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1. Introduction

1.1 Investigated problems
The existence of discontinuous additive functions (or higher or-

der monomial functions) was an open problem for many years. Math-
ematicians could neither prove that all additive functions are con-
tinuous, nor give an example to a discontinuous additive function.
G. Hamel [24] succeded in proving that there exist discontinuous ad-
ditive functions.

In this dissertation we study monomial functions f of degree
2 6 n ∈ N, defined as diagonalizations of n-additive functions (func-
tions that are additive with respect to each of their n variables) in
Section 2.1. It is well known that such a function f is continuous if,
and only if, it can be given as

f(x) = cxn (x ∈ R) (1.1)

with some real number c . The existence of discontinuous monomial
functions follows, for example, from the above cited theorem of Hamel.
Clearly, any function of the form (1.1) satisfies the identity

ynf(x) = xnf(y) (1.2)

for all x, y ∈ R . Conversely, identity (1.2) implies (1.1) with c = f(1)

even if we assume only that (1.2) is fulfilled for y = 1 (and every x ∈
R). On the other hand, if we assume (1.2) only for y = x , we do not
obtain any information about the function f at all. Our main purpose
is to answer the following question for various particular algebraic (or
some specific transcendental) curves S ⊂ R2 and reasonably small n :

1



1. Introduction 2

Let us suppose that f : R → R is a monomial function of degree n

that satisfies the additional equation (1.2) for every (x, y) ∈ S . Does
it imply that f is continuous? We provide affirmative answers in
several particular cases. However, for a natural choice of S , we obtain
a counterexample.

Since the calculation becomes more difficult as n increases, we
obtain the continuity of f in the following particular cases:
• 2 6 n ∈ N and S is given by y = amx

m+am−1x
m−1 + · · ·+a1x+a0

with m ∈ N, ai ∈ R, i = 0, . . . ,m, a0 6= 0 (the curve does not pass
through the origin);
• n ∈ { 2 , 3 } and S is given by y = xm with m ∈ Z , |m| ≥ 2 ;
• n = 2 and S is given by x2 ± y2 = 1 (two cases);
• n ∈ { 2 , 3 } and S is given by y = ex (or x = ey).
When S denotes the hyperbola given by the equation xy = 1 , we
obtain counterexamples for any 2 6 n ∈ N . For this curve, in case
n = 2 (i.e., when f is quadratic), a considerably non-trivial necessary
condition is obtained.

Generalizing the problem to a pair of monomial functions f, g of
degree n ∈ N, n > 2 related by the functional equation

ynf(x) = xng(y) (1.3)

under the condition P (x, y) = 0 for some fixed polynomial P of two
variables, we find that in most (but not all) examined cases f and g

are equal and continuous.

1.2 Motivation
In this section we introduce the necessary notations and we present

some preliminary results.
Let R , Q , Z , and N denote the set of all real numbers, rationals,
integers and positive integers, respectively. Let R+ denote the set
of positive real numbers. We call a function f : R → R additive if
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f(x + y) = f(x) + f(y) holds for all x, y ∈ R . The function f is
called Q-homogeneous if the equation f(qx) = qf(x) is fulfilled by
every q ∈ Q and x ∈ R . As it is also well-known [29, Theorem 5.2.1],
if f : R→ R is additive, then f is Q-homogeneous as well.
We define the following sets:

S0 ={(x, y) ∈ R2 | amxm + am−1x
m−1 + · · ·+ a1x + a0 = y }

with m ∈ N, ai ∈ R, i = 0, . . . ,m, am 6= 0, a0 6= 0 ,

S1 ={(x, y) ∈ R2 |xm = y} with m ∈ Z , |m| > 2 ,

S2 ={(x, y) ∈ R2 |xy = 1},
S3 ={(x, y) ∈ R2 |x2 − y2 = 1},
S4 ={(x, y) ∈ R2 |x2 + y2 = 1},
S5 ={(x, y) ∈ R2 |x > 0 and log x = y },
S6 ={(x, y) ∈ R2 | ex = y}.

We note that the sets S0 and S1 depend on some parameters (the
positive integer m, the real numbers ai, i = 0, . . . ,m, and the integer
m , respectively), so our statements with respect to these sets are valid
for all admitted values of these parameters, unless otherwise stated.

The motivation for our investigations are some problems solved for
additive functions.
The problem is the following:
Suppose that f : R → R is an additive function. If f satisfies the
additional equation

xf(y) = yf(x) (1.4)

for the pairs (x, y) ∈ Si, i = 0, 1, 2, 4, does it imply that f is continuous
(i.e., linear)? In these cases the continuity of the additive function was
proved.
Case (x, y) ∈ S0: the affirmative answer can be found in [12].
Case (x, y) ∈ S1: in 1968 A. Nishiyama and S. Horinouchi [35] proved
that every additive mapping f : R → R , which satisfies (1.4) for all
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(x, y) ∈ S1 is of the form f(x) = f(1)x for all x ∈ R.
Case (x, y) ∈ S2: the problem was posed by I. Halperin in 1963
(communicated in J. Aczél [1]). To Halperin’s question S. Kurepa [30]
has given the answer in the affirmative by proving, among others, a
theorem which contains a more general result and leads to f(x) =

f(1)x. W. B. Jurkat [25] has obtained independently the same result.
Several authors extended this result in various directions. Among
numerous further publications they provided generalizations in [29,
Theorem 14.3.3], [27], and [31].
Case (x, y) ∈ S4: the problem was formulated by W. Benz [5] in
1989. This question, together with a similar one for derivations, was
answered in the affirmative by Z. Boros and P. Erdei [6].

B. Ebanks [12] generalizes the problem to a pair of additive func-
tions f, g related by the functional equation

yf(x) = xg(y) (1.5)

for all points (x, y) on a specified curve. He finds that for many (but
not all) types of curves this forces f and g to be equal and linear (in-
cluding Si, i = 0, 4, 5, 6).

The motivation of such investigations is the possible representation
of the solutions of various functional equations in terms of additive
functions. When the investigated functional equation is obtained from
the axiomatic description of certain mathematical models in applied
mathematics, some additional algebraic condition might be obtained
from the same theory as well. In such a case, it is an essential question
whether the additional condition implies the linearity of the additive
function appearing in the aforementioned representation.

As it was shown by M. A. McKiernan [34] for real functions and
by L. Székelyhidi [37] in quite general context, solutions of a wide
class of linear functional equations are generalized polynomials, which
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can be represented as the sum of generalized monomials. It is there-
fore reasonable to extend the above cited investigations to generalized
monomials, that can be considered as generalizations of additive func-
tions.

Z. Kominek, L. Reich and J. Schwaiger [28] investigated additive
functions that satisfy the additional equation

f(x)f(y) = 0 (1.6)

for every (x, y) ∈ S, considering various subsets S of R2. In several
cases, involving S = S4, they obtained f(x) = 0 for every x ∈ R.
This particular result was extended by Z. Boros and W. Fechner [7]
to the situation when f is a generalized polynomial. On the other
hand, P. Kutas [32] has recently established the existence of a non-
zero additive function f : R → R fulfilling (1.6) for all (x, y) ∈ S2 .
The case of bounded f(x)f(y) on S4 was investigated by these authors
[8].

1.3 Structure of the dissertation
The dissertation is divided into six structural units.
The first chapter includes the general problem statement and gives

a brief overview of relating results: we investigate monomial functions
f, g : R → R of degree n ∈ N, n > 2 which satisfy the additional
equation (1.2) or (1.3) for all points (x, y) on a specified curve.
The second chapter contains the display of tools and we present some
related concepts and results.
The next four chapter contain the main results, classified by curves:

� In Chapter 3 we investigate monomial functions that satisfy ad-
ditional equations involving polynomial functions whose graphs
do not pass through the origin: we find that if f, g are monomial
functions of degree n ∈ N, n > 2 which satisfy the additional
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equation (1.3) for all points (x, y) ∈ S0, then f and g are iden-
tical and continuous.

� Chapter 4 contains results for quadratic and cubic functions sat-
isfying conditional equations involving the power function: we
obtain that if f is a monomial function of degree n ∈ {2, 3} and
f satisfies the additional equation (1.2) for the pairs (x, y) ∈ S1

then f is continuous. In the particular case n = 2, m = 2 , a
modified version of the condition (1.2) admits a discontinuous
quadratic solution f . Introducing a second quadratic function
in case n = 2 and m = 2 we find that there exist discontinuous
solutions.

� In Chapter 5 we study additive, quadratic and higher order
monomial functions that satisfy subsidiary equations along hy-
perbolas or the unit circle. We give counterexamples to demon-
strate that there exist discontinuous solutions f , when f is a
monomial function of degree n ∈ N, n > 2 which satisfies the ad-
ditional equation (1.2) under the condition xy = 1. Nonetheless,
we prove that if f, g satisfy the additional equation (1.3) for all
points (x, y) ∈ S3 (f, g are additive or quadratic) or (x, y) ∈ S4

(f, g are quadratic), then f and g are identical and continuous.
Furthermore, we prove an interesting necessary condition for a
quadratic function f which satisfies the additional equation (1.2)
under the condition xy = 1.

� Chapter 6 contains results for quadratic and cubic functions that
satisfy conditional equations involving logarithmic (exponential)
function: we find that if f, g satisfy the additional equation (1.3)
for all points (x, y) ∈ S5 or (x, y) ∈ S6, then f and g are identical
and continuous.



2. Preliminaries

2.1 Multiadditive functions and generalized mono-
mials

Let n ∈ N. A function F : Rn → R is called n–additive if, for every
i ∈ { 1 , 2 , . . . , n } and for every x1, . . . , xn, yi ∈ R ,

F (x1, . . . , xi−1, xi + yi, xi+1, . . . , xn)

= F (x1, . . . , xi−1, xi, xi+1, . . . , xn)+F (x1, . . . , xi−1, yi, xi+1, . . . , xn) ,

i.e., F is additive in each of its variables xi ∈ R , i = 1, . . . , n . We call
1-additive functions simply additive, 2-additive functions biadditive.
Further, constant functions will be called 0-additive.

Clearly, an n–additive function is also Q-homogeneous in each vari-
able.

Given a function F : Rn → R, by the diagonalization (or trace) of
F we understand the function f : R → R arising from F by putting
all the variables (from R) equal:

f(x) = F (x, . . . , x) (x ∈ R) . (2.1)

If, in particular, f is the diagonalization of an n–additive function
F : Rn → R , we say that f is a monomial function (or generalized
monomial) of degree n . In such a case we obtain f(rx) = rnf(x)

whenever x ∈ R and r ∈ Q. Monomial functions of degree 3 are
called cubic functions, quadratic functions are generalized monomials
of degree 2. Further, additive functions are generalized monomials of
degree 1 and real constants are generalized monomials of degree 0. For
y ∈ R we define ([29], Chapter 15) the linear difference operator 4y

7
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on R by

4yf(x) = f(x + y)− f(x), for all f : R→ R and x ∈ R

and, for an arbitrary natural number n > 2

4y1,...,yn−1,ynf(x) = 4y1,...,yn−1 (4ynf(x)) .

If y1 = y2 = ... = yn = y, instead of 4y,y,...,yf(x) we write 4n
yf(x).

As one can easily verify by induction,

4n
yf(x) =

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ky), for all f : R→ R and x, y ∈ R.

Let Fs denote the symmetric part of F : Rn → R , i.e.,

Fs(x1 , x2 , . . . , xn) =
1

n!

∑
σ∈Pn

F
(
xσ(1) , xσ(2) , . . . , xσ(n)

)
for every (x1 , x2 , . . . , xn) ∈ Rn, where Pn denotes the set of all per-
mutations of the index set { 1, 2, . . . , n }. Clearly, if f is defined by
(2.1), then we have f(x) = Fs(x , x , . . . , x) (for all x ∈ R) as well.
Moreover, if F is n–additive, then Fs is also n–additive. Therefore, if
f : R → R is a generalized monomial of degree n , then there exists
a symmetric n–additive function F : Rn → R such that (2.1) holds.
Furthermore, as it is also well known [29, Lemma 15.9.2], in that case
we have

∆y1,...,yn−1,ynf(x) = n!F (y1 , . . . , yn−1 , yn) (2.2)

for every x , y1 , . . . , yn ∈ R . This shows the uniqueness of F .
It is a consequence of the identity (2.2) that any generalized mono-

mial f : R→ R of degree n satisfies the n–monomial functional equa-
tion
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4n
yf(x) = n!f(y) (x, y ∈ R). (2.3)

In fact ([29, Chapter 15], [38, Chapter 1]), generalized monomials
of degree n are characterized as the solutions of the n–monomial func-
tional equation (2.3).

In case n = 2 , writing x − y in place of x , equation (2.3) can be
formulated as

f(x + y) + f(x− y) = 2f(x) + 2f(y) (x, y ∈ R), (2.4)

which is the so called norm square equation or parallelogram law.
Therefore, quadratic functions are characterized by the functional
equation (2.4).

As it is well known ([2], [3, Section 11.1]), we can (and, in the
rest of this dissertation, we shall) associate with a quadratic function
f : R → R the biadditive and symmetric functional F : R × R → R ,
given by the formula

F (x, y) =
1

2
[f(x + y)− f(x)− f(y)] (2.5)

for all x, y ∈ R . It is not very difficult to verify that F is, in fact,
biadditive (i.e., the mappings

t 7→ F (t, x) and t 7→ F (x, t) (t ∈ R)

are additive for each x ∈ R), and f is obtained as the diagonalization
of F (i.e., f(x) = F (x, x) for all x ∈ R ). Applying the Q-homogeneity
of additive functions, we have

F (rx, sy) = rsF (x, y) and f(rx) = F (rx, rx) = r2F (x, x) = r2f(x)

for every r, s ∈ Q and x, y ∈ R . In particular, f(0) = 0 . On the other
hand, applying equation (2.5) and induction on n, one can easily prove
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the identity

f

(
n∑
k=0

uk

)
=

n∑
k=0

f(uk) + 2
∑

0≤i<j≤n

F (ui , uj) (2.6)

for every n ∈ N and u0 , u1 , . . . , un ∈ R .
In order to present our tools and arguments, it is convenient to intro-
duce the following notations. If F : Rn → R is symmetric, x , y ∈ R
and k ∈ Z such that 0 6 k 6 n , let

F ([x]k, [y]n−k) = F (x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
n−k

).

In particular, let

F ([x]0, [y]n) = F (y, . . . , y︸ ︷︷ ︸
n

) = f(y)

and
F ([x]n, [y]0) = F (x, . . . , x︸ ︷︷ ︸

n

) = f(x) .

Now we can formulate the well known analogue of the celebrated
binomial theorem and its extension to several variables for generalized
monomials (established, for instance, in the above cited monograph
by L. Székelyhidi [38, Chapter 1]).

Lemma 2.1. (Binomial Theorem): If n ∈ N , F : Rn → R is a
symmetric n–additive function and f : R → R is defined by (2.1),
then

f(x + y) =
n∑
k=0

(
n

k

)
F ([x]k, [y]n−k) (2.7)

for all x, y ∈ R .

Lemma 2.2. (Polynomial Theorem): If n ∈ N , F : Rn → R is
a symmetric n–additive function and f : R → R is defined by (2.1),
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then

f (x1 + x2 + · · ·+ xm) =

=
∑

k1+k2+···+km=n

n!

k1!k2! · · · km!
F
(
[x1]k1 , [x2]k2 , · · · , [xm]km

)
(2.8)

for any positive integer m and for all x1, x2, · · · , xm ∈ R .

Clearly, we extended our former notations such that, in the last
term of equation (2.8), the argument of the function F in n variables
consists of kj copies of the real variable xj (j = 1, 2, . . . ,m).

We shall also make use of the following observation, motivated by
Ebanks [12, Lemma 7.3].

Lemma 2.3. (Z. Boros and E. Garda-Mátyás [9]). If F is a field,
n ∈ N , X is an arbitrary set, V ⊂ F contains at least n+ 1 elements,
and the functions Hk : X → F (k = 0, 1, . . . , n) satisfy the equation

n∑
k=0

Hk(x)rk = 0 (2.9)

for every x ∈ X and r ∈ V , then Hk(x) = 0 for every x ∈ X and
k ∈ { 0 , 1 , . . . , n }.

Proof. For each fixed x ∈ X ,
∑n

k=0Hk(x)rk is a polynomial of degree
at most n , with the coefficients Hk(x) ∈ F (k = 0, 1, . . . , n) , with
respect to the variable r . According to equation (2.9), this polynomial
takes the value zero at each r ∈ V . Since V contains at least n + 1

elements, this polynomial has to be identically zero.

In this dissertation, we shall apply Lemma 2.3 for X = F = R and
V = Q .
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2.2 Derivations
We say that f : R → R is a derivation if f satisfies the system of

functional equations

f(x + y) = f(x) + f(y) (2.10)

f(xy) = f(x)y + xf(y) (2.11)

for every x, y ∈ R . The family of derivations f : R→ R is denoted by
D(R) in the sequel.

Clearly, equation (2.10) expresses that f is additive, while equation
(2.11) is motivated by the differentiation rule for the product of two
differentiable functions (however, here the arguments are real numbers
instead of functions). It is an immediate consequence of the definition
that any derivation f fulfills f(x2) = 2xf(x) for all x ∈ R. Obviously,
equation (2.11) implies f(1) = 0 . Hence, any linear derivation is
identically zero. On the other hand, it is also well known (and easy to
prove) that the graph of any non-linear additive function f : R → R
is dense in R2. In particular, the graph of any non-trivial (i.e., not
identically zero) derivation f : R → R has to be dense in R2. The
existence of such functions is established, in a more general setting,
for instance, in [40] (and in [29, Section 14.2]). Moreover, one can
easily prove the following statement.

Proposition 2.1. If K ∈ R and f : R → R is an additive mapping
that satisfies the equation

f(x2) = Kxf(x) (x ∈ R) (2.12)

as well, then either f = 0 or K ∈ {1, 2}. Moreover, if K = 1 , then f

is linear, while, if K = 2 , then f is a derivation.

The characterization of linear functions or derivations among addi-
tive mappings via functional equations in a single variable (which are
generalizations of (2.12)) is the main topic of articles by Nishiyama
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and Horinouchi [35], Kannappan and Kurepa [26], Grząślewicz [17],
Halter-Koch [21, 22], and some recent papers by Ebanks [13], [14]
and Gselmann [19]. A characterization of derivations via a single
functional equation has been provided by Gselmann [18]. A func-
tional B : R × R → R is called a bi-derivation if the mappings t 7→
B(t, x) and t 7→ B(x, t) (t ∈ R) are derivations for each x ∈ R .
An additive mapping f : R → R is called a derivation of order 2, if
there exists a (symmetric) bi-derivation B : R× R→ R such that

f(xy)− xf(y)− f(x)y = B(x, y) (x, y ∈ R) .

The set of derivations of order 2 will be denoted by D2(R). Since the
identically zero mapping from R×R into R is a bi-derivation, we have
D(R) ⊂ D2(R). The terminology is motivated by the observation that
the composition of two derivations on R belongs to the class D2(R).
In particular, if d : R → R is a not identically zero derivation and
f = d ◦ d , then

B(x, y) : =f(xy)− xf(y)− f(x)y =

= d(xd(y) + d(x)y)− xd(d(y))− yd(d(x)) = 2d(x)d(y)

((x, y) ∈ R × R) is a not identically zero bi-derivation, hence f ∈
D2(R) \ D(R) .

The concept of derivations of higher order was introduced and char-
acterized via functional equations by Unger and Reich [39]. The theory
has been developed by Reich [36], Halter-Koch and Reich [23], Ebanks
[11], and quite recently by Gselmann, Vincze and Kiss [20].

As consequences of [15, Proposition 2.2] and [11, Proposition 4.6]
(the same equations are listed as equivalent conditions for additive
mappings to belong to the class of second order derivations), and as
a particular case of [20, Proposition 3], we have the following charac-
terization of D2(R).
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Proposition 2.2. Let ϕ : R → R be an additive mapping. Then ϕ ∈
D2(R) if, and only if,

ϕ
(
x3
)
− 3xϕ

(
x2
)

+ 3x2ϕ (x) = 0 (x ∈ R) . (2.13)

As an application of Proposition 2.2, we can prove the following
lemma, which appears in [11, Proposition 4.6], as well.

Lemma 2.4. Let ϕ : R→ R be an additive function. Then ϕ ∈ D2(R)

if, and only if,

ϕ(x4) = 6x2ϕ(x2)− 8x3ϕ(x) (x ∈ R) . (2.14)

Proof. If ϕ ∈ D2(R), then there exists a symmetric bi-derivation
B : R× R→ R such that

ϕ
(
x2
)
− 2xϕ(x) = B(x, x) (x ∈ R) .

Substituting x2 in place of x in the latter equation and applying the
identity f (x2) = 2xf(x) fulfilled by any real derivation f (cf. (2.11)),
we obtain

ϕ
(
x4
)
− 2x2ϕ

(
x2
)

= B
(
x2, x2

)
= (2x)2B(x, x) = 4x2B(x, x)

= 4x2
(
ϕ
(
x2
)
− 2xϕ(x)

)
= 4x2ϕ

(
x2
)
− 8x3ϕ(x),

which yields (2.14).
Now we assume that ϕ : R→ R is additive and it satisfies equation

(2.14) as well. Substituting x = 1 into (2.14) we obtain ϕ(1) = 0 . Let
x ∈ R and r ∈ Q . Replacing x with x + r in equation (2.14) we have

0 = ϕ
(
(x + r)4

)
− 6(x + r)2ϕ

(
(x + r)2

)
+ 8(x + r)3ϕ(x + r)

= ϕ(x4) + 4rϕ(x3) + 6r2ϕ(x2) + 4r3ϕ(x) + r4ϕ(1)

− 6
(
x2 + 2rx + r2

) (
ϕ(x2) + 2rϕ(x) + r2ϕ(1)

)
+ 8

(
x3 + 3rx2 + 3r2x + r3

)
(ϕ(x) + rϕ(1)) .
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Here, for each fixed x ∈ R , we obtain a polynomial with respect to
r on the right side of the equation. Hence we may apply Lemma 2.3.
The equality of the coefficient of r with zero for every x ∈ R , in view
of ϕ(1) = 0 , finally leads to equation (2.13). Therefore, the statement
follows from Proposition 2.2.
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3. Conditional equations involving
polynomial functions

In this chapter we investigate monomial functions f, g : R → R of
degree n ∈ N, n > 2 that satisfy conditional equations involving poly-
nomial functions:

S0 ={(x, y) ∈ R2 | amxm + am−1x
m−1 + · · ·+ a1x + a0 = y }

with m ∈ N, ai ∈ R, i = 0, . . . ,m, am 6= 0, a0 6= 0 .

We know that if f, g : R → R are additive functions and satisfy the
additional equation (1.5) for the pairs (x, y) ∈ S0, then f and g are
the same linear function ([Theorem 4.3] in [12]).

Theorem 3.1. Suppose that f : R → R and g : R → R are gener-
alized monomials of degree n ∈ N that satisfy the additional equation
ynf(x) = xng(y) for the pairs (x, y) ∈ S0. Then f(x) = g(x) = xnf(1)

for all x ∈ R .

Proof. We can associate with the generalized monomial g an n–additive
and symmetric functional G : Rn → R , such that

g(x) = G(x, x, . . . , x) (x ∈ R)

holds. The additional equation is:

(amx
m+am−1x

m−1 + · · ·+ a1x + a0)
nf(x) =

= xng
(
amx

m + am−1x
m−1 + . . . + a1x + a0

)
.

(3.1)

17
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We know that(
amx

m + am−1x
m−1 + . . . + a1x + a0

)n
=

=
∑

i0+i1+···+im=n

n!

i0!i1! · · · im!
ai0mx

mi0 · · · aim−1

1 xim−1aim0 .
(3.2)

Due to the Polynomial Theorem, we have

g(amx
m+am−1x

m−1 + . . . + a1x + a0) =

=
∑

k0+k1+...+km=n

n!

k0!k1! · · · km!
·

·G
(

[amx
m]k0 ,

[
am−1x

m−1]
k1

, . . . , [a0]km

)
.

(3.3)

With (3.2) and (3.3), the additional equation (3.1) can be written in
the following form:∑

i0+i1+...+im=n

n!

i0!i1! · · · im!
ai0mx

mi0 · · · aim−1

1 xim−1aim0 f(x) =

= xn
∑

k0+k1+...+km=n

n!

k0!k1! · · · km!
·

·G
(

[amx
m]k0 ,

[
am−1x

m−1]
k1

, . . . , [a0]km

)
.

(3.4)

If x ∈ R , r ∈ Q , and we replace x with rx in equation (3.4), we get

∑
i0+i1+...+im=n

n!

i0!i1! · · · im!
ai0m(rx)mi0 · · · aim−1

1 (rx)im−1aim0 f(rx) =

= (rx)n
∑

k0+k1+...+km=n

n!

k0!k1! · · · km!
·

·G
(

[am(rx)m]k0 ,
[
am−1(rx)m−1

]
k1

, . . . , [a0]km

)
.
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Using f(rx) = rnf(x) and

G
(

[am(rx)m]k0 ,
[
am−1(rx)m−1

]
k1

, . . . , [a0]km

)
=

= rmk0r(m−1)k1 · · · rkm−1G
(

[amx
m]k0 ,

[
am−1x

m−1]
k1

, . . . , [a0]km

)
,

we obtain∑
i0+i1+...+im=n

n!

i0!i1! · · · im!
rn+mi0+(m−1)i1+...+im−1·

· ai0mxmi0 · · · a
im−1

1 xim−1aim0 f(x) =

=
∑

k0+k1+...+km=n

n!

k0!k1! · · · km!
rn+mk0+(m−1)k1+...+km−1xn·

·G
(

[amx
m]k0 ,

[
am−1x

m−1]
k1

, . . . , [a0]km

)
,

and thus

0 =
∑

i0+i1+...+im=n

n!

i0!i1! · · · im!
rn+mi0+(m−1)i1+...+im−1·

· ai0mxmi0 · · · a
im−1

1 xim−1aim0 f(x)−

−
∑

k0+k1+...+km=n

n!

k0!k1! · · · km!
rn+mk0+(m−1)k1+...+km−1xn·

·G
(

[amx
m]k0 ,

[
am−1x

m−1]
k1

, . . . , [a0]km

)
.

(3.5)

On the right side of equation (3.5), for each fixed x ∈ R , with
respect to the variable r , we obtain a polynomial (of degree at most
(m+ 1)n) that equals zero for every r ∈ Q . According to Lemma 2.3,
each coefficient of this polynomial must be zero (for each x ∈ R).

For the coefficient of rn this observation yields

0 = an0f(x)− xng (a0) .
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Hence

f(x) = xn
g (a0)

an0
.

For x = 1 we have f(1) = g(a0)
an0

, therefore f(x) = xnf(1) for all
x ∈ R .

Considering the coefficient of r(m+1)n we obtain

0 = anmx
mnf(x)− xng (amx

m) .

Substituting f(x) = xnf(1) in the latter equation then dividing the
equation by xn if x 6= 0 we get

g (amx
m) = (amx

m)n f(1).

If m is odd, then the range of amxm (with am 6= 0) is the set of real
numbers. If m is even, then the range of amxm (with am 6= 0) is the
set of non-negative or non-positive real numbers, depending on the
sign of am. But since g is rationally homogeneous of degree n, then
g(−u) = (−1)ng(u), consequently

g(x) = xnf(1) = f(x)

for all x ∈ R.

Remark 3.1. If am = am−1 = ... = a1 = 0 then y = a0 is constant.
Therefore we have

an0f (x) = xng (a0)

and thus

f (x) = xn
g (a0)

an0
= xnf(1),

but we have no further information about g other than g (a0) = an0f(1).

Remark 3.2. In the particular case y = a1x ( a0 = 0 ) the conditional
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equation has the form

an1x
nf (x) = xng (a1x) ,

i.e., g (a1x) = an1f (x). We note that, if a1 = 0 then this equation yields
no information, so f and g can be any monomial functions. In the case
a1 6= 0, let f be any discontinuous real monomial function. Then it
follows from the conditional equation that g is also discontinuous.

If we tighten the study to a single function f : R → R, we have an
immediate consequence of the above theorem, without the restriction
am 6= 0:

Corollary 3.1. If a monomial function f : R → R of degree n ∈ N
satisfies the additional equation ynf(x) = xnf(y) for the pairs (x, y) ∈
S0, then f(x) = xnf(1) for all x ∈ R .

Proof. If am = am−1 = . . . = a1 = 0 the implication is trivial.
If am 6= 0, we can apply the above theorem.

Remark 3.3. In case m = 1, the implication in Corollary 3.1 does not
hold if a0 = 0. In this case, if, for instance, a1 6= 0, the conditional
equation (1.2) takes the form

an1x
nf (x) = xnf (a1x) ,

i.e., f (a1x) = an1f (x). Indeed, there exists a discontinuous example of
the form f(x) = (h(x))n (x ∈ R), where h : R→ R is a discontinuous
additive function, such that the homogeneity field of h contains a1.

Though in this project we mainly concentrate on functions defined
on the real line, we would like to note that monomial functions of de-
gree n can be defined in more abstract settings in the same way, i.e.,
as diagonalizations of n-additive mappings. The proof of Theorem 3.1
(and Corollary 3.1) can be applied to the somewhat more general case
when the domain of f and g is a subring E of real numbers such that
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E contains all rational numbers (for instance, an arbitrary subfield of
R), assuming that all coefficients aj ∈ E (j = 0, 1, ...,m).

In the particular case m = 1 we can give an independent, algorithmic
proof for the Corollary 3.1. In this case we have y = a1x+a0, a1, a0 ∈
R \ {0}, and (1.2) takes the form

(a1x + a0)
n f(x) = xnf (a1x + a0) . (3.6)

This proof admits an even more general domain for f .

Theorem 3.2. Let D be a subring of R such that 1/2 ∈ D (i.e., D is
divisible by 2) and let a0, a1 ∈ D \ {0}. If f : D → R is a monomial
of order n that satisfies the additional equation (3.6) for every x ∈ D,
then f(x) = xnf(1) for all x ∈ D.

Proof. We know that

(a1x + a0)
n =

n∑
k=0

(
n

k

)
an−k1 xn−kak0.

Based on this and from (2.7), the equation (3.6) can be written in the
following form:

n∑
k=0

(
n

k

)
an−k1 xn−kak0f(x) = xn

n∑
k=0

(
n

k

)
F
(
[a1x]k , [a0]n−k

)
. (3.7)

The following algorithm is used for the proof:
Step 1: Let be p = 0.
Step 2: Replace x by x

2
in last equation.

Step 3: Multiply the resulting equation with 22n−p.
Step 4: From the resulting equation subtract the last numbered equa-
tion.
Step 5: Omit the zero value members of the sum
Step 6: Number the last equation
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Step 7: If p < n− 1 then p = p+ 1 and go to Step 2, otherwise end of
the algorithm.
It can be observed, that steps 2 through 7 are performed n times.
Let us see how the algorithm works:

1). p = 0

If we replace x by x
2

in equation (3.7), we obtain

n∑
k=0

(
n

k

)
an−k1

xn−k

2n−k
ak0f

(x
2

)
=

xn

2n

n∑
k=0

(
n

k

)
F
([

a1
x

2

]
k
, [a0]n−k

)
,

i.e.

n∑
k=0

(
n

k

)
an−k1

xn−k

2n−k
ak0

1

2n
f(x) =

xn

2n

n∑
k=0

(
n

k

)
1

2k
F
(
[a1x]k , [a0]n−k

)
.

Multiplying the last equation with 22n, we obtain

n∑
k=0

(
n

k

)
an−k1 2kxn−kak0f(x) = xn

n∑
k=0

(
n

k

)
2n−kF

(
[a1x]k , [a0]n−k

)
.

Subtracting the equation (3.7) from the last equation, we get

n∑
k=0

(
n

k

)
an−k1 xn−kak0f(x)

(
2k − 1

)
=

= xn
n∑
k=0

(
n

k

)
F
(
[a1x]k , [a0]n−k

) (
2n−k − 1

)
.

Observe that on the left hand side for k = 0, we have
(
2k − 1

)
=

0, on the right hand side for k = n, we have
(
2n−k − 1

)
= 0.
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Therefore

n∑
k=1

(
n

k

)
an−k1 xn−kak0f(x)

(
2k − 1

)
=

= xn
n−1∑
k=0

(
n

k

)
F
(
[a1x]k , [a0]n−k

) (
2n−k − 1

)
.

(3.8)

2). p = 1

If we replace x by x
2

in equation (3.8), we obtain

n∑
k=1

(
n

k

)
an−k1

xn−k

2n−k
ak0f

(x
2

) (
2k − 1

)
=

=
xn

2n

n−1∑
k=0

(
n

k

)
F
([

a1
x

2

]
k
, [a0]n−k

) (
2n−k − 1

)
,

i.e.

n∑
k=1

(
n

k

)
an−k1

xn−k

2n−k
ak0

1

2n
f(x)

(
2k − 1

)
=

=
xn

2n

n−1∑
k=0

(
n

k

)
1

2k
F
(
[a1x]k , [a0]n−k

) (
2n−k − 1

)
.

Multiplying the last equation with 22n−1, we obtain

n∑
k=1

(
n

k

)
an−k1 2k−1xn−kak0f(x)

(
2k − 1

)
=

= xn
n−1∑
k=0

(
n

k

)
2n−1−kF

(
[a1x]k , [a0]n−k

) (
2n−k − 1

)
.
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Subtracting the equation (3.8) from the last equation, we get

n∑
k=1

(
n

k

)
an−k1 xn−kak0f(x)

(
2k − 1

) (
2k−1 − 1

)
=

= xn
n−1∑
k=0

(
n

k

)
F
(
[a1x]k , [a0]n−k

) (
2n−k − 1

) (
2n−k−1 − 1

)
.

Observe that on the left hand side for k = 1, we have
(
2k−1 − 1

)
=

0, on the right hand side for k = n−1 we have
(
2n−k−1 − 1

)
= 0.

Therefore

n∑
k=2

(
n

k

)
an−k1 xn−kak0f(x)

(
2k − 1

) (
2k−1 − 1

)
=

= xn
n−2∑
k=0

(
n

k

)
F
(
[a1x]k , [a0]n−k

) (
2n−k − 1

) (
2n−k−1 − 1

)
.

Increasing the value of p by 1 each time, the algorithm runs similarly
to the previous cases.
Having p = n− 1, we obtain the final equation:

an0f(x) (2n − 1)
(
2n−1 − 1

) (
2n−2 − 1

)
. . . (2− 1) =

= xnF
(
[a1x]0 , [a0]n−0

)
(2n − 1)

(
2n−1 − 1

) (
2n−2 − 1

)
...(2− 1).

It follows that
an0f(x) = xnF

(
[a1x]0 , [a0]n−0

)
.

But F
(
[a1x]0 , [a0]n−0

)
= f (a0). Thus

f(x) = xn
f (a0)

an0
.
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For x = 1,

f(1) =
f (a0)

an0
hence f(x) = xnf(1).

Note that the constraint a0 6= 0, i.e. that the curve does not pass
through the origin, plays an important role. Otherwise, it brings a
lot of complications even in a simple case, as we can see in the next
chapter.



4. Conditional equations involving the
power function

In this chapter we investigate quadratic functions f, g : R → R and
cubic functions f : R→ R that satisfy conditional equations involving
the power function:

S1 ={(x, y) ∈ R2 |xm = y} with m ∈ Z , |m| > 2.

We know that all additive functions f : R→ R fulfilling the condition
(1.4) for all points (x, y) ∈ S1 are linear ([35]). If the additive functions
f, g : R→ R satisfy the equation (1.5) for all points (x, y) ∈ S1, then
there exist c ∈ R and a derivation d : R → R such that f(x) =

d(x) + cx, g(x) = 1
m
d(x) + cx (x ∈ R) ([26]).

4.1 Equations for quadratic functions
In this section we investigate quadratic real functions f that satisfy

the additional equation (1.2) for the pairs (x, y) ∈ S1.
In this case the additional equation has the form x2mf(x) = x2f(xm) ,

with |m| > 2, m ∈ Z . Dividing this equation by x2 if x 6= 0 , and tak-
ing f(0) = 0 (fulfilled by any quadratic function f) into consideration
as well, we obtain

f(xm) = x2m−2f(x) (4.1)

for every x ∈ R .

Theorem 4.1. If 2 6 |m|, m ∈ Z and the quadratic function f : R→
R satisfies (4.1) for every x ∈ R , then there exists C ∈ R such that

f(x) = C · x2 (x ∈ R).

27
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Proof. First we prove it for 2 6 m ∈ N:
Let x ∈ R and r ∈ Q . Replacing x with x + r in equation (4.1) we
obtain

f ((x + r)m) = (x + r)2m−2f(x + r) . (4.2)

Let F : R× R→ R be given by (2.5). Expanding the powers of sums
on both sides, equation (4.2) can be written as

f

(
m∑
k=0

(
m

k

)
xkrm−k

)
=

=

(
2m−2∑
l=0

(
2m− 2

l

)
xlr2m−2−l

)
· (f(x) + f(r) + 2F (x, r)) .

Applying the identity (2.6) to the left side of this equation and the
rational homogeneity properties of F and f to the right side, we obtain

m∑
k=0

f

((
m

k

)
xkrm−k

)
+ 2

∑
0≤i<j≤m

F

((
m

i

)
xirm−i ,

(
m

j

)
xjrm−j

)
=

=
2m−2∑
l=0

(
2m− 2

l

)
xlr2m−2−l

(
f(x) + r2f(1) + 2rF (x, 1)

)
,

and thus

0 =
m∑
k=0

(
m

k

)2

r2(m−k)f(xk) (4.3)

+ 2
∑

0≤i<j≤m

(
m

i

)(
m

j

)
r2m−i−jF (xi, xj)

−
2m−2∑
l=0

(
2m− 2

l

)
r2m−2−lxl

(
r2f(1) + 2rF (x, 1) + f(x)

)
.

It is clear that on the right side of equation (4.3), for each fixed x ∈ R ,
with respect to the variable r , we obtain a polynomial (of degree at
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most 2m) that equals zero for every r ∈ Q . According to Lemma 2.3,
each coefficient of this polynomial has to equal zero (for each x ∈ R).
The coefficient of r2m equals f(1)− f(1) = 0, so the degree is, in fact,
smaller than 2m. However, for the coefficient of r2m−1 this observation
yields

0 = 2

(
m

0

)(
m

1

)
F (1, x)−

(
2m− 2

0

)
2F (x, 1)−

(
2m− 2

1

)
xf(1)

= (2m− 2)(F (1, x)− xf(1)).

Since m > 2 implies 2m− 2 > 0 , we obtain

F (1, x) = f(1) · x (4.4)

for every x ∈ R . The equality of the coefficient of r2m−2 to zero can
be written as

0 =

(
n

1

)2

f(x) + 2

(
m

0

)(
m

2

)
F (1, x2)−

−
(

2m− 2

0

)
f(x)−

(
2m− 2

1

)
x · 2F (x, 1)−

(
2m− 2

2

)
x2f(1) =

= (m2 − 1)f(x) + m(m− 1)F (1, x2)− 4(m− 1)xF (1, x)−
− (m− 1)(2m− 3)f(1)x2 .

Applying property (4.4), this equation can be reformulated as

0 = (m− 1)(m + 1)
(
f(x)− f(1)x2

)
,

which implies f(x) = f(1) · x2 for every x ∈ R .
Case −2 > m ∈ Z:

Let s = −m , whence s ∈ N, s > 2 . Then y = x−s =
1

xs
.
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Hence equation (1.2) with n = 2 has the form

1

x2s
f(x) = x2f

(
1

xs

)
for x 6= 0. Multiplying the last equation with x−2, we obtain

1

x2s+2
f(x) = f

(
1

xs

)
. (4.5)

Replacing x with x−s in equation (4.5) we have

xs(2s+2)f

(
1

xs

)
= f

(
xs

2
)
.

Now from (4.5), we get

x2s2+2s 1

x2s+2
f(x) = f

(
xs

2
)
,

i.e.
x2s2−2f(x) = f

(
xs

2
)
. (4.6)

For every 2 6 s ∈ N there exists p ∈ N, p > 2 such that p = s2.
Replacing s2 with p in equation (4.6) we get the condition (4.1) for
2 6 p ∈ N in place of m , and we have already proved this case.

Hence f(x) = x2f(1) for all x ∈ R .

We note that in case m = 0 the same implication is trivial, while
in case m = 1 condition (4.1) becomes a trivial identity that does not
imply any restriction for f (hence f can be discontinuous as well).
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4.2 Related problems, admitting quadratic func-
tions generated by derivations

In this section we discuss, in the particular case m = 2 , a modified
version of the condition (4.1), admitting a discontinuous quadratic
solution f . Then we examine quadratic real functions f, g that satisfy
the conditional equation (1.3) for the pairs (x, y) ∈ S1 with m = 2.

We can formulate an analogy of Proposition 2.1 for quadratic map-
pings.

Theorem 4.2. Let K ∈ R . If a quadratic function f : R → R
satisfies the additional equation

f(x2) = Kx2f(x) (4.7)

for every x ∈ R , then either f = 0 or K ∈ { 1 , 2 , 4 }. In the latter
cases, we have the following representations for f .

� A quadratic mapping f : R→ R fulfills (4.7) with K = 1 if, and
only if,

f(x) = f(1) · x2 (x ∈ R).

� A quadratic mapping f : R→ R fulfills (4.7) with K = 2 if, and
only if, there exists ϕ ∈ D2(R) such that

f(x) = 4xϕ(x)− ϕ(x2) (x ∈ R). (4.8)

� If B : R× R→ R is a symmetric bi-derivation, then

f(x) = B(x, x) (x ∈ R)

is a quadratic solution of the equation (4.7) with K = 4 .

Proof. Let x ∈ R and r ∈ Q . Replacing x with x+ r in equation (4.7)
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we obtain
f
(
(x + r)2

)
= K(x + r)2f(x + r) . (4.9)

Let F : R× R→ R be given by (2.5). Expanding the powers of sums
on both sides, equation (4.9) can be written as

f
(
x2 + 2rx + r2

)
= K

(
x2 + 2rx + r2

)
· (f(x) + f(r) + 2F (x, r)) .

Applying the identity (2.6) to the left side of this equation and the
rational homogeneity properties of F and f , we obtain

f(x2) + 4r2f(x) + r4f(1) + 4rF (x2, x) + 2r2F (x2, 1) + 4r3F (x, 1) =

= Kx2f(x) + 2Krxf(x) + Kr2f(x) + Kr2x2f(1) + 2Kr3xf(1)+

+ Kr4f(1) + 2Krx2F (x, 1) + 4Kr2xF (x, 1) + 2Kr3F (x, 1) ,

and thus

0 = (K − 1)f(1)r4 + 2 [(K − 2)F (x, 1) + Kf(1)x] r3

+
[
(K − 4)f(x) + Kf(1)x2 + 4KxF (x, 1)− 2F (x2, 1)

]
r2

+ 2
[
Kxf(x) + Kx2F (x, 1)− 2F (x2, x)

]
r +

[
Kx2f(x)− f(x2)

]
.

Applying Lemma 2.3, we obtain, besides (4.7), the equations

(K − 1)f(1) = 0 ,(4.10)

(K − 2)F (x, 1) + Kf(1)x = 0 ,(4.11)

(K − 4)f(x) + Kf(1)x2 + 4KxF (x, 1)− 2F (x2, 1) = 0 ,(4.12)

Kxf(x) + Kx2F (x, 1)− 2F (x2, x) = 0 .(4.13)

for every x ∈ R .
Equation (4.10) implies K = 1 or f(1) = 0 . If K = 1 , we may apply

Theorem 4.1 with n = 2 (or directly (4.11) to get F (x, 1) = f(1)x

and then (4.12)) to obtain f(x) = f(1) · x2 for all x ∈ R . Clearly,
f(x) = Cx2 (x ∈ R) is, in fact, a quadratic solution of (4.7) with
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K = 1 for any real coefficient C .
In the rest of this proof, we consider the case K 6= 1 , hence we have

f(1) = 0 . Then equation (4.11) has the form

(K − 2)F (x, 1) = 0 (x ∈ R). (4.14)

This implies K = 2 or F (x, 1) = 0 (x ∈ R). If K = 2 , equation (4.12)
implies (4.8) with the additive mapping

ϕ(x) = F (x, 1) (x ∈ R).

Substituting (4.8) into f(x2) = 2x2f(x) (x ∈ R), we obtain (2.14).
Hence, due to Lemma 2.4, we have ϕ ∈ D2(R).

It is easy to verify that, for each ϕ ∈ D2(R), the function f defined
by (4.8) is quadratic. In order to show that f fulfills equation (4.7)
with K = 2 , let B : R × R → R denote the symmetric bi-derivation
satisfying

ϕ(xy)− xϕ(y)− ϕ(x)y = B(x, y)

for every x , y ∈ R . In particular, B(x, x) = ϕ(x2)− 2xϕ(x) (x ∈ R),
hence we have

f(x) = 4xϕ(x)−ϕ(x2) = 2xϕ(x)−B(x, x) = ϕ(x2)−2B(x, x) (x ∈ R).

Since B is a bi-derivation, it fulfills

B(x2, y2) = 4xyB(x, y) (x, y ∈ R), (4.15)

and thus

f(x2) = 2x2ϕ(x2)−B(x2, x2) = 2x2ϕ(x2)− 4x2B(x, x) = 2x2f(x)

for every x ∈ R .
If K ∈ R \ { 1 , 2}, equation (4.14) yields F (x, 1) = 0 (x ∈ R).
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Hence equation (4.12) has the short form

(K − 4)f(x) = 0 (x ∈ R). (4.16)

If f is not identically equal to zero, this implies K = 4 . Now, it follows
from property (4.15) of bi-derivations that the trace f(x) = B(x, x)

(x ∈ R) of a (symmetric) bi-derivation B fulfills f (x2) = 4x2f(x) for
every x ∈ R and, of course, such a function f is also quadratic.

Remark 4.1. If ϕ ∈ D(R), then equation (4.8) yields f(x) = ϕ(x2)

(x ∈ R). This observation ensures the existence of a non-zero quadratic
solution f of (4.7) for K = 2 . The existence of such solutions in the
cases K = 1 and K = 4 is an obvious consequence of Theorem 4.2.

Remark 4.2. We can observe that, in case K = 4 , Theorem 4.2 pro-
vides only a sufficient condition for f to satisfy equations (2.4) and
(4.7). It is an open question whether this condition is necessary.

However, we can prove a somewhat weaker necessary condition in
that case.

Theorem 4.3. If a quadratic function f : R → R satisfies the addi-
tional equation

f
(
x2
)

= 4x2f(x) (4.17)

for every x ∈ R, then f is the trace of a symmetric bi-derivation of
order 2.

Proof. Equation (4.14) yields

F (x, 1) = 0, (4.18)

for all x ∈ R.
Putting x + 1 in place of x in equation (4.17), we have

f
(
x2 + 2x + 1

)
= 4

(
x2 + 2x + 1

)
f(x + 1).
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Applying the identity (2.6) to the left side of this equation and the
rational homogeneity properties of F and f , we obtain

f
(
x2
)

+ 4f(x) + f(1) + 4F
(
x2, x

)
+ 2F

(
x2, 1

)
+ 4F (x, 1) =

= 4
(
x2 + 2x + 1

)
[f(x) + f(1) + 2F (x, 1)] .

Substituting (4.17) and (4.18) into the latter equation, we obtain

F
(
x2, x

)
= 2xf(x). (4.19)

Let x, y ∈ R and r ∈ Q . Substituting x+ ry in place of x in equation
(4.19), we get

F
(
x2 + 2rxy + r2y2, x + ry

)
= 2(x + ry)f(x + ry).

Rearranging the latter equation and using (4.19) we obtain

0 =2rF (xy, x) + r2F
(
y2, x

)
+ rF

(
x2, y

)
+ 2r2F (xy, y)−

− 2r2xf(y)− 4rxF (x, y)− 2ryf(x)− 4r2yF (x, y).

Thus we get a polynomial in r. The coefficient of r1 equals

2F (xy, x) = 4xF (x, y) + 2yf(x)− F
(
x2, y

)
. (4.20)

Replacing x by x2 in equation (4.20), we have

2F
(
x2y, x2

)
= 4x2F

(
x2, y

)
+ 2yf

(
x2
)
− F

(
x4, y

)
.

Applying (4.17), this equation can be reformulated as

2F
(
x2y, x2

)
= 4x2F

(
x2, y

)
+ 8x2yf (x)− F

(
x4, y

)
. (4.21)

Let x, y ∈ R and r ∈ Q . Replacing x with x + ry in equation (4.17)



4. Conditional equations involving the power function 36

we obtain
f
(
(x + ry)2

)
= 4(x + ry)2f(x + ry) . (4.22)

Expanding the powers of sums on both sides, equation (4.22) can be
written as

f
(
x2 + 2rxy + r2y2

)
=

= 4
(
x2 + 2rxy + r2y2

)
· [f(x) + f(ry) + 2F (x, ry)] .

Applying the identity (2.6) to the left side of this equation and the
rational homogeneity properties of F and f , we obtain

f
(
x2
)

+ 4r2f(xy) + r4f
(
y2
)

+

+ 4rF
(
x2, xy

)
+ 2r2F

(
x2, y2

)
+ 4r3F

(
xy, y2

)
=

= 4x2f(x) + 8rxyf(x) + 4r2y2f(x) + 4r2x2f(y) + 8r3xyf(y)+

+ 4r4y2f(y) + 8rx2F (x, y) + 16r2xyF (x, y) + 8r3y2F (x, y) ,

and thus

0 =
[
4y2f(y)− f

(
y2
)]

r4 +
[
8xyf(y) + 8y2F (x, y)− 4F

(
xy, y2

)]
r3

+
[
4y2f(x) + 4x2f(y) + 16xyF (x, y)− 4f(xy)− 2F

(
x2, y2

)]
r2

+
[
8xyf(x) + 8x2F (x, y)− 4F

(
x2, xy

)]
r +

[
4x2f(x)− f

(
x2
)]

.

Applying Lemma 2.3 for the coefficient of r1 we obtain

4F
(
x2, xy

)
= 8xyf(x) + 8x2F (x, y).

Replacing y by xy in the latter equation, then dividing the resulting
equation by 2, we get

2F
(
x2, x2y

)
= 4x2yf(x) + 4x2F (x, xy).
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Substituting (4.20) into the latter equation, we obtain

2F
(
x2, x2y

)
= 4x2yf(x) + 2x2

[
4xF (x, y) + 2yf(x)− F

(
x2, y

)]
=

= 4x2yf(x) + 4x2yf(x) + 8x3F (x, y)− 2x2F
(
x2, y

)
,

i.e.,

2F
(
x2, x2y

)
= 8x2yf(x) + 8x3F (x, y)− 2x2F

(
x2, y

)
. (4.23)

From the equality of the left sides of (4.21) and (4.23), we have

4x2F
(
x2, y

)
+ 8x2yf (x)− F

(
x4, y

)
=

= 8x2yf(x) + 8x3F (x, y)− 2x2F
(
x2, y

)
,

therefore
F
(
x4, y

)
= 6x2F

(
x2, y

)
− 8x3F (x, y). (4.24)

Equation (4.24) holds for a fixed y ∈ R, for each x ∈ R. By Lemma 2.4
F is a derivation of order 2 in x. Since F is a symmetric, bi-additive
function, it follows that F is a derivation of order 2 in each variable,
so F is a symmetric bi-derivation of order 2.

The significance of the previous results is highlighted by the follow-
ing theorem, where two quadratic functions are involved.

Theorem 4.4. The quadratic functions f , g : R → R satisfy the
additional equation y2f(x) = x2g(y) for the pairs (x, y) ∈ S1 with
m = 2 if, and only if, there exist an additive function ϕ : R→ R and
a quadratic function h : R→ R satisfying the condition

h(x2) = 4x2h(x) (x ∈ R)

such that

f(x) = h(x) + ϕ(x2) and g(x) =
1

4
h(x) + xϕ(x)
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for all x ∈ R .

Proof. In this case the conditional equation takes the form

x2f(x) = g
(
x2
)
. (4.25)

Let x ∈ R and r ∈ Q . Replacing x with x + r in equation (4.25) we
obtain

(x + r)2f(x + r) = g
(
(x + r)2

)
. (4.26)

Expanding the powers of sums on both sides, equation (4.26) can be
written as(
x2 + 2rx + r2

)
(f(x) + f(r) + 2F (x, r)) =

= g(x2) + 4r2g(x) + r4g(1) + 4rG(x2, x) + 2r2G(x2, 1) + 4r3G(x, 1).

In view of Lemma 2.3, the coefficients of each power of r have to be
equal on the two sides. For the coefficients of r4, we get f(1) = g(1).
Considering the coefficient of r3 we obtain 2F (x, 1)+2xf(1) = 4G(x, 1),
that is

2G(x, 1) = F (x, 1) + xf(1).

Hence
2G
(
x2, 1

)
= F

(
x2, 1

)
+ x2f(1). (4.27)

The equality of the coefficients of r2 can be written as

f(x) + 4xF (x, 1) + x2f(1) = 4g(x) + 2G
(
x2, 1

)
.

Substituting (4.27) in the latter equation we obtain

4g(x) = f(x)− F
(
x2, 1

)
+ 4xF (x, 1). (4.28)

Substituting x2 in place of x in equation (4.28) and applying the iden-
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tity (4.25), we obtain

f
(
x2
)

= 4x2f(x)− 4x2F
(
x2, 1

)
+ F

(
x4, 1

)
,

i.e.
f
(
x2
)
− F

(
x4, 1

)
= 4x2

[
f(x)− F

(
x2, 1

)]
.

Now, we define a map h : R→ R by h(x) := f(x)− F (x2, 1).

h
(
x2
)

= f
(
x2
)
− F

(
x4, 1

)
= 4x2

[
f(x)− F

(
x2, 1

)]
= 4x2h(x).

Substituting h in (4.28), we have

g(x) =
1

4
h(x) + xF (x, 1).

The converse is easily verified.

4.3 Equation for cubic functions
In this section we investigate cubic functions f : R→ R that satisfy

the additional equation (1.2) for the pairs (x, y) ∈ S1.

Theorem 4.5. If f : R→ R is a generalized monomial of degree 3 that
satisfies the additional equation y3f(x) = x3f(y) under the condition
(x, y) ∈ S1, then f(x) = x3f(1) for all x ∈ R .

Proof. First, we prove the theorem in case of positive m.
Let m > 2, m ∈ N. The additional equation is: x3mf(x) = x3f (xm).
Dividing this equation by x3 if x 6= 0 , and taking f(0) = 0 into
consideration as well, we obtain

f (xm) = x3m−3f(x) (4.29)

for all x ∈ R.
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Replacing x with x + r in equation (4.29) we obtain

f ((x + r)m) = (x + r)3m−3f(x + r). (4.30)

Expanding the powers of sums on both sides, equation (4.30) can
be written as

f

(
m∑
k=0

(
m

k

)
xkrm−k

)
=

3m−3∑
l=0

(
3m− 3

l

)
xlr3m−3−lf(x + r). (4.31)

Applying the identity (2.8) to the left side of this equation and the
rational homogeneity properties of F, we have

f

(
m∑
k=0

(
m

k

)
xkrm−k

)
=

=
∑

k0+k1+···+km=3

3!

k0!k1! · · · km!
·

· F

(
[rm]k0 ,

[(
m

1

)
xrm−1

]
k1

, . . . ,

[(
m

m

)
xmr0

]
km

)
=

=
∑

k0+···+km=3

3!

k0!k1! · · · km!
rmk0r(m−1)k1 · · · r(m−m)km·

· F

(
[1]k0 ,

[(
m

1

)
x

]
k1

, . . . , [xm]km

)
=

=
∑

k0+k1+···+km=3

3!

k0!k1! · · · km!
r3m−(k1+2k2+···+mkm)·

· F

(
[1]k0 ,

[(
m

1

)
x

]
k1

, . . . , [xm]km

)
.

Then applying (2.7) to the right side of equation (4.31) and the rational
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homogeneity properties of F , we have

3m−3∑
l=0

(
3m− 3

l

)
xlr3m−3−lf(x + r) =

=
3m−3∑
l=0

(
3m− 3

l

)
xlr3m−3−l

3∑
p=0

(
3

p

)
F ([x]p, [r]3−p) =

=
3m−3∑
l=0

(
3m− 3

l

)
xlr3m−3−l

3∑
p=0

(
3

p

)
r3−pF ([x]p, [1]3−p) .

Thus, the equation (4.31) can be written in the form

0 =
∑

k0+k1+···+km=3

3!

k0!k1! · · · km!
r3m−(k1+2k2+···+mkm)·

· F

(
[1]k0 ,

[(
m

1

)
x

]
k1

, . . . , [xm]km

)
− (4.32)

−
3m−3∑
l=0

(
3m− 3

l

)
xlr3m−3−l

3∑
p=0

(
3

p

)
r3−pF ([x]p, [1]3−p) .

On the right side of equation (4.32), for each fixed x ∈ R, with respect
to the variable r, we obtain a polynomial (of degree at most 3m) that
equals zero for every r ∈ Q. According to Lemma 2.3, each coefficient
of this polynomial has to equal zero (for each x ∈ R). The coefficient
of r3m equals f(1) − f(1) = 0, so the degree is, in fact, smaller than
3m. However, for the coefficient of r3m−1 this observation yields

0 =
3!

2!
F (1, 1,mx)− [3F (x, 1, 1) + (3m− 3)xf(1)] .

Thus
3(m− 1)F (x, 1, 1) = 3(m− 1)xf(1).
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Since m > 2 implies m− 1 > 0, we obtain

F (x, 1, 1) = xf(1) (4.33)

for all x ∈ R. The equality of the coefficient of r3m−2 to zero can be
written as

0 =
3!

2!
m2F (1, x, x) +

3!

2!

m(m− 1)

2
F
(
1, 1, x2

)
−

−
[
3F (x, x, 1) + 3(m− 1)3xF (x, 1, 1) +

(3m− 3)(3m− 4)

2
x2f(1)

]
.

Applying property (4.33), after some computation we have

3
(
m2 − 1

)
F (x, x, 1) = 3

(
m2 − 1

)
x2f(1),

i.e.
F (x, x, 1) = x2f(1) (4.34)

for all x ∈ R. The equality of the coefficient of r3m−3 to zero can be
written as

0 =
3!

3!
m3F (x, x, x) + 3!

m2(m− 1)

2
F
(
1, x, x2

)
+

+
3!

2!

m(m− 1)(m− 2)

3!
F
(
1, 1, x3

)
−

− f(x)− (3m− 3)3xF (x, x, 1)− (3m− 3)(3m− 4)

2
3x2F (x, 1, 1)−

− (3m− 3)(3m− 4)(3m− 5)

3!
x3f(1).

In case m < 3, the third member of the right side of equality is elimi-
nated.
Applying properties (4.33) and (4.34), this equation can be written in
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the form

m3f(x)+3m2(m− 1)F (1
(
1, x, x2

)
+

m(m− 1)(m− 2)

2
x3f(1) =

= f(x) + (9m− 9)x3f(1) +
3 (9m2 − 21m + 12)

2
x3f(1)+

+
(9m2 − 21m + 12) (3m− 5)

6
x3f(1).

After some computation we have(
3m3 − 3m2

)
F
(
1, x, x2

)
=

=−
(
m3 − 1

)
f(x) +

(
4m3 − 3m2 − 1

)
x3f(1).

(4.35)

The equality of the coefficient of r3m−4 to zero can be written as

0 = 3!
m2(m− 1)(m− 2)

3!
F
(
1, x, x3

)
+

3!

2!

m3(m− 1)

2
F
(
x, x, x2

)
+

+
3!

2!

m2(m− 1)2

4
F
(
1, x2, x2

)
+

3!

2!

m(m− 1)(m− 2)(m− 3)

4!
·

· F
(
x4, 1, 1

)
− (3m− 3)xf(x)− (3m− 3)(3m− 4)

2
3x2F (x, x, 1)−

− (3m− 3)(3m− 4)(3m− 5)

3!
3x3F (x, 1, 1)−

− (3m− 3)(3m− 4)(3m− 5)(3m− 6)

4!
x4f(1).

In case m < 4, the first member and the fourth member of the right
side of equality are eliminated.
Applying properties (4.33) and (4.34), this equation can be written in
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the form

m2(m− 1)(m− 2)F
(
1, x, x3

)
+

3

2
m3(m− 1)F

(
x, x, x2

)
+

+
3

4
m2(m− 1)2x4f(1) +

3m(m− 1)(m− 2)(m− 3)

24
x4f(1) =

= 3(m− 1)xf(x) +
9(m− 1)(3m− 4)

2
x4f(1)+

+
3(m− 1)(3m− 4)(3m− 5)

2
x4f(1)+

+
(m− 1)(3m− 4)(3m− 5)(3m− 6)

8
x4f(1).

After some compuation we get

6xf(x)− 3m3F (x, x, x2)− (2m3 − 4m2)F (x, x3, 1) =

= (−5m3 + 4m2 + 6)x4f(1). (4.36)

Replacing x with x + 1 in equation (4.36) we have

6(x + 1)f(x + 1)− 3m3F
(
x + 1, x + 1, x2 + 2x + 1

)
−

−
(
2m3 − 4m2

)
F
(
x + 1, x3 + 3x2 + 3x + 1, 1

)
= (4.37)

=
(
−5m3 + 4m2 + 6

)
(x + 1)4f(1).

f(x + 1) = f(x) +
(
3x2 + 3x + 1

)
f(1),

F
(
x + 1, x + 1, x2 + 2x + 1

)
=

= F
(
x, x, x2

)
+ 2F

(
1, x, x2

)
+ 2f(x) +

(
6x2 + 4x + 1

)
f(1),

F
(
x + 1, x3 + 3x2 + 3x + 1, 1

)
=

= F
(
x, x3, 1

)
+ 3F

(
x, x2, 1

)
+
(
x3 + 6x2 + 4x + 1

)
f(1).
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Substituting these in equation (4.37), we obtain

6(x + 1)
[
f(x) +

(
3x2 + 3x + 1

)
f(1)

]
−

− 3m3
[
F
(
x, x, x2

)
+ 2F

(
1, x, x2

)
+ 2f(x) +

(
6x2 + 4x + 1

)
f(1)

]
−

−
(
2m3 − 4m2

)
[F
(
x, x3, 1

)
+ 3F

(
x, x2, 1

)
+

+
(
x3 + 6x2 + 4x + 1

)
f(1)] =

(
−5m3 + 4m2 + 6

)
(x + 1)4f(1).

Using equation (4.36), we get

6f(x) + 6(x + 1)
(
3x2 + 3x + 1

)
f(1)−

− 3m3
[
2F
(
1, x, x2

)
+ 2f(x) +

(
6x2 + 4x + 1

)
f(1)

]
−

−
(
2m3 − 4m2

) [
3F
(
x, x2, 1

)
+
(
x3 + 6x2 + 4x + 1

)
f(1)

]
=

=
(
−5m3 + 4m2 + 6

)
x4f(1) +

(
−5m3 + 4m2 + 6

)
(x + 1)4f(1).

After some computation we have

−6
(
m3 − 1

)
f(x)− 4

(
3m3 − 3m2

)
F
(
1, x, x2

)
=

=
(
6x3 − 18m3x3 + 12m2x3

)
f(1).

Now, we use equation (4.35),

−6
(
m3 − 1

)
f(x)−4

[
−
(
m3 − 1

)
f(x) +

(
4m3 − 3m2 − 1

)
x3f(1)

]
=

=
(
6x3 − 18m3x3 + 12m2x3

)
f(1),

i.e.
−2
(
m3 − 1

)
f(x) =

(
−2m3x3 + 2x3

)
f(1).

Hence, in case m > 2

f(x) = x3f(1)

for all x ∈ R.
If m 6 −2, then let l = −m , whence l ∈ N, l > 2 . Then y = x−l =

1

xl
.

Hence equation (4.29) has the form
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f
(
x−l
)

= x−3l−3f(x). (4.38)

Replacing x with x−l in equation (4.38) we have

f
(
xl

2
)

= x−l(−3l−3)f
(
x−l
)
.

Now from (4.38), we get

f
(
xl

2
)

= x−l(−3l−3)x−3l−3f(x),

i.e.
f
(
xl

2
)

= x3l2−3f(x). (4.39)

For every 2 6 l ∈ N there exists p ∈ N, p > 2 such that p = l2.
Replacing l2 with p in equation (4.39) we get equation (4.29). Hence
f(x) = x3f(1) for all x ∈ R .



5. Equations along conic sections

In this chapter we investigate additive, quadratic and higher order
monomial functions f, g : R → R that satisfy conditional equations
along hyperbolas or the unit circle:

S2 = {(x, y) ∈ R2 |xy = 1},
S3 = {(x, y) ∈ R2 |x2 − y2 = 1},
S4 = {(x, y) ∈ R2 |x2 + y2 = 1}.

We begin with a summary of what is already known about additive
functions satisfying conditional equations along hyperbolas or the unit
circle.
Every additive mapping f : R→ R, which satisfies

f

(
1

x

)
=

1

x2
f(x)

for all x 6= 0 is of the form f(x) = f(1)x for all x ∈ R (Theorem II. in
[25] and Corollary 2 in [30]). If f, g : R→ R are additive functions and
satisfy (1.5) for all x 6= 0 with (x, y) ∈ S2, then there exists a derivation
d : R → R for which f(x) = d(x) + xf(1) and g(x) = −d(x) + xf(1)

(Theorem 4 in [30]). If the real additive map f satisfies (1.4) for all
points (x, y) ∈ S4 then f is linear (Corollary 2.2 in [6]). Theorem
3.1 in [12] generalizes the latter case by introducing a second additive
mapping, that is every additive functions f, g : R → R, which satisfy
(1.5) for all points (x, y) ∈ S4 are equal and linear.

47
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5.1 Counterexamples for the hyperbola xy = 1

If f : R → R is a generalized monomial of degree n ∈ N, n > 2,
f satisfies (1.2) for all (x, y) ∈ S2, it is easy to see, that there exist
discontinuous solutions.

The conditional equation is

f(x) = x2nf

(
1

x

)
, (∀ x 6= 0).

1. Example. If d : R→ R is a not identically zero derivation, then
a discontinuous solution f can be given in the following way:

f(x) =

x (d(x))n−1 if n is an odd number,

(d(x))n if n is an even number.

If n is an odd number, then

f(x) = x (d(x))n−1 .

Putting
1

x
in place of x, we get

f

(
1

x

)
=

1

x

(
d

(
1

x

))n−1
=

1

x

(
− 1

x2
d (x)

)n−1
=

=
1

x

1

x2n−2 (d (x))n−1 =
x

x2n
(d (x))n−1 =

1

x2n
f(x).

If n is an even number, then

f(x) = (d(x))n ,
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f

(
1

x

)
=

(
d

(
1

x

))n
=

(
− 1

x2
d (x)

)n
=

=
1

x2n
(d (x))n =

1

x2n
f(x).

2. A larger family of examples of discontinuous generalized mono-
mials of degree n ∈ N, n > 2 is given by:

f(x) = xn−2k (d(x))2k (x ∈ R),

where d : R→ R is a not identically zero derivation, k ∈ {1, . . . ,
[n/2]}.
Putting

1

x
in place of x, we get

f

(
1

x

)
=

(
1

x

)n−2k (
d

(
1

x

))2k

=
1

xn−2k

(
− 1

x2
d (x)

)2k

=

=
1

xn−2k
1

x4k
(d (x))2k =

1

xn+2k
(d (x))2k =

=
1

x2n
xn−2k (d (x))2k =

1

x2n
f(x).

It is an open problem, what is the general monomial solution f : R→
R that satisfy the additional assumption ynf(x) = xnf(y), for all
(x, y) ∈ S2.

5.2 Partial results for the hyperbola xy = 1

In this section we study quadratic real functions that satisfy the
additional assumption (1.2) for all (x, y) ∈ S2. Though the conti-
nuity of f does not follow from this assumption, we can obtain some
interesting results for the mappings x 7→ F (x, 1) and x 7→ F (x, 1/x).

Lemma 5.1. If a quadratic function f : R→ R satisfies the additional
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equation y2f(x) = x2f(y) for the pairs (x, y) ∈ S2 then

F (x, 1) = xf(1) (5.1)

for all x ∈ R .

Proof. The additional equation is

f(x) = x4f

(
1

x

)
, (∀ x 6= 0). (5.2)

Using this equality for x 6= −1, 0, 1 we write f

(
x

x− 1

)
in two ways:

f

(
x

x− 1

)
=

(
x

x− 1

)4

f

(
x− 1

x

)
=

(
x

x− 1

)4

f

(
1− 1

x

)
=

=

(
x

x− 1

)4 [
f(1) +

1

x4
f(x)− 2F

(
1

x
, 1

)]
=

=
1

(x− 1)4

[
x4f(1) + f(x)− 2x4F

(
1

x
, 1

)]
,

but

f

(
x

x− 1

)
= f

(
1 +

1

x− 1

)
=

= f(1) + f

(
1

x− 1

)
+ 2F

(
1

x− 1
, 1

)
=

= f(1) +
1

(x− 1)4
f(x− 1) + 2F

(
1

x− 1
, 1

)
=

=
1

(x− 1)4
[
(x− 1)4f(1) + f(x) + f(1)− 2F (x, 1)+

+2(x− 1)4F

(
1

x− 1
, 1

)]
.
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From the equality of the two last equations, it follows that

x4f(1) + f(x)− 2x4F

(
1

x
, 1

)
=

= (x− 1)4f(1) + f(1) + f(x)− 2F (x, 1) + 2(x− 1)4F

(
1

x− 1
, 1

)
,

thus

(x− 1)4F

(
1

x− 1
, 1

)
−F (x, 1) + x4F

(
1

x
, 1

)
=

=
(
2x3 − 3x2 + 2x− 1

)
f(1).

(5.3)

Putting x+ 1 in place of x in last equation, and rearranging the equa-
tion, we get

(x + 1)4F

(
1

x + 1
, 1

)
−F (x, 1) + x4F

(
1

x
, 1

)
=

=
(
2x3 + 3x2 + 2x + 1

)
f(1).

Adding the last two equations, we obtain

(x− 1)4F

(
1

x− 1
, 1

)
+ (x + 1)4F

(
1

x + 1
, 1

)
=

= 2F (x, 1)− 2x4F

(
1

x
, 1

)
+
(
4x3 + 4x

)
f(1).

(5.4)

On the other hand,

f

(
x + 1

x− 1

)
=

(
x + 1

x− 1

)4

f

(
x− 1

x + 1

)
=

(
x + 1

x− 1

)4

f

(
1− 2

x + 1

)
=

=

(
x + 1

x− 1

)4 [
f(1) + 4f

(
1

x + 1

)
− 4F

(
1

x + 1
, 1

)]
=
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=

(
x + 1

x− 1

)4 [
f(1) +

4

(x + 1)4
f (x + 1)− 4F

(
1

x + 1
, 1

)]
=

=

(
1

x− 1

)4 {
(x + 1)4f(1) + 4 [f(x) + f(1) + 2F (x, 1)]−

− 4(x + 1)4F

(
1

x + 1
, 1

)}
.

However, we may also write

f

(
x + 1

x− 1

)
= f

(
1 +

2

x− 1

)
= f(1) + f

(
2

x− 1

)
+ 2F

(
2

x− 1
, 1

)
=

= f(1) +
4

(x− 1)4
f(x− 1) + 4F

(
1

x− 1
, 1

)
=

=

(
1

x− 1

)4 {
(x− 1)4f(1) + 4 [f(x) + f(1)− 2F (x, 1)] +

+ 4(x− 1)4F

(
1

x− 1
, 1

)}
.

Hence, it follows that

(x + 1)4f(1) + 4 [f(x) + f(1) + 2F (x, 1)]− 4(x + 1)4F

(
1

x + 1
, 1

)
=

= (x− 1)4f(1) + 4 [f(x) + f(1)− 2F (x, 1)] + 4(x− 1)4F

(
1

x− 1
, 1

)
,

thus

(x− 1)4F

(
1

x− 1
, 1

)
+ (x + 1)4F

(
1

x + 1
, 1

)
=

= 4F (x, 1) +
(
2x3 + 2x

)
f(1).

(5.5)

From the equality of the left sides of (5.4) and (5.5) we obtain

2F (x, 1)−2x4F

(
1

x
, 1

)
+
(
4x3 + 4x

)
f(1) = 4F (x, 1)+

(
2x3 + 2x

)
f(1),
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therefore

x4F

(
1

x
, 1

)
= −F (x, 1) +

(
x3 + x

)
f(1). (5.6)

Putting x− 1 in place of x in this equality, we get

(x− 1)4F

(
1

x− 1
, 1

)
=

= −F (x, 1) + f(1) +
(
x3 − 3x2 + 3x− 1 + x− 1

)
f(1),

i.e.

(x− 1)4F

(
1

x− 1
, 1

)
= −F (x, 1) +

(
x3 − 3x2 + 4x− 1

)
f(1). (5.7)

Substituting the equations (5.6) and (5.7) in (5.3), we get

−F (x, 1) +
(
x3 − 3x2 + 4x− 1

)
f(1)− F (x, 1)− F (x, 1)+

+
(
x3 + x

)
f(1) =

(
2x3 − 3x2 + 2x− 1

)
f(1),

so
F (x, 1) = xf(1).

The last equation is also true for x = −1, 0, or x = 1.

Lemma 5.2. If a quadratic function f : R→ R satisfies the additional
equation y2f(x) = x2f(y) for the pairs (x, y) ∈ S2, then

f
(
x2
)

= 2x4F

(
x,

1

x

)
+ 6x2f(x)− 7x4f(1) (5.8)

for all x ∈ R \ {0} .

Proof. Obviously, (5.8) holds for x = −1 and x = 1.
For x 6= −1, 1 we have

1

x2 − 1
=

1

2

(
1

x− 1
− 1

x + 1

)
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and
x

x2 − 1
=

1

2

(
1

x− 1
+

1

x + 1

)
.

According to (2.4)

f

(
1

x2 − 1

)
+ f

(
x

x2 − 1

)
=

=
1

4
f

(
1

x− 1
− 1

x + 1

)
+

1

4
f

(
1

x− 1
+

1

x + 1

)
=

=
1

2

[
f

(
1

x− 1

)
+ f

(
1

x + 1

)]
.

(5.9)

According to Lemma 5.1 and using (5.2)

f

(
1

x− 1

)
=

1

(x− 1)4
f(x− 1) =

1

(x− 1)4
[f(x) + (1− 2x)f(1)] ,

f

(
1

x + 1

)
=

1

(x + 1)4
f(x + 1) =

1

(x + 1)4
[f(x) + (1 + 2x)f(1)] ,

f

(
1

x2 − 1

)
=

1

(x2 − 1)4
f
(
x2 − 1

)
=

=
1

(x2 − 1)4
[
f
(
x2
)

+
(
1− 2x2

)
f(1)

]
,

f

(
x

x2 − 1

)
=

x4

(x2 − 1)4
f

(
x− 1

x

)
=

=
1

(x2 − 1)4

[(
x4 + 1

)
f(x)− 2x4F

(
x,

1

x

)]
.

Substituting these in equation (5.9), we obtain

1

(x2 − 1)4

[
f
(
x2
)

+
(
1− 2x2

)
f(1) +

(
x4 + 1

)
f(x)− 2x4F

(
x,

1

x

)]
=

=
1

2

1

(x− 1)4
[f(x) + (1− 2x)f(1)] +

1

2

1

(x + 1)4
[f(x) + (1 + 2x)f(1)] .
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Multiplying the last equation with (x2 − 1)
4:

f
(
x2
)

+
(
1− 2x2

)
f(1) +

(
x4 + 1

)
f(x)− 2x4F

(
x,

1

x

)
=

=
1

2
(x + 1)4 [f(x) + (1− 2x)f(1)] +

1

2
(x− 1)4 [f(x) + (1 + 2x)f(1)] .

After some computation, we get

f
(
x2
)

+
(
1− 2x2

)
f(1) +

(
x4 + 1

)
f(x)− 2x4F

(
x,

1

x

)
=

=
(
x4 + 6x2 + 1

)
f(x) +

(
−7x4 − 2x2 + 1

)
f(1),

and thus

f
(
x2
)

= 2x4F

(
x,

1

x

)
+ 6x2f(x)− 7x4f(1).

Lemma 5.3. If a quadratic function f : R→ R satisfies

F

(
x,

1

x

)
=

f(x)

x2
(5.10)

for every x 6= 0 , then
f(x) = x2f(1)

for all x ∈ R .

Proof. Replacing x by
1

x
in (5.10), we get

F

(
1

x
, x

)
= x2f

(
1

x

)
.

From the equality of the left sides of the last equation and (5.10) we
obtain that f satisfies the additional equation (1.2) (n = 2) for the
pairs (x, y) ∈ S2.
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According to Lemma 5.2 and using (5.10) for every x 6= 0 ,

f
(
x2
)

= 2x4F

(
x,

1

x

)
+ 6x2f(x)− 7x4f(1) =

= 2x2f(x) + 6x2f(x)− 7x4f(1),

thus
f
(
x2
)

= 8x2f(x)− 7x4f(1).

This equation is also true for x = 0 .
Putting x − 1 in place of x in this equality, then x + 1 in place of x,
and using Lemma 5.1 we get

f
(
(x− 1)2

)
= 8(x− 1)2f(x− 1)− 7(x− 1)4f(1) =

= 8(x− 1)2 [f(x) + (1− 2x)f(1)]− 7(x− 1)4f(1) =

= 8(x− 1)2f(x) + 8(x− 1)2(1− 2x)f(1)− 7(x− 1)4f(1) =

= (8x2 − 16x + 8)f(x) +
(
−7x4 + 12x3 − 2x2 − 4x + 1

)
f(1),

f
(
(x + 1)2

)
= 8(x + 1)2f(x + 1)− 7(x + 1)4f(1) =

= 8(x + 1)2 [f(x) + (1 + 2x)f(1)]− 7(x + 1)4f(1) =

= 8(x + 1)2f(x) + 8(x + 1)2(1 + 2x)f(1)− 7(x + 1)4f(1) =

= (8x2 + 16x + 8)f(x) +
(
−7x4 − 12x3 − 2x2 + 4x + 1

)
f(1),

F
(
(x + 1)2, (x− 1)2

)
= F

(
x2 + 1 + 2x, x2 + 1− 2x

)
=

= f
(
x2 + 1

)
− f(2x) =

= f
(
x2
)

+
(
1 + 2x2

)
f(1)− 4f(x) =

= 8x2f(x) +
(
−7x4 + 1 + 2x2

)
f(1)− 4f(x) =

= (8x2 − 4)f(x) +
(
−7x4 + 2x2 + 1

)
f(1).
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Now use 4x = (x + 1)2 − (x− 1)2 to obtain

16f(x) = f(4x) = f
(
(x + 1)2 − (x− 1)2

)
=

= f
(
(x + 1)2

)
+ f

(
(x− 1)2

)
− 2F

(
(x + 1)2, (x− 1)2

)
=

=
(
8x2 − 16x + 8

)
f(x) +

(
−7x4 + 12x3 − 2x2 − 4x + 1

)
f(1)+

+
(
8x2 + 16x + 8

)
f(x) +

(
−7x4 − 12x3 − 2x2 + 4x + 1

)
f(1)−

−
(
16x2 − 8

)
f(x)−

(
−14x4 + 4x2 + 2

)
f(1) =

= 24f(x)− 8x2f(1).

Hence
f(x) = x2f(1)

for all x ∈ R .

5.3 Equations along the hyperbola x2 − y2 = 1

In this section we investigate additive and quadratic functions f, g

that satisfy additional equations along the hyperbola x2− y2 = 1. We
start with the additive case:

Theorem 5.1. Let f, g : R→ R be additive functions. If f, g satisfy
the additional equation (1.5) for the pairs (x, y) ∈ S3 , then f(x) =

g(x) = xf(1) for all x ∈ R .

Proof. Setting

u =
5x + 3y

4
, v =

3x + 5y

4
,

we obtain (u, v) ∈ S3. Thus we have vf(u) = ug(v). Expanding the
latter equation we get

(3x + 5y) [5f(x) + 3f(y)] = (5x + 3y) [3g(x) + 5g(y] . (5.11)



5. Equations along conic sections 58

Then setting

z =
5x− 3y

4
, w =

3x− 5y

4
,

we obtain (z, w) ∈ S3. Thus we have wf(z) = zg(w). Expanding the
latter equation we get

(3x− 5y) [5f(x)− 3f(y)] = (5x− 3y) [3g(x)− 5g(y] . (5.12)

Subtracting (5.12) from (5.11), then dividing by 2, we get

25yf(x) + 9xf(y) = 9yg(x) + 25xg(y).

Now using (1.5) to replace xg(y), we get

xf(y) = yg(x). (5.13)

Adding (5.12) and (5.11), then dividing by 30 we have

xf(x) + yf(y) = xg(x) + yg(y).

Using (1.5) and (5.13) to replace g(x) and g(y) in the latest equation,
we obtain

xf(y) = yf(x). (5.14)

Since x2 − y2 = 1, it follows

x + y =
1

x− y
.

Therefore, by (5.14) we have

f(x + y) = f(x) + f(y) = f(x) +
y

x
f(x) =

x + y

x
f(x).
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Since
x− y =

1

x + y
,

thus

f

(
1

x + y

)
= f(x− y) = f(x)− f(y) =

= (x− y)
f(x)

x
=

x− y

x + y
f(x + y),

i.e.

f

(
1

x + y

)
=

1

(x + y)2
f(x + y).

Putting t instead of x + y in the latest equation, we get

f

(
1

t

)
=

1

t2
f(t)

for all t 6= 0. By Theorem II. in [25] and Corollary 2 in [30] we know
that f(x) = xf(1). Substituting this in equation (1.5), we obtain
g(y) = f(1)y = f(y).

Now let us examine the quadratic case with a single quadratic func-
tion:

Theorem 5.2. If a quadratic function f : R → R satisfies (1.2) for
all (x, y) ∈ S3, then f(x) = x2f(1) for all x ∈ R.

Proof. The additional equation is

f
(√

x2 − 1
)

=
x2 − 1

x2
f(x), ∀x ∈ Rr (−1, 1). (5.15)

Take an arbitrary x ∈ Rr(−1, 1) and choose a y such that x2−y2 = 1.
Setting

u =
5x + 3y

4
, v =

3x + 5y

4
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we observe that

u2 − v2 =
(5x + 3y)2 − (3x + 5y)2

42
=

16x2 − 16y2

16
= x2 − y2 = 1.

Thus we have y2f(x) = x2f(y) and u2f(v) = v2f(u). Clearly, the
latter equation implies

(5x + 3y)2

16
f

(
3x + 5y

4

)
=

(3x + 5y)2

16
f

(
5x + 3y

4

)
,

i.e.
(5x + 3y)2f(3x + 5y) = (3x + 5y)2f(5x + 3y),

which yields

(
25x2 + 9y2 + 30xy

)
[9f(x) + 25f(y) + 30F (x, y)] =

=
(
9x2 + 25y2 + 30xy

)
[25f(x) + 9f(y) + 30F (x, y)]

and thus

F (x, y) = xy [f(x)− f(y)] = xy

[
f(x)− y2

x2
f(x)

]

and hence F (x, y) =
y

x
f(x), i.e.

F
(
x,
√
x2 − 1

)
=

√
x2 − 1

x
f(x). (5.16)

Applying (5.15) and (5.16), we get

f
(
x +
√
x2 − 1

)
= f(x) + f

(√
x2 − 1

)
+ 2F

(
x,
√
x2 − 1

)
=

= f(x) +
x2 − 1

x2
f(x) + 2

√
x2 − 1

x
f(x) =

=

(
x +
√
x2 − 1

)2
x2

f(x),
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and

f
(
x−
√
x2 − 1

)
= f(x) + f

(√
x2 − 1

)
− 2F

(
x,
√
x2 − 1

)
=

= f(x) +
x2 − 1

x2
f(x)− 2

√
x2 − 1

x
f(x) =

=

(
x−
√
x2 − 1

)2
x2

f(x).

Hence(
x−
√
x2 − 1

)2
f
(
x +
√
x2 − 1

)
=

=
(
x +
√
x2 − 1

)2
f
(
x−
√
x2 − 1

)
.

(5.17)

Observing the identity

x +
√
x2 − 1 =

1

x−
√
x2 − 1

and taking u = x−
√
x2 − 1, (5.17) yields

f

(
1

u

)
=

1

u4
f(u), u ∈ (−∞,−1] ∪ (0, 1]. (5.18)

If u = x−
√
x2 − 1, then

1

u
=

1

x−
√
x2 − 1

= x +
√
x2 − 1 ∈ [−1, 0) ∪ [1,∞).

Replacing u by
1

u
, if necessary we can verify (5.18) for every u 6= 0.

From

F
(
x−
√
x2 − 1, x +

√
x2 − 1

)
= f(x)− f

(√
x2 − 1

)
=

= f(x)− x2 − 1

x2
f(x) =

f(x)

x2
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and

x =
u2 + 1

2u
=

u

2
+

1

2u
,

we obtain

F

(
u,

1

u

)
=

4u2

(u2 + 1)2
f

(
u2 + 1

2u

)
.

Due to equation (5.18) we get

(
u2 + 1

)2
F

(
u,

1

u

)
= 4u2f

(
u

2
+

1

2u

)
=

= 4u2

[
1

4
f(u) +

1

4u4
f(u) +

1

2
F

(
u,

1

u

)]
=

= u2f(u) +
1

u2
f(u) + 2u2F

(
u,

1

u

)
.

So (
u4 + 1

)
F

(
u,

1

u

)
=

1

u2

(
u4 + 1

)
f(u),

i.e.,

F

(
u,

1

u

)
=

f(u)

u2
, ∀u 6= 0.

Hence, according to Lemma 5.3

f(x) = x2f(1)

for all x ∈ R .

We generalize this result by using a second quadratic function.

Theorem 5.3. Let f, g : R→ R be quadratic functions. If f, g satisfy
the additional equation (1.3) for the pairs (x, y) ∈ S3, then f(x) =

g(x) = x2f(1) for all x ∈ R .

Proof. The additional equation is

y2f(x) = x2g(y), (5.19)
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for x, y ∈ R fulfilling x2 − y2 = 1 . Setting

u =
5x + 3y

4
, v =

3x + 5y

4

we observe that u2 − v2 = 1.
Thus we have v2f(u) = u2g(v). Expanding the latter equation we get

(9x2+25y2 + 30xy) [25f(x) + 9f(y) + 30F (x, y)] =

=
(
25x2 + 9y2 + 30xy

)
[9g(x) + 25g(y) + 30G(x, y)] .

(5.20)

Let

z =
5x− 3y

4
, w =

3x− 5y

4

we observe that z2 − w2 = 1.
Thus

(9x2+25y2 − 30xy) [25f(x) + 9f(y)− 30F (x, y)] =

=
(
25x2 + 9y2 − 30xy

)
[9g(x) + 25g(y)− 30G(x, y)] .

(5.21)

Subtracting (5.21) from (5.20), then dividing by 60, we get

25xy (f(x)− g(y)) + 9xy (f(y)− g(x)) =

= 25
(
x2G(x, y)− y2F (x, y)

)
+ 9

(
y2G(x, y)− x2F (x, y)

)
.

(5.22)

Similarly let

u1 =
5x + 4y

3
, v1 =

4x + 5y

3

we observe that u2
1 − v21 = 1.

Therefore

(16x2 + 25y2 + 40xy) [25f(x) + 16f(y) + 40F (x, y)] =

=
(
25x2 + 16y2 + 40xy

)
[16g(x) + 25g(y) + 40G(x, y)] .

(5.23)
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Let

z1 =
5x− 4y

3
, w1 =

4x− 5y

3

we observe that z21 − w2
1 = 1.

Thus

(16x2 + 25y2 − 40xy) [25f(x) + 16f(y)− 40F (x, y)] =

=
(
25x2 + 16y2 − 40xy

)
[16g(x) + 25g(y)− 40G(x, y)] .

(5.24)

Subtracting (5.24) from (5.23), then dividing by 80, we get

25xy (f(x)− g(y)) + 16xy (f(y)− g(x)) =

= 25
(
x2G(x, y)− y2F (x, y)

)
+ 16

(
y2G(x, y)− x2F (x, y)

)
.

(5.25)

Subtracting (5.25) from (5.22) we have

xy (f(y)− g(x)) = y2G(x, y)− x2F (x, y). (5.26)

Substituting equation (5.26) in (5.22) we get

xy (f(x)− g(y)) = x2G(x, y)− y2F (x, y). (5.27)

Adding the last two equations, we obtain

xy (f(x) + f(y)− g(x)− g(y)) =
(
x2 + y2

)
[G(x, y)− F (x, y)] .

(5.28)
Let h = f − g . Then h is quadratic and from (5.28) we have

xy (h(x) + h(y)) = −
(
x2 + y2

)
H(x, y). (5.29)
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Substituting the previously used u and v into equation (5.29), we get

(
15x2 + 15y2 + 34xy

)
[34h(x) + 34f(y) + 60H(x, y)] =

= −
(
34x2 + 34y2 + 60xy

)
[15h(x) + 15h(y) + 34H(x, y)] .

After some computation and using (5.29), we obtain(
x2 + y2

)
(h(x) + h(y)) = −4xyH(x, y).

Substituting h(x) + h(y) from (5.29) in the latest equation, we have
H(x, y) = 0, i. e. F (x, y)−G(x, y) = 0. It follows

G(x, y) = F (x, y). (5.30)

Substituting (5.29) in (5.27)

xy (f(x)− g(y)) =
(
x2 − y2

)
F (x, y) = F (x, y). (5.31)

Using (5.19), we get from (5.31)

F (x, y) =
y

x
f(x). (5.32)

Substituting (5.30) and (5.32) in equation (5.26), we obtain

x2g(x) = f(x) + x2f(y). (5.33)

Substituting the previously used u and v into equation (5.33), then
multiplying with 162, we get

(
25x2 + 9y2 + 30xy

)
[25g(x) + 9g(y) + 30G(x, y)] =

= 400f(x) + 144f(y) + 480F (x, y)+

+
(
25x2 + 9y2 + 30xy

)
[9f(x) + 25f(y) + 30F (x, y)] .
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Using (5.19), (5.30), (5.32) and (5.33), after some computation we
have

y2f(x) = x2f(y).

Therefore by Theorem 5.2 f(x) = x2f(1). Substituing f in equation
(5.19), we get

g(y) = y2f(1) = f(y).

5.4 Equations along the unit circle
In this section we investigate quadratic real functions that satisfy

conditional equations for the pairs (x, y) ∈ S4. First we examine the
case, when the conditional equation is with a single quadratic function,
then we generalize the problem by introducing a second quadratic
function.

We shall also make use of the following observation.

Lemma 5.4. (Z. Boros and P. Erdei [6]) Let p be an integer fulfilling
p > 1. Then, for every x ∈ R \ {0}, there exist r ∈ Q \ {0} and
t ∈ (0, 1) such that

rx = t +
√
p2 − 1 + t2. (5.34)

Theorem 5.4. If a quadratic function f : R → R satisfies y2f(x) =

x2f(y) for the pairs (x, y) ∈ S4, then f(x) = x2f(1) for all x ∈ R.

Proof. The additional equation is

x2f
(√

1− x2
)

= (1− x2)f(x), ∀x ∈ (0, 1). (5.35)

Let x ∈ R \ {0}. According to Lemma 5.4, there exist r ∈ Q \ {0}
and t ∈ (0, 1) such that rx = t +

√
p2 − 1 + t2 holds. We will use

Lemma 5.4 to p = 2.
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Applying (5.35) for the pairs(
t,
√

1− t2
)
,

(
1

2

√
3 + t2,

1

2

√
1− t2

)
∈ S4,

1− t2

t2
f(t) = f

(√
1− t2

)
= 4f

(
1

2

√
1− t2

)
=

1− t2

3 + t2
f
(√

3 + t2
)
,

therefore
f(t)

t2
=

f
(√

3 + t2
)

3 + t2
.

Hence

F
(
t−
√

3 + t2, t +
√

3 + t2
)

= f(t)− f
(√

3 + t2
)

=

= f(t)− 3 + t2

t2
f(t) =

−3

t2
f(t).

(5.36)

We observe the identity

t−
√

3 + t2 =
−3

t +
√

3 + t2
.

Take rx = t +
√

3 + t2, then t =
r2x2 − 3

2rx
=

rx

2
− 3

2rx
. Substituting

these in (5.36), we get

−3F

(
x,

1

x

)
= F

(
rx,
−3

rx

)
= −3

(
2rx

r2x2 − 3

)2

f

(
rx

2
− 3

2rx

)
.

Therefore

F

(
x,

1

x

)
=

(
2rx

r2x2 − 3

)2 [
r2

4
f(x) +

9

4r2
f

(
1

x

)
− 2

r

2

3

2r
F

(
x,

1

x

)]
,

i.e.
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(
r2x2 − 3

)2
F

(
x,

1

x

)
= r4x2f(x) + 9x2

(
1

x

)
− 6r2x2F

(
x,

1

x

)
,

thus

F

(
x,

1

x

)
=

r4x2

r4x4 + 9
f(x) +

9x2

r4x4 + 9
f

(
1

x

)
. (5.37)

Putting
1

x
in place of x in last equation, we get

F

(
x,

1

x

)
=

r4x2

r4 + 9x4
f

(
1

x

)
+

9x2

r4 + 9x4
f(x).

From the equality of the left sides of the last two equations we obtain

(
r4 + 9x4

) [
r4x2f(x) + 9x2f

(
1

x

)]
=

=
(
r4x4 + 9

) [
r4x2f

(
1

x

)
+ 9x2f(x)

]
,

i.e.

r8x2f(x) + 9r4x6f(x) + 9r4x2f

(
1

x

)
+ 81x6f

(
1

x

)
=

= r8x6f

(
1

x

)
+ 9r4x2f

(
1

x

)
+ 9r4x6f(x) + 81x2f(x),

thus (
r8x2 − 81x2

)
f(x) = x4

(
r8x2 − 81x2

)
f

(
1

x

)
,

which implies the identity (5.2).
Substituting (5.2) in (5.37) we obtain

F

(
x,

1

x

)
=

r4x2

r4x4 + 9
f(x) +

9x2

r4x4 + 9

1

x4
f(x) =

f(x)

x2
.
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Hence, according to Lemma 5.3,

f(x) = x2f(1)

for all x ∈ R .

We generalize this result by using a second quadratic function.

Theorem 5.5. If f, g : R → R are quadratic functions that satisfy
the additional equation (1.3) for the pairs (x, y) ∈ S4 , then f(x) =

g(x) = x2f(1) for all x ∈ R .

Proof. For n = 2 the additional equation is

y2f(x) = x2g(y), (5.38)

for x, y ∈ R fulfilling x2 + y2 = 1 .
Interchanging x and y in equation (5.38) we have

x2f(y) = y2g(x). (5.39)

Adding (5.38) and (5.39) we have

x2 (f(y) + g(y)) = y2 (f(x) + g(x)) .

Let h = f + g. Then h is quadratic and we have

x2h(y) = y2h(x)

for the pairs (x, y) ∈ S4 . By Theorem 5.4 h(x) = x2h(1) with
h(1) = f(1) + g(1) .
Subtracting (5.39) from (5.38)

y2 (f(x)− g(x)) = −x2 (f(y)− g(y)) .
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Let d = f − g . Then d is quadratic and we have

y2d(x) = −x2d(y) , (x, y) ∈ S4 ,

that is, for every x ∈ (0, 1) ,

(x2 − 1)d(x) = x2d
(√

1− x2
)

(5.40)

holds.
Applying (5.40) for the pairs(

t,
√

1− t2
)
,

(
1

2

√
3 + t2,

1

2

√
1− t2

)
∈ S4,

t2 − 1

t2
d(t) = d

(√
1− t2

)
= 4d

(
1

2

√
1− t2

)
=

t2 − 1

3 + t2
d
(√

3 + t2
)
,

therefore
d(t)

t2
=

d
(√

3 + t2
)

3 + t2
.

Introducing the biadditive mapping

D(u,w) =
1

2
(d(u + w)− d(u)− d(w))

(
(u,w) ∈ R2

)
,

we obtain D
(
t−
√

3 + t2, t +
√

3 + t2
)

= −3
t2
d(t), which is equation

(5.36). Hence, by the proof of the previous theorem, it follows that
d(x) = x2d(1), with d(1) = f(1)− g(1).
From h(x) + d(x) we have f(x) = x2f(1) and from h(x) − d(x) we
have g(x) = x2g(1). Substituting these in equation (5.38), we get
f(1) = g(1). Hence f(x) = g(x) = x2f(1).

5.5 Further results for the hyperbola xy = 1

In Section 5.2 we proved some initial results for quadratic functions
f : R → R that fulfill the additional equation (5.2). Then we applied
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those statements in Sections 5.3 and 5.4, where we elaborated the in-
vestigations of quadratic functions satisfying an additional condition
for x2 ± y2 = 1 . In this section we consider further tools from the
literature of functional equations, involving very recent results as well,
that finally make us possible to prove an interesting necessary con-
dition for a quadratic function f to satisfy the additional condition
(5.2).

Definition 5.1. The identically zero map is the only derivation of
order zero. For each n ∈ N, an additive mapping ϕ : R → R is called
a derivation of order n, if there exists B : R×R→ R such that B is a
(symmetric) bi-derivation of order n− 1 (that is, B is a derivation of
order n− 1 in each variable) and

ϕ(xy)− xϕ(y)− ϕ(x)y = B(x, y) (x, y ∈ R) .

The set of derivations of order n will be denoted by Dn(R).

For every n ∈ N, it is seen, that Dn−1(R) ⊂ Dn(R).

Proposition 5.1. Derivations of order 3 (Unger and Reich [39] and
Ebanks [11]).
Let ϕ : R→ R be an additive function. Then ϕ ∈ D3(R) if and only if

ϕ
(
x4
)
− 4xϕ

(
x3
)

+ 6x2ϕ
(
x2
)
− 4x3ϕ (x) = 0

for all x ∈ R.

We also need the following Lemma:

Lemma 5.5. (Amou [4]). Let ϕ : R→ R be an additive function such
that

ϕ
(
x8
)
− 14x4ϕ

(
x4
)

+ 56x6ϕ
(
x2
)
− 64x7ϕ (x) = 0, x ∈ R. (5.41)

Then ϕ ∈ D3(R).
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Let f : R→ R be a quadratic function, which satisfies the additional
equation y2f(x) = x2f(y) under the condition xy = 1. We define a
map H : R× R→ R by

H(x, y) := F (x, y)− xyf(1). (5.42)

H is certainly symmetric and biadditive, with the trace h(x) := H(x, x).
Then

h(x) = f(x)− x2f(1). (5.43)

Replacing y with 1
x

in equation (5.42) we have

H

(
x,

1

x

)
= F

(
x,

1

x

)
− f(1). (5.44)

From (5.43) we have h(1) = 0, then from Lemma 5.1 and (5.42) we
obtain

H(x, 1) = F (x, 1)− xf(1) = 0. (5.45)

The conditional equation (5.2) has the form

h(x) + x2f(1) = x4

[
h

(
1

x

)
+

1

x2
f(1)

]
, (∀ x 6= 0),

i.e.

h(x) = x4h

(
1

x

)
, (∀ x 6= 0). (5.46)

Lemma 5.6. If a quadratic function f : R→ R satisfies the additional
equation y2f(x) = x2f(y) under the condition xy = 1, then

F
(
x2, x

)
= 2xf(x)− x3f(1). (5.47)

for all x ∈ R.

Proof. By Lemma 5.2 we have (5.8) for all x ∈ R \ {0} . We rearrange
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equation (5.8) in the following form

f
(
x2
)
− x4f(1) = 2x4

[
F

(
x,

1

x

)
− f(1)

]
+ 6x2

[
f(x)− x2f(1)

]
.

Let h(x) = f(x)− x2f(1). Then h (x2) = f (x2)− x4f(1). Then with
(5.44), equation (5.8) has the form

h
(
x2
)

= 2x4H

(
x,

1

x

)
+ 6x2h(x). (5.48)

Using (5.48) for x 6= 0, 1, we write h ((x− 1)2) in two ways:

h
(
(x− 1)2

)
= 2(x− 1)4H

(
x− 1,

1

x− 1

)
+ 6(x− 1)2h(x− 1).

From (5.45) we have h(x−1) = h(x) and H
(
x− 1, 1

x−1

)
= H

(
x, 1

x−1

)
,

so

h
(
(x− 1)2

)
= 2(x− 1)4H

(
x,

1

x− 1

)
+ 6(x− 1)2h(x),

but

h
(
(x− 1)2

)
= h

(
x2 − 2x + 1

)
= h

(
x2 − 2x

)
=

= h
(
x2
)

+ 4h(x)− 4H
(
x2, x

)
.

From the equality of the two last equations, it follows that

(x− 1)4H

(
x,

1

x− 1

)
=

=
1

2
h
(
x2
)

+
(
−3x2 + 6x− 1

)
h(x)− 2H

(
x2, x

)
.

(5.49)
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Using (5.46) for x 6= 0, 1, now we write h (x2 − x) in two ways:

h
(
x2 − x

)
=
(
x2 − x

)4
h

(
1

x2 − x

)
= x4(x− 1)4h

(
1

x− 1
− 1

x

)
=

= x4(x− 1)4
[
h

(
1

x− 1

)
+ h

(
1

x

)
− 2H

(
1

x
,

1

x− 1

)]
=

= x4(x− 1)4
[

1

(x− 1)4
h (x− 1) +

1

x4
h (x)− 2H

(
1

x
,

1

x− 1

)]
=

= x4h(x) + (x− 1)4h(x)− 2x4(x− 1)4H

(
1

x
,

1

x− 1

)
.

But
h
(
x2 − x

)
= h

(
x2
)

+ h(x)− 2H
(
x2, x

)
.

From the equality of the two last equations, it follows that

x4(x− 1)4H

(
1

x
,

1

x− 1

)
=

= −1

2
h
(
x2
)

+
(
x4 − 2x3 + 3x2 − 2x

)
h(x) + H

(
x2, x

)
.

(5.50)

Replacing x with 1
x

in equation (5.50),

− 1

x4

(x− 1)4

x4
H

(
x,

1

x− 1

)
=

= − 1

2x8
h
(
x2
)

+
(1− 2x + 3x2 − 2x3)

x8
h(x) + H

(
1

x2
,

1

x

)
.

Multiplying the latter equation by −x8, we get

(x−1)4H

(
x,

1

x− 1

)
=

=
1

2
h
(
x2
)

+
(
2x3 − 3x2 + 2x− 1

)
h(x)− x8H

(
1

x2
,

1

x

)
.

(5.51)
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From the equality of the left sides of (5.49) and (5.51) we obtain

(
−3x2 + 6x− 1

)
h(x)− 2H

(
x2, x

)
=

=
(
2x3 − 3x2 + 2x− 1

)
h(x)− x8H

(
1

x2
,

1

x

)
,

therefore

2H
(
x2, x

)
=
(
−2x3 + 4x

)
h(x) + x8H

(
1

x2
,

1

x

)
. (5.52)

Putting 1
x

in place of x in this equality, we get

2H

(
1

x2
,

1

x

)
=

(
−2

x3
+

4

x

)
1

x4
h(x) +

1

x8
H
(
x2, x

)
.

Substituting H
(

1
x2
, 1
x

)
in equation (5.52), we obtain

2H
(
x2, x

)
=
(
−2x3 + 4x

)
h(x) + (−x + 2x3)h(x) +

1

2
H
(
x2, x

)
,

therefore
H
(
x2, x

)
= 2xh(x), (5.53)

i.e.
F
(
x2, x

)
= 2xf(x)− x3f(1).

Lemma 5.7. If a quadratic function f : R→ R satisfies the additional
equation y2f(x) = x2f(y) under the condition xy = 1, then

f
(
x4
)

= 20x4f
(
x2
)
− 64x6f(x) + 45x8f(1). (5.54)

for all x ∈ R.

Proof. Let h(x) = f(x)− x2f(1).
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Replacing x with x− 1
x

in equation (5.48), we obtain

h

((
x− 1

x

)2
)

=2

(
x− 1

x

)4

H

(
x− 1

x
,

1

x− 1
x

)
+

+ 6

(
x− 1

x

)2

h

(
x− 1

x

)
.

On the other hand,

h

((
x− 1

x

)2
)

= h

(
x2 +

1

x2
− 2

)
= h

(
x2 +

1

x2

)
=

= h
(
x2
)

+ h

(
1

x2

)
+ 2H

(
x2,

1

x2

)
=

=

(
1 +

1

x8

)
h
(
x2
)

+ 2H

(
x2,

1

x2

)
.

From the equality of the two last equations, it follows that

2H

(
x2,

1

x2

)
= 2

(
x− 1

x

)4

H

(
x− 1

x
,

1

x− 1
x

)
+

+ 6

(
x− 1

x

)2

h

(
x− 1

x

)
−
(

1 +
1

x8

)
h
(
x2
)
.

(5.55)

Using (5.48) for x 6= −1, 0, we write h ((x + 1)2) in two ways:

h
(
(x + 1)2

)
= 2(x + 1)4H

(
x + 1,

1

x + 1

)
+ 6(x + 1)2h(x + 1).

From (5.45) we have h(x+1) = h(x) and H
(
x + 1, 1

x+1

)
= H

(
x, 1

x+1

)
,

so

h
(
(x + 1)2

)
= 2(x + 1)4H

(
x,

1

x + 1

)
+ 6(x + 1)2h(x),
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but using (5.53), we have

h
(
(x + 1)2

)
= h

(
x2 + 2x + 1

)
= h

(
x2 + 2x

)
=

= h
(
x2
)

+ 4h(x) + 4H
(
x2, x

)
= h

(
x2
)

+ (8x + 4)h(x).

From the equality of the left sides of the last two equations we obtain

(x + 1)4H

(
x,

1

x + 1

)
=

1

2
h
(
x2
)
−
(
3x2 + 2x + 1

)
h(x). (5.56)

Using (5.46) for x 6= −1, 0, now we write h (x2 + x) in two ways:

h
(
x2 + x

)
=
(
x2 + x

)4
h

(
1

x2 + x

)
= x4(x + 1)4h

(
1

x
− 1

x + 1

)
=

= x4(x + 1)4
[
h

(
1

x

)
+ h

(
1

x + 1

)
− 2H

(
1

x
,

1

x + 1

)]
=

= x4(x + 1)4
[

1

x4
h (x) +

1

(x + 1)4
h (x + 1)− 2H

(
1

x
,

1

x + 1

)]
=

= (x + 1)4h(x) + x4h(x)− 2x4(x + 1)4H

(
1

x
,

1

x + 1

)
.

But using (5.53), we have

h
(
x2 + x

)
= h

(
x2
)

+ h(x) + 2H
(
x2, x

)
= h

(
x2
)

+ h(x) + 4xh(x).

From the equality of the two last equations, it follows that

x4(x+1)4H

(
1

x
,

1

x + 1

)
= −1

2
h
(
x2
)

+
(
x4 + 2x3 + 3x2

)
h(x). (5.57)

Using (5.53) in equation (5.49), we obtain

(x− 1)4H

(
x,

1

x− 1

)
=

1

2
h
(
x2
)

+
(
−3x2 + 2x− 1

)
h(x). (5.58)
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Using (5.53) in equation (5.50), we have

x4(x−1)4H

(
1

x
,

1

x− 1

)
= −1

2
h
(
x2
)

+
(
x4 − 2x3 + 3x2

)
h(x). (5.59)

Now we write

2
(
x2 − 1

)4
H

(
x− 1

x
,

1

x− 1
x

)
= 2

(
x2 − 1

)4
H

(
x− 1

x
,

x

x2 − 1

)
=

=2
(
x2 − 1

)4
H

(
x− 1

x
,
1

2

(
1

x− 1
+

1

x + 1

))
=

=
(
x2 − 1

)4
H

(
x,

1

x− 1

)
+
(
x2 − 1

)4
H

(
x,

1

x + 1

)
−

−
(
x2 − 1

)4
H

(
1

x
,

1

x− 1

)
−
(
x2 − 1

)4
H

(
1

x
,

1

x + 1

)
.

Substituting (5.56),(5.57),(5.58) and (5.59) into the latter equation,
after some computation, we get

2
(
x2 − 1

)4
H

(
x− 1

x
,

1

x− 1
x

)
=

=
(x4 + 6x2 + 1) (x4 + 1)

x4
h
(
x2
)
−

−2 (3x8 + 12x6 + 2x4 + 12x2 + 3)

x2
h(x).

(5.60)

Substituting (5.60) in equation (5.55), we have

2H

(
x2,

1

x2

)
=

(x4 + 6x2 + 1) (x4 + 1)

x8
h
(
x2
)
−

− 2 (3x8 + 12x6 + 2x4 + 12x2 + 3)

x6
h(x)+

+ 6

(
x− 1

x

)2

h

(
x− 1

x

)
−
(

1 +
1

x8

)
h
(
x2
)
.

(5.61)
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Expressing H
(
x, 1

x

)
from equation (5.48), we get

h

(
x− 1

x

)
= h(x) + h

(
1

x

)
− 2H

(
x,

1

x

)
=

= h(x) +
1

x4
h(x)− 1

x4
h
(
x2
)

+
6

x2
h(x) =

=
x4 + 6x2 + 1

x4
h(x)− 1

x4
h
(
x2
)
.

Substituting this in equation (5.61), after some computation we obtain

H

(
x2,

1

x2

)
=

7

x4
h
(
x2
)
− 32

x2
h(x). (5.62)

Replacing x with x2 in equation (5.48), we have

h
(
x4
)

= 2x8H

(
x2,

1

x2

)
+ 6x4h

(
x2
)
.

Finally we substitute (5.62) in the latter equation to obtain

h
(
x4
)

= 20x4h
(
x2
)
− 64x6h(x).

The statement of the Lemma follows from this equation and the defi-
nition of h, i.e.

f
(
x4
)
− x8f(1) = 20x4

[
f
(
x2
)
− x4f(1)

]
− 64x6

[
f(x)− x2f(1)

]
,

hence
f
(
x4
)

= 20x4f
(
x2
)
− 64x6f(x) + 45x8f(1).

Theorem 5.6. If a quadratic function f : R → R satisfies the ad-
ditional equation y2f(x) = x2f(y) under the condition xy = 1, then
there exists a symmetric bi-derivation H of order 3 for which f(x) =

H(x, x) + x2f(1).
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Proof. Let h(x) = f(x)− x2f(1). From Lemma 5.6 we have

H
(
x2, x

)
= 2xh(x), (5.63)

Let x, y ∈ R and r ∈ Q . Substituting x+ ry in place of x in equation
(5.63), we get

H
(
x2 + 2rxy + r2y2, x + ry

)
= 2(x + ry)h(x + ry).

Rearranging the latter equation and using (5.63) we obtain

0 =2rH(xy, x) + r2H
(
y2, x

)
+ rH

(
x2, y

)
+ 2r2H(xy, y)−

− 2r2xh(y)− 4rxH(x, y)− 2ryh(x)− 4r2yH(x, y).

Thus we get a polynomial in r. The coefficient of r1 equals zero, hence
we obtain

2H(xy, x) + H
(
x2, y

)
= 4xH(x, y) + 2yh(x). (5.64)

From Lemma 5.7 we have

h
(
x4
)

= 20x4h
(
x2
)
− 64x6h(x). (5.65)

Let x, y ∈ R and r ∈ Q . Replacing x with x + ry in equation (5.65)
we obtain

h
(
(x + ry)4

)
= 20(x+ry)4h

(
(x + ry)2

)
−64(x+ry)6h(x+ry) . (5.66)

Expanding the powers of sums on both sides, equation (5.66) can be
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written as

h

(
4∑

k=0

(
4

k

)
xkrn−kyn−k

)
= 20

(
4∑
l=0

(
4

l

)
xlr4−ly4−l

)
·

· h
(
x2 + 2rxy + r2y2

)
− 64

6∑
q=0

(
6

q

)
xqrn−qyn−qh(x + ry).

Applying the identity (2.6), the rational homogeneity properties of H
and h, equation (5.45), and using h(1) = 0, we obtain

0 =
4∑

k=0

(
4

k

)2

r8−2kh
(
xky4−k

)
+

+ 2
∑

0≤i<j≤4

(
4

i

)(
4

j

)
r8−(i+j)H

(
xiy4−i, xjy4−j

)
−

− 20
4∑
l=0

(
4

l

)
xlr4−ly4−l · [h

(
x2
)

+ 4r2h(xy) + r4h
(
y2
)

+

+ 4rH
(
x2, xy

)
+ 4r3H

(
y2, xy

)
+ 2r2H

(
x2, y2

)
]+

+ 64
6∑
q=0

(
6

q

)
xqr6−qy6−q

[
h(x) + 2rH(x, y) + r2h(y)

]
.

(5.67)

The coefficient of r1 equals zero, hence we obtain

0 =2

(
4

3

)(
4

4

)
H
(
x3y, x4

)
− 20

[(
4

3

)
x3yh

(
x2
)

+

(
4

4

)
x44H

(
x2, xy

)]
+

+ 64

(
6

5

)
x5yh(x) + 64

(
6

6

)
x62H(x, y) =

= 8H
(
x3y, x4

)
− 80x3yh

(
x2
)
− 80x4H

(
x2, xy

)
+

+ 384x5yh(x) + 128x6H(x, y).
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Thus

H
(
x3y, x4

)
=10x3yh

(
x2
)

+

+ 10x4H
(
x2, xy

)
− 48x5yh(x)− 16x6H(x, y)

(5.68)

Replacing y with xy in equation (5.68), we get

H
(
x4y, x4

)
=10x4yh

(
x2
)

+

+10x4H
(
x2, x2y

)
− 48x6yh(x)− 16x6H(x, xy)

(5.69)

Putting x2 in place of x in equation (5.64) we have

2H
(
x2y, x2

)
= −H

(
x4, y

)
+ 4x2H

(
x2, y

)
+ 2yh

(
x2
)
. (5.70)

Substituting H (x2y, x2) into the equation (5.69), we obtain

H
(
x4y, x4

)
=20x4yh

(
x2
)

+ 20x6H
(
x2, y

)
−

− 5x4H
(
x4, y

)
− 96x6yh(x)− 32x6H(x, xy).

(5.71)

Expressing H(x, xy) from equation (5.64), then substituting into equa-
tion (5.71), we get

H
(
x4y, x4

)
=20x4yh

(
x2
)

+ 28x6H
(
x2, y

)
−

− 5x4H
(
x4, y

)
− 64x6yh(x)− 32x7H(x, y).

(5.72)

Now we replace x with x4 in equation (5.64)

2H
(
x4y, x4

)
= −H

(
x8, y

)
+ 4x4H

(
x4, y

)
+ 2yh

(
x4
)
. (5.73)

And finally, from the equality of the left sides of (5.72) and (5.73),
with (5.65), we obtain

H
(
x8, y

)
− 14x4H

(
x4, y

)
+ 56x6H

(
x2, y

)
− 64x7H(x, y) = 0.
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The latter equation holds for a fixed y ∈ R, for each x ∈ R. By
Lemma 5.5 H is a derivation of order 3 in x. Since H is a symmetric,
biadditive function, it follows that H is a derivation of order 3 in each
variable, so H is a symmetric bi-derivation of order 3.
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6. Conditional equations involving
transcendental functions

In this chapter we investigate quadratic and cubic functions f, g : R→
R that satisfy conditional equations involving logarithmic and expo-
nential functions:

S5 = {(x, y) ∈ R2 |x > 0 and log x = y },
S6 = {(x, y) ∈ R2 | ex = y}.

All additive functions f, g : R → R fulfilling the condition (1.5) on
R+ for all points (x, y) ∈ S5 respectively (x, y) ∈ S6 are identical and
linear (Theorem 6.1 and 6.2 in [12]).

Theorem 6.1. Suppose f, g : R→ R are monomial functions of degree
n ∈ {2, 3} and f, g satisfy the additional equation (1.3) on R+ for the
pairs (x, y) ∈ S5, then f(x) = g(x) = xnf(1).

Proof. The additional equation is

(log x)nf(x) = xng(log x), x ∈ R+. (6.1)

Replacing x by x2 in (6.1) and using properties of logarithmic and
monomial functions, we have

2n(log x)nf
(
x2
)

= 2nx2ng(log x), x ∈ R+.

Dividing by 2n and using (6.1), we obtain

(log x)nf
(
x2
)

= xn(log x)nf(x),
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therefore
f
(
x2
)

= xnf(x), x ∈ R+.

This equation holds also for x = 0. For x = −t < 0:

f(x2) = f(t2) = tnf(t) = (−1)n(−t)n(−1)nf(−t)
= (−1)2nxnf(x) = xnf(x) .

Therefore f (x2) = xnf(x) for all x ∈ R. By Theorem 4.1 (n = 2, m =

2) and Theorem 4.5 (n = 3, m = 2) we know that f(x) = xnf(1).
From equation (6.1) we get

g(log x) = (log x)nf(1), x ∈ R+,

therefore g(t) = tnf(1) = f(t) for all t ∈ R.

Remark 6.1. The results of the above theorem can be transferred to the
case of exponential functions, that is (x, y) ∈ S6, since the exponential
and logarithmic functions of the same basis are inverses of each other.

We note that both the base of the logarithm, and the base of the
exponential can be any positive real number except 1.



7. Summary

In this PhD dissertation we study monomial functions f, g : R→ R of
degree n ∈ N, n > 2 which satisfy the conditional equation ynf(x) =

xnf(y) or ynf(x) = xng(y) for all points (x, y) on a specified curve.
The above question was motivated by similar problems solved for ad-
ditive functions, see the papers [1, 5, 6, 12, 30, 25, 35].
Our investigations were carried out along the following curves:

S0 = {(x, y) ∈ R2 | amxm + am−1x
m−1 + · · ·+ a1x + a0 = y }

with m ∈ N, ai ∈ R, i = 0, . . . ,m, am 6= 0, a0 6= 0 ,

S1 = {(x, y) ∈ R2 |xm = y} with m ∈ Z , |m| > 2 ,

S2 = {(x, y) ∈ R2 |xy = 1},
S3 = {(x, y) ∈ R2 |x2 − y2 = 1},
S4 = {(x, y) ∈ R2 |x2 + y2 = 1},
S5 = {(x, y) ∈ R2 |x > 0 and log x = y },
S6 = {(x, y) ∈ R2 | ex = y}.

Before summarizing our theorems, let us look at the necessary termi-
nology.
We call a function f : R → R additive if f(x + y) = f(x) + f(y)

holds for all x, y ∈ R . A function F : Rn → R (n ∈ N) is called
n–additive if F is additive in each of its variables. Given a function
F : Rn → R, by the diagonalization of F we understand the function
f : R→ R arising from F by putting all the variables (from R) equal.
If, in particular, f is the diagonalization of an n–additive function
F : Rn → R , we say that f is a monomial function ( or general-
ized monomial) of degree n . Generalized monomials of degree 2 are
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called quadratic functions, cubic functions are generalized monomials
of degree 3. Quadratic functions are characterized by the functional
equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) (x, y ∈ R), (7.1)

which is the so called norm square equation or parallelogram law.
The biadditive symmetric functional F that generates the quadratic
function f is given by the formula

F (x, y) =
1

2
[f(x + y)− f(x)− f(y)]

for all x, y ∈ R .
We say that f : R → R is a derivation if f is additive and satisfies
the functional equation f(xy) = f(x)y + xf(y) for every x, y ∈ R .
The family of derivations f : R→ R is denoted by D(R). A functional
B : R × R → R is called a bi-derivation if the mappings t 7→ B(t, x)

and t 7→ B(x, t) (t ∈ R) are derivations for each x ∈ R . For each
n ∈ N, an additive mapping f : R → R is called a derivation of or-
der n, if there exists B : R × R → R such that B is a (symmetric)
bi-derivation of order n − 1 (that is, B is a derivation of order n − 1

in each variable) and f(xy)−xf(y)−f(x)y = B(x, y) (x, y ∈ R). The
identically zero map is the only derivation of order zero. The set of
derivations of order n will be denoted by Dn(R).

Our main results are presented in four chapters, classified by curves.
In Chapter 3 we investigate the continuity of monomial functions
satisfying additional equations involving polynomial functions whose
graphs do not pass through the origin. We get the following result.

Theorem 7.1. Suppose that f : R → R and g : R → R are gener-
alized monomials of degree n ∈ N that satisfy the additional equation
ynf(x) = xng(y) for the pairs (x, y) ∈ S0. Then f(x) = g(x) = xnf(1)
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for all x ∈ R .

Remark 7.1. If am = am−1 = . . . = a1 = 0 then y = a0 is constant.
Therefore we have

an0f (x) = xng (a0)

and thus

f (x) = xn
g (a0)

an0
= xnf(1),

but we have no further information about g other than g (a0) = an0f(1).

Remark 7.2. In the particular case y = a1x ( a0 = 0 ) the conditional
equation has the form

an1x
nf (x) = xng (a1x) ,

i.e., g (a1x) = an1f (x). We note that, if a1 = 0 then this equation yields
no information, so f and g can be any monomial functions. In the case
a1 6= 0, let f be any discontinuous real monomial function. Then it
follows from the conditional equation that g is also discontinuous.

If we tighten the study to a single monomial function f : R → R,
we have an immediate consequence of the above theorem, without the
restriction am 6= 0:

Corollary 7.1. (Z. Boros and E. Garda-Mátyás [10]). If a monomial
function f : R → R of degree n ∈ N satisfies the additional equation
ynf(x) = xnf(y) for the pairs (x, y) ∈ S0, then f(x) = xnf(1) for all
x ∈ R .

Remark 7.3. In case m = 1, the implication in Corollary 7.1 does not
hold if a0 = 0. In this case, if, for instance, a1 6= 0, the conditional
equation takes the form

an1x
nf (x) = xnf (a1x) ,
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i.e., f (a1x) = an1f (x). Indeed, there exists a discontinuous example of
the form f(x) = (h(x))n (x ∈ R), where h : R→ R is a discontinuous
additive function, such that the homogeneity field of h contains a1.

Chapter 4 contains results for quadratic and cubic functions satisfy-
ing conditional equations involving the power function. First we study
the case when there is a single quadratic function in the conditional
equation.

Theorem 7.2. (Z. Boros and E. Garda-Mátyás [9], E. Garda-Mátyás
[16]). If 2 6 |m|, m ∈ Z and the quadratic function f : R → R
satisfies

f(xm) = x2m−2f(x)

for every x ∈ R , then there exists C ∈ R such that

f(x) = C · x2 (x ∈ R).

We note that in case m = 0 the same implication is trivial, while
in case m = 1 the additional equation becomes a trivial identity that
does not imply any restriction for f (hence f can be discontinuous as
well).

In the particular case m = 2, but with a modified version of the
additional equation, we find discontinuous solutions.

Theorem 7.3. (Z. Boros and E. Garda-Mátyás [9]). Let K ∈ R . If
a quadratic function f : R→ R satisfies the additional equation

f(x2) = Kx2f(x) (7.2)

for every x ∈ R , then either f = 0 or K ∈ { 1 , 2 , 4 }. In the latter
cases, we have the following representations for f .

� A quadratic mapping f : R→ R fulfills (7.2) with K = 1 if, and
only if,

f(x) = f(1) · x2 (x ∈ R).
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� A quadratic mapping f : R→ R fulfills (7.2) with K = 2 if, and
only if, there exists ϕ ∈ D2(R) such that

f(x) = 4xϕ(x)− ϕ(x2) (x ∈ R). (7.3)

� If B : R× R→ R is a symmetric bi-derivation, then

f(x) = B(x, x) (x ∈ R)

is a quadratic solution of the equation (7.2) with K = 4 .

Remark 7.4. If ϕ ∈ D(R), then equation (7.3) yields f(x) = ϕ(x2)

(x ∈ R). This observation ensures the existence of a non-zero quadratic
solution f of (7.2) for K = 2 . The existence of such solutions in the
cases K = 1 and K = 4 is an obvious consequence of the last theorem.

Remark 7.5. We can observe that, in case K = 4 , this theorem pro-
vides only a sufficient condition for f to satisfy equations (7.1) and
(7.2). It is an open question whether this condition is necessary.

However, we can prove a somewhat weaker necessary condition in
that case.

Theorem 7.4. If a quadratic function f : R → R satisfies the addi-
tional equation

f
(
x2
)

= 4x2f(x)

for every x ∈ R, then f is the trace of a symmetric bi-derivation of
order 2.

The significance of the previous results is highlighted by the follow-
ing theorem, where two quadratic functions are involved.

Theorem 7.5. The quadratic functions f , g : R → R satisfy the
additional equation y2f(x) = x2g(y) for the pairs (x, y) ∈ S1 with
m = 2 if, and only if, there exist an additive function ϕ : R→ R and
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a quadratic function h : R→ R satisfying the condition

h(x2) = 4x2h(x) (x ∈ R)

such that

f(x) = h(x) + ϕ(x2) and g(x) =
1

4
h(x) + xϕ(x)

for all x ∈ R .

And finally, extending the study to cubic functions, we get the fol-
lowing result.

Theorem 7.6. (Z. Boros and E. Garda-Mátyás [10]). If f : R →
R is a generalized monomial of degree 3 that satisfies the additional
equation y3f(x) = x3f(y) under the condition (x, y) ∈ S1, then f(x) =

x3f(1) for all x ∈ R .

In Chapter 5 we investigate the continuity of additive, quadratic
and higher order monomial functions that satisfy subsidiary equations
along hyperbolas or the unit circle.
We start with a negative result along the hyperbola given by the
equation xy = 1. If f : R → R is a generalized monomial of degree
n ∈ N, n > 2, f satisfies the additional equation

f(x) = x2nf

(
1

x

)
, (∀ x 6= 0),

it is easy to see, that there exist discontinuous solutions.
For example, if d : R→ R is a not identically zero derivation, then a
discontinuous solution f is

f(x) = xn−2k (d(x))2k (x ∈ R),

where k ∈ { 1 , 2 , . . . , [n/2] } .
Although we know that for all n > 2 there are discontinuous solutions
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of monomial functions satisfying the additional equation ynf(x) =

xnf(y) for all (x, y) ∈ S2, we continue our investigations for quadratic
functions. In this case, the conditional equation has the form

f(x) = x4f

(
1

x

)
, (∀ x 6= 0). (7.4)

Despite the fact that the continuity of f does not follow from this
assumption, we can obtain some interesting and important results for
the mappings x 7→ F (x, 1) and x 7→ F (x, 1/x). Using these results
hereinafter, we prove the continuity of quadratic functions in several
related cases.

Lemma 7.1. (E. Garda-Mátyás [16]). If a quadratic function f : R→
R satisfies the additional equation (7.4) then

F (x, 1) = xf(1)

for all x ∈ R .

Lemma 7.2. (E. Garda-Mátyás [16]). If a quadratic function f : R→
R satisfies the additional equation y2f(x) = x2f(y) for the pairs (x, y) ∈
S2, then

f
(
x2
)

= 2x4F

(
x,

1

x

)
+ 6x2f(x)− 7x4f(1)

for all x ∈ R \ {0} .

Lemma 7.3. (E. Garda-Mátyás [16]). If a quadratic function f : R→
R satisfies

F

(
x,

1

x

)
=

f(x)

x2

for every x 6= 0 , then f(x) = x2f(1) for all x ∈ R .

Thereafter we investigate the continuity of additive and quadratic
functions satisfying additional equations along the hyperbola given by
the equation x2 − y2 = 1. Our first result relates to the additive case.
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Theorem 7.7. Let f, g : R → R be additive functions. If f, g satisfy
the additional equation yf(x) = xg(y) for the pairs (x, y) ∈ S3, then
f(x) = g(x) = xf(1) for all x ∈ R .

Our next result applies to the quadratic case with a single quadratic
function.

Theorem 7.8. (E. Garda-Mátyás [16]). If f : R → R is a quadratic
function that satisfies the conditional equation y2f(x) = x2f(y) for all
(x, y) ∈ S3 , then f(x) = x2f(1) for all x ∈ R.

We generalize this result by using a second quadratic function.

Theorem 7.9. Let f, g : R→ R be quadratic functions. If f, g satisfy
the additional equation y2f(x) = x2g(y) for the pairs (x, y) ∈ S3, then
f(x) = g(x) = x2f(1) for all x ∈ R .

We continue our investigations with quadratic real functions that
satisfy conditional equations along the unit circle. When the condi-
tional equation is with a single quadratic function, we have the follow-
ing result.

Theorem 7.10. (E. Garda-Mátyás [16]). If a quadratic function
f : R → R satisfies y2f(x) = x2f(y) for the pairs (x, y) ∈ S4, then
f(x) = x2f(1) for all x ∈ R.

Generalizing this result by using a second quadratic function, we
obtain the following theorem.

Theorem 7.11. If f, g : R → R are quadratic functions that satisfy
the additional equation y2f(x) = x2g(y) for the pairs (x, y) ∈ S4, then
f(x) = g(x) = x2f(1) for all x ∈ R .

Finally, considering further tools from the literature of functional
equations, which include very recent results as well, we get an in-
teresting necessary condition for quadratic functions that satisfy the
additional equation (7.4).
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Theorem 7.12. If a quadratic function f : R → R satisfies the ad-
ditional equation y2f(x) = x2f(y) under the condition xy = 1, then
there exists a symmetric bi-derivation H of order 3 for which f(x) =

H(x, x) + x2f(1).

In Chapter 6 we investigate quadratic and cubic functions
f, g : R → R that satisfy conditional equations involving logarithmic
and exponential functions. In these cases, we prove the equality and
continuity of the quadratic and cubic functions f, g.

Theorem 7.13. Suppose f, g : R→ R are monomial functions of de-
gree n ∈ {2, 3} and f, g satisfy the additional equation ynf(x) = xng(y)

on R+ for the pairs (x, y) ∈ S5, then f(x) = g(x) = xnf(1).

Remark 7.6. The results of the above theorem can be transferred to the
case of exponential functions, that is (x, y) ∈ S6, since the exponential
and logarithmic functions of the same basis are inverses of each other.

We note that both the base of the logarithm, and the base of the
exponential can be any positive real number except 1.
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8. Összefoglaló

Ebben a PhD értekezésben olyan f, g : R→ R n-edfokú monom függ-
vényeket tanulmányozunk (n > 2), amelyek teljeśıtik az ynf(x) =

xnf(y) vagy ynf(x) = xng(y) feltételes egyenletet egy adott görbe
összes (x, y) pontjára.
A fenti kérdést az addit́ıv függvényekkel kapcsolatban megoldott ha-
sonló problémák indokolták, lásd [1, 5, 6, 12, 30, 25, 35].
Vizsgálatainkat a következő görbék mentén végeztük:

S0 = {(x, y) ∈ R2 | amxm + am−1x
m−1 + · · ·+ a1x + a0 = y },

m ∈ N, ai ∈ R, i = 0, . . . ,m, am 6= 0, a0 6= 0 ,

S1 = {(x, y) ∈ R2 |xm = y}, m ∈ Z , |m| > 2 ,

S2 = {(x, y) ∈ R2 |xy = 1},
S3 = {(x, y) ∈ R2 |x2 − y2 = 1},
S4 = {(x, y) ∈ R2 |x2 + y2 = 1},
S5 = {(x, y) ∈ R2 |x > 0 és log x = y },
S6 = {(x, y) ∈ R2 | ex = y}.

Tételeink összefoglalása előtt felidézzük az eredmények megfogalmazá-
sához szükséges terminológia fontosabb elemeit.
Az f : R → R függvényt addit́ıv függvénynek nevezzük, ha bármely
valós x, y esetén f(x + y) = f(x) + f(y) teljesül. Az F : Rn →
R (n ∈ N) függvényt n–addit́ıv függvénynek nevezzük, ha F min-
den változójában addit́ıv. Adott F : Rn → R függvény esetén az
F diagonalizáltjának nevezzük azt az f : R → R függvényt, ame-
lyet az F -ből kapunk az összes (R-beli) változó egyenlővé tételével.
Sajátos esetben, ha f az F : Rn → R n–addit́ıv függvény diago-

97
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nalizáltja, akkor azt mondjuk, hogy f általánośıtott n -edfokú monom.
A másodfokú általánośıtott monomokat kvadratikus függvényeknek
nevezzük, a köbfüggvények a harmadfokú általánośıtott monomok. A
kvadratikus függvényeket az

f(x + y) + f(x− y) = 2f(x) + 2f(y) (x, y ∈ R), (8.1)

függvényegyenlet jellemzi, amely az úgynevezett norma-négyzet egyen-
let.
Az f kvadratikus függvényt generáló biaddit́ıv szimmetrikus F függ-
vényt a következő képlet adja:

F (x, y) =
1

2
[f(x + y)− f(x)− f(y)]

bármely x, y ∈ R esetén.
Az f : R→ R függvény deriváció, ha f addit́ıv és teljeśıti az f(xy) =

f(x)y+xf(y) függvényegyenletet bármely x, y ∈ R esetén. Az f : R→
R derivációk halmazát D(R)-rel jelöljük. A B : R×R→ R függvényt
bi-derivációnak nevezzük, ha a t 7→ B(t, x) és t 7→ B(x, t) (t ∈ R)

leképezések derivációk minden x ∈ R esetén. Minden n ∈ N esetén,
egy f : R → R addit́ıv leképezést n-edrendű derivációnak nevezünk,
ha létezik B : R × R → R úgy, hogy B egy (n − 1)-edrendű (szim-
metrikus) bi-deriváció (vagyis B (n − 1)-edrendű deriváció mindkét
változójában) és f(xy) − xf(y) − f(x)y = B(x, y) (x, y ∈ R). Az
azonosan nulla leképezés az egyetlen nulladrendű deriváció. Az n-
edrendű derivációk halmazát Dn(R)-nel jelöljük.

Legfontosabb eredményeinket négy fejezetben mutatjuk be, görbék
szerint csoportośıtva.

A 3. fejezetben olyan monom függvények folytonosságát vizsgáljuk,
amelyek nem nulla konstans taggal rendelkező polinomfüggvényeket
tartalmazó feltételes egyenleteket teljeśıtenek.
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A következő eredményeket kapjuk.

8.1 Tétel. Tegyük fel, hogy f : R → R és g : R → R általánośıtott
n-edfokú monomok (n ∈ N), amelyek teljeśıtik az ynf(x) = xng(y)

kiegésźıtő egyenletet az (x, y) ∈ S0 párokra. Akkor f(x) = g(x) =

xnf(1) minden x ∈ R esetén.

8.1 Megjegyzés. Ha am = am−1 = . . . = a1 = 0, akkor y = a0 konstans.
Ekkor a feltételes egyenlet

an0f (x) = xng (a0)

alakú, és ı́gy

f (x) = xn
g (a0)

an0
= xnf(1),

de a g függvényről nincs további információnk a g (a0) = an0f(1)-en
ḱıvül.

8.2 Megjegyzés. Az m = 1, a0 = 0 sajátos esetben, vagyis ha y = a1x,
a feltételes egyenlet

an1x
nf (x) = xng (a1x)

alakú, azaz g (a1x) = an1f (x).
Ha a1 = 0, akkor ez az egyenlet nem nyújt információt, ı́gy f és g

bármilyen monom függvény lehet.
Abban az esetben, ha a1 6= 0, legyen f bármilyen nem folytonos valós
monom függvény. Akkor a feltételes egyenletből adódik, hogy g sem
folytonos.

Ha a vizsgálatot egyetlen f : R → R monom függvényre szűḱıtjük,
akkor a fenti tétel azonnali következményeként kapjuk:

8.1 Következmény. (Z. Boros és E. Garda-Mátyás [10]). Ha az
f : R → R n-edfokú (n ∈ N) monom függvény teljeśıti az ynf(x) =

xnf(y) kiegésźıtő egyenletet az (x, y) ∈ S0 párokra, akkor f(x) =

xnf(1) bármely x ∈ R esetén.
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A fenti következményben nincs szükség az am 6= 0 korlátozásra.
am = am−1 = . . . = a1 = 0 esetén az álĺıtás triviálisan igaz.

8.3 Megjegyzés. A 8.1. Következményben m = 1, a0 = 0 esetén az
implikáció nem áll fenn. Ebben az esetben, ha például a1 6= 0 , a
feltételes egyelet

an1x
nf (x) = xnf (a1x)

alakú, vagyis f (a1x) = an1f (x). Valóban, létezik f(x) = (h(x))n

(x ∈ R) alakú nem folytonos példa, ahol h : R→ R egy nem folytonos
addit́ıv függvény, úgy, hogy a h homogenitási teste tartalmazza a1-et.

Megjegyezzük, hogy az a0 6= 0 korlátozás, vagyis hogy a görbe nem
halad át az origón, fontos szerepet játszik. Egyébként még egyszerű
esetben is sok komplikáció lép fel, ezt láthatjuk a következő fejezetben.

A 4. fejezet a hatványfüggvényt tartalmazó feltételes egyenlete-
ket teljeśıtő kvadratikus és köbfüggvények eredményeit tartalmazza.
Először azt az esetet tanulmányozzuk, amikor a kiegésźıtő egyenletben
csak egy kvadratikus függvény található.

8.2 Tétel. (Z. Boros és E. Garda-Mátyás [9], E. Garda-Mátyás [16]).
Ha 2 6 |m|, m ∈ Z és az f : R→ R kvadratikus függvény teljeśıti az

f(xm) = x2m−2f(x)

egyenletet bármely x ∈ R esetén, akkor létezik C ∈ R úgy, hogy

f(x) = C · x2 (x ∈ R).

Megjegyezzük, hogy az m = 0 esetben ez a következtetés triviális,
vagyis maga a kiegésźıtő egyenlet az f folytonosságát adja, mı́g m =

1 esetén maga a feltétel triviális azonosságá válik, azaz nem jelent
semmilyen korlátozást az f számára (ezért f lehet nem folytonos is).

Az m = 2 sajátos esetben, de a kiegésźıtő egyenlet módośıtott
változatával nem folytonos megoldásokat találunk.
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8.3 Tétel. (Z. Boros és E. Garda-Mátyás [9]). Legyen K ∈ R . Ha
egy f : R→ R kvadratikus függvény teljeśıti az

f(x2) = Kx2f(x) (8.2)

kiegésźıtő egyenletet bármely x ∈ R esetén, akkor vagy f = 0, vagy
K ∈ { 1 , 2 , 4 }. Ez utóbbi esetekben f -nek a következő reprezentációi
vannak.

� Az f : R → R kvadratikus leképezés a K = 1 esetben akkor és
csak akkor tesz eleget a (8.2) feltételnek, ha

f(x) = f(1) · x2 (x ∈ R).

� Az f : R → R kvadratikus leképezés a K = 2 esetben akkor és
csak akkor tesz eleget a (8.2) feltételnek, ha létezik ϕ ∈ D2(R)

úgy, hogy

f(x) = 4xϕ(x)− ϕ(x2) (x ∈ R). (8.3)

� Ha B : R× R→ R egy szimmetrikus bi-deriváció, akkor

f(x) = B(x, x) (x ∈ R)

a (8.2) egyenlet egy kvadratikus megoldása K = 4 esetén.

8.4 Megjegyzés. Ha ϕ ∈ D(R), akkor a (8.3) egyenletből f(x) = ϕ(x2)

(x ∈ R) következik. Ez a megfigyelés biztośıtja a (8.2) egyenlet egy
nem nulla kvadratikus f megoldásának létezését K = 2 esetén. Az
ilyen megoldások létezése K = 1 és K = 4 esetén az utolsó tétel
nyilvánvaló következménye.

8.5 Megjegyzés. Megfigyelhetjük, hogy K = 4 esetén ez a tétel csak
elégséges feltételt biztośıt az f számára ahhoz, hogy teljeśıtse a (8.1)
és a (8.2) egyenleteket. Nyitott kérdés, hogy ez szükséges feltétel-e.
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Ebben az esetben azonban valamivel gyengébb szükséges feltételt
tudunk bizonýıtani.

8.4 Tétel. Ha egy f : R→ R kvadratikus függgvény teljeśıti az

f
(
x2
)

= 4x2f(x)

kiegésźıtő egyenletet bármely x ∈ R esetén, akkor f egy másodfokú
szimmetrikus bi-deriváció diagonalizáltja.

Az előző eredmények jelentőségét a következő tétel emeli ki, ahol
két kvadratikus függvény szerepel.

8.5 Tétel. Az f , g : R→ R kvadratikus függvények akkor és csakis
akkor teljeśıtik az y2f(x) = x2g(y) kiegésźıtő egyenletet az (x, y) ∈
S1 párokra m = 2 esetén, ha létezik egy ϕ : R → R addit́ıv függvény
és egy h : R→ R kvadratikus függvény, mely teljeśıti a

h(x2) = 4x2h(x) (x ∈ R)

egyenletet úgy, hogy

f(x) = h(x) + ϕ(x2) és g(x) =
1

4
h(x) + xϕ(x)

minden x ∈ R esetén.

És végül, köbfüggvényekre kiterjesztve a vizsgálatot a következő
eredményt kapjuk.

8.6 Tétel. (Z. Boros és E. Garda-Mátyás [10]). Ha f : R → R egy
általánośıtott harmadfokú monom, amely teljeśıti az y3f(x) = x3f(y)

kiegésźıtő egyenletet (x, y) ∈ S1 feltétel mellett, akkor f(x) = x3f(1)

minden x ∈ R esetén.

Az 5. fejezetben olyan addit́ıv, kvadratikus és magasabb rendű
monom függvények folytonosságát vizsgáljuk, amelyek a hiperbolák
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vagy az egységkör mentén teljeśıtenek kiegésźıtő egyenleteket.
Negat́ıv eredménnyel kezdünk az xy = 1 egyenlet által adott hiperbola
mentén. Ha f : R → R egy n-edfokú általánośıtott monom függvény
(2 6 n ∈ N), f eleget tesz az

f(x) = x2nf

(
1

x

)
(∀ x 6= 0)

kiegésźıtő egyenletnek, könnyen belátható, hogy léteznek nem folyto-
nos megoldások.
Például, ha d : R → R egy nem azonosan nulla deriváció, akkor egy
nem folytonos f megoldás az

f(x) = xn−2k (d(x))2k (x ∈ R),

ahol k ∈ { 1 , 2 , . . . , [n/2] } .
Habár tudjuk, hogy minden n > 2 esetén vannak nem folytonos megol-
dásai az ynf(x) = xnf(y) kiegésźıtő egyenletet teljeśıtő monom függvé-
nyeknek az (x, y) ∈ S2 feltétel mellett, folytatjuk a vizsgálatainkat
kvadratikus függvényekkel. Ebben az esetben a feltételes egyenlet

f(x) = x4f

(
1

x

)
(∀ x 6= 0) (8.4)

alakú. Annak ellenére, hogy az f folytonossága nem következik ebből a
feltevésből, érdekes és fontos eredményeket kaphatunk az x 7→ F (x, 1)

és x 7→ F (x, 1/x) leképezésekre. Ezeket az eredményeket felhasználva
a továbbiakban igazoljuk a kvadratikus függvények folytonosságát több
kapcsolódó esetben.

8.1 Lemma. (E. Garda-Mátyás [16]). Ha egy f : R→ R kvadratikus
függvény teljeśıti a (8.4) kiegésźıtő egyenletet, akkor

F (x, 1) = xf(1)
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minden x ∈ R esetén.

8.2 Lemma. (E. Garda-Mátyás [16]). Ha egy f : R→ R kvadratikus
függvény teljeśıti az y2f(x) = x2f(y) kiegésźıtő egyenletet az (x, y) ∈
S2 párok esetén, akkor

f
(
x2
)

= 2x4F

(
x,

1

x

)
+ 6x2f(x)− 7x4f(1)

minden x ∈ R \ {0} -ra.

8.3 Lemma. (E. Garda-Mátyás [16]). Ha egy f : R→ R kvadratikus
függvény eleget tesz az

F

(
x,

1

x

)
=

f(x)

x2

feltételnek bármely x 6= 0 esetén, akkor f(x) = x2f(1) minden x ∈ R -
re.

Ezután a kiegésźıtő egyenleteket az x2 − y2 = 1 egyenletű hiper-
bola mentén teljeśıtő addit́ıv és kvadratikus függvények folytonosságát
vizsgáljuk. Első eredményünk az addit́ıv esetre vonatkozik.

8.7 Tétel. Legyenek f, g : R→ R addit́ıv függvények. Ha f, g teljeśıtik
az yf(x) = xg(y) kiegésźıtő egyenletet az (x, y) ∈ S3 párok esetén,
akkor f(x) = g(x) = xf(1) minden x ∈ R -re.

A következő eredményünk a kvadratikus esetre vonatkozik, egyetlen
kvadratikus függvénnyel.

8.8 Tétel. (E. Garda-Mátyás [16]). Ha egy f : R → R kvadratikus
függvény eleget tesz az y2f(x) = x2f(y) kiegésźıtő egyenletnek az
(x, y) ∈ S3 feltétel mellett, akkor f(x) = x2f(1) minden x ∈ R esetén.

Ezt az eredményt általánośıtjuk egy második kvadratikus függvény
használatával.
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8.9 Tétel. Legyenek f, g : R → R kvadratikus függvények. Ha f, g

teljeśıtik az y2f(x) = x2g(y) kiegésźıtő egyenletet az (x, y) ∈ S3 párok
esetén, akkor f(x) = g(x) = x2f(1) minden x ∈ R -re.

A kiegésźıtő egyenleteket az egységkör mentén teljeśıtő kvadrati-
kus valós függvényekkel folytatjuk vizsgálatainkat. Amikor a feltételes
egyenletben egyetlen kvadratikus függvény van, a következő eredményt
kapjuk.

8.10 Tétel. (E. Garda-Mátyás [16]). Ha egy f : R→ R kvadratikus
függvény eleget tesz az y2f(x) = x2f(y) kiegésźıtő egyenletnek az
(x, y) ∈ S4 párok esetén, akkor f(x) = x2f(1) minden x ∈ R-re.

Általánośıtva ezt az eredményt egy második kvadratikus függvény
használatával, a következő tételt kapjuk.

8.11 Tétel. Ha f, g : R → R kvadratikus függvények teljeśıtik az
y2f(x) = x2g(y) kiegésźıtő egyenletet az (x, y) ∈ S4 párok esetén,
akkor f(x) = g(x) = x2f(1) minden x ∈ R -re.

Végül, figyelembe véve a függvényegyenletek irodalmának további
eszközeit, amelyek nagyon friss eredményeket is tartalmaznak, érde-
kes szükséges feltételt kapunk a (8.4) kiegésźıtő egyenletet teljeśıtő
kvadratikus függvényekre.

8.12 Tétel. Ha egy f : R → R kvadratikus függvény eleget tesz az
y2f(x) = x2f(y) kiegésźıtő egyenletnek az xy = 1 feltétel mellett,
akkor létezik egy H harmadrendű szimmetrikus bi-deriváció, amelyre
f(x) = H(x, x) + x2f(1).

A 6. fejezetben olyan f, g : R → R kvadratikus és köbfüggvénye-
ket vizsgálunk, amelyek logaritmus illetve exponenciális függvényeket
tartalmazó feltételes egyenleteket teljeśıtenek. Ezekben az esetben
bebizonýıtjuk az f, g kvadratikus és köbfüggvények egyenlőségét és
folytonosságát.
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8.13 Tétel. Tegyük fel, hogy f, g : R → R n-edfokú monom függvé-
nyek (n ∈ {2, 3}) és f, g eleget tesznek az ynf(x) = xng(y) kiegésźıtő
egyenletnek R+-on minden (x, y) ∈ S5 esetén. Ekkor f(x) = g(x) =

xnf(1).

8.6 Megjegyzés. A fenti tétel eredményei átvihetők az exponenciális
függvény esetére, amikor (x, y) ∈ S6, mivel az azonos alapú expo-
nenciális és logaritmus függvények egymás inverzei.

Megjegyezzük, hogy mind a logaritmus, mind az exponenciális függ-
vény alapja bármely pozit́ıv valós szám lehet, az 1-et kivéve.
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Studia Univ. “Babeş-Bolyai”, Mathematica, L(1), 2005, 85–92.
(ISSN: 0252-1938, Mathematical Reviews)

5. Z. Makó, F. Szenkovits, E. Garda-Mátyás, Solution of Kepler-
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nen höherer Ordnung mittels Funktionalgleichungen, Österreich.
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[38] L. Székelyhidi, Convolution Type Functional Equation on Topo-
logical Abelian Groups, World Scientific, Singapore, 1991.

[39] J. Unger und L. Reich, Derivationen höherer Ordnung als
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