = x2f(y) kiegészité egyenletnek az
(x,y) € S3 feltétel mellett, akkor f(x) = x?f(1) minden x € R esetén.

Ezt az eredményt altalanositjuk egy masodik kvadratikus fliggvény
hasznalataval.
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8.9 Tétel. Legyenek f,g: R — R kvadratikus figgvények. Ha f, g
teljesitik az y*f(x) = x%g(y) kiegészitd egyenletet az (x,y) € Sz pdrok
esetén, akkor f(z) = g(z) = 22f(1) minden x € R -re.

A kiegészito egyenleteket az egységkor mentén teljesité kvadrati-
kus valds fliggvényekkel folytatjuk vizsgalatainkat. Amikor a feltételes
egyenletben egyetlen kvadratikus fiiggvény van, a kovetkezo eredményt

kapjuk.

8.10 Tétel. (E. Garda-Mdtyds [16]). Ha egy f: R — R kvadratikus
fiigguény eleget tesz az y*f(x) = 2%f(y) kiegészité egyenletnek az
(z,y) € Sy pdrok esetén, akkor f(x) = z*f(1) minden x € R-re.

Altalanositva ezt az eredményt egy masodik kvadratikus fiiggvény

haszndalataval, a kovetkezd tételt kapjuk.

8.11 Tétel. Ha f,g: R — R kvadratikus figguények teljesitik az
yvif(z) = 22g(y) kiegészitd egyenletet az (x,y) € Sy pdrok esetén,
akkor f(z) = g(z) = 22f(1) minden x € R -re.

Végiil, figyelembe véve a fliggvényegyenletek irodalmanak tovabbi
eszkozeit, amelyek nagyon friss eredményeket is tartalmaznak, érde-
kes sziikséges feltételt kapunk a (8.4) kiegészité egyenletet teljesitd
kvadratikus fiiggvényekre.

8.12 Tétel. Ha eqy f: R — R kvadratikus fiigguény eleget tesz az
Vif(z) = 22f(y) kiegészitd egyenletnek az xy = 1 feltétel mellett,

akkor létezik eqy H harmadrendi szimmetrikus bi-derivdcio, amelyre

f(x) = H(z,z) + 2%f(1).

A 6. fejezetben olyan f,g: R — R kvadratikus és kobfiiggvénye-
ket vizsgdlunk, amelyek logaritmus illetve exponencialis fiiggvényeket
tartalmazé feltételes egyenleteket teljesitenek. FEzekben az esetben
bebizonyitjuk az f,g kvadratikus és kobfliggvények egyenlOségét és
folytonossagat.
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8.13 Tétel. Tegyiik fel, hogy f,g: R — R n-edfoki monom fiiggué-
nyek (n € {2,3}) és f,g eleget tesznek az y" f(x) = x"g(y) kiegészitd
egyenletnek RY-on minden (x,y) € S5 esetén. Ekkor f(x) = g(z) =

8.6 Megjegyzés. A fenti tétel eredményei atviheték az exponencidlis
fliggvény esetére, amikor (z,y) € Sg, mivel az azonos alapi expo-

nencidlis és logaritmus fiiggvények egymas inverzei.

Megjegyezziik, hogy mind a logaritmus, mind az exponencialis fiigg-
vény alapja barmely pozitiv valos szam lehet, az 1-et kivéve.
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