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On the extremal compatible linear connection of a generalized
Berwald manifold

Csaba Vincze

Abstract. Generalized Berwald manifolds are Finsler manifolds admitting linear connections
such that the parallel transports preserve the Finslerian length of tangent vectors (compatibi-
lity condition). It is known (Vincze in J AMAPN 21:199–204, 2005) that such a linear
connection must be metrical with respect to the averaged Riemannian metric given by
integration of the Riemann-Finsler metric on the indicatrix hypersurfaces. Therefore the
linear connection (preserving the Finslerian length of tangent vectors) is uniquely determined
by its torsion. If the torsion is zero then we have a classical Berwald manifold. Otherwise,
the torsion is some strange data we need to express in terms of the intrinsic quantities of the
Finsler manifold. The paper presents the idea of the extremal compatible linear connection
of a generalized Berwald manifold by minimizing the pointwise length of its torsion tensor.
It is uniquely determined because the number of the Lagrange multipliers is equal to the
number of the equations for the compatibility of the linear connection with the Finslerian
metric. Using the reference element method, the extremal compatible linear connection can
be expressed in terms of the canonical data as well. It is an intrinsic algorithm to check the
existence of compatible linear connections on a Finsler manifold because it is equivalent to
the existence of the extremal compatible linear connection.
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Introduction

The notion of generalized Berwald manifolds goes back to Wagner [6]. They
are Finsler manifolds admitting linear connections such that the parallel trans-
ports preserve the Finslerian length of tangent vectors (compatibility condi-
tion). We are interested in the unicity of the compatible linear connection and
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its expression in terms of the canonical data of the Finsler manifold (intrinsic
characterization). If the torsion is zero (classical Berwald manifolds), the in-
trinsic characterization is the vanishing of the mixed curvature tensor of the
canonical horizontal distribution. The problem of intrinsic characterization is
solved in the more general case of Finsler manifolds admitting semi-symmetric
compatible linear connections [3], see also [5]. We also have a unicity statement
because the torsion tensor of the semi-symmetric compatible linear connection
can be explicitly expressed in terms of metrics and differential forms given
by averaging. Especially, the integration of the Riemann-Finsler metric on the
indicatrix hypersurfaces (the so-called averaged Riemannian metric) gives a
Riemannian environment for the investigations. The fundamental result of the
theory [2] states that a linear connection satisfying the compatibility condition
must be metrical with respect to the averaged Riemannian metric. Therefore
the compatible linear connection is uniquely determined by its torsion tensor.
Unfortunately, the unicity statement for the compatible linear connection of
a generalized Berwald manifold is false in general [4]. To avoid the difficulties
coming from different possible solutions, the idea is to look for the extremal
solution in some sense: the extremal compatible linear connection of a gen-
eralized Berwald manifold keeps its torsion as close to the zero as possible.
It is a conditional extremum problem involving functions defined on a local
neighbourhood of the tangent manifold. In the case of a given point of the
manifold, the reference element method guarantees that the number of the
Lagrange multipliers is equal to the number of the equations for the com-
patibility of the linear connection with the Finslerian metric. Therefore the
solution of the conditional extremum problem with a reference element can
be expressed in terms of the canonical data. The solution of the conditional
extremum problem regardless of the reference elements can be constructed
algorithmically at each point of the manifold. If the pointwise solutions con-
stitute a continuous section of the torsion tensor bundle then the continuity of
the components of the torsion tensor implies the continuity of the connection
parameters in the linear system of first order ordinary differential equations
of parallel vector fields. Using parallel translations with respect to such a con-
nection we can conclude that the Finslerian metric is monochromatic. By the
fundamental result of the theory [1] it is sufficient and necessary for a Finsle-
rian metric to be a generalized Berwald metric. Therefore we have an intrinsic
algorithm to check the existence of compatible linear connections on a Finsler
manifold because it is equivalent to the existence of the extremal compatible
linear connection.

1. Notations and terminology

Let M be a differentiable manifold with local coordinates u1, . . . , un. The in-
duced coordinate system of the tangent manifold TM consists of the
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functions x1, . . . , xn and y1, . . . , yn. For any v ∈ TpM , xi(v) := ui ◦ π(v) = pi

and yi(v) = v(ui), where i = 1, . . . , n and π : TM → M is the canonical pro-
jection. A Finsler metric is a continuous function F : TM → R satisfying the
following conditions: F is smooth on the complement of the zero section (reg-
ularity), F (tv) = tF (v) for all t > 0 (positive homogeneity) and the Hessian

gij =
∂2E

∂yi∂yj

of the energy function E = F 2/2 is positive definite at all nonzero elements
v ∈ TpM (strong convexity), p ∈ M . The so-called Riemann-Finsler metric
g is constituted by the components gij . It is defined on the complement of
the zero section. The Riemann-Finsler metric makes the complement of the
origin a Riemannian manifold in each tangent space. The canonical objects
are the volume form dμ =

√
det gij dy1 ∧ . . . ∧ dyn, the Liouville vector field

C := y1∂/∂y1 + . . . + yn∂/∂yn and the induced volume form

μ =
√

det gij

n∑

i=1

(−1)i−1 yi

F
dy1 ∧ . . . ∧ dyi−1 ∧ dyi+1 . . . ∧ dyn

on the indicatrix hypersurface ∂Kp := F−1(1) ∩ TpM (p ∈ M). The averaged
Riemannian metric is defined by

γp(v, w) :=
∫

∂Kp

g(v, w)μ = viwj

∫

∂Kp

gij μ (v, w ∈ TpM,p ∈ U). (1)

Definition 1. A linear connection ∇ on the base manifold M is called com-
patible with the Finslerian metric if the parallel transports with respect to ∇
preserve the Finslerian length of tangent vectors. Finsler manifolds admitting
compatible linear connections are called generalized Berwald manifolds.

Suppose that the parallel transports with respect to ∇ (a linear connection
on the base manifold) preserve the Finslerian length of tangent vectors and let
X be a parallel vector field along the curve c : [0, 1] → M . We have that

(F ◦ X)′ = (xk ◦ X)′ ∂F

∂xk
◦ X + (yk ◦ X)′ ∂F

∂yk
◦ X (2)

where (xk ◦ X)′ = ck′
and Xk′

= −ci′XjΓk
ij ◦ c because of the differential equa-

tion for parallel vector fields. Therefore

(F ◦ X)′ = ci′
(

∂F

∂xi
− yjΓk

ij ◦ π
∂F

∂yk

)
◦ X. (3)

This means that the parallel transports with respect to ∇ preserve the Fins-
lerian length of tangent vectors (compatibility condition) if and only if

∂F

∂xi
− yjΓk

ij ◦ π
∂F

∂yk
= 0, (4)
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where i = 1, . . . , n. The vector fields of type

Xh
i :=

∂

∂xi
− yjΓk

ij ◦ π
∂

∂yk
(5)

span the horizontal distribution belonging to ∇. In a similar way, we can
introduce the horizontal vector fields Xh∗

i (i = 1, . . . , n) with respect to the
Lévi-Civita connection of the averaged Riemannian metric F ∗(v) :=

√
γp(v, v).

Theorem 1. [2] If a linear connection on the base manifold is compatible with
the Finslerian metric function then it must be metrical with respect to the
averaged Riemannian metric.

In what follows we are going to substitute the connection parameters with
the components of the torsion tensor in the equations of the compatibility con-
dition (4). Since the torsion tensor bundle can be equipped with a Riemannian
metric in a natural way, we can measure the length of the torsion to formulate
an extremum problem for the compatible linear connection keeping its torsion
as close to the origin as possible.

2. The extremal compatible linear connection of a generalized
Berwald manifold

Let F be the Finslerian metric of a connected generalized Berwald manifold
and suppose that ∇ is a compatible linear connection. Taking vector fields with
pairwise vanishing Lie brackets on a local neighbourhood of the base manifold,
the Christoffel process implies that

Xγ(Y,Z) + Y γ(X,Z) − Zγ(X,Y )
= 2γ(∇XY,Z) + γ(X,T (Y,Z)) + γ(Y, T (X,Z)) − γ(Z, T (X,Y ))

and, consequently,

γ(∇∗
XY,Z) = γ(∇XY,Z) +

1
2

(γ(X,T (Y,Z))

+γ(Y, T (X,Z)) − γ(Z, T (X,Y ))) , (6)

where ∇∗ denotes the Lévi-Civita connection of the averaged Riemannian met-
ric γ and T is the torsion tensor of ∇. In terms of the connection parameters

Γr
ij = Γ∗r

ij − 1
2

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

)
(7)

and the compatibility condition (4) can be written into the form

Xh∗
i F +

1
2
yj

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

) ◦ π
∂F

∂yr
= 0 (i = 1, . . . , n). (8)
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Formula (6) shows that the correspondence ∇ � T preserves the affine
combinations of the linear connections, i.e. for any real number λ ∈ R we
have

λ∇1 + (1 − λ)∇2 � λT1 + (1 − λ)T2.

Additionally, if ∇1 and ∇2 satisfy the compatibility condition (4) then so does

λ∇1 + (1 − λ)∇2.

This means that the set containing the restrictions of the torsion tensors of
the compatible linear connections to the Cartesian product TpM × TpM is an
affine subspace in the linear space ∧2T ∗

p M ⊗ TpM for any p ∈ M . As the
point is varying we have an affine distribution of the torsion tensor bundle
∧2T ∗M ⊗ TM . In terms of local coordinates, the bundle is spanned by

dui ∧ duj ⊗ ∂

∂uk
(1 ≤ i < j ≤ n, k = 1, . . . , n)

and its dimension is
(

n

2

)
n.

Definition 2. The products

dui ∧ duj ⊗ ∂

∂uk
(1 ≤ i < j ≤ n, k = 1, . . . , n)

form an orthonormal basis at the point p ∈ M if the coordinate vector fields
∂/∂u1, . . . , ∂/∂un form an orthonormal basis with respect to the averaged
Riemannian metric at the point p ∈ M . The norm of the torsion tensor is
defined by

‖Tp‖2 =
∑

1≤i<j≤n

n∑

k=1

T k
ij(p)

2
(9)

provided that T =
∑

1≤i<j≤n

∑n

k=1
T k

ijdui ∧ duj ⊗ ∂

∂uk
and the products form

an orthonormal basis at the point p ∈ M . The corresponding inner product is

〈Tp, Sp〉 =
∑

1≤i<j≤n

n∑

k=1

T k
ij(p)Sk

ij(p).

Let a point p ∈ M be given and consider the affine subspace Ap in ∧2T ∗
p M⊗

TpM defined by

Xh∗
i F (v) +

1
2
yj(v)

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

)
(p)

∂F

∂yr
(v) = 0, (10)

where i = 1, . . . , n and v ∈ TpM . Note that Ap is nonempty because it contains
the restrictions of the torsion tensors of the compatible linear connections to
the Cartesian product TpM × TpM . If Tp ∈ Ap then we can write Ap as the
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translate Ap = Tp + Hp, where the linear subspace Hp ⊂ ∧2T ∗
p M ⊗ TpM is

defined by
1
2
yj(v)

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

)
(p)

∂F

∂yr
(v) = 0, (11)

where i = 1, . . . , n and v ∈ TpM .

Lemma 1. If ∇ is a compatible linear connection then the linear subspace Hp

is invariant under the action

(ϕT )p(v, w) := ϕ−1Tp(ϕ(v), ϕ(w))

of the holonomy group of ∇ at the point p ∈ M .

Proof. Suppose that the coordinate vector fields ∂/∂u1, . . . , ∂/∂un form an
orthonormal basis with respect to the averaged Riemannian metric at the

point p ∈ M and let Qj
i be the matrix representation of ϕ, P i

j =
(
Qj

i

)−1

.
Evaluating (11) at ϕ(v) we have an equivalent system of equations because v
runs through the nonzero elements in TpM . So does ϕ(v). Therefore (11) is
equivalent to

1
2
yj ◦ ϕ(v)

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

)
(p)

∂F

∂yr
◦ ϕ(v) = 0,

1
2
yb(v)

(
T l

jkQj
bP

c
r γkrγil + T l

ikQj
bP

c
r γkrγjl − T r

ijQ
j
bP

c
r

)
(p)

∂F

∂yc
(v) = 0,

where i = 1, . . . , n and v ∈ TpM . Indeed, ϕj = yj ◦ ϕ = Qj
by

b and the invari-
ance property F ◦ ϕ = F implies that

∂F

∂yc
(v) =

∂F ◦ ϕ

∂yc
(v) = Qr

c

∂F

∂yr
◦ ϕ(v) ⇒ P c

r

∂F

∂yc
(v) =

∂F

∂yr
◦ ϕ(v).

Since the identities Qi
aQj

bγij(p) = γab(p) and P a
i P b

j γij(p) = γab(p) give that
Qj

bγjl(p) = P j
l γjb(p) and P b

j γjk(p) = Qk
j γjb(p), we have

1
2
yb(v)

(
T l

jkQj
bQ

k
rγrcγil + T l

ikQj
bQ

k
rγrcγjl − T r

ijQ
j
bP

c
r

)
(p)

∂F

∂yc
(v) = 0,

where i = 1, . . . , n and v ∈ TpM . Taking the product with the matrix Qi
a the

equivalent system of equations is
1
2
yb(v)

(
T l

jkQi
aQj

bQ
k
rγrcγil + T l

ikQi
aQj

bQ
k
rγrcγjl − T r

ijQ
i
aQj

bP
c
r

)
(p)

∂F

∂yc
(v) = 0,

1
2
yb(v)

(
T l

jkP i
l Q

j
bQ

k
rγrcγia + T l

ikQi
aP j

l Qk
rγrcγjb − T r

ijQ
i
aQj

bP
c
r

)
(p)

∂F

∂yc
(v) = 0,

1
2
yb(v)

(
(ϕT )i

br γrcγia + (ϕT )j
ar γrcγjb − (ϕT )c

ab

)
(p)

∂F

∂yc
(v) = 0,

where a = 1, . . . , n and v ∈ TpM . �
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Remark 1. The previous argument obviously works for any element of the
group G containing orthogonal transformations of the tangent space TpM with
respect to the averaged Riemannian metric such that the Finslerian indicatrix
is invariant: F ◦ ϕ = F (ϕ ∈ G). It is also clear that G is a compact subgroup
in the orthogonal group and Hol∇ ⊂ G. Finally, the proof of Lemma 1 also
works for the invariance of the Finslerian metric under ϕ := τpq, where τpq is a
parallel translation induced by a linear connection on the base manifold. The
invariance implies that (ϕT )q ∈ Hq, where Tp ∈ Hp and

(ϕT )q(v, w) = ϕ ◦ Tp(ϕ−1(v), ϕ−1(w)).

Corollary 1. If we have a connected generalized Berwald manifold then the
mapping p ∈ M → Ap ⊂ ∧2T ∗

p M ⊗ TpM is a smooth affine distribution of
constant rank of the torsion tensor bundle.

Proof. Let ∇ be a compatible linear connection, T be its torsion tensor and
the point p ∈ M be given. According to Lemma 1 (see also Remark 1) we have
that Aq = Tq + τpq(Hp) for any q ∈ M , where τpq is the parallel transport
along an arbitrary curve joining p and q. �

In what follows we introduce the extremal compatible linear connection of
a generalized Berwald manifold in terms of its torsion T 0 by taking the closest
point T 0

q ∈ Aq to the origin for any q ∈ M . Since d(∇1,∇2) := ‖T1 − T2‖ is a
pointwise distance function on the set of metric linear connections, the minimal
torsion also minimizes the difference between a compatible connection and the
Lévi-Civita connection.

Definition 3. The extremal compatible linear connection of a generalized
Berwald manifold is the uniquely determined compatible linear connection
minimizing the norm of its torsion by taking the values of the pointwise min-
ima.

2.1. A conditional extremum problem for the extremal compatible linear con-
nection

Let a point p ∈ M be given and consider the conditional extremum problem

min
1
2
‖Tp‖2 subject to Tp ∈ Ap, (12)

where the affine subspace Ap ⊂ ∧2T ∗
p M ⊗ TpM is defined by (10). First of all

note that the coefficient of T c
ab (1 ≤ a < b ≤ n, c = 1, . . . , n) is

σab
c;i =

1
2

((
yaγbr − ybγar

) ∂F

∂yr
γic +

(
δa
i γbr − δb

i γ
ar

) ∂F

∂yr
yjγjc

− (
δa
i yb − δb

i y
a
) ∂F

∂yc

)
, (13)
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where the index i = 1, . . . , n refers to the corresponding equation in (8). The
symmetric differences in formula (13) are due to a < b. If the coordinate vector
fields ∂/∂u1, . . . , ∂/∂un form an orthonormal basis at p ∈ M with respect to
the averaged Riemannian metric γ, then

σab
c;i =

1
2

(
δc
i

(
ya ∂F

∂yb
− yb ∂F

∂ya

)
+ δa

i

(
yc ∂F

∂yb
− yb ∂F

∂yc

)

−δb
i

(
yc ∂F

∂ya
− ya ∂F

∂yc

))
. (14)

Since the vector fields

ya ∂

∂yb
− yb ∂

∂ya
, yc ∂

∂yb
− yb ∂

∂yc
, yc ∂

∂ya
− ya ∂

∂yc

come from the Liouville vector field (the outer unit normal to the Finslerian
indicatrix) by an Euclidean quarter rotation in the corresponding 2-planes,
their actions on F are automatically zero at the contact points of the Finslerian
and the Riemannian spheres.

2.2. Vertical and horizontal contact points

Definition 4. A nonzero element v ∈ TpM satisfying

∂ log F

∂yi
(v) =

∂ log F ∗

∂yi
(v) (i = 1, . . . , n)

is called a vertical contact point of the Finslerian and the averaged Riemannian
metric functions. A nonzero element v ∈ TpM is a horizontal contact point of
the Finslerian and the averaged Riemannian metric functions if

Xh∗
i F (v) = 0 (i = 1, . . . , n).

The tangent space at p ∈ M is vertical/horizontal contact if all nonzero ele-
ments v ∈ TpM are vertical/horizontal contact.

The vertical/horizontal contact vector fields can also be defined in a similar
way: the vector field X on the base manifold is vertical/horizontal contact if
either X(p) ∈ TpM is vertical/horizontal contact or X(p) = 0.

Remark 2. First of all note that the vertical contact points are independent of
the choice of the coordinate system. Geometrically, the tangent hyperplanes of
the Finslerian and the Riemannian spheres passing through a vertical contact
point are the same in the corresponding tangent space. This is because their
Euclidean gradient vectors in TpM are proportional:

∂F

∂yi
(v) =

F

F ∗ (v)
∂F ∗

∂yi
(v) (i = 1, . . . , n), (15)
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where the coordinate vector fields ∂/∂u1, . . . , ∂/∂un form an orthonormal ba-
sis at p ∈ M with respect to the averaged Riemannian metric γ.

Corollary 2. The vertical contact points of a generalized Berwald manifold are
horizontal contact points.

Proof. Suppose that the coordinate vector fields ∂/∂u1, . . . , ∂/∂un form an
orthonormal basis at p ∈ M with respect to the averaged Riemannian metric
γ. It can be easily seen that

ya ∂F ∗

∂yb
(v) − yb ∂F ∗

∂ya
(v) = yc ∂F ∗

∂yb
(v) − yb ∂F ∗

∂yc
(v)

= yc ∂F ∗

∂ya
(v) − ya ∂F ∗

∂yc
(v) = 0. (16)

Therefore, by formula (15),

ya ∂F

∂yb
(v)− yb ∂F

∂ya
(v) = yc ∂F

∂yb
(v)− yb ∂F

∂yc
(v) = yc ∂F

∂ya
(v)− ya ∂F

∂yc
(v) = 0. (17)

This means that σab
c;i(v) = 0 and the corresponding equations in (10) reduce

to Xh∗
i F (v) = 0 for any i = 1, . . . , n. �

Corollary 3. Let p ∈ M be a given point of a connected generalized Berwald
manifold. If any nonzero element v ∈ TpM is a vertical contact point of the
Finslerian and the averaged Riemannian metric functions, i.e. TpM is a ver-
tical contact tangent space then M is a Riemannian manifold.

Proof. If any nonzero element in TpM is a vertical contact point of the Fins-
lerian and the averaged Riemannian metric functions then we have that

log
F

F ∗ (v) = const. (v ∈ TpM),

i.e. F (v) = econst.F ∗(v) for any nonzero element v ∈ TpM . This means that
the Finslerian indicatrix is a quadratic hypersurface at a single point p ∈ M .
Since we have linear parallel transports between different tangent spaces, the
same is true for the Finslerian indicatrix at any point of the (connected) base
manifold, i.e. we have a Riemannian manifold. �

Corollary 4. Let p ∈ M be a given point of a generalized Berwald manifold. If
any nonzero element v ∈ TpM is a horizontal contact point of the Finslerian
and the averaged Riemannian metric functions, i.e. TpM is a horizontal con-
tact tangent space then the torsion of the extremal compatible linear connection
is identically zero at the point p ∈ M .

Proof. The statement is trivial because the zero element in ∧2T ∗
p M ⊗ TpM

solves the equations in (10) under the conditions Xh∗
i F (v) = 0 (i = 1, . . . , n)

for any nonzero v ∈ TpM . �
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Remark 3. If we have a classical Berwald manifold then any nonzero element
v ∈ TM is a horizontal contact point of the Finslerian and the averaged Rie-
mannian metric functions and vice versa. The extremal compatible linear con-
nection is ∇∗ (the Lévi-Civita connection of the averaged Riemannian metric)
with vanishing torsion.

2.3. The reference element method

In what follows we are going to find the Lagrange multipliers for the tor-
sion tensor of the extremal compatible linear connection. They transform the
compatibility condition to a system of linear equations containing at most

n unknown parameters instead of
(

n

2

)
n. Let a point p ∈ M and the refer-

ence element v ∈ TpM \ {0} be given and consider the conditional extremum
problem

min
1
2
‖Tp‖2 subject to Tp ∈ Ap(v); (18)

the affine subspace Ap(v) ⊂ ∧2T ∗
p M ⊗ TpM is defined by

Xh∗
i F (v) +

1
2
yj(v)

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

)
(p)

∂F

∂yr
(v) = 0 (19)

where i = 1, . . . , n. It is clear that Ap =
⋂

v ∈ TpM\{0}
Ap(v) ⊂ Ap(v).

Lemma 2. Introducing the notations

gi(Tp, v) := Xh∗
i F (v) +

1
2
yj(v)

(
T l

jkγkrγil + T l
ikγkrγjl − T r

ij

)
(p)

∂F

∂yr
(v)

(i = 1, . . . , n),

we have

rank
∂gi

∂T a
bc

(Tp, v) =
{

n if v is not a vertical contact point in TpM
0 otherwise.

Proof. If v is a vertical contact point of the Finslerian and the averaged Rie-
mannian metric functions then σab

c;i(v) = 0 (i = 1, . . . , n) because of (14)–(17).
Otherwise
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a = c = i, b = c = i, a = c = i, b = c = i, a �= i,
i < b, i = j a < i, i = j i < b, i �= j a < i, i �= j b �= i, c �= i

σib
i;i = yi ∂F

∂yb − yb ∂F
∂yi σai

i;i = ya ∂F
∂yi − yi ∂F

∂ya σib
i;j = 0 σai

i;j = 0 σab
c;i = 0

and we can find at least one nonzero value among the coefficients σib
i;i(v), where

i < b and σai
i;i(v), where a < i in each row. Suppose, on the contrary, that (for

example) i = 1 and σ12
1;1(v) = . . . = σ1n

1;1(v) = 0; i.e. v1 ∂F

∂yb
(v) − vb ∂F

∂y1
(v) = 0,

where b = 2, . . . , n. Therefore

v1
n∑

b=2

vb ∂F

∂yb
(v) − ∂F

∂y1
(v)

n∑

b=2

(
vb

)2
= 0

and the homogeneity property of the metric function implies that

v1

(
F (v) − v1 ∂F

∂y1
(v)

)
− ∂F

∂y1
(v)

(
F ∗(v)2 − (

v1
)2)

= 0 ⇒
1

F (v)
∂F

∂y1
(v) =

v1

F ∗(v)2
=

1
F ∗(v)

∂F ∗

∂y1
(v).

This means that v is a vertical contact point and our assumption is false. In
addition, the subsequent rows contain zeros in the corresponding positions:

σib
i;i+1(v) = σai

i;i+1(v) = σib
i;i+2(v) = σai

i;i+2(v) = . . . = 0.

�

Let a point p ∈ M of a connected generalized Berwald manifold be given.

(A) If any nonzero element v ∈ TpM is a vertical contact point of the Finsle-
rian and the averaged Riemannian metric functions, i.e. TpM is a vertical
contact tangent space then we have a Riemannian manifold (see Corollary
3) and the extremal compatible linear connection is ∇∗.

Otherwise, let p ∈ M be given and suppose that v ∈ TpM is not a vertical
contact reference element. Using the notations in subsection 2.1 the conditional
extremum problem can be written into the form

min
1
2
‖Tp‖2 subject to Xh∗

i F (v) + 〈Tp, σi(v)〉 = 0 (i = 1, . . . , n),

where

σi =
∑

1≤a<b≤n

n∑

c=1

σab
c;i

∂

∂ya
∧ ∂

∂yb
⊗ dyc
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and the inner product on the vertical subspace Vv ∧2 T ∗
p M ⊗ TpM is induced

by the Riemannian metric of the torsion tensor bundle:

〈Tp, σi(v)〉 = σi(v)(Tp) :=
∑

1≤a<b≤n

n∑

c=1

T c
ab(p)σab

c;i(v);

note that the torsion tensor T is identified with its vertically lifted tensor if
necessary, i.e.

T =
∑

1≤a<b≤n

n∑

c=1

T c
abdua ∧ dub ⊗ ∂

∂uc
�

∑

1≤a<b≤n

n∑

c=1

T c
ab ◦ πdya ∧ dyb ⊗ ∂

∂yc
.

The Lagrange method says that

∂L(v)
∂T c

ab

(Tp, λ1(v), . . . , λn(v)) = 0,

where

L(v)(Tp, λ1(v), . . . , λn(v)) =
1
2
‖Tp‖2 −

n∑

j=1

λj(v)gj(Tp, v)

=
1
2
‖Tp‖2 −

n∑

j=1

λj(v)
(
Xh∗

j F (v) + 〈Tp, σj(v)〉
)

,

i.e.

T c
ab(p) −

n∑

j=1

λj(v)σab
c;j(v) = 0 ⇒ T c

ab(p) =
n∑

j=1

λj(v)σab
c;j(v).

Subtituting into the conditional equations we have that

Xh∗
i F (v) +

n∑

j=1

λj(v)
∑

1≤a<b≤n

n∑

c=1

σab
c;i(v)σab

c;j(v) = 0 (i = 1, . . . , n) (20)

and

− G−1 (σ1(v), . . . , σn(v))
(
Xh∗

1 F (v), . . . , Xh∗
n F (v)

)T

=(λ1(v), . . . , λn(v))
T, (21)

where i = 1, . . . , n and G (σ1(v), . . . , σn(v)) is the Gramian with respect to
the inner product

〈σi(v), σj(v)〉 =
∑

1≤a<b≤n

n∑

c=1

σab
c;i(v)σab

c;j(v)

on the vertical subspace Vv ∧2T ∗
p M ⊗TpM . The uniquely determined solutions

λ1(v), . . . , λn(v) give the closest element T 0
p (v) ∈ Ap(v) to the origin in the

linear space ∧2T ∗
p M ⊗ TpM . Therefore
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Ap(v) = T 0
p (v) + L⊥ (σ1(v), . . . , σn(v)) ,

where

T 0
p (v) =

n∑

j=1

λj(v)σj(v) (22)

and the coefficients are given by formula (21). Since

Ap =
⋂

v ∈ TpM\{0} is not a vertical contact point

T 0
p (v) + L⊥ (σ1(v), . . . , σn(v))

it follows that

dim Ap ≤ dim Ap(v) =
(

n

2

)
n − n,

where v is not a vertical contact element. Note that the intersection can be
taken with respect to Finslerian (or Riemannian) unit vectors because of the
homogeneity properties:

Ap =
⋂

v ∈ ∂Kp is not a vertical contact point

T 0
p (v) + L⊥ (σ1(v), . . . , σn(v)) =

⋂

v ∈ ∂K∗
p is not a vertical contact point

T 0
p (v) + L⊥ (σ1(v), . . . , σn(v)) .

(B) In the case of a horizontal but not vertical contact reference element
T 0

p (v) = 0 ∈ ∧2T ∗
p M ⊗ TpM because of Definition 4 and formula (21).

If any nonzero element v ∈ TpM is a horizontal contact point of the
Finslerian and the averaged Riemannian metric functions, i.e. TpM is
a horizontal contact tangent space then the solution of the extremum
problem (18) is T 0

p := 0 regardless of the reference elements (see Corollary
4).

(C) Otherwise, let p ∈ M be given and suppose that v ∈ TpM is not a
horizontal contact reference element, i.e. T 0

p (v) �= 0. Since Ap ⊂ Ap(v)
it follows that Ap consisting of the solutions of the conditional equations
without any reference element must be contained in the hyperplane

〈T 0
p (v), Tp − T 0

p (v)〉 = 0 (23)

of dimension
(

n

2

)
n − 1 in ∧2T ∗

p M ⊗ TpM . Therefore the process in case (C)

can be completed as follows:
Step 1 Let T 0

p (v1) be the uniquely determined, not identically zero solution of
the conditional extremum problem

min
1
2
‖Tp‖2 subject to Tp ∈ Ap(v1), (24)
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where v1 ∈ TpM is not a horizontal contact point. If gi(T 0
p (v1), v) = 0

(i = 1, . . . , n) for any v ∈ TpM then T 0
p = T 0

p (v1) and we are done.
Step 2 Otherwise, let us choose a nonzero element v2 such that gi(T 0

p (v1), v2) �=
0 for at least one of the indices i = 1, . . . , n. Taking T 0

p (v1) as the origin,
let T 0

p (v1, v2) be the uniquely determined, not identically zero solution
of the conditional extremum problem

min
1
2
‖Tp‖2 subject to Tp ∈ Ap(v2) (25)

and

〈T 0
p (v1), Tp − T 0

p (v1)〉 = 0. (26)

Geometrically, T 0
p (v1, v2) is the orthogonal projection of T 0

p (v1) onto

Ap(v2) in the hyperplane (26) of dimension
(

n

2

)
n − 1. If

G (
σ1(v2), . . . , σn(v2), T 0

p (v1)
)

= 0

then T 0
p (v1, v2) = T 0

p (v2). Otherwise Cramer’s rule gives the (uniquely
determined) solutions for the Lagrange multipliers λ1, . . ., λn and λn+1.
Especially, equation (26) is equivalent to

λn+1(v2) = 1 −
n∑

j=1

λj(v2)
〈σj(v2), T 0

p (v1)〉
‖T 0

p (v1)‖2 .

If gi(T 0
p (v1, v2), v) = 0 (i = 1, . . . , n) for any v ∈ TpM then T 0

p =
T 0

p (v1, v2) and we are done.
Step 3 Otherwise, let us choose a nonzero element v3 such that gi(T 0

p (v1, v2), v3)
�= 0 for at least one of the indices i = 1, . . . , n. Taking T 0

p (v1, v2) as
the origin, let T 0

p (v1, v2, v3) be the uniquely determined, not identically
zero solution of the conditional extremum problem

min
1
2
‖Tp‖2 subject to Tp ∈ Ap(v3) (27)

and

〈T 0
p (v1), Tp − T 0

p (v1, v2)〉 = 0, 〈T 0
p (v1, v2), Tp − T 0

p (v1, v2)〉 = 0. (28)

Geometrically, T 0
p (v1), T 0

p (v1, v2) and T 0
p (v1, v2, v3) form an orthogonal chain

in the sense that

T 0
p (v1) ⊥ T 0

p (v1, v2) − T 0
p (v1) and T 0

p (v1),

T 0
p (v1, v2) − T 0

p (v1) ⊥ T 0
p (v1, v2, v3) − T 0

p (v1, v2).

Therefore T 0
p (v1, v2, v3) is the element of a hyperplane of dimension

(
n

2

)
n − 2.

In general, if we have T 0
p (v1), . . . , T 0

p (v1, . . . , vm−1) then
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• T 0
p = T 0

p (v1, . . . , vm−1) when gi(T 0
p (v1, . . . , vm−1), v) = 0 (i = 1, . . . , n)

for any v ∈ TpM .
• Otherwise, let us choose a nonzero element vm such that gi(T 0

p (v1, . . . ,
vm−1), vm) �= 0 for at least one of the indices i = 1, . . . , n. Taking
T 0

p (v1, . . . , vm−1) as the origin, let T 0
p (v1, . . . , vm) be the uniquely deter-

mined, not identically zero solution of the conditional extremum problem

min
1
2
‖Tp‖2 subject to Tp ∈ Ap(vm) (29)

and

〈T 0
p (v1), Tp − T 0

p (v1, . . . , vm−1)〉 = 0,

〈T 0
p (v1, v2), Tp − T 0

p (v1, . . . , vm−1)〉 = 0, . . . , (30)

〈T 0
p (v1, . . . , vm−1), Tp − T 0

p (v1, . . . , vm−1)〉 = 0.

Corollary 5. For any m ≤ l

T 0
p (v1), T 0

p (v1, v2) − T 0
p (v1), . . . ,

T 0
p (v1, . . . , vm−1) − T 0

p (v1, . . . , vm−2) ⊥ T 0
p (v1, . . . , vm) − T 0

p (v1, . . . , vm−1),

i.e. T 0
p (v1), . . . , T 0

p (v1, . . . , vm) is an orthogonal chain, where l ≤
(

n

2

)
n is its

maximal length and T 0
p = T 0

p (v1, . . . , vl) is the torsion tensor of the extremal
compatible linear connection.

Theorem 2. Let M be a connected manifold equipped with a Finslerian metric
F . It is a generalized Berwald manifold if and only if either it is a classical
Berwald manifold (in particular, Riemannian), or the following three condi-
tions are satisfied:

• the vertical contact elements of the tangent manifold TM are horizontal
contact,

• for any non-horizontal contact tangent space TpM , the form

T 0
p (v1, . . . , vl) ∈ ∧2T ∗

p M ⊗ TpM

is independent of the admissible choice of the elements v1, . . . , vl ∈ TpM ,

where l ≤
(

n

2

)
n is the maximal length of the orthogonal chain T 0

p (v1),

T 0
p (v1, v2), . . . , Tp(v1, v2, . . . , vl),

• T 0 : p ∈ M → T 0
p :=

⎧
⎨

⎩

0 in case of a horizontal contact
tangent space,

T 0
p (v1, . . . , vl) otherwise

is a

continuous section of the torsion tensor bundle and the corresponding lin-
ear connection is compatible with the Finslerian metric.



68 C. Vincze AEM

Proof. Suppose that we have a connected generalized Berwald manifold. Corol-
lary 2 shows that the first condition is satisfied. If it is not a classical Berwald
manifold including the case of the Riemannian manifolds then

T 0 : p ∈ M → T 0
p :=

⎧
⎨

⎩

0 in case of a horizontal contact
tangent space,

T 0
p (v1, . . . , vl) otherwise

is the torsion of the extremal compatible linear connection because the refer-
ence element method ends in finitely many steps at the only possible solution
of the conditional extremum problem (12). Using Corollary 1, the pointwise
solutions form a continuous section of the torsion tensor bundle. Conversely,
suppose that we have a non-Riemannian and non-classical Berwald Finsler
manifold. If the vertical contact elements of the tangent manifold TM are
horizontal contact then the conditional extremum problem (12) is consistent
because the compatibility equations are automatically satisfied at each verti-
cal contact element. Otherwise the reference element method ends in finitely
many steps at the output T 0

p = 0 (the tangent space is horizontal contact) or

T 0
p (v1, . . . , vl) ∈ ∧2T ∗

p M ⊗ TpM.

In any case we have a unique output because it is assumed to be independent
of the admissible choice of the elements v1, . . . , vl in any non-horizontal contact
tangent space TpM . (If any tangent space is horizontal contact, we can directly
conclude that it is a classical Berwald manifold including the Riemannian case
and any additional condition is redundant.) Using the last condition we can
check the result in the following sense: if we have a continuous section of
the torsion tensor bundle then the corresponding connection parameters (see
(7)) are also continuous in the linear system of first order ordinary differen-
tial equations of parallel vector fields. Therefore we can consider the parallel
translations in the usual sense. Since they are assumed to be compatible with
the Finslerian metric, we can conclude that the metric is monochromatic, i.e.
there exists a linear mapping preserving the Finslerian norm of tangent vectors
between the tangent spaces TpM and TqM for any pair of points p, q ∈ M . It
is sufficient and necessary for a Finslerian metric to be a generalized Berwald
metric [1]. �

3. Summary

The idea of the paper is to find a distinguished compatible linear connection
of a (connected) generalized Berwald manifold. Generalized Berwald mani-
folds are Finsler manifolds admitting linear connections such that the parallel
transports preserve the Finslerian length of tangent vectors (compatibility con-
dition). By the fundamental result of the theory [2] such a linear connection
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must be metrical with respect to the averaged Riemannian metric given by in-
tegration of the Riemann-Finsler metric on the indicatrix hypersurfaces. The
averaged Riemannian metric induces Riemannian metrics on the torsion tensor
bundle ∧2T ∗M ⊗ TM and its vertical bundle in a natural way. Therefore we
are looking for the extremal compatible linear connection in the sense that we
want to minimize the norm of the torsion point by point. It is a conditional
extremum problem involving functions defined on a local neighbourhood of the
tangent manifold. In the case of a given point of the manifold, the reference
element method helps us to start the application of the Lagrange multiplier
rule. The finiteness of the rank of the torsion tensor bundle guarantees that
we can compute the minimizer regardless of the reference elements in finitely
many steps at each point of the manifold. If the pointwise solutions constitute
a continuous section of the torsion tensor bundle then the continuity of the
components of the torsion tensor implies the continuity of the connection pa-
rameters. Using parallel translations with respect to such a connection we can
conclude that the Finslerian metric is monochromatic. By the fundamental re-
sult of the theory [1] it is sufficient and necessary for a Finslerian metric to be a
generalized Berwald metric. Therefore we have an intrinsic algorithm to check
the existence of compatible linear connections on a Finsler manifold because
it is equivalent to the existence of the extremal compatible linear connection.
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