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Abstract

Path-based distance functions are defined on n-dimensional generalizations of the
face-centered cubic and body-centered cubic grids. The distance functions use both
weights and neighborhood sequences. These distances share many properties with
traditional path-based distance functions, such as the city-block distance, but are
less rotational dependent. For the three-dimensional case, we introduce four differ-
ent error functions which are used to find the optimal weights and neighborhood
sequences that can be used to define the distance functions with low rotational
dependency.

1 Introduction

By adding a grid point in the center of each cube with vertices on grid points
in a cubic grid, a body-centered cubic (bcc) grid is obtained. The face-centered
cubic (fcc) is obtained by instead adding a grid point at the center of each
face of the cubes. When using non-standard grids such as the fcc and bcc
grids for 3D images, less samples are needed to obtain the same representa-
tion/reconstruction quality compared to the cubic grid [1]. This is one reason
for the increasing interest in using these grids in, e.g., image acquisition [1],
image processing [2–4], and visualization [5,6]. See also [7].
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Optimal sampling in the sense of the Shannon sampling theorem is obtained
when the reciprocal of a dense grid is used for representing the image. In this
way, a sparse as possible grid is used for image representation [7]. The fcc grid
is the densest three-dimensional point-lattice [8] and its reciprocal is the bcc
grid. In number theory [8], the fcc grid is usually denoted D3 and is a special
case of the point-lattice Dn, here refered to as the n-dimensional fcc grid.
The reciprocal of this point-lattice is D∗

n, here called the n-dimensional bcc
grid. The n-dimensional fcc grid is the densest point-lattice in three, four, and
five dimensions [8]. Thus, the n-dimensional fcc and bcc grids are potentially
important for high-dimensional image processing. The 3-dimensional fcc and
bcc grids can, e.g., be used when reconstructing, e.g., images from computed
tomography with increased accuracy, see [1,7]. The results in this paper can
be used to find appropriate distance functions for processing such images.

Measuring distances on digital grids is of great importance both in theory and
in many applications. Because of its low rotational dependency, the Euclidean
distance is often used as distance function. Even though the rotational depen-
dency is higher, there are many reasons to use distances defined as minimal
cost-paths instead. In some aspects, distance functions defined by minimal
cost-paths fits the digital geometry-approach better, [9]. For example, the set
of the points of the digital plane (square grid) having Euclidean distance, e.g.,
9 from a point consists of four points far from each other. Instead, digital circles
using some path-based distances (for instance, distances based on neighbor-
hood sequences) are sets of consecutive neighbor points. Another aspect is
that when minimal cost-paths are computed, a distance function defined as
the minimal cost path between any two points is better suited, see, e.g., [10],
where the constrained distance transform is computed using the Euclidean dis-
tance. The resulting algorithm is complex since distances can be propagated
only to “visible points”. The computational complexity (w.r.t. both time and
space) of this algorithm is larger than the corresponding algorithm using a
path-based approach which is simple, fast, and easy to generalize to higher di-
mensions [11,12]. We conclude that path-based digital distances are important
both from a theoretical point of view and for several applications.

Examples of path-based distances are weighted distances, where weights de-
fine the cost (distance) between neighboring grid points [2,3,13], and distances
based on neighborhood sequences, where the cost is fixed but the adjacency
relation is allowed to vary along the path [4,14]. These path-based distance
functions are generalizations of the well-known city-block and chessboard dis-
tance function defined for the square grid in [15]. We will abbreviate neigh-
borhood sequence with ns, distance based on neighborhood sequences with
ns-distances, and weighted distances based on neighborhood sequences with
weighted ns-distances or just wns-distances.

Many approaches where the deviation from the Euclidean distance is mini-

2



mized in order to find the optimal ns (ns-distances) or weights (weighted dis-
tances) have been proposed for Z2. In most papers, error functions minimizing
the asymptotic maximum difference of a Euclidean ball and a ball obtained
by using ns-distances [16–19] or weighted distances [3,13,20] are minimized.
Other approaches have also been considered for ns-distances. In [21], optimal
ns for the 2D hexagonal and triangular grids are found using a compactness
ratio – the ratio between the squared perimeter and the area of the convex
hull of the disks obtained by using ns. In [22], the symmetric difference is used
for ns in Z2 and in [23], the following error functions are considered for ns
on the fcc and the bcc grids: absolute error, relative error, compactness ratio,
maximal inscribed ball, and minimal covering ball.

In [16], a general definition allowing both weights and ns was presented. The
full potential of using both weights and ns was discovered in [24], where ns
and weights were together used in the sense of [16], but with the well-known
natural neighborhood structure of Z2. In [24], the basic theory for weighted
ns-distances on the square grid is presented including a formula for the dis-
tance between two points, conditions for metricity, optimal parameter calcula-
tion, and an algorithm to compute the distance transform. In [25], some basic
theoretical results for weighted ns-distances on the fcc and bcc grids were
presented. The theory for weighted ns-distances on the fcc and bcc grids was
further developed in [26] by presenting sufficient conditions for metricity and
algorithms that can be used to compute the distance transform and a minimal
cost-path between two points. In [27] the theory for weighted distances based
on neighborhood sequences with two neighborhood relations for the general
case of point-lattices is considered.

The asymptotic error using the compactness ratio was used to find the optimal
weights and ns for weighted ns-distances on the fcc and bcc grids in [25]. The
basic analysis presented in [25] is extended in [28] by considering the relative
error, the compactness ratio, the maximal inscribed ball, and the minimal
covering ball. As in, e.g., [3,13,16–18,20], the digital ball is compared with the
Euclidean ball to get a measure of rotational dependency of a digital distance.
Also, we analyze the behavior when ns of finite length, i.e., periodic ns is
used. Note that the results presented here also applies to weighted distances
and ns-distances, since they are both special cases of the proposed distance
function. The distance function proposed here is used to find optimal weights
for the weighted distance and optimal ns for ns-distances. It follows that the
rotational dependency for the weighted ns-distance is less than or equal to
both the weighted distance and the ns-distance.

When the paper [28] was presented at the 12th international workshop on
combinatorial image analysis (IWCIA 2008), there were several questions and
comments about n-dimensional generalizations of the fcc and bcc grids. There-
fore, in this paper, some results are extended to higher dimensions.

3



This paper consists of two parts. First, we define weighted ns-distances in
the n-dimensional fcc and bcc grids by applying the theoretical framework
presented in [27] to these grids. Formulas for point-to-point distance and con-
ditions for metricity are presented. We also present the optimal parameter
computations for the 3D fcc and bcc grids from [28].

2 Distance Functions and Grids

We will now give definitions of n-dimensional generalizations of the fcc and
bcc grids. Using some previous results, we will also define the ns-distance and
the weighted ns-distance for these grids. Let the set N1 = {v1,v2, . . . ,vM}
define the 1-neighbors of the point 0 in a point-lattice G. Let also N2 =
{u1,u2, . . . ,uN} define the strict 2-neighbors. We denote the set of 2-neighbors
by N1,2 = N1 ∪ N2.

A ns B is a sequence B = (b(i))∞i=1
, where each b(i) denotes a neighborhood

relation in G. If B is periodic, i.e., if for some fixed strictly positive l ∈ Z+,
b(i) = b(i+ l) is valid for all i ∈ Z+, then we write B = (b(1), b(2), . . . , b(l)). A
path, denoted P, in a grid is a sequence p0,p1, . . . ,pn of adjacent grid points.
A path is a B-path of length n if, for all i ∈ {1, 2, . . . , n}, pi−1 and pi are
b(i)-neighbors. The notation 1- and (strict) 2-steps will be used for a step to
a 1-neighbor and step to a (strict) 2-neighbor, respectively.

Definition 1 Given the ns B, the ns-distance d(p0,pn; B) between the points
p0 and pn is the length of (one of) the shortest B-path(s) between the points.

Let the real numbers α and β (the weights) and a path P of length n, where
exactly l (l ≤ n) adjacent grid points in the path are strict 2-neighbors, be
given. The length of the (α, β)-weighted B-path P is (n − l)α + lβ. The B-
path P between the points p0 and pn is a minimal cost (α, β)-weighted B-path
between the points p0 and pn if no other (α, β)-weighted B-path between the
points is shorter than the length of the (α, β)-weighted B-path P.

Definition 2 Given the ns B and the weights α, β, the weighted ns-distance
dα,β(p0,pn; B) is the length of (one of) the minimal cost (α, β)-weighted B-
path(s) between the points.

The following notation is used:

1k
B = |{i : b(i) = 1, 1 ≤ i ≤ k}| and 2k

B = |{i : b(i) = 2, 1 ≤ i ≤ k}|.

We associate with the sets N1 and N1,2 the chamfer masks C1 = {(vi, 1)}M

i=1

and C2 = C1 ∪ {(ui, 1)}N

i=1
. The vectors in N1 and N1,2 are associated with
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weight 1, and the chamfer masks are thus nothing but unit weighted vectors.
A G-basis wedge of any chamfer mask C (C could be, e.g., either C1 or C2)
is a set of n linearly independent vectors vi1 ,vi1 , . . . ,vin from C such that

• vi1 ,vi1, . . . ,vin is a basis of G and
• no vector of C except vi1 ,vi1 , . . . ,vin can be written as a linear combination

with positive (not necesarily integer-valued) coefficients of these vectors.

See [3] for details. Each wedge defines a polytope by the convex hull of 0 and
the points 0 + vij . With unit weights, the polytope BC of a chamfer mask C,
[3], is the union of the polytopes of the wedges.

Definition 3 A chamfer mask with unit weights is restricted (see [3]) if

(symmetry) (v, ω) ∈ C =⇒ (−v, ω) ∈ C (1)

(Organized in G-basis-wedges)
∀p ∈ G, ∃W of C such that

p ∈ W and W is a G-basis-wedge.
(2)

(Convex normalized polytope) BC = conv(BC). (3)

Definition 4 A grid G is wedge-2-generated by N1 and N2 if N1 and N2 are
such that

• C1 = {(vi, 1)}M

i=1
and C2 = C1∪{(wi, 1)}N

i=1
are restricted Chamfer masks,

• ∀i, ∃j, k : wi = vj + vk, and
• each G-basis-wedge of N1 is the union of some G-basis-wedges of N1,2.

In [27], the ns-distance and the weighted ns-distance were presented for an
arbitrary point-lattice G wedge-2-generated by N1 and N2. Let dC1

be the
distance function obtained by using the Chamfer mask C1 and dC2

be the
distance function obtained by using the Chamfer mask C2. In other words, for
any points p,q ∈ G, dC1

(p,q) is the length of the shortest path between p
and q using only local steps from N1 and dC2

(p,q) is the length of the shortest
path between p and q using local steps from N1,2. The following theorems are
proved in [27].

Theorem 5 (ns-distance in G wedge-2-generated by N1 and N2) Let G

wedge-2-generated by N1 and N2, the neighborhood sequence B and the points
p,q ∈ G be given. Then

d(p,q; B) = min
{

k
∣

∣

∣k ≥ max
{

dC2
(p,q) , dC1

(p,q) − 2k
B

}}

.

When the square grid is considered and dC2
is the chessboard distance and

dC1
is the city-block distance, the ns-distance is less than (or equal to) the

city-block distance and greater than (or equal to) the chessboard distance.
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Theorem 5 says that by replacing pairs of 1-steps from dC1
with as many

2-steps as the sequence allows, the ns-distance is obtained.

Remark 6 We will consider weights α and β as real numbers α and β such
that 0 < α ≤ β ≤ 2α. This is natural since

• a 2-step should be more expensive than a 1-step since strict 2-neighbors are
intuitively at a larger distance than 1-neighbors (projection property) and

• two 1-steps should be more expensive than a 2-step – otherwise no 2-steps
would be used in a minimal cost-path.

In the following theorem, the 1-steps are weighted with α and the 2-steps are
weighted with β. A formal proof is found in [27].

Theorem 7 (Weighted ns-distance in G wedge-2-generated by N1 and N2)
Let G wedge-2-generated by N1 and N2, the ns B, the weights α, β such that
0 < α ≤ β ≤ 2α, and the points p,q ∈ G be given. Then

dα,β(p,q; B) = (2d(p,q; B) − dC1
(p,q)) α + (dC1

(p,q) − d(p,q; B))β.

We will now define n-dimensional generalizations of the fcc and bcc grids and
apply Theorem 5 and 7 to these grids.

2.1 The n-dimensional fcc grid

We use the following definition of the n-dimensional fcc grid for n ≥ 3:

F
n = {p ∈ Z

n : x1 + x2 + . . . + xn ≡ 0 (mod 2)}

together with the straight-forward generalization of the neighborhoods in the
three-dimensional grid F used in, e.g., [4,25,26,28], to get the natural neigh-
borhoods N1 and N2 for Fn:

N1 =
{

v = (v1, v2, . . . , vn) ∈ F
n : max {|vi|} = 1 and

∑

|vi| = 2
}

N2 =
{

v = (v1, v2, . . . , vn) ∈ F
n : max {|vi|} = 2 and

∑

|vi| = 2
}

.

The following lemma gives a sufficient and necessary condition for a set of
vectors in Fn to be a basis of Fn.

Lemma 8 A set F = {v1,v2, . . . ,vn} of vectors in F
n is a basis of F

n iff

det (v1,v2, . . . ,vn) = ±2
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The proof of Lemma 8 is technical and is therefore omitted. The lemma can
be proved analogously to Lemma 4.2 in [3]. To do so, we need to prove that
any determinant of the vectors v1,v2, . . . ,vn of Fn is a multiple of 2. Indeed,
given any vector v = (x1, x2, . . . , xn) ∈ Fn, x1 =

∑n
i=2 xi + 2a for some integer

a. Then

v =

(

2a, x2 −
n
∑

i=2

xi, x3 −
n
∑

i=2

xi, . . . , xn −
n
∑

i=2

xi

)

.

It follows that both | det (v1,v2, . . . ,vn) | and that | det (v1,v2, . . . ,w, . . . ,vn) |,
where w ∈ Fn, are divisible by 2.

The following remark is used to find the wedges used to define the weighted
ns-distance for Fn.

Remark 9 The systems of equations



































1 1 1 · · · 1 1 1

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 −1





































































a1

a2

a3

...

an−1

an



































=



































x1

x2

x3

...

xn−1

xn



































and


































1 1 1 · · · 1 1 2

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0





































































b1

b2

b3

...

bn−1

bn



































=



































x1

x2

x3

...

xn−1

xn



































.

have solutions

a1 = x2

a2 = x3

...

an−2 = xn−1

an−1 =
x1 + xn − (x2 + . . . + xn−1)

2

an =
x1 − (x2 + x3 + . . . + xn)

2
and
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b1 = x2

b2 = x3

...

bn−1 = xn

bn =
x1 − (x2 + x3 + . . . + xn)

2

which are all non-negative when x1 ≥ x2 ≥ . . . ≥ xn and x1 ≥ x2+x3+. . .+xn.

The following lemma says that to find a shortest path between 0 and any point
p = (x1, x2, . . . , xn) ∈ Fn such that x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 and x1 ≤

∑n
i=2 xi,

it is enough to use only 1-steps.

Lemma 10 For any point p = (x1, x2, . . . , xn) ∈ Fn such that x1 ≥ x2 ≥
. . . ≥ xn ≥ 0 and x1 ≤

∑n
i=2 xi, the following algorithm terminates in x1+x2+...+xn

2

steps.

Initially, let j = 1 and qj = p.
⋆ Decrease the two largest coordinate values in qj by 1, increase j by

1 and let the result be qj.
Repeat ⋆ until qj = 0.

PROOF. Since the sum of coordinates is even by definition, x1+x2+...+xn

2
is

an integer. It follows from x1 ≤ ∑n
i=2 xi that, if qi 6= 0, there will always

be at least two coordinates with positive values: Assume that this is not the
case, then at some step qi = (b, 0, 0, . . . , 0), where b > 0. Since the coordinate
with the largest value is decreased in each step, x1 = b +

∑n
i=2 xi. But this

contradicts that x1 ≤
∑n

i=2 xi. 2

Now we give a formula that gives the ns-distance in the n-dimensional face-
centered cubic grid.

Theorem 11 (ns-distance in Fn) Let Fn be wedge-2-generated by N1 and
N2 and let the neighborhood sequence B and the point p = (x1, x2, . . . , xn)
such that x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 be given. Then

d(0,p; B) = min
{

l
∣

∣

∣

∣

l ≥ max
{

x1 + x2 + . . . + xn

2
, x1 − 2l

B

}}

.

PROOF. First the case x1 ≥ x2 + x3 + . . . + xn is considered. With the
neighborhoods N1 and N1,2, we use
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F1 =























































(1, 1, 0, · · · , 0, 0, 0)

(1, 0, 1, · · · , 0, 0, 0)
...

(1, 0, 0, · · · , 0, 0, 1)

(1, 0, 0, · · · , 0, 0, −1)























































and

F2 =























































(1, 1, 0, · · · , 0, 0, 0)

(1, 0, 1, · · · , 0, 0, 0)
...

(1, 0, 0, · · · , 0, 0, 1)

(2, 0, 0, · · · , 0, 0, 0)























































.

By Lemma 8, the sets F1 and F2 are bases of Fn and by Remark 9, any point
p such that x1 ≥ x2 ≥ . . . ≥ xn and x1 ≥ x2 + x3 + . . . + xn can be written
as a linear combination of vectors from F1 and F2 with positive coefficients.
Therefore, F1 and F2 define the 1-wedge and 2-wedge for any point p such that
x1 ≥ x2 ≥ . . . ≥ xn and x1 ≥ x2 + x3 + . . . + xn. Remark 9 gives the number
of local steps needed to reach the point p, i.e., dC1

(0,p; B) =
∑

ai = x1 and
dC2

(0,p; B) =
∑

bi = x1+x2+...+xn

2
. Using Theorem 5, we get the formula in

Theorem 11.

For the case x1 ≤ x2+x3+. . .+xn, we have not found the wedges in the general
n-dimensional case. It is, however, clear that the ns-distance is x1+x2+...+xn

2

independent of the neighborhood sequence B (using only local steps from N1)
as Lemma 10 shows.

Since x1 ≤ x2 + x3 + . . . + xn, the path 〈qj ,qj−1, . . . ,q1〉 obtained from the
algorithm in Lemma 10 is a path of length x1+x2+...+xn

2
using only local steps

from N1. Also, x1+x2+...+xn

2
≥ x1 ≥ x1 − 2k

B for any B and k, so the formula
in Theorem 11 is valid. 2

As one can see there are two cases. In the first case a shortest path is obtained
by only 1-steps; while in the second case (x1 > x2 + ...+xn) 2-steps should be
considered to find the shortest path. Now we give the cost of a minimal cost
path when the weights α and β are used.

Theorem 12 (weighted ns-distance in Fn) Let Fn be wedge-2-generated
by N1 and N2 and let the ns B, the weights α, β s.t. 0 < α ≤ β ≤ 2α,
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and the point p = (x1, x2, . . . , xn) ∈ Fn, where x1 ≥ x2 ≥ . . . ≥ xn ≥ 0, be
given. The weighted ns-distance between 0 and p is given by

dα,β (0,p; B) =











k · α if x1 ≤
∑n

i=2 xi

(2k − x1) · α + (x1 − k) · β otherwise,

where k =min
{

l|l ≥ max
{

x1 + x2 + ... + xn

2
, x1 − 2l

B

}}

.

PROOF. We use Theorem 7. By the proof of Theorem 11, we know that
d (0,p; B) = dC1

(0,p) = x1+x2+...+xn

2
when x1 ≤ ∑n

i=2 xi. For the case x1 ≥
∑n

i=2 xi, both d (0,p; B) and dC1
(0,p) are given in the proof of Theorem 11. 2

2.2 The n-dimensional bcc grid

An n-dimensional generalization of the bcc grid for n ≥ 3 is:

B
n = {p ∈ Z

n : x1 ≡ x2 ≡ . . . ≡ xn (mod 2)}

We use the straight-forward generalizations of the neighborhoods in the three-
dimensional grid B used in, e.g., [4,25,26,28], to get the natural neighborhoods
N1 and N2 for Bn:

N1 = {v = (v1, v2, . . . , vn) ∈ B
n : |vi| = 1 for all 1 ≤ i ≤ n}

N2 =
{

v = (v1, v2, . . . , vn) ∈ B
n :
∑

|vi| = 2
}

.

Now a technical lemma follows for Bn analogously to the role of Lemma 8 in
Fn.

Lemma 13 A set F = {v1,v2, . . . ,vn} of vectors in Fn is a basis of Bn iff

det (v1,v2, . . . ,vn) = ±2n−1

The lemma can be proven using the same technique as in the proof of Lemma 8
by noting that for any point (x1, x2, . . . , xn) ∈ Bn, there are integers aj such
that xj = x1 + 2aj for all j > 1.

We now find the wedges used to define the weighted ns-distance on Bn.
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Remark 14 The systems of equations





























1 1 1 · · · 1 1 −1

1 1 1 · · · 1 −1 −1
...

...
...

. . .
...

...

1 1 −1 · · · −1 −1 −1

1 −1 −1 · · · −1 −1 −1

























































a1

a2

...

an−1

an





























=





























x1

x2

...

xn−1

xn





























and


































1 1 1 · · · 1 1 2

1 1 1 · · · 1 1 0

1 1 1 · · · 1 −1 0
...

...
...

. . .
...

...

1 1 −1 · · · −1 −1 0

1 −1 −1 · · · −1 −1 0































































b1

b2

...

bn−1

bn





























=





























x1

x2

...

xn−1

xn





























have solutions

a1 = x1+xn

2
, a2 = xn−1−xn

2
, a3 = xn−2−xn−1

2
, . . . , an = x1−x2

2
and

b1 = x2+xn

2
, b2 = xn−1−xn

2
, b3 = xn−2−xn−1

2
, . . . , bn = x1−x2

2
,

which are all non-negative when x1 ≥ x2 ≥ . . . ≥ xn.

The ns-distance is given for the n-dimensional bcc grid in the following corol-
lary.

Theorem 15 (ns-distance in Bn) Let Bn be wedge-2-generated by N1 and
N2 and let the neighborhood sequence B and the point p = (x1, x2, . . . , xn)
such that x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 be given. Then

d(0,p; B) = min
{

l

∣

∣

∣

∣

l ≥ max
{

x1 + x2

2
, x1 − 2l

B

}}

.

PROOF. With the neighborhoods N1 and N1,2, we use
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F1 =























































(1, 1, 1, · · · , 1, 1, −1)

(1, 1, 1, · · · , 1, −1, −1)
...

(1, 1, −1, · · · , −1, −1, −1)

(1, −1, −1, · · · , −1, −1, −1)























































and

F2 =























































(1, 1, 1, · · · , 1, 1, −1)

(1, 1, 1, · · · , 1, −1, −1)
...

(1, 1, −1, · · · , −1, −1, −1)

(2, 0, 0, · · · , 0, 0, 0)























































.

By Lemma 13, the sets F1 and F2 are bases of Bn and by Remark 14, any
point p such that x1 ≥ x2 ≥ . . . ≥ xn can be written as a linear combination
of vectors from F1 and F2 with positive coefficients. Therefore, F1 and F2

define the 1-wedge and 2-wedge for any point p such that x1 ≥ x2 ≥ . . . ≥ xn.
Remark 14 gives dC1

(0,p; B) =
∑

ai = x1 and dC2
(0,p; B) =

∑

bi = x1+x2

2
.

Using Theorem 5, we get the formula in Theorem 15. 2

As the following corollary states, by adding weights to the shortest paths, the
weighted ns-distance is given.

Theorem 16 (weighted ns-distance in Bn) Let Bn be wedge-2-generated
by N1 and N2 and let the ns B, the weights α, β s.t. 0 < α ≤ β ≤ 2α, and
the point p = (x1, x2, . . . , xn) ∈ Bn, where x1 ≥ x2 ≥ . . . ≥ xn ≥ 0, be given.
The weighted ns-distance between 0 and p is given by

dα,β (0,p; B) = (2k − x1) · α + (x1 − k) · β
where k =min

{

l|l ≥ max
{

x1 + x2

2
, x1 − 2l

B

}}

.

PROOF. Both d (0,p; B) and dC1
(0,p) are given in Theorem 15 and its

proof. Applying the formula in Theorem 7 gives the result. 2

12



2.3 Metricity

Not all weights and ns give metric distance functions. The following sufficient
conditions for metricity valid for the distance functions presented here were
derived in [27] for a general case that contains these special subcases.

Theorem 17 If

N
∑

i=1

b(i) ≤
j+N−1
∑

i=j

b(i) ∀j, N ≥ 1 and

0 < α ≤ β ≤ 2α

then dα,β(·, ·; B) is a metric on Fn and Bn.

3 Optimization of Weights and Neighborhood Sequences for 3D

In three dimensions, we have the following special-case of Fn and Bn for n = 3:

F = {(x, y, z) : x, y, z ∈ Z and x + y + z ≡ 0 (mod 2)}. (4)

B = {(x, y, z) : x, y, z ∈ Z and x ≡ y ≡ z (mod 2)}. (5)

The neighborhood relations are visualized in Figure 1 by showing the Voronoi
regions, i.e. the voxels, corresponding to some adjacent grid points.

When n = 3 in Theorem 11 and 15, we get the following two formulas.

Corollary 18 Let the ns B, the weights α, β and the point (x, y, z) ∈ F, where
x ≥ y ≥ z ≥ 0, be given. The weighted ns-distance between 0 and (x, y, z) is
given by

Fig. 1. The grid points corresponding to the dark and the light grey voxels are
1-neighbors. The grid points corresponding to the dark grey and white voxels are
(strict) 2-neighbors. Left: fcc, F

3, right: bcc, B
3.
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dα,β (0, (x, y, z); B)=











x+y+z

2
· α if x ≤ y + z

(2k − x) · α + (x − k) · β otherwise,

where k = min
{

l|l ≥ max
{

x + y + z

2
, x − 2l

B

}}

.

The value of k is the smallest integer, not less than x+y+z

2
, such that 2k

B+k ≥ x.

Corollary 19 Let the ns B, the weights α, β, and the point (x, y, z) ∈ B,
where x ≥ y ≥ z ≥ 0, be given. The weighted ns-distance between 0 and
(x, y, z) is given by

dα,β (0, (x, y, z); B)= (2k − x) · α + (x − k) · β, where

k = min
{

l|l ≥ max
{

x + y

2
, x − 2l

B

}}

.

Here k is the smallest integer, not less than x+y

2
, such that 2k

B + k ≥ x.

The optimization is carried out in R3 by finding the best shape of polyhedra
corresponding to balls of constant radii using the proposed distance functions.
To do this, the distance functions presented for the fcc and bcc grids in the
previous section are stated in a form that is valid for all points (x, y, z) ∈ R3,
where x ≥ y ≥ z ≥ 0. Note that this gives the asymptotic shape of the balls.
The following distance functions are considered:

dfcc
α,β (0, (x, y, z); γ)=











x+y+z

2
· α if x ≤ y + z

(2k − x) · α + (x − k) · β otherwise,

where k = min

{

l|l ≥ max

{

x + y + z

2
,

x

2 − γ

}}

and

dbcc
α,β (0, (x, y, z); γ)= (2k − x) · α + (x − k) · β, where

k = min

{

l|l ≥ max

{

x + y

2
,

x

2 − γ

}}

,

where k ∈ R and γ ∈ R, 0 ≤ γ ≤ 1 is the fraction of the steps where 2-steps are
not allowed (so 1k

B and 2k
B corresponds to γk and (1−γ)k, respectively). Note

that k ≥ x/(2 − γ) if and only if (1 − γ)k + k ≥ x, which is analogous to the
condition 2k

B +k ≥ x of Corollary 18 and 19. In this way we obtain a distance
function defined on R3 (for points (x, y, z) such that x ≥ y ≥ z ≥ 0) that

14



behaves like the distance function in discrete space G does asymptotically. By
considering

dfcc
α,β (0, (x, y, z); γ) = r and dbcc

α,β (0, (x, y, z); γ) = r, (6)

for some radius r, the points on a sphere of constant radius r are found.
When γ ∈ R (0 < γ < 1) the functions dfcc and dbcc can be understood as
asymptotic approximations to the distance functions of Corollary 18 and 19
for large values of x.

For any triplet α, β, γ (α, β > 0 and 0 ≤ γ ≤ 1), (6) defines polyhedra P in
R3. The vertices of the polyhedra are derived in [25]. Based on this, up to
permutation of the coordinates and change of signs, the vertices of polyhedra
with radius r are

Fig. 2. Shapes of balls for dfcc
α,β(·, ·; γ) for a fixed radius r, α = 1, and (left to right)

γ = 0, 0.25, 0.5, 0.75, 1 and (top to bottom) β = 1, 1.25, 1.5, 1.75, 2.
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r

(

2 − γ

γα + β − βγ
,

γ

γα + β − βγ
, 0

)

and r
(

1

α
,
1

α
, 0
)

for dfcc and

r

(

2 − γ

γα + β − βγ
,

γ

γα + β − βγ
,

γ

γα + β − βγ

)

and r
(

1

α
,
1

α
,
1

α

)

for dbcc.

The shape of the polyhedra obtained for some values of α, β, γ are shown in
Figure 2 and 3 for the fcc and bcc grids, respectively. In approximations the
ratio of α and β matters.

Let AP be the surface area and VP the volume of the (region enclosed by the)
polyhedron P . The values of AP and VP are determined by the vertices of the
polyhedra.

Let Br be a Euclidean ball of radius r. The following error functions are
considered

Fig. 3. Shapes of balls for dbcc
α,β(·, ·; γ) for a fixed radius r, α = 1, and (left to right)

γ = 0, 0.25, 0.5, 0.75, 1 and (top to bottom) β = 1, 1.25, 1.5, 1.75, 2.
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E1 = max
p,q∈∂P

(

|p|
|q|

)

− 1 (relative error) (7)

E2 =

A3

P

V 2

P

36π
− 1 (compactness ratio) (8)

E3 = min
r:Br⊂P

(VP /VBr
) − 1 (maximal inscribed ball) (9)

E4 = min
r:P⊂Br

(VBr
/VP ) − 1 (minimal covering ball) (10)

These error functions attain their minimum value 0 when A is the surface
area and V is the volume of a Euclidean ball. The values of α, β, and γ that
minimize the error functions are computed numerically. The polyhedra are
given by their vertices, given above. All error functions attain a minimum
value within the domain 0 < α ≤ β ≤ 2α, 0 ≤ γ ≤ 1, so the computation is
straight-forward (when an analytic solution could not be found, the Nelder-
Mead simplex method was used). The error function E1 gets optimal value
not only in a point when weights are used on the fcc grid. In these cases the
parameters C1, C2 and C3 are used in Table 1. C1 can be any value such that

√
2 ≤ C1 ≤ 5/3. (11)

Moreover, C3 can be any value in the range 0 ≤ C3 ≤ 2(
√

2 − 1) and C2 any
value satisfying the following inequalities (see also Figure 7):

√

C2
3 + 2 − 2C3 − C3

1 − C3

≤ C2 ≤ min





√
3 − C3

(

1

2

√
3 + 1

)

1 − C3

,
5

3



 . (12)

For the relative error on the fcc grid, the optimum is obtained on a region as
shown in Figure 7. The optimal values are found in Table 1 and visualized by
the shape of the corresponding polyhedra in Figure 6.

In Figure 4 and 5, the asymptotic behavior is shown by letting α = 1 and
β be constant and for each k, 1 ≤ k ≤ 1000 using a ns B of length k that
approximates the optimal fraction γ. The values of the error functions and k
are plotted in the figures. The plots in Figure 4 and 5 show how the error func-
tions perform for ns of finite lengths (periodic ns). Neighborhood sequences
obtained by the following recursive formula are used

b(k + 1) =











1 if 1k
B < γk,

2 otherwise.

The value of γ is shown in Table 1. When γ is not uniquely defined, we use
constant values within the allowed interval. The same thing applies to β.
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Table 1
Performance of wns-, weighted- (w), and ns-distances using the error functions E1−
E4 defined in the text. The optima of the error functions are attained whenever t is a
strictly positive real number. The values shown in bold are fixed in the optimization.
The parameters C1, C2, and C3 are related as is shown in inequalities (11) and (12).

Relative error, E1

fcc bcc

Name α β γ E1 α β γ E1

w t C1t 0 0.2247 t 1.1547t 0 0.2393

ns 1 1 0.8453 0.2393 1 1 [1/3, 2 −
√

2] 0.2247

wns t C2t C3 0.2247 t t [1/3, 2 −
√

2] 0.2247

Compactness ratio, E2

fcc bcc

Name α β γ E2 α β γ E2

w t 1.5302t 0 0.1367 t 1.2808t 0 0.1815

ns 1 1 0.8453 0.2794 1 1 2 −
√

2 0.2147

wns t 1.4862t 0.4868 0.1267 t 1.2199t 0.4525 0.1578

Maximal inscribed ball, E3

fcc bcc

Name α β γ E3 α β γ E3

w t (5/3)t 0 0.1578 t 1.2808t 0 0.1815

ns 1 1 0.8453 0.2794 1 1 2 −
√

2 0.2147

wns t (5/3)t 0.3280 0.1563 t 1.2199t 0.4525 0.1578

Minimal covering ball, E4

fcc bcc

Name α β γ E4 α β γ E4

w t
√

2t 0 0.4234 t 1.1547t 0 0.5708

ns 1 1 0.7408 0.4448 1 1 1/3 0.3860

wns t 1.2179t 0.5425 0.3272 t t 1/3 0.3860
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Fig. 4. Optimal values of E1–E4 (vertical axis) on the fcc grid for neighborhood
sequences of length k (0 < k ≤ 1000, horizontal axis showing log10 k) with α = 1.
See Table 1 for asymptotic optima.
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Fig. 5. Optimal values of E1–E4 (vertical axis) on the bcc grid for neighborhood
sequences of length k (0 < k ≤ 1000, horizontal axis showing log10 k) with α = 1.
See Table 1 for asymptotic optima.
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fcc bcc

E1

β = 1.414 β = 1 β = 1.5 β = 1.154 β = 1 β = 1

γ = 0 γ = 0.845 γ = 0.3 γ = 0 γ = 0.586 γ = 0.586

E2

β = 1.530 β = 1 β = 1.486 β = 1.281 β = 1 β = 1.220

γ = 0 γ = 0.845 γ = 0.487 γ = 0 γ = 0.586 γ = 0.453

E3

β = 1.667 β = 1 β = 1.667 β = 1.281 β = 1 β = 1.220

γ = 0 γ = 0.845 γ = 0.328 γ = 0 γ = 0.586 γ = 0.453

E4

β = 1.414 β = 1 β = 1.218 β = 1.155 β = 1 β = 1

γ = 0 γ = 0.741 γ = 0.543 γ = 0 γ = 0.333 γ = 0.333

Fig. 6. Shapes of balls using α = 1 and values of β and γ that minimize E1–E4, see
Table 1.
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Fig. 7. The domain for C2 and C3 in Table 1

4 Conclusions

We have given generalizations of the fcc and bcc grids to any dimension.
For these grids, formulas for the ns-distance and weighted ns-distance were
presented. We note that the weighted ns-distance in Bn between 0 and a point
p only depends on the two coordinates of p with highest absolute value. For
Fn, all coordinates are needed to calculate the distance values.

In 4D bcc the Euclidean distance of the 1-neighbors are the same as the 2-
neighbors. In higher dimensions the 2-neighbors have less Euclidean distance,
therefore it seems to be fruitful to consider weights β < α for future research.

By introducing a number of error functions that all favor “round” balls (in
the Euclidean sense), the weighted ns-distance is analyzed for the fcc and bcc
grids. It turns out that the optimal parameters for the special cases of weighted
distances (γ = 0 or B = (2)) and ns-distances (α = β = 1) are also found
from this procedure by keeping one of the parameters fixed in the optimization.
The same weights and neighborhood sequences as were derived for weighted
distances [2,3] and ns-distances [4] are found in this paper. Figure 2 and 3 gives
an overview of this fact – weighted distances are shown in the left columns
(γ = 0) and ns-distances are shown in the top rows (β = 1). We also note that,
as expected, the value of the error functions for the wns distance function are
lower than (or, in some cases, equal to) the weighted distance and ns-distance.

We use the coordinates of the vertices of polyhedra corresponding to the
asymptotic shape of the balls in the fcc and bcc grids. Note that the ver-
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tices can be found also for higher-dimensional generalizations of the fcc and
bcc grids. Since the optimization methods use geometric features, such as
area and volume, their extensions to higher dimension should be used. The
parameter optimization in higher dimensions is left for future research.

In the optimization, we let γ represent the fraction of 1:s in the ns. We note
that when γ is fixed to 0 (for weighted distances), this corresponds to a ns
with only 2:s. This can be attained for a neighborhood sequence of any length.
Therefore, in this case the optimum is not asymptotic and thus, the error is
valid also for short distances (between e.g. neighboring grid points). When γ
is also subject to optimization (i.e. when the neighborhood sequence is used to
define the distance function), the error functions have an asymptotic behavior.
However, some of the optima for the relative error (E1) are located on regions
where E1 is constant. For example, E1 for the weighted ns is optimal when
γ = 0, i.e. for the weighted distance, and therefore the optimum is attained
for any neighborhood sequence consisting of only 2:s. See Figure 4 and 5 and
Figure 7. This indicates that this error function, which has been widely used in
the literature, is not well-suited for finding the optimal weights and ns here.
The reason that E1 is minimal on a region (and not a point) is that there
are two vertices and two surfaces that have points that can be at minimal
distance (up to symmetry). Thus, there are more degrees of freedom than the
restrictions in the optimization process. For the other error functions (E2–E4),
differentiable functions are defined and they have all a single minimum, see
Table 1.

We note that the error functions E2 (compactness ratio) and E3 (maximal
inscribed ball) give the same asymptotic optimal result for the bcc grid and
the same for ns-distances on the fcc grid, see Table 1. However, as is seen in
Figure 4 and 5, the error functions perform differently for finite, i.e., periodic,
neighborhood sequences. This illustrates that the different error functions are
different, even though they all are used to approximate the Euclidean distance.
Different applications require different aspects of the “roundness” of the balls
and different types of rotational (in)dependency.

Analyzing the plots in Table 1, we see that the error converges quite fast and
that a ns of length (period) 10 is sufficient in general.

The application in which the distance function will be applied should be used
to select which error function that should be considered. Also, by using The-
orem 17, it is easy to find neighborhood sequences such that the resulting
distance function is a metric, which is preferable in many applications. Intu-
itively, the polyhedra that best approximate the Euclidean ball are given by a
distance function where both γ and β are non-trivial, see Figure 2 and 3. From
the “optimal shapes” in Figure 6, we see that this is what, e.g., the compact-
ness ratio E2 favors. Thus, without any specific application in mind, we suggest
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the parameters B = (1, 2), β = 1.4862α for the fcc grid and β = 1.2199α for
the bcc grid. This gives E2 = 0.1276 for the fcc grid (the optimum is 0.12757
and the approximated value is 0.12760) and E2 = 0.1591 (the optimum is
0.1578) for the bcc grid. We conclude that we get a good approximation of
the optimal values also with a short neighborhood sequence.
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