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Introduction

In this dissertation we deal with the equality and invariance problem for two
variable means and Lipschitz perturbation of monotonic functions.

1. A. On the equality problem for two variable means

In this section we define various classes of means. These classes are defined
with the help of generating functions, weight functions and parameters.

Let I be an open real interval. A two-variable function M : I? — T is called
a mean on the interval I if

min(z,y) < M(z,y) < max(z,y) (x,yel)

holds. The mean M : I? — [ is called a symmetric mean if
M(x,y):M(y,x) (J),yEI)

holds. The most widely known mean, on a nonvoid open interval I C R, is the

arithmetic mean N
TTy
Ala,y) = —5 (z,y € I).
A generalization of this mean is the well-known concept of the quasi-arithmetic
means. In what follows, CM(I) will denote the class of real valued continuous

strictly monotone functions defined on 1.

DEFINITION A. Given ¢ € CM(I), the two variable quasi-arithmetic mean
generated by ¢ is the function M, : [ 2 — I defined by

(D) My(z,y) = o ! (W) (z,y €,

where (! denotes the inverse of the function ¢.

This inverse function exists since the function ¢ is a continuous and strictly
monotone on I. Thus ¢(I) C R is nonempty open interval.

The systematic treatment of quasi-arithmetic means was first given by Hardy,
Littlewood and Pélya [40]. The most basic problem, the characterization of the
equality of these means, is solved by the following theorem.

THEOREM A. (Hardy-Littlewood—Pdlya) Let v, € CM(I). Then the means
My, and My, are equal to each other if and only if there exist two real constants
a # 0 and b such that ¢ = ap + b.
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Moreover, in this monograph also the comparison problem and the homogene-
ity problem of quasi-arithmetic means is considered and discussed.

The characterization of quasi-arithmetic means was solved independently by
Kolmogorov [46], Nagumo [65], de Finetti [33] for the case when the number of
variables is non-fixed. For the two-variable case, Aczél [1], [2], [3], [4], proved
the following characterization theorem involving the notion of bisymmetry.

THEOREM B. Let M : I? — I be a continuous function having the following
properties:
o M(z,x)=u,ifrel
o M(z,y) = M(y,x), f z,y € I
e 1z +— M(x,y) is strictly monotone increasing on I for every fixed y € I,
o forall x,y,u,v € I, the bisymmetry equation holds

M (M (z,y), M(u,v)) = M(M(z,u), M(y,v)).

Then there exists ¢ € CM(I) such that M is of the form (1), i.e., M is a quasi-
arithmetic mean. Conversely, if M is a quasi-arithmetic mean on I, then the pro-
perties (i), (ii), (iii) and (iv) hold and M is continuous.

This result was extended to the n-variable case by Maksa—Miinnich—Mokken
[64]. Another characterization is due to Matkowski [60].

A somewhat more general class of means is the class of weighted quasi-
arithmetic means.

DEFINITION B. A two-variable function M : I? — I is called a weighted
quasi-arithmetic mean on I if there exists a continuous, strictly monotone function
¢ : I — R and a constant A €]0, 1] such that

M(z,y) = My(z,y;A) =0 (Ap() + (L= Ne(y))  (z,y € ).

Then A is called a weight and ¢ € CM(T) is said to be the generating function.
Another class of means whose definition is related to the Lagrange mean value
theorem was introduced by Berrone and Moro [6], [5].

DEFINITION C. A two-variable function M : I? — I is called a Lagrangian
mean on [ if there exists a continuous strictly monotone function ¢ : I — R such
that

1

M(z,y) = Lolany) = © <y—x/ R o )
z, ifr=y

Both classes of means have a rich literature, see, e.g., the monographs of
Borwein-Borwein [8], Mitrinovi¢—PecCari¢c—Fink [62], [63], Niculescu—Persson
[66].

The equality of Lagrangian means is characterized by the following result.



THEOREM C. (Berrone—Moro) Let @, € CM(I). Then the means L, and
Ly, are equal to each other if and only if there exist two real constants a # 0 and
b such that ¢ = ap + b.

In the paper [6] the comparison problem and the homogeneity problem for
Lagrangian mean is also solved.

The equality problem of means in various classes of two-variable means has
been solved. We refer here to Losonczi’s works [48], [49], [50], [51], [52] where
the equality of two-variable, so-called Cauchy means and Bajraktarevi¢ means
is characterized. A key idea in these papers, under high order differentiability
assumptions, is to calculate and then compare the partial derivatives of the means
at points of the form (z, x).

A paper where also the regularity properties are proved (not just assumed) is
Daréczy—Maksa—Péles [23], where means that are simultaneously quasi-arithmetic
and arithmetic means weighted by a weight function are determined without as-
suming any regularity properties of the data. A similar problem, the mixed equa-
lity problem of quasi-arithmetic and Lagrangian means has been recently solved
by Pales [67] also without any differentiability assumptions.

THEOREM D. (Pdles) Let ¢, € CM(I). Then the means M, and Ly, are
equal to each other if and only if one of the following cases holds for all x € I:
(i) either there exist real constants a, b, c, d with ac # 0 such that
o(z) =ax +b, and Y(z) = cx +d;

(ii) or there exist real constants a, b, c,d with ac # 0, and q & I such that

o(z) =aln|z — q| + b, and P(z) = 5 +d;

c
(z —q)
(iii) or there exist real constants a, b, c,d with ac # 0, and q & I such that
o(z) = a\/H—i— b, and () = \/|07‘ +d;
r—4q

(iv) or there exist real constants a, b, ¢, d, p, q with ac # 0 and p > 0 such that

. c(z —q)
o(x) = aarsinh(p(x — q)) + b and P(x) = +d;
() (b(x—q) @)= e
(v) or there exist real constants a, b, c,d, p,q with ac # 0, p > 0, and
INlg—1/p,q+1/p] = 0 such that

¢(x) = aarcosh(p(x — q)) + b and () = 20(:c — q)2 1 d:
pir—q)? -1
(vi) or there exist real constants a, b, c,d, p, q with ac # 0, p > 0, and
I Clq—1/p,q+ 1/p| such that
o(z) = aarcsin(p(z — q)) + b and W(z) = c(z —q) L
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1. B. Invariance equations for two variable means

A recently rediscovered and blossoming subject is the investigation of the
so-called invariance equation and the Gauss-iteration related to quasi-arithmetic
means: Gauss [35], Blasinska-Lesk—Glazowska—Matkowski [7], Burai [9], [10],
Daré6cezy [13], [14], [15], [16], [17], Daréczy—Hajdu [18], Dar6czy—Hajdu—-Ng
[19], Dar6czy-Lajk6—-Lovas—Maksa—Péles [20], Dar6czy—Maksa [21],
Dar6czy—Maksa—Pales [22], [24], Daréczy—Ng [25], Dar6czy—Péles [27], [29],
[28], [30], [32], [26], [31], Domsta—Matkowski [34],
Gtazowska—Jarczyk—Matkowski [37], Hajdu [39], Haruki—Rassias [41], Jarczyk—
Matkowski [44], Jarczyk [43], Matkowski [56], [59], [61],

Let z,y € R be arbitrary and

Tn +Y
Ty =E, Y=Y, Tpgn = 2 = Ynt1 = \Tayn (n €N).

Then the common limit exists and

lim z, = hm yn =1 AR G(z,v),

n—oo
which defines the arithmetic-geometric mean on the set of the positive real num-
bers Ry.

Gauss [35] found the following astonishing formula for A ® G
dt

Va2 cos?t + y2?sin?t

AR G(z,y) = < )_1 (x,y > 0).

Let M; : I? — I(i = 1,2) be given means on I. Moreover let (x,%) € I? be
arbitrary. Then the iteration sequence

1=, Y1:=Y, Intl:= Ml(xnv yn)a Yn+1 = MQ(l'n,yn) (’IZ € N)

is said to be the Gauss-iteration determined by the pair (M7, M) with the initial
values (x,y) € I2.

Let I,, be the closed interval determined by x, and y,. Then, because of
property of means, we have

In+1 Q In (n € N)

The Gauss-iteration is said to be convergent if the set N72_, I, is a singleton for any
initial value (z,y) € I%. By Cantor’s theorem, this is true if and only if

lim z, = hm Yn =: M1 @ Ms(z,y),

n—oo
where M; @ Ms : I? — I is a function.
THEOREM E. (Dardczy—Pdles) If M1 and My are means on I and the Gauss-

iteration determined by the pair (M, My) is convergent, then the function M; ®
My : I? — I is a mean on I.



DEFINITION D. If M; and M5 are means on / and the Gauss-iteration de-
termined by the pair (M7, M) is convergent, then the uniquely determined mean
M ® My : I? — I is said to be the Gauss-composition of M and Ms.

THEOREM F. (Dardéczy—Pdles) If M| and My are means on I and one of them
is a strict mean on I, then the Gauss-iteration determined by the pair (M7, M) is
convergent.

THEOREM G. (Dardczy—Pdles) Let My and Mo be means on I, and suppose
that the Gauss-iteration determined by the pair (M7, Ms) is convergent. Then the
Gauss-composition M1 ® Mo satisfies the invariance equation

Ml ® MQ(Ml(Z7y)7 MQ(I,y)) = M1 @ Mz(x,y)

for all z,y € I. Furthermore, if F' : I> — R is such a continuous function for
which F(z,z) = x, (x € I) and it satisfies the functional equation

F(My(z,y), Ma(x,y)) = F(z,y)
forevery x,y € I, then
F(z,y) = My ® Ma(z,y)
forall z,y € I.

The simplest example when the invariance equation holds is the well-known
identity
S(z,y) = §(A(z,y), H(z,y))  (z,y>0),
where A, G, and H stand for the two-variable arithmetic, geometric, and harmonic
means, respectively. Another less trivial invariance equation is the identity

A®SG(z,y) = A®G(A(z,9),5(x,9)  (z,y>0).

We note that the quasi-arithmetic means are strict, so, for any two such means,
does exist the Gauss-composition. At the same time the arithmetic-geometric mean
illustrates that the class of the quasi-arithmetic means is not closed for the Gauss-
composition, since A® G is not a quasi-arithmetic mean.(It can be shown that A® G
is not bisymmetric, and hence, by Theorem B, it cannot be quasi-arithmetic.)

The invariance equation involving three two-variable means M, N, K : I? —
1 is the following identity

) K(M(z,y),N(z,y)) = K(z,y)  (z,y €l).

If (2) holds then we say that K is invariant with respect to the means M, N. The
particular case, when K is the arithmetic mean and M, N are quasi-arithmetic
mean, i.e., when

(3) M(z,y)+ N(z,y) =x+y  (v,y€l)

holds, was investigated by Suto [71, 72] and Matkowski in several papers [56, 57],
therefore (3) will be called the Matkowski—Sutd equation in the sequel.
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In more details, this latter means finding functions ¢, 1 € CM(/) which sa-
tisfy the following functional equation

@ ot (PR o (S0 oy e

The solution of (4) was first found by Matkowski [56] under twice continu-
ous differentiability assumptions concerning the generating functions of the quasi-
arithmetic means. These regularity assumptions were weakened step-by-step by
Dardczy, Maksa and Péles in the papers [22], [27] and finally in 2002 the follo-
wing result was proved [28]:

THEOREM H. (Dardczy—Pdles) The strictly monotone, continuous functions
p, ¥ : I — R satisfy the functional equation

o («p(:v) +<P(y)> gl <¢(9:) +¥(y)

— I
5 5 > r+y  (r,yel)

if and only if
(i) either there exist non-zero real constants a, ¢ and constants b, d such that
o(z) =azx + b, Y(x)=cx+d (x €I);
(ii) or there exist real constants p, a, b, ¢, d with acp # 0 such that
o(x) = aeP* + b, Y(z) =ce P +d (x eI).

The invariance of the arithmetic mean with respect to Lagrangian means was
the subject of investigation of the paper [61] by Matkowski. He proved, with-
out any regularity assumptions on the generators ¢ and 1 of the Lagrangian
means, that they are also of the forms presented in Theorem H. The invariance
of the arithmetic, geometric, and harmonic means with respect to the so-called
Beckenbach—Gini means was studied by Matkowski in [58]. Pairs of Stolarsky
means for which the geometric mean is invariant were determined by Btasiriska-
Lesk—Gtazowska—Matkowski [7]. The invariance of the arithmetic mean with res-
pect to further means was studied by Glazowska—Jarczyk—Matkowski [37] and
Domsta—Matkowski [34]. The invariance equation involving three weighted quasi-
arithmetic means was studied by Burai [9], [10] and Jarczyk—Matkowski [44],
Jarczyk [43]. The final answer (where no additional regularity assumptions are
required) has been obtained in [43].



1. C. Generalized quasi-arithmetic means

We consider the following common generalization of quasi-arithmetic and
Lagrangian means.

DEFINITION E. Given a continuous strictly monotone function ¢ : I — R
and a probability measure y on the Borel subsets of [0, 1], the two variable mean
My, 1 I? — I is defined by

1
5) My u(z,y) == cp1</0 <p(tx +(1- t)y)du(t)) (x,y €1).

_(504—(51

If , then M, , = M, where d; is the Dirac measure concentrated

at the point ¢ € [0, 1].

If 41 is the Lebesgue measure on [0, 1], then M, ,, = L. Therefore, quasi-
arithmetic and Lagrangian means are of the form (5) under the proper choice of
the measure p.

The one of the aims of this dissertation is to study the equality and the
Matkowski-Sut6é problem of generalized quasi-arithmetic means, i.e., to charac-
terize those pairs (¢, 1) and (¢, ) such that

M%M(x?y) :val’(xvy) (l‘,yEI)
and
M<P,M(xay)+Mw,u(x7y):x+y (a:,ye[)
holds, respectively. Under at most fourth-order differentiability assumptions for
the unknown functions ¢ and 1, a complete description of the solution set of the

above functional equations is obtained. The results of CHAPTER 1 can be found
in the papers [54], [55].
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2. Lipschitz perturbation

The stability theory of functional inequalities started with the paper of Hyers
and Ulam [42] (cf. also [38]). They introduced the notion of d-convex function: If
D is a convex subset of a real linear space X and ¢ is a nonnegative number, then a
function f : D — R is called §-convex if

fltr+((1—=t)y) <tf(x)+ (1 —=t)f(y) +0

for all z,y € D,t € [0,1]. The basic result obtained by Hyers and Ulam states
that if the underlying space X is of finite dimension, then f can be written as
f = g + h, where g is a convex function and h is a bounded function whose
supremum norm is not larger than k,d, where the positive constant k,, depends
only on the dimension n of the underlying space X. Hyers and Ulam proved that
kn < (n(n+3)) = (4(n+ 1)). Green [38], Cholewa [12] obtained much better
estimations of k,, showing that asymptotically &, is not bigger than (log,(n))/2.
Laczkovich [47] compared this constant to several other dimension-depending sta-
bility constants and proved that it is not less than (logy(n/2))/4. This result shows
that there is no stability results for infinite dimensional spaces X. A counter-
example in this direction was earlier constructed by Casini and Papini [11]. The
stability aspects of d-convexity are discussed by Ger [36]. A more general form
of this stability theorem has recently been obtained in [69], where the stability of
convex functions was investigated under Lipschitz perturbations. A useful auxi-
liary concept introduced in [69] was the notion of e-monotonicity which leaded to
the stability properties of monotonic functions. A function p : I — R is called
e-increasing if
p(x) <p(y) +¢

holds for all x < y. It turned out in [69] that e-increasing functions are closely
related to increasing functions, more precisely, p is e-increasing if and only if
p = q + h, where ¢ is an increasing function and h is a bounded function with
]| < e/2.

Motivated by the above theorem, the another aim of this dissertation is to in-
vestigate when a function p can be written in the form p = ¢ + ¢, where q is
increasing and £ is d-Lipschitz (i.e., it satisfies

[l(x) — £(y)| < d(z,y)
for x,y € I.) Here d : I? — R is assumed to be a semimetric on I. Our
main results in CHAPTER 2 offer necessary and sufficient conditions for the above
decomposability in the cases of general semimetrics and concave semimetrics. The
results of CHAPTER 2 can be found in the paper [S3].



CHAPTER 1

On the equality and invariance problem of generalized
quasi-arithmetic means

1.1. Notations and basic results

This section contains the basic notations and lemmas, which we need to
present our results.

Given a Borel probability measure 4 on the interval [0, 1], we define the kzh
moment and the kth centralized moment of 1 by

1 1
B = /0 Fdu(t)  and = /0 (t—f)tdu(t) (k€ NU{O}).

Clearly, fig = po = 1 and 7 = 0. In view of the binomial theorem, we easily

obtain
1
m :/0 (t — f1)"dpu(t) / ( )t“k “dp(t)

(1.1.1)

K k

> (Hant wen

=0

and

1 1
= [ (=) au = 3 (D)= maidu

(1.1.2) =0

_ zk; (’“),%g'f i (keN).

In particular, we have that

- 2 . 2 - 2 ~
(1.1.3) M2 = <0> fofs + <1> H1p1 + <2> p2 = 13 + o,

(1.1.4)

N 3\ 5 3\ o (3 - 3 3 N
Hz =\ JHokT+ | | JHakT+ | JH2ln+ | 5 p3 = py + 3papin + ps,

9
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(Yt (Nt (N o (S o (A
sy P o roint it g Jrelii + (g Justia + {  Jha

= it + 6pofiy + Apsfin + pa-

The statement of the following lemma is obvious.

LEMMA 1.1.1. Let p be a Borel probability measure on [0, 1] and k € N. Then
2k > 0 and equality can hold if and only if ji is the Dirac measure 0.

(In the sequel, §,; will denote the Dirac measure concentrated at the point 7 €
[0,1].)

On the other hand, the odd-order centralized moments can be zero. One can
prove that p9;—1 = 0 holds for all ¥ € N if and only if i is symmetric with respect
to its first moment i1, i.e., if p(A4) = p((2p1 — A) N [0,1]) for all Borel sets
A C0,1].

The reflection of the measure 1 with respect to the point 1/2 is defined by

fi(A) = u(A),

where A is an arbitrary Borel subset of [0,1] and A :=1— A := {1 —z | z € A}.
The following lemma characterizes the reflection of a measure in terms of the
moments.

LEMMA 1.1.2. Let 1, v be Borel probability measures over [0, 1]. Thenv = p
if and only if

(1.1.6) Ii+0=1  and v=(-)*u,  (keN).

PROOF. Assume first that v = . Then

P — /01 sdv(s) = /01 sdji(s) = /01(1 —H)dp(t) =1 — fir.

Furthermore,

1 1 1
v = /0 (s — 01)Fdv(s) = /0 (s — D1)*d(s) = /0 (1 —t—y)*du(t)
1 1
= [ @ =ttt = (-0 [ = )dutt) = (-1
0 0

Conversely, assume that (1.1.6) holds. Let 1 be the reflection of ;1 with respect
to the point 1/2. Then, it follows from (1.1.6) that

~

pp=v  and i =v,  (kEN),

i.e., all the moments of 1 and v coincide. Hence, these two measures are identical.
O
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To formulate the main results of this chapter, we consider the cases when the
first n moments of the measures x and v involved in (1.2.1) are identical. For
n € NU{0, 0o}, we say that the nth-order moment condition M, holds if j, v are
Borel probability measures on [0, 1], furthermore,

(1.1.7) ur =v forall 1<k<n.

Thus the M, condition means that all the moments of 1 and v are equal, whence,
by well-known results of measure and approximation theory, the equality of the
two measure 1 and v follows. On the other hand, the condition My simply means
that p, v are probability measures on the Borel subsets of [0, 1]. For n € NU {0},
we say that the exact nth-order moment condition M, holds if M,, is valid but
M, 41 fails, i.e.,

(1.1.8) =10, forall 1<k<n and Lnt1 7 Upat.

It is obvious that, for all pairs of measures pu, v, exactly one of the conditions
MG, M7, M5, ..., My can hold, i.e., My is the union of the pairwise exclusive
cases MG, M7, M3, ..., Muo.

In view of the formulae (1.1.1) and (1.1.2), it is immediate to see that, for
n > 2, M, holds if and only if iy = 1 and py = v for2 < k < n.

In order to describe the various regularity conditions on the two unknown func-
tions ¢ and ©, for € N U {oo}, we say that the nth-order regularity condition C,,
holds if ¢, : I — R are n-times continuously differentiable functions with non-
vanishing first-order derivatives. For convenience, we also say that Cy holds if
v, : I — R are just continuous strictly monotone functions.

In our first result, we compute the first partial derivatives of the mean M, ,
at a point of the diagonal of I x I under a weak regularity assumption. We note
that, by Lebesgue theorem, ¢ is differentiable almost everywhere in I, however
the derivative of ¢ can be equal to zero almost everywhere even if ¢ is strictly
increasing.

LEMMA 1.1.3. Let u be a Borel probability measure, let p : I — R be a
continuous strictly monotone function and assume that o is differentiable at a point
p € I and ¢'(p) # 0. Then 01 My, ,,(p, p) = [i1.

PROOF. Using the differentiability of ¢ at p, one can easily see that the func-
tion f : I — R defined by

1
f@) = [ olte+ (= 0p)du)  (weD

is differentiable at p and f'(p) = fol to'(p)du(t) = ¢'(p)p1. We have that
My,u(z,p) = ¢ ' (f(z)) and ¢'(p) # 0 implies that ¢! is differentiable at
©(p) = f(p). Therefore, by the standard chain rule,

My u(p,p) = (¢71) (f(0) - f'(p) = !

— ¢ (p)in = .
¢'(p)
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g
To obtain necessary conditions of higher-order, we need the following result.

LEMMA 1.1.4. Let ;1 be a Borel probability measure. For k > 1, My, ,, is k-
times continuously differentiable if Cy, holds. If Co is valid then, with the notation
®(z) := BM, (), we have

/1 /!

(1.19) o) = (f2 =I5 (0) = (@) (weD).

If C3 and po # 0 hold, then

) = 3fi1p2 + p13

(1.1.10) RMy (v, 1) = ' (z) + 'u—gq)?(:n) (x €eI).

M2 125)

Finally, if C4 and ua # 0 hold, then
(1.1.11)

6717 4 87 3

ailMga M(x’ fL') — Hip2 + 13 + Ha (p//(.’l') + w‘p(fﬂ)él(l‘)
M2 Ha
— 342
+ %@3(@ (x € 1).
2

PROOF. The k times continuous differentiability of M, ,, follows from €, by
the standard calculus rules. By the definition of the mean M, ,,, we get that

1
(1.1.12) My u(z,y)) = /0 otz + (1 —t)y)du(t) (x,y €1).

Now assume that Co holds. Differentiating the equation (1.1.12) twice with
respect to x, we have

90” (M%M(CC, y)) (81Mso7u($v y))2 +¢' (M%u(za ?/))a%Msw(ﬂfv Y)

1
= / 20" (tz + (1 — t)y)du(t).

0

(1.1.13)

Substituting y := x and applying M, ,(z,z) = x, we obtain
1
" 2 1
¢ (@) (OM0.2))? + ¢ (0N ular) = [ 8 (@aut)

Using that M., ,(z, ) = fi1 and fol t2dp(t) = fz, we get

e (2) + ¢/ (@) My (2, @) = Tz (x).

It follows from this equation that
/! /!

(1.1.14) O ,2) = (B = D) 5 (0) = a5 (2),

thus, with the given notation, we get (1.1.9).
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To prove (1.1.10), suppose that C3 holds. Differentiating (1.1.13) with respect
to x, we have
(1.1.15)

0" (Mo (2, ) (1M (2, 9)) 30" (M (2, 1)) 1 M (2, ) B3M, (2, )

1
¢ (M0 ) O lar) = [0 (b2 (1= D))
Substituting y := « and using M, ,(z, ) = x, we obtain
" 3 "
¥ (x)(aﬂ\/[@#(x, 37)) + 3¢ ()0 My, u(z, w)@%M%M(m, )

+ @ (@)} My, 2) = iz ().
Applying 1M, ,(x, ) = 11 and (1.1.9), this simplifies to

"

oy COI o
P (@) + ¢ (@) M. 7) = fisg” (@),

pre (@) + 3pipe

Using the identity (1.1.4), we get

" "

- @ (P2
(AL116) O ) = (3ivpa + ) (2) = 3 (55 ) ().
By the definition of the function ®, we have that
/"
o

(1.1.17) LA

' 2
Differentiating this equality, it follows that

" / 2

(1.1.18) QO—,:EJF%.

¥ 2 3

Using the identities (1.1.17) and (1.1.18), the equation (1.1.16) reduces to (1.1.10).
In order to obtain (1.1.11), assume that C4 holds. Differentiating (1.1.15) with

respect to x, we get

ww( 1 (2.9) (M (2, 1))
+690 ( o (T y))(@l o,y ) alMeou(x Y)
30 (Mo (2, 1) (O3Mp (2, 1) 40 (Mg (2, 1)) L M u(,9) M (2, )
L (M) a;*mw(x, y) = /0 #1" (b2 + (1 — t)y)dut).
Substituting y := z and using M, ,(z,z) = z and [ t*du(t) = Jis, we obtain
0" (@) (M, 2)) ! + 60" (2) (0 My (2, 7)) M, (2, )
+ 30" () (03My u(z, 7)) + 49 (2) 1 M (2, 2)IM, (7, 7)

"

@l(x)ailm%u(l‘a r) = [ ().
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Applying 0, M, ,(x, x) = ji1, (1.1.14) and (1.1.16), this simplifies to
" " 2
N " PR 2 2
A" () + 6o () S () + 3ue! () (55 )
" /"

+4¢" ()7 ((3ﬂ1u2 + uz)%,(x) — 3fip2 (‘;)Qm)

+ go’(a:)@fj\/[%u(x, r) = lap ().
Using the identity (1.1.5), we get

nn
DMy (2, 7) = (672412 + Afinpis + j1a) ¥ ()
(1.1.19) 1

1 " /"

. ~ P ~ ©"\3
— (18782 + 4711 13) = (0) (@) + (12032 = 363) () (@),
o @
Differentiating (1.1.18), it follows that

" " PP’ (1)3
(1.1.20) LA T
2 H3 Ha

Using the identities (1.1.17), (1.1.18) and (1.1.20), after a simple computation, the
equation, (1.1.19) reduces to (1.1.11). U

1.2. The equality problem

In this section first we characterize those pairs (¢, i) and (1), /) such that
(1.2.1) Mou(@,y) = Myp(2,y) (2,5 €1)

holds.

As an immediate consequence of the Lemma 1.1.3, we obtain the first ne-
cessary condition for the equality of the generalized quasi-arithmetic means. This
shows that, under weak regularity assumptions, there is no solution of the equality
problem if the exact moment condition Mg holds.

COROLLARY 1.2.1. Assume Cy and My. Suppose that there exists a point
p € I such that ¢ and 1) are differentiable at p and @' (p)y'(p) # 0. Then, in
order that M, ,, = My, ,, be valid, it is necessary that
(1.2.2) fy =1,
i.e., My be satisfied.

PROOF. Using Lemma 1.1.3 and the equality of the means M, ,, and My, ,,,
we get

f1 = 1My u(p, p) = 1My, (P, p) = 1.
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The necessary condition (1.2.2) does not involve the derivatives of ¢ and ¥
explicitly. It remains an open problem to derive the necessity of (1.2.2) assuming
only the continuity and monotonicity of the functions ¢ and .

In view of Corollary 1.2.1, in the rest of the paper, we may assume that the
first-order moment condition M holds.

In our next result, assuming C;, we obtain a characterization of the equality
(1.2.1) that does not involve the inverses of the unknown functions ¢ and .

THEOREM 1.2.2. Assume C1 and M. Then My, = My, holds for all
x,y € I if and only if

11
(1.2.3) /0 /0 (t = s)¢ (te + (1 = t)y)v' (sz + (1 — s)y)du(t)dv(s) = 0.

PROOF. Necessity.

In view of the continuous differentiability of ¢,y : I — R and that ¢’ and
1" do not vanish anywhere, the means M, , and M, ,, are continuously partially
differentiable with respect to their variables. Thus, (1.2.1) yields forall z,y € [

My u(z,y) = My p(x,y) and M, 4 (z,y) = My (2, y).

Hence,
(1.2.4)
81M<p,u(x, y)82M'¢v,V(x7 y) = 81Mw,u(x7 y)aQMcp,,u (x7 y) (CC, ) € I)

By an elementary calculation, (1.2.4) can be rewritten as forall z,y € [

Jo ¢ (tz + (L= t)y)du(t) 5 (1= s)0 (s2 + (1 = s)y)du(s)

¢’ (Mw,u (z, y)) (0 (Mw,zx (z, 3/))
_ f01(1 —t)¢ (tx +(1- t)y)du(t) ‘ fol sy’ (s:c +(1- S)y)dy(s)
90/ (M@,M(x7 y)) ¢/ (Mwﬂ/(xv y)) ’

which simplifies to for all x,y € 1

1 1
/ o (tw + (1 — t)y) du(t) / (1—s)¢ (sz+ (1 — s)y)dv(s)
0 0

(1.2.5) X

1
= / (1—t)¢ (to + (1 — t)y)du(t)/ s¢' (sz + (1 — s)y)dv(s).
0 0

One can easily see that (1.2.5) is equivalent to (1.2.3).
Sufficiency. We have that (1.2.3) is equivalent to (1.2.5), which easily yields
(1.2.4). Therefore, it suffices to prove that (1.2.4) implies (1.2.1). For the sake
of simplicity, denote

F(m,y) = Mtp,,u(xay)v G(%?J) = Mw,l/('rmy) (:r,yEI)
Due to the mean value property, we have

F(z,z) =2 = G(x,x) (x €1).
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Thus it remains to prove F'(z,y) = G(z,y) for x # y. Without loss of generality,
we can assume that x < y. Set z := F(z,y). Then z < z < y. By the continuity
and strict monotonicity of ¢, we have that the mapping s — F(t, s) is continuous
and strictly increasing on [ for all fixed ¢t € I. Thus, for t € [z, 2],

F(t,2) < F(z,2) = 2= F(z,y) < F(t,y).
Therefore, for all t € [z, 2], there exists a unique element s € [z,y] such that

F(t,s) = z. Denote this element s by f(¢). Then f is a function mapping [z, 2]
into [z, y| and satisfying the identity

(1.2.6) F(t, f(t) == (t € [z, 2])
and the boundary value conditions
(1.2.7) flx)=y and f(z) ==z

Due to the implicit function theorem, f is continuously differentiable on [z, z].
Differentiating (1.2.6) with respect to the variable ¢, it follows that

_OF(@, f(1))

f(t) = RWF(, (1) (t € [z, 2]).
On the other hand, by (1.2.4), we have
81F(t7f(t)> _ 81G(t7f(t)) (t c [IE,Z]),

RF(t, f(t)  G(t f(1))

whence it follows that
G, f(t) + f(t)G(t f(£) =0 (t€ [x,2]).
Therefore, the mapping ¢t — G(t, f(t)) is constant on [z, z|. Thus, by (1.2.7) and
the definition of z,
G(z,y) = Gz, f(x)) = G(z, f(2)) = G(2,2) = 2 = F(z,y).
This proves the equality of F'(z,y) and G(z,y), i.e., the equality of M, ,(x,y)
and My, ,,(z,y), too. O
Substituting x = y into (1.2.3) we get the condition
(117 — Lot ) @'Y =0,

which simplifies to (1.2.2) because ¢ and ¢’ do not vanish anywhere. The result
of Corollary 1.2.1 states the same condition under a weaker regularity assumption.

Assuming C,,4+1, we now deduce further conditions that are necessary for the
equality (1.2.1).

THEOREM 1.2.3. Assume C,, 1 for some n € N and My. Then, in order that
My, = My, be valid, it is necessary that
n (i+1) w(nJrlfi)

n 1%
(1.2.3) Z (z) (it 1Vn—i — MilVnt1—i) P 0.

=0
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Conversely, if @, are analytic functions and (1.2.8) holds for all n € N, then
My = My, is satisfied.

PROOF. Denote by m the joint value of /1; and ;. Substituting x := u+ (1 —

m)v and y := u — muv into (1.2.3), in view of Theorem 1.2.2, we can see that
(1.2.3) holds for all z,y € I if and only if
(1.2.9)

1 1
_ /0 /0 (t = 5)¢' (u -+ (¢ = m)o) ! (u+ (5 — m)o)dpu(t)dv(s) = 0,

forallu € I, v € I, where I, := {v € R | (1 — m)v,—mv € I —u} (which is
a neighborhood of the origin). If C,, 1 holds then, for all fixed u € I, the function
F,, is n-times continuously differentiable on I,,. Differentiating F,, n-times by
applying the Leibniz rule, we obtain

/ / P> <> D (ot (= m)o)g D (u (5 = m)o)

(t —s)(t —m)(s —m)" " du(t)dv(s).

Now substituting v := 0, we get

E(0)
/ / Z() CED )" D () (¢ — 5)(¢ = m)' (s — m)" " dps(t)dv(s)
=3 (3 L om0

n ( )/ / m)"H (s = m)" = (t = m)'(s = m)" ") dp(t)dv (s)

P ()" ()

n

(?) (:ui-i-an—i — M“/n—i—i-l)(p (i4+1) ( )d](nJrl i) ( )

[e=]

1=

If (1.2.9) holds, then " (0) = 0, whence the above formula for " (0) divided
by ¢ (u)y (u) yields (1.2.8).

Conversely, assume that ¢ and 1 are analytic and (1.2.8) holds for all n € N.
Then, for all fixed v € I, the function F,, is analytic on the open interval I,,. On the
other hand, (1.2.8) shows that F"”)(0) = 0 for all n € N. The equality £, (0) = 0
is a consequence of i = v;. Therefore, due to its analyticity, the function F,
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is identically zero over I,,. Thus (1.2.9) holds, whence the equality of the means
My, and My, ,, follows. O

In the particular case n = 1, the above theorem yields the following result.

COROLLARY 1.2.4. Assume Co and My. Then, in order that M, ;, = My, ,,
be valid, it is necessary that

(1.2.10) [ = ale[*
for some constant o > 0.

PROOF. In the case n = 1, condition (1.2.8) of Theorem 1.2.3 results
1/}// /!
(M1V1 - MoW)w + (,UQVO — MlVl)% = 0.
Using o = 19 = 1 and @1 = 11 = 0, the above equation can be rewritten as
1 (PN
—VQJ + MQ? =0.

After integration, it follows that

—valn [¥/] + ppIn || = In (Ju'| =2 - |¢/1"2)
is a constant function, which yields (1.2.10). O

Though we assumed Cy in Corollary 1.2.4, the necessary condition (1.2.10)
involves only the first-order derivatives of ¢ and . It remains an open problem to
derive the necessity of (1.2.10) under first-order continuous differentiability.

1.2.1. The case when M, holds. In this section we solve the equality prob-
lem (1.2.1) if the two measures p and v coincide.

THEOREM 1.2.5. Assume Cy and Moo. Then M, ,, = My, ,, holds if and only
if
(i) either p = v = 0, for some T € [0, 1] and p, 1) are arbitrary,
(ii) or p = v is not a Dirac measure and there exist constants a # 0 and b such
that

(1.2.11) Y = ap +b.

PROOF. If 4 = v = §,, then one can easily check that both sides of (1.2.1)
are equal to 7x + (1 — 7)y, hence (1.2.1) is satisfied for any functions ¢ and .

It is also elementary to see that condition (ii) is sufficient for the equality of
the means M, , and M, ,,.

To show the necessity of (ii), assume that M, ,, = My, , and © = v isnot a
Dirac measure. Define now the function f : o(I) — Rby f := ¢y oo~ !. To
prove that (1.2.11) holds for some constants a # 0 and b, it suffices to show that
f is affine (i.e., convex and concave at the same time). Indeed, if f is affine then
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f(t) = at + b for some constants a and b. Substituting t = ¢(z), (1.2.11) follows.
(Note that, by the strict monotonicity of f, a cannot be zero.)

If f is not affine then either it is non-convex or non-concave over J := ().
Without loss of generality, we can assume that f is non-convex and ¢, 1) are strictly
increasing functions. Applying the characterization of non-convexity obtained in
[68], it follows that there exist a point ¢ € J such that f is strictly concave at g,
i.e., there exists a positive number § and a constant a such that, for ¢t €]q — ¢, ¢[
and s €]q, q + 4],

ft) < fl@)+alt—q) and  f(s) < f(q) +a(s —q).

Substituting ¢ := o(u), s := (v), and denoting p := ¢ ~!(q), it follows that there
exists > 0 such that, for u €]p — n, p[ and v €|p, p + 7],
(1.2.12)

Y(u) <) +alp(u) —p(p)) and  P(v) <P(p) +alp(v) — (p)).

Introduce the function ¢ by ¢(u) := ¥ (p) + a(¢(u) — ¢(p)). Then @ is an affine
transform of ¢, hence we have the identity M, , = Mg ,. On the other hand, by
(1.2.12), for u €]p — n, p[and v €]p, p + 7],

(1.2.13) P(u) <@u), ) <@(v)  and  Y(p) = &(p)-

By our assumption, p is not a Dirac measure, hence My, ,, is strictly increasing
in both variables. Using also its continuity, we can easily find = €]p — 7, p[ and
y €]p, p+n[ such that My, ,(x,y) = p. Define 7 € [0, 1] by the equality 7+ (1 —
7)y = p. Using that y is not the Dirac measure d,, we show that p(]7,1]) > 0.
Indeed, if p(]7,1]) = 0, then w([0,7]) > 0. If ¢t € [0, 7[ then tz + (1 — t)y >
Tz + (1 — 7)y = p, hence, by the strict monotonicity of 1,

1
V) = ¥ (OVula.0) = [ 0+ (1= )t
= / Y(te + (1 —t)y)du(t) > / Ytz + (1 —71)y)du(t)
[0,7]

[0,7]

= Y(p)du(t) = pu([0, 7)) (p) = ¥ (p),

(0,7]

which is a contradiction. Thus (], 1]) > 0 must be valid. On the other hand, if
t€lr,1thenp —n <z < tx+ (1 —t)y < 7x + (1 —7)y = p. Hence, by the
first inequality in (1.2.13), we have

Ytz + (1 —t)y) <@tz + (1 —t)y) (t €]1,1])
and, using the second inequality in (1.2.13), we also get

w(tm+(1—t)y) gcﬁ(tcz:+(1—t)y) (t €10,7]).
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Using these inequalities, p(]7,1]) > 0, and Mg, = M, , = My , we finally
obtain

1
b(p) = (M p(x,3)) = /0 btz + (1 — Hy)dp(t)

1
< / Bte + (1 — t)y)du(t) = 3(Ma (2. 3))
0

= ¢ (Myu(z,y)) = &(p),

which contradicts the last equality in (1.2.13). This contradiction proves that f is
affine. O

1.2.2. The case when M holds for some 2 < n < oo. In this section we
characterize the equality problem (1.2.1) assuming that at least the first two mo-
ments of the measures p and v are the same but the measures are not identical.
The investigation of this case requires twice continuous differentiability of the un-
known functions ¢ and ).

THEOREM 1.2.6. Assume Co and M, for some 2 < n < oo. Then M, =
My, holds if and only if there exist constants a # 0 and b such that

(1.2.14) Yv=ap+b
and @ is a polynomial with deg p < n.
PROOF. Since n > 2, condition M, implies that
po =i — iy = V2 — U} = vp =: 3,

If 3 were zero, then, by Lemma 1.1.1, u and v are equal to some Dirac measures
dr and d, (1,0 € [0, 1]), respectively. By Corollary 1.2.1, we have {i; = 7; which
yields that 7 = 0. Hence . = v follows, which is impossible in the case when M
holds for some 2 < n < oco. Consequently, 3 cannot be zero.

By Corollary 1.2.4, we have (1.2.10), which can be rewritten as [/'|® =
al¢'|P. Hence, 7' = ay’ for some nonzero constant a which proves (1.2.14).

Using (1.2.14), we have the identity M, , = M, ,,, therefore (1.2.1) is equi-
valent to the following equation

(1.2.15) Mo p(@y) = My p(z,y)  (z,y €1).

Applying the function ¢ to both sides, we get

1
(1.2.16) /O otz + (1—t))du—v)B) =0  (z,y€I).

Using a recent result of Pales [70], it follows that a function ¢ satisfying the linear
functional equation (1.2.16) must be a polynomial, therefore it is infinitely many
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times continuously differentiable on I. Differentiating (1.2.16) (n + 1)-times with
respect to x and then substituting y := =, we obtain

[ e @ag - =0 @en,
0

which yields (fin+1 — ﬁn+1)g0("+1) = 0. By assumption M, [iy,+1 — Up+1 cannot

be zero, hence ¢("+1) = 0. Therefore, ¢ must be a polynomial with deg ¢ < n.
Now assume that ¢ is a polynomial with deg ¢ < n. Then, for fixed x,y € I,
the function f(t) := ¢(tx + (1 — t)y) is again a polynomial of degree not bigger
than n. Thus, by M, (1.2.16) and hence (1.2.15) follows. Now using (1.2.14), we
can see that (1.2.1) holds. Il

1.2.3. The case when M7 holds. In the investigation of this case we consider
two subcases.
Subcase 1: psvs = 0.

THEOREM 1.2.7. Assume Co and M7 with piove = 0. Then My, = My,
holds if and only if

(i) either p and 1 are arbitrary, v = &, and there exist constants a # 0 and b

(B
such that
(1.2.17) o) =ax+b (x € I);
(ii) or v and ¢ are arbitrary, |1 = d3,, and there exist constants ¢ # 0 and d such
that
(1.2.18) U(z)=cx+d (xel).

PROOF. If pio = vy = 0, then ps = v, which contradicts M. Thus, only one
of the values uo and v, can be equal to zero.

In the first case, y is equal to a Dirac measure d, for some 7 € [0, 1]. By i1 =
vy, it follows that 7 = ;. Now (1.2.10) can be rewritten as |¢)'|"2 = «, which
results that v/’ is a constant function. Hence (1.2.18) follows for some constants
a # 0 and b.

Conversely, one can easily check that if condition (ii) holds, then (1.2.1) is
indeed satisfied.

The case v = 0 is analogous. U

Subcase 2: pavo # 0.
In our first result, applying Theorem 1.2.3, we derive further necessary condi-
tions for the equality (1.2.1).

THEOREM 1.2.8. Assume Co and My with piavo # 0 and assume that M, ,, =
My, holds. Then

1 /!

(1.2.19) g = m% — &
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If C3 is valid then the function ® : I — R introduced in (1.2.19) satisfies the
differential equation

(1.2.20) (“3 — ”3><1>’ + <“§ - ”?;) o2 = 0.
M2 V2 Hy V5

If C4 is also valid, then p and 1) are analytic functions and ® satisfies the differen-
tial equations

(1.2.21)
pa V4 3pa 3y pa —3p3  va—303\ 3
<—><1>”+<2—2)c1>®’+< T — 5 o’ = 0.
H2 V2 Ha vy M2 vy

If My holds then the three coefficients in this equation do not vanish simultane-
ously.

PROOF. If Cy is valid then, from (1.2.10), we get that (1.2.19) holds. By this
definition of the function ®, we have that
7 q) " (b
(1.2.22) £ -Z  and w—, ——
o e (L%
To show (1.2.20), assume C3. Differentiating the equalities in (1.2.22), it follows
that
" P’ <I>2 mn P’ (1)2
(1.223) LA S P -
@ p2 5 (0 ve V.
In the particular case n = 2, condition (1.2.8) of Theorem 1.2.3 yields
(1.2.24)

" !/ "

"
(M1V2 - Mo%)ﬁ), + 2(M2V1 - Mle)% : ii, + (M3Vo - M2V1)% =0.
Using p; = v1 = 0 and the identities (1.2.22), (1.2.23), equation (1.2.24) can be

rewritten as
o P2 o P?
—I/3< + 2) +M3( + 2) =0.
V2 13 K2 45
which results the differential equation (1.2.20).
If the regularity assumption €4 holds, then differentiating (1.2.23) again, one
obtains
" @l/ (p(bl @3 nn (pl/ (p@l @3
90/:74‘372‘1‘73 and 1/}/27"‘3724‘73
2 I (G V2 vy VY
On the other hand, in the particular case n = 3, condition (1.2.8) of Theorem 1.2.3
yields

(1.2.25)

" /! "
(M1V3 - M0V4) Y + 3(M2V2 — ,ulyg)? . W

" 1/ 11"

+ 3(psv1 — H21/2)? o + (pavo — #31/1)%07, = 0.

(1.2.26)
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Using p1 = v1 = 0, applying (1.2.22), (1.2.23), and (1.2.25), equation (1.2.26)
can be rewritten in the following form:

" P P3 /D P2
e Z 74—3724‘73 +3M2V2; *4‘72
2

Vo vy vy 12 vy
o P2\ @ ol o P3
—3pore| —+ — | —+pa| —+3—5 +—=5 ) =0,
K2 py ) V2 2 15 8

which results (1.2.21), an at most second-order differential equation for ®. Intro-
duce the notations

(1.2.27)
a1 3ua 3ug P 3u3 v —3v3
i B (e B = s
H2 V2 Ko V3 K2 V2

First we show that the constants 7,y, and J, cannot be simultaneously zero. The
equations n = 0 and v = 0 form a system of linear equations for the unknowns
tta, V4. The determinant of this system is nonzero because po — v # 0 by MJ.
Thus p4 = v4 = 0. Then the equation 6 = 0 yields uz = vo, which again contra-
dicts M7. Therefore, the coefficients in (1.2.21) do not vanish simultaneously.

To show that ¢ and ¢ are analytic, in view of (1.2.22), it suffices to show that
® is analytic.

If n # 0, then (1.2.21) is an explicit second-order differential equation for ®.
Applying the results on the analyticity of the solutions of such equations, it follows
that @ is analytic.

If n = 0, then (1.2.21) could be rewritten as

(1.2.28) P (y®' +69%) = 0.
We show that this equation is satisfied if and only if
(1.2.29) D+ 5B% = 0.
Denote

Ji={t el y®(t)+50*(t) #0}.

Then J is an open subset of I. By (1.2.28), ¢ has to be zero on J. By the openness
of J, it follows that ®’ is also zero on J. Hence .J must be empty which means that
(1.2.29) holds. If «v # 0, then (1.2.29) is a first-order explicit differential equation
for ®. Thus, it follows that ® is analytic. If v = 0, then é cannot be zero, therefore
® = 0, which again yields the analyticity of ®. (|

In our second result, we obtain a necessary and sufficient condition for the
equality problem (1.2.1) under the additional assumption that ® satisfies a first-
order polynomial differential equation.

THEOREM 1.2.9. Assume C3 and My with psve # 0. Suppose that (1.2.19)
holds and that there exists integer numbers 0 < 2n < k and a constant vector
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(coy---ycn) # (0,...,0) such that the function ® : I — R introduced in (1.2.19)
satisfies the following first-order polynomial differential equation

n
(1.2.30) D dF () = 0.
i=0
Then My, ;, = My, ,, holds if and only if
(i) either there exist real constants a, b, c, d with ac # 0 such that

(1.2.31) o(x) = ax + b, and  Y(x)=cr+d (x € I);
(ii) or there exist real constants a,b, c,d, p,q with ac(p — q) # 0, pqg > 0 such
that
(1.2.32) o(x) =aeP* +b and Y(x) =ce? +d (x €1)
and, forn € N,
(1.2.33) ; (?)piqn_i (Hit1Vn—i — pivni1-i) = 0;

(iii) or there exist real constants a, b, ¢, d, p, g with ac(p—q) # 0, (p—1)(¢—1) >
0, and xo & I such that, for x € I,

alz — woP +b,  ifp£0
p(x) = oo
aln|x —xo|+0b, ifp=0,

(1.2.34)
clx — x|+ d, ifqg#0
va) = { T fo?
clnjz —xo|+d, ifg=0
and forn € N,
(1.2.35) i p—1y(a-1 (tti410n—i — pitmy1—i) =0
2. i . Hi+1Vn—i — UilVn+1—i .

i=0

PROOF. To solve (1.2.30), we distinguish three cases.

Case 1: ® = 0 (which is trivially a solution of (1.2.30)). Then ¢” = 0,
whence ¢’ = a, and by (1.2.10), also ¢’ = ¢ for some nonzero constants a and c.
Therefore, in this case, statement (i) of the theorem must be valid.

Conversely, if (i) holds, then, for all z,y € 1,

Mou(z,y) =mxr+ (1 —p)y  and My, (z,y) =1z + (1 = 1)y,

hence the equality of the means follows from j1; = 7.

In the rest of the proof we may assume that ® is not identically zero. Denote
by J a maximal subinterval of I where ® does not vanish. Clearly, J is open and
nonempty and (1.2.30) can be rewritten as

(1.2.36) Zc<§;((?>> =0 (zeJ).

=0
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/
Therefore, the values of the function — on J are equal to the roots of the polyno-

, P2
mial P(x) := > ;¢;z'. Due to the continuity, we get that
®'(x)
1.2.37 — = J
( ) 52(x) c (x € J),

where the constant c is one of the roots of the polynomial P. Now we can consider
the cases ¢ = 0 and ¢ # 0.

Case 2: ¢ = 0. Then, (1.2.37) says that ® = 0 on .J. Thus, there exists a
nonzero constant p such that ® = p9p on J. If J were a proper subinterval of /,
then one of the endpoints of J, say «, would be contained in /. By the continuity,
we have ®(«) = pop # 0, which results that J is not maximal. The contradiction
so obtained shows that J = I.

Using the definition of ®, we get that ¢ = py’. Integrating this equality, we
can find a constant b such that ¢’ = p(p—b). This is a first-order linear differential
equation for ¢, whose general solution is of the form ¢(z) = aeP* + b for some
constant a. Of course, ap cannot be zero, otherwise ¢ is not strictly monotone.
Using (1.2.10), it follows that v is also of the form stated in (1.2.32) of (ii), where
q = (p2/v2)p. Clearly pg = (u2/v2)p? > 0. The condition u2 # vo implies that
q # p. The functions ¢ and ) are obviously analytic, hence, Theorem 1.2.3 can
be applied. Using

) () _ i ) (z)
¢’ (z) ’ V()
one can see that (1.2.8) is equivalent to (1.2.33), therefore, by Theorem 1.2.3, the
means M, ,, and M, , are identical if and only if (1.2.33) holds for all n € N.

Case 3: ¢ # 0. Then, with the notation p := 1 4 1/(uac) # 1, (1.2.37) can be
rewritten as

=¢ ', (xel jeN),

D'(x) 1
©*z)  pa(p—1)
Integrating this equality, it follows, for some x(, that

(x € J).

I x—ux
O(z)  pa(p—1)
Hence xg cannot be in J. If J were a proper subinterval of I, then one of the

endpoints of .J, say a, would be an element of /. By taking the limit x — « in the
above equation, it follows that ¢ has a finite nonzero limit at ce. By continuity, this

(1.2.38)

(x € J).

yields that ®(a) = %;01) # 0. showing that J is not maximal. The contradiction
so obtained proves that J = I. Applying (1.2.38) and the definition (1.2.19) of the
function ®, we get

¢'(x)  P(x)  p—1

gp’(az): 2 lr— (x € J).
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Integrating this equation, it results that

, aplr — xoP~L, ifp #£0
¢'(z) = o .
alx — x|, ifp#0

for some constant a. After integration this yields that ¢ is of the form (1.2.34).
Using (1.2.10), we get that 1) is also of the form (1.2.34) with ¢ := 14 (u2/v2)(p—
1). Obviously, (p — 1)(¢ — 1) = (u2/v2)(p — 1) > 0. We also have ac # 0
otherwise ¢ or ¢ is not strictly monotone. The condition p # ¢ follows from
p2 # V2.

Now assume that xg < inf I (the case ¢y > sup [ is analogous). In view of
(1.2.34), the functions ¢ and v are analytic and we have

(@) _ . p—1 »
ey =00 (5t

) ( _ ,
W = (jl)!(j._i)(wxo)l‘% (zel, jeN).

Using these formulae, we can see that (1.2.8) is valid if and only if (1.2.35) holds.
Therefore, by Theorem 1.2.3, the equality of the means M, , and M, ,, is equiva-
lent to the validity of condition (1.2.35) for all n € N. Il

Subcase 2.A: povy # 0 and (us,vs) # (0,0).

THEOREM 1.2.10. Assume C3 and M5 with psve # 0 and (us,v3) # (0,0).
Then M, ;, = My, , holds if and only if one of the alternatives (i), (ii), or (iii) of
Theorem 1.2.9 is satisfied.

PROOF. By Theorem 1.2.8, we have that (1.2.20) holds. We show that (1.2.20)
is not a trivial equation, i.e., one of the coefficients different from zero. Indeed,
if both coefficients were zero, then we would get a homogeneous system of linear
equations for the unknowns p3 and /3. Since the determinant of this linear system
is (112 — v2)/(par2)? # 0 hence pu3 = v3 = 0, which contradicts the assumption
(us,v3) # (0,0) of the theorem.

Thus (1.2.20) is a nontrivial first-order polynomial differential equation for .
The statement now follows from Theorem 1.2.8. O

If us = v3 = 0, then the necessary condition (1.2.20) of Theorem 1.2.8 does
not result any information, Thus, we may apply differential equation (1.2.21). Un-
fortunately, this equation can be solved explicitly if 1914 = vop4. In the remaining
cases, we shall use again the necessary condition (1.2.8) of Theorem 1.2.3 in the
casesn = 4 and n = 5.

Subcase 2.B: povy # 0, (us,v3) = (0,0), and povy = vopy.

THEOREM 1.2.11. Assume C4 and M5 with pavs # 0, (us,v3) = (0,0), and
povy = vapis. Then My, ,, = My, ,, holds if and only if one of the alternatives (i),
(ii), or (iii) of Theorem 1.2.9 is satisfied.
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PROOF. As we have shown in Theorem 1.2.8, the functions ¢ and v are ana-
Iytic on I and @ defined by (1.2.19) satisfies

(1.2.39) nd®" + 4dd’ + 603 = 0,

where the constants 7, 7, § are defined by (1.2.27).

Now, by pavs = vopi4, we have that n = 0 then, (1.2.39) is an equation of the
form (1.2.30). Thus, by Theorem 1.2.8, one of the alternatives (i), (ii), or (iii) must
be valid. O

Subcase 2.C: uava # 0, (u3,v3) = (0,0), and povy # vapiy.

THEOREM 1.2.12. Assume C4 and M with povy # 0, (us,vz) = (0,0),
pavs # vapua, (s, vs) # (0,0), and

(1.2.40) (5 — v5)% + (4 — Bpava)? + (v4 — Buarz)® # 0.

Then M, ,, = My, ,, holds if and only if one of the alternatives (i), (ii), or (iii) of
Theorem 1.2.9 is satisfied.

PROOF. As we have shown in Theorem 1.2.8, the functions ¢ and v are ana-
lytic on I and ® defined by (1.2.19) satisfies (1.2.39), where the constants 7, y, §
are defined by (1.2.27).

By condition povy # wvouy, we have that n # 0, therefore (1.2.39) is a
second-order differential equation that cannot be solved explicitly. However, u-
sing this equation, the second and third (an also higher-order) derivatives of ® can
be expressed as a polynomial of ® and ®’. With the notations o := —~/n and
B := —4§/n, easily follows from (1.2.39) that
(1.2.41)

" = add + P> and D" = a(P)? + (o + 36)P2D + o3P

In the particular case n = 4, condition (1.2.8) of Theorem 1.2.3 yields
(1.2.42)

mnmn /! " " "

¥
(Hva — povs) o + 4(povs — M1V4)? g + 6(u3ve — M2V3)? 0
(p//// /! S0/////
+ 4(pavy — M3V2)7 o + (510 — pavr) o 0.

Differentiating (1.2.25), we get that

mnm " PP P’ 2 (I)2<I>/ <I>4
14 = T +3(u2) M ph

2 2 2 2 2
1//"” B " N 4(1)(1)// N 3((1)/)2 N 6(1)2(1)/ N 34
r 2 2 3 4
(0 Vo %) Vs vy Vo

(1.2.43)
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Now using p1 = v1 = ug = v3 = 0, and (1.2.43), equation (1.2.42) simplifies to
the following (at most) third-order differential equation for ®:

(122 Yom s a1 - 2 oa (12— 2 ) @2

p2 V2 py V3 Ha V3
B5 Vs \ 24 B5 V5 \ 24
+6<—><I> @+ (_>q> 0.
woovs Hy V3
Substituting the formulae from (1.2.41) into the above equation, we get
v
(ME} _ 5) (a((I)/)Z + (a2 + 3ﬁ)q)2(b/ + a/@q)ll)
M2 2
14 14
+4<“§ - g) (a®@?®’ + 32*) + 3<“§ — g) (9')2
My Vg My Vg
M5 V5 \zox M5 Vs \ 14
+6<—><I> o <_)q> 0.
poov py vy
Finally, we obtain the following (at most) first-order differential equation for ®:
(1.2.44)
3+ aus 3+ ay > N
M5 — vs | (@)
( K3 %
6 + daps + (o + 38) 13 6 + davy + (o + 38)v3
+ < M2 (3 [3)#2“5 . 2 (3 B)vs s | B2
Ha vy
14 48u3 + aBus 14462 + afvs
+< “:4 205 — 2Ty et <.
2 2

In the next step we show that the three constant coefficients in this equation cannot
be simultaneously zero. Indeed, if all these coefficients are zero then, using that
(ps,vs) # (0,0), we can see that the following two vectors in R? are linearly

dependent:
(1.2.45)
3+ auy 6+4dapy+ (a? +38)u3 1+ 48u3 + aBus
u = (U1,U2,U3)Z: 2 ) 3 ) 4
125 25 25
3+ avy 6+4davs+ (o +3B8)v2 1+ 48v2 + afvs
v = (ULUQ’UB):: ) ) 3 ) 1 .
1z Vs Vs

Therefore, their vectorial product is zero, i.e., u;v; = ujv; forall1 < < j < 3.
The equations corresponding to the cases (¢, 7) = (1,2) and (¢, 7) = (1, 3) are

15 (3 + oz,ug) (6 + davy + (a2 + 35)1/22)
=1y (3 + ayg) (6 + daps + (a2 + 3ﬁ)u%)
and

15 (3 + apa) (1+48v3 + abvs) = 13 (34 awa) (1 + 4643 + afus).
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After some calculations, simplifying also by the factor uy — v # 0, we arrive at

(1.2.46) 6a(pn + 1) + (@ — 98) gro + 18 =0
and
(1.2.47) a3 + V3 + pave) + aBusvs + 3(pg + ) = 0.

Multiplying (1.2.46) by (u2 + v2), (1.2.47) by 6, and subtracting the equations so
obtained, finally dividing by uorvs # 0, we get

(1.2.48) (& — 98) (o + v2) — 6afugrs + 6a = 0.

Using the formulae

oo Y B(mavi —vap3)
n pava(prave — vapiz)’

Vs — vap3 + 3p3v3 (2 — va)
p3va (pave — vaps)

equations (1.2.46) and (1.2.48) can be rewritten in the form

(1.2.49)

g0
n

I(p2 — v2) (Buave(pavs — vapiz) + pava(pe — v2))
(pavo — vapin)?

=0,

9(p2 — 1/2)2(3M2V2(M4V2 + vapo) — pava(po + 1/2))
pova(fava — vapa)?

respectively. Using po — vo # 0 and pgvo — vaps # 0, we get

=0,

3pava(pave — vapiz) + pava(pz — v2) = 0,
Spava(pave + vapz) — pava(pz +v2) = 0.
Adding up, and subtracting these two equations, we obtain
6,u4,ugz/22 — 2uqv4v9 = 0, 61/4/@1/2 — 2pqv4p9 = 0,
whence it follows that
(1.2.50) e = V4 = 3uals.

In this case, (1.2.49) simplifies to

1 1 1 1
a=-3—+—], B=—=5+5).
2 V2 Ky V3
Therefore, for the vectors v and v defined in (1.2.45), we get

w=1v= < —3  6(u2+v2) 3(13+13) —M%V§>
pova’  psvy p3v3
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Thus, the differential equation (1.2.44) reduces to the following form

-3 6(p2 + v2)
- _ (b, 2 o\a VA _ (I)/(bQ
Lot (s — v5) ()" + (22 (us — vs)
3(u3 +v3) — p3vs

33
Koty

+ (,u5 — V5)(I)4 =0.

The coefficients of this equation can simultaneously vanish if and only if s = vs.
However, this equality, together with (1.2.50) contradicts the condition (1.2.40) of
the theorem. The contradiction so obtained shows that the coefficients of (1.2.44)
cannot be identically zero under the assumptions of the theorem. Thus, (1.2.44)
is a nontrivial first-order polynomial differential equation of the form (1.2.30).
Therefore, it follows that ¢ and v satisfy one of the alternatives of Theorem 1.2.9.

g

If either s = v5 = 0 or us = v5 and pg = v4 = 3puove, then (1.2.44) is
useless, thus we need to apply the necessary condition (1.2.8) of Theorem 1.2.3 in
the case n = 5.

THEOREM 1.2.13. Assume C4 and M with pavs # 0, (ps,v3) = (0,0),

HaVs F Vofls,
(1.2.51)

5,ugui 5V21/2
te, Ve, 0) # ( ; , Bpove(vops — povs) — (p2 — V2) 4V
( ) 6,“/% — 14 61/22 —uy ( ) ( )

and

F G
1.2.52 —_. =D
( 52) (/-1'67 Vs, 0)7&<E7E7 >7
where
(1.2.53)

D :=45p55 (g — v)* (pavs — pave)* (2 — vo) pava + 3pava(povs — pava))
(valpa — v2)(2p2 — v2) (p2 — 2va) (Tpa — 8v2)jva
+ pa(pa — va) (2u2 — va) (2 — 2v2) (82 — Tva) pavy
— 653 (2 + v2) (63 — Spava + 613) pravy
— vy (p — 2v2) (T3 + pava — 13) 1
— 6pisva(2u0 — va) (45 — pave — Tv3)vi
+ 45505 (g — v2)(Tpa — 2wa) g + 450505 (1 — v2) (2p2 — Tva)va),
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E =403 (2 — vo) (2 — 2v9)? pifva + 4pi3 (2 — v2) (2 — v2)* pavy
+ piava (i — vo) (TV4 — 22pvs + Tp3) v
— Bpava (22 + v2) (2 — 2v0) i — Bpiava (i + 2v) (2p2 — o)V
+ 31303 (Tu3 — 24pavs — V3 piva + 3p3v3 (13 + 24pavs — T03) pav
+ 9033 (o — v2) (ava — vapua)?,
F :=3pov(pava — pav) (pavava — papavs + (3v2 — 3pa) pava)
(6psvava — Bpdpavs + pa(Tpa — 2va) pava + 5o (pg — 2v9) i),
G :=3pgva(pgva — pave) (uavavs — papavs + (3va — 3pa) pava)
(6p5v3va — Bpuapuavis + va(2us — Tva)pava + Spa(2p2 — vo)vi).

Then M, ;, = My, , holds if and only if either one of the alternatives (i), (ii), (iii)
of Theorem 1.2.9 is satisfied.

PROOF. Following the argument of the proof of the previous theorem, we get
that the functions ¢ and v are analytic on I and ® defined by (1.2.19) satisfies
(1.2.39), where the constants 7,7, § are defined by (1.2.27). We have n # 0, and,
with the notations o := —v/n and 3 := —d/n, (1.2.39) yields (1.2.41) and

(1254) " = (4> +63)P(P')* + (a® + 9a3)°d’ + (o?3 + 35%)D°.

Differentiating (1.2.43), we get that

(1.2.55)
1 (I)”H (I)(I)m <I)/<I)” (I)2<I>” P (I)/ 2 (1)3(1)/ <I)5
A S S T ST L AT L M L A
¥ K2 H3 H3 K 3 Mo o
w//l/// _ (I)/”/ N 5@@/// N 10@/@// N 10@2@// N 15@(@/)2 N 10@3@/ N 25
r 2 2 3 3 4 5°

P ) vy Vs 2% Vs Vs vy

/

In the particular case n = 5, condition (1.2.8) of Theorem 1.2.3 yields

" /! ,¢)///1/

(p1vs = pove) = g Sluava = pavs) - =

" nm " "
" e
+ 10(psvs — /127/4)? : W + 10(pav — ,u3l/3)7 . o
S0///// 1 (p//////
+ 5(usv1 — pave) — - - o + (pevo — psv1) = 0.

SO/

A
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Now using @1 = v; = u3 = v3 = 0, and the identities (1.2.22), (1.2.23), (1.2.25),
(1.2.41), (1.2.43), (1.2.54), and (1.2.55), we obtain

<¢)//// (I)(I)/” @/(I)” (I)Z@/I @(‘I)I)Q (1)3@/ @5 >

5 10 10 15 10 —_
w0z T T T T T

P (I)/// (I)‘I)” CI)/ 2 (1)2(1)/ (1)4
+5M2V4'<+4 3 +3( ) +6 3 +4>
p2 \ V2 vy V5 V3 V2
o P2 o PP 3
— 10,LL2V4 ( + 2) : ( + BT + 3>
2 ,LLQ 1%0] 1/2 1/2
" P @3 o P2
+10M4V2<+3 +3> . <+2>
2 I Mo V2 1
(I)”’ CI)(I)H Q)’ 2 (I)2<I)/ @4 P
—5M4V2<+4 5 +3( 2) +6 3 +> —
2 25 125 o /~L2 2
(1)//// (Dq)/// @/q)// @2@// @(q)/) q)Sq)/ q)f)
+u6< +5— + 10— +10—5— + 15— +104+>=0.
25 1253 2 Ko Ho Ha

Using now the formulae (1.2.41) and (1.2.54), the above equation reduces to the

following first-order differential equation for ®:
(1.2.56) (Arps + Agvs + Az)®(D)? + (Bipss + Bave + Bs)®° ¢’
- + (Crpg + Covg + C3)®° = 0,

where
Ay = 305 ((40” + 68) 3 + 15aus + 15)

Ay = —pbv3 ((40® + 63)15 + 15aws + 15)
Az = —5p3vs ((ava + 3)p3va — (s + 3)pavsy)
B1 = pov (0 + 9aB)ud + (5% + 258) 113 + 10ayun + 10)
By = —,ugug((a3 + 9045)1/5’ + (5042 + 25ﬂ)1/22 + 10as + 10)
B3 = 5,u%1/22((0421/22 + davy + BVs + ) psvs — (@3 + daps + B3 + 4) pavi
+ (20045 + Bpuz) pavy — (20073 + 6v2)p3vs)
C1 = 13 ((0?B + 367 + 5B + 10845 + 1)
Cy := —p5 (B + 38%)vs + 5afvs + 1083 + 1)
Cy := Spavs ((afvs + 4Bv3 + 1) ugva — (B + 4Bu3 + 1) vy

+ (2138 + 2u2) puavis — (2038 + 2u0) pisvs).
If the coefficients in equation (1.2.56) vanish simultaneously, then ug, vg and £ = 1
is a nontrivial solution of the following system of homogeneous linear equations

Arpe+Asvs + A3z =0, Biue + Bovg + B3¢ = 0,

1.2.57
( ) Chiug + Covg + C3€ = 0.
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Therefore, the value D defined in (1.2.53), which is the determinant D of this
system has to be zero. The constant D was factorized by using the Maple 9 sym-
bolic package. Thus, in order that D be zero, we have two possibilities. The first
(simpler) case is when

(2 — vo)pavs + 3pove(povs — pave) = 0.

Then, again using Maple 9, we get the following values for the solutions pg and
vg of the linear system (1.2.57):

_ Bpugp} 2%
Ho= =g U=
615 — Ha 6vy — vy

This, however, contradicts the assumption (1.2.51). Thus, in this case the three
coefficients of (1.2.56) cannot vanish simultaneously.
The second case is when the last factor of D is zero, i.e., when

va(pa — v2) (22 — v2) (2 — 2v2) (Tpa — 8va) v

+ (2 — v2) (22 — vo) (2 — 2v9) (B2 — Tva) pavy

— 633 (2 + v2) (613 — Spaavy + 613 prav

— 62 (na — 2v2) (T3 + pove — v3) it

— 6pisva (20 — vo) (1 — pave — TV + 45435 (T — 2v2) (2 — v2) s
+ 45505 (1 — v2) (22 — Tva)va = 0.

Calculating with the help of the Maple 9 package, we get the following values for
the unknowns pg and vg:

&= =

/’LG - 9 V6 - E’
where F, F', and G are given by (1.2.53). In view of condition (1.2.52), we get
again a contradiction. Thus, in this case, the three coefficients of (1.2.56) cannot
be simultaneously zero

Therefore, in each case, P satisfies a nontrivial first order polynomial differen-
tial equation of the form (1.2.30). Hence, one of the alternatives of Theorem 1.2.9

must be valid. |

1.2.4. Applications. In this section we demonstrate some possible applica-
tions of our results.

EXAMPLE 1. Consider the functional equation

(12.58) ¢1<¢(2$3+y) ‘;¢(x§2y)> e (1/)(93) + 16w1(;”‘5y) +w(y))7

where ¢, 1 : I — R are continuous strictly monotone functions.
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Equation (1.2.58) is an obvious particular case of the equality problem (1.2.1),
where the measures ;. and v are given by

d1/3 + 02/3 o + 1641 /2 + 01
=1 = an V= .
2 18
Then, 17 = 171 :%and, for k € N,
(-1)F +1 (-1)F +1
He = "5 gk and vk = TR
Hence
0 1 0 1
H1 =Y, N2_367 M3 3 H4 = 12967 I
0 1 0 1
=V, V2_36) vz = U, 1/4_1447

Thus the exact moment condition M5 holds. If C4 is assumed, then, by Theo-
rem 1.2.6, ¢, 1 : I — R satisfy (1.2.58) if and only if there exist constants a # 0
and b such that

PY=ap—+b

and ¢ is an arbitrary strictly monotone polynomial with deg ¢ < 3.
It remains an open problem to find the solutions of (1.2.58) under the regularity
assumption Cq only.

EXAMPLE 2. Consider the functional equation
9 1
(1.2.59) ¢—1<W> — ¢—1</ 2tz + (1 — t)y)dt>,
0

where ¢, : I — R are continuous strictly monotone functions.

Equation (1.2.59) is also a particular case of the equality problem (1.2.1),
where the measures i and v are now given by

0o + 201
I
Then, i1 =77 = % and, for k£ € N, we have

! 2\ (—2)F +2

! 2\* k+10 — (—2)+3
z/k—/2t<t—> gt = SFT10-(=2)
0

and dv(t) = 2tdt.

3 (k +1)(k + 2)3k+2°
Hence
2 2 2
p1 =0, H2 =g M3 57 Ha = 5o ;
1 1 1
v =0, VQZE, yg——ﬁ, 1/4—@,
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Thus the exact moment condition M holds. Since p3 # 0 # v3, Theorem 1.2.10
can be applied. If C3 is assumed, then, one of the alternatives (i), (ii), and (iii) of
Theorem 1.2.9 holds.

If the alternative (i) is valid then there exist real constants a, b, ¢, d with ac # 0
such that ¢ and ¢ are given by (1.2.31), i.e., they are affine functions. In this case,

the means M, ,,(x,y) and My, (z,y) are equal to the weighted arithmetic mean
2x +y

If (ii) were valid, then there exist real constants a, b, ¢, d, p, ¢ with acpq(p —
q) # 0 such that (1.2.32) and (1.2.33) hold for all n € N. In the case n = 1,
(1.2.33) yields
(1.2.60) q(pav1 — pove) + p(parvo — parr) = 0,
whence ¢ = 4p. If n = 2, then (1.2.33) implies
(1.2.61) ¢ (pava — povs) + pq(povt — pave) + p° (pavo — parr) = 0,

resulting ¢> = 10p?, which contradicts ¢ = 4p.

If (iii) is valid then there exist real constants a, b, ¢, d, p, ¢ with ac(p — 1)(q —
1)(p — q) # 0 and zp & I such that (1.2.34) and (1.2.35) hold for all n € N. In
the case n = 1, (1.2.35) yields

(1.2.62) (@ — D)(pmav1 — pove) + (p — 1) (pavo — pava) =0,
whence ¢ = 4p — 3. If n = 2, then (1.2.35) implies
-1 -2
w(ulw — pov3) + (p — 1)(q — 1)(p2v1 — pave)
(1.2.63) ( _21)( 9
+ %(M?)Vo — povy) =0,

which results p = 0 and ¢ = 4p — 3 = —3. Instead of showing now that (1.2.35)
holds for all n > 3, we prove that the functions ¢, : I — R given by (1.2.34)
satisfy (1.2.59). For simplicity, we assume that zg = 0 < infI. Then p(z) =
alnz +band ¢ (x) = cx™3 +d.

On one hand, we have

o (290(113) + sO(y)) 5

w

On the other hand,
-1 ' _ _ ! 2t 3
P (/0 2tw(tx + (1 t)y)dt = /0 (tx T (1 — t)y)?’dt)
( 2y — ) —y t=1>%: <2<y—x>—y_ —y )%
(y — ) (tz + (1 = )y)? |, (y— )22 (y—z)%y?

() -

x2y
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which proves the equality in (1.2.59).

EXAMPLE 3. Consider the functional equation

(12.64) ! (W) _ ¢—1<4¢($) +4¢g’”§y) +¢(y)>’

where ¢, 1 : I — R are continuous strictly monotone functions.

Equation (1.2.64) is an obvious particular case of the equality problem (1.2.1),
where the measures ; and v are given by

do + 201 do + 451/2 + 461
= — and V= .
3 9
Then, 1y =71 = % and, for k£ € N, we have

! 2\ (—2)F +2

b /1 (t_ g>kdy(t) _ (_4)k+4(—1)k+4'2’j
0 3

L

9.6k
Hence
2 2 2
p1 =0, K2 =g H3 = =50 Ha =g oo
1 1 1
v =0, V2 =g Vs =% V4= g6

Thus the exact moment condition M holds. Since p3 # 0 # v3, Theorem 1.2.10
can be applied. If C3 is assumed, then, one of the alternatives (i), (ii), and (iii) of
Theorem 1.2.10 holds.

Clearly, if (i) holds, then ¢ and ) are affine functions and the two means on

the left and right hand sides of (1.2.64) are equal to the weighted arithmetic mean
2z +y

3If (ii) holds, then there exist constants a, b, ¢, d, p, ¢ with acpq(p — q) # 0 such
that (1.2.32) and (1.2.33) are satisfied for all n € N. In the case n = 1, (1.2.33)
simplifies to (1.2.60), which results ¢ = 2p. Instead of showing that (1.2.33) holds
for all n > 2, we prove that the functions ¢ and ¢ given by (1.2.32) are solutions
of (1.2.64). Indeed,

1 (2@ W) 1 (2
3 p 3
1 | 2ePT 4 Py \ 2 1 1 4e2rT 4 46227% + e2ry
= — In _— = —1In
2p 3 2p 9
_ lln (46” T 4697 4 eqy> ! <4¢($) + 4w(%) + 1/’(3/))
q 9 9 '
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In this case, we can also see that the means on the two sides of (1.2.35) are
weighted exponential means.

If (iii) were valid then there exist real constants a, b, ¢, d, p, ¢ with ac(p—1)(q—
1)(p—q) # 0and ¢ ¢ I such that (1.2.34) and (1.2.35) hold for all n € N. In the
case n = 1, (1.2.35) simplifies to (1.2.62) whence ¢ = 2p — 1 follows. If n = 2,
then (1.2.35) yields (1.2.63) which results p = 1 contradicting the conditions on
the parameters. Therefore, there is no solution of (1.2.64) in the case (iii).

1.3. The invariance problem

Now we characterize the continuous strictly monotone functions ¢, and
Borel probability measures u, v such that

(1.3.1) My pu(w,y) + My (2,y) =2 +y (z,y €1)
holds.

COROLLARY 1.3.1. Let i and v be a Borel probability measures. Assume Cy.
Suppose that there exists a point p € I such that ¢ and ) are differentiable at p
and ¢'(p)y'(p) # 0. Then, in order that (1.3.1) be valid, it is necessary that

(1.3.2) o+ =1
PROOF. Using Lemma 1.1.3 twice and the equality of the means M, ,, and
My, we get
i1 + 01 = 1My u(p, p) + My, (p, p) = 1.
O

COROLLARY 1.3.2. Let i and v be a Borel probability measures. Assume Co.
Then, in order that invariance equation (1.3.1) be valid, it is necessary that

(1.3.3) 12 W = o
for some constant o > 0.

PROOF. If Cy is valid, then differentiating (1.3.1) twice with respect to =, we
get that
RMy p(x, ) + OFMy, , (x, ) = 0.
Using the Lemma 1.1.4, it follows that

/" "
¢ (G
After integration, this yields (1.3.3). 0

In the solution of the invariance equation (1.3.1), we consider two subcases.
Subcase 1: pave = 0.

THEOREM 1.3.3. Let yv and v be a Borel probability measures with pisv, = 0.
Assume Co. Then the invariance equation (1.3.1) holds if and only if
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(i) either p = d;, v = d1_ for some T € [0, 1] and p, ) are arbitrary,
(ii) or i = 0y for some T € [0,1], vy # 0, V1 = 1 — 7, @ is arbitrary and there
exist constants a # 0 and b such that

(1.3.5) Y(x)=azx+0b (x eI,

(iii) or v = 01— for some T € [0,1], ua # 0, iy = 7, ¥ is arbitrary and there
exist constants a # 0 and b such that

(1.3.6) o(xr) =axr+b (x el).
PROOF. (i): If uo = 0 and v5 = 0, then 4 = 6, v = 41—, and
(1.3.7) Mpp(z,y) =tz + (1 —m)y=7z+(1-1)y

and
Myp(z,y) =01z + (1 -v1)y= (1 — 7))+ 1Y.
Hence, the left side of the equation (1.3.1) is equal to  + y, which implies that
(1.3.1) is satisfied for any functions ¢ and ).
(ii): If po = 0 and v # 0. Then p = 0, for some 7 € [0, 1] and, by (1.3.3), it
follows that v/’ is constant. Therefore, v is of the form (1.3.5). Conversely, if (ii)
holds, then we have (1.3.7) and

1
My (z,y) = /0 (tx +(1- t)y)du(t) =viz+(1-1)y=(1-7)x+T1y.

Hence, (1.3.1) is satisfied.
(iii): The case o # 0 and v = 0 is analogous to the case (ii). Il

Subcase 2: pavy # 0.

Our first main result offers a necessary condition for the validity of the invari-
ance equation (1.3.1) in terms of two differential equations for the second-order
partial derivative 9?M,, ,, of the mean M, ,,.

THEOREM 1.3.4. Let i and v be a Borel probability measures with ove # 0
and assume that the invariance equation (1.3.1) is satisfied. If C3 holds then the
function ® : I — R defined by

(1.3.8) O(x) == My, (z, 2)
satisfies the differential equation
3/ 3
(13.9) ( Hipo + 3 V1V2+V3>¢,/+ (llg+’/g>q)2:o
2 1) Koy V3
and if
3 — v
(1310 (s, v) # ST (2 2,
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then the coefficients in equation (1.3.9) do not vanish simultaneously.
If, in addition, C4 holds then ® also satisfies the differential equation
(1.3.11)

(6/7%#2 +4pps + g 602vy + 4D1v3 + V4>q)”

H2 V2
813 + 3 8vqv3 + 3, —3u2 vy —302
+( M1M32 M4+ 1 32 4)<I><I>’+(M4 3#2_ 4 . 2)(1)3:0.
Mo %) Ha v

PROOF. By Lemma 1.1.4, for z € I, we have that
/! 2

B(z) = uz%(x) and  OPMy, (2, 2) = vo—(z) = U(x).
Using (1.3.1), it follows that
(1.3.12) ®(x) + U(x) = 0fM (2, ) + 0t My (2, 2) = 0.

In order to prove (1.3.9) suppose that C3 is valid. Differentiating (1.3.1) three
times with respect x and putting y := x, we have

aftmw(x, x) + 8{’3\/[11,7,,(:13,1:) =0.
Using the equation (1.1.10)

30 +
8?3\/[@7“(1',1') = qu(x) + H—;’@Q(x)

2 25
and
3V + v v
RMy(,2) = =220 () + 50 (a),
1%} V2
we get the following differential equation
3 v
(1.3.13) ST gy Moz STV g B2 )
2 Mo V2 V)

From (1.3.12) it follows that

®?=0? and V' =-9
Applying these connections and reducing (1.3.13), we get the differential equation
(1.3.9) for the function .

If the coefficients in the equation (1.3.9) vanish simultaneously, then p3,v3 is
a solution of the following system of linear equations

3L + 13 _ 3vive + 13 13 U3

=0, — +—5 =0.
2 Vv M% V22
Solving this system of equations we get the following solutions for p3 and v3
_ By 3 =)y
p2+ve po+vy

Therefore, if (1.3.10) holds, then (1.3.9) cannot be a trivial equation.
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If C4 is valid, then differentiating (1.3.1) four times with respect  and putting
y := x, we have
8%3\/[%#(%55) + 8%3\/[1!,7”(337:5) =0.

By Lemma 1.1.4, we have that

_ OnTu + 4fips + 8fi1f13 + 3p4

MMy (x,x) = " (z) + () (x)
1Vo,n L2 u%
— 3u2
+ Ha . U3 (I)S(.’I))
Ha
and
6/\2 4A 8/\ 3
My () = 2T T Vg S T Gy ()
V2 P
vy — 3v2
TQ‘I’S(@,
2
thus we get the following differential equation
(1.3.14)
6A2 12 + 41 s + 8fi1us + 3 — 3u3
K12 M3 M4(I)N(J)> + M@(l’)@l(ﬂf) + M . Ha @3(1‘)
2 Ha Ha
60202 + 40 8D1v5 + 3 — 3v3
4 viv2 + Vivs + V4 \I/”(:L-) + M\I}(m)\pl((ﬂ) -+ Y 3 Y2 \I/S(x): 0.

Vo V3 vy
From (1.3.12) it follows that
U3 = @3, ¥ =-@ and V' =-9".
Applying these connections and reducing (1.3.14), we get the differential equation

(1.3.11) for the function ®. O

By our second main result, under three times continuous differentiability as-
sumptions and certain non-degeneracy conditions on the second and third central-
ized moments of the two measures, the solutions of the invariance equation (1.3.1)
fall into three different classes. The unknown generator functions ¢ and ¢ are
either linear, or exponential or power functions.

THEOREM 1.3.5. Let u and v be a Borel probability measures with ove # 0
and satisfying (1.3.10). Assume also Cs. Then the invariance equation (1.3.1)
holds if and only if i1 + 71 = 1 and

(i) either there exist real constants a, b, ¢, d with ac # 0 such that
(1.3.15) o(x) =ar+b and Y(x)=cr+d (x €I
(ii) or there exist real constants a, b, c,d, p, q with ac # 0, pqg < 0 such that
(1.3.16) o(x) =aeP* +b and Y(x) = ce? +d (x el
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and, forn € N,
n
n . _
(1.3.17) ZO (Z,>plqn “(Hit1Vn—i + pitns1—i) = 0;
1=

(iii) or there exist real constants a,b,c,d,p,q with ac # 0, (p —1)(¢ — 1) <0,
and xo & I such that, for ¢ € 1,

alr —zo|P +b, ifp#0
p(x) = :

aln|x —xzo| +0b, ifp=0,
(1.3.18)

clx — zol? + d, ifg#0
Pl = Il . f
chn|z —xo|+d, ifg=0

and, with the notation

(i +epaun)’. o0

(13.19)  Fypu(z) = 1
exp (fo In(1 + tz)d,u(t)), ifp=0 (z > —1),

the identity
(1.3.20) Fouz)+Fyu(z)=2+=% (z>-1)
holds.

PROOF. First we show that the equation (1.3.1) implies that one of the condi-
tions (i), (i1), (iii) must be valid. By the assumptions on the moments of x and v,
and Theorem 1.3.4, the function ® introduced in (1.3.8), satisfies (1.3.9) which is
non trivial. Then the differential equation (1.3.9) is solvable. This equation is the
form

(1.3.21) ad’ + P2 =0

where (o, 3) # (0,0). To examine this differential equation, we distinguish three
cases. In all of the three cases we can apply the Theorem 11 by [54].

Case 1: ® = 0. Then ¢ = 0, whence ¢’ = a, and ¥’ = ¢ for some nonzero
constants ¢ and c. Therefore, in this case, statement (i) of the theorem must be
valid.

If (i) holds and fi; + 77 = 1, then for all x,y € I

My u(z,y) = e + (1 — 1)y and My, (z,y) =1z + (1 —01)y.
Then after a short calculation it follows, that
mr+(1-—m)y+rnr+(l-t)y=x+y

that is, the equation (1.3.1) is true.
Case 2: = 0 and @ is not identically zero. Then (1.3.21) says that &’ = 0.
Thus, there exists a nonzero constant p such that ® = pop. Using the definition
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of ®, we get that ¢” = py’. In this case the general solution is of the form
o(x) = aeP” + b for some constant a # 0 and b. By Corollary 1.3.2, we have that

_pHa

(@) = A1 @2 = fap|~F e  ceus
1) =3¢ (@)% =lap| BT = ce

where ¢ := —%2. This implies that v is also of the stated form and pq < 0.
If (i1) holds then (1.3.1) can be written in the form

lln </1 ep(tl“*(l*t)y)du(t)) 4 lln (/1 eQ(tm+(17t)y)d,/(t)) =z+vy.
p 0 q 0

We have that

1 1
LE / Pt g1y ) =z 4y — 2 In / (alt+(1-00) gy, (1)
p 0 q 0
1 1
—T1n eqqu/ e((I=D241) g,(¢)
q 0
1 1
_ Ly /equwm@@
q 0

1
_ 1y / ¢~ a(sa+(1-5)0) g5 (5).
q 0
Thus we get the following equality
(1.3.22) Mo =M 5,

where ¢(z) = aeP® + b and 1(z) = ce % + d and ¥ denotes the reflection of the
measure v with respect to the point % By [54], (1.3.22) holds if and only if, for all
neN,

(i+1) J(n—i—l—i)

o Y

n
0= Z <7Z> (Lti1Pn—i — Milns1—3) 7

1=0

In other words,

" n : - ~ ~
(1.3.23) 0= < .>pl(—Q)n (Hit1Pn—i — MiVns1—i)-
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Then, by Lemma 1.1.2, 51 = 1— 17 and, for £ € N, we have 7, = (—l)kyk.
Using these equalities, condition (1.3.23) can be rewritten as

0= Z (?)pi(q)n_i (Hi10n—i — iVpi1-i)

=3 ()0 e (1) s = 1) )

- 1
=0

. Z( > i n— 1 1)"71')2(;114_11/”_,'+NiVn+1—i)
_Z< > ¢ Z ,uH»an i+ UiVni1— Z)

This proves that (1.3.17) is necessary and sufficient for the validity of the invari-
ance equation.
Case 3: 8 # 0 and @ is not identically zero. Denote by L a maximal open

subinterval of I where ¢ does not vanish. Then, with the notation p := 1 —
a/(p20), (1.3.21) can be rewritten as
ol 1
(@) _ (x € L).

%(z)  pa(p—1)
Integrating this equality, it follows, for some z, that

1 T — X
(1.3.24) = x €L).
3@ mp-n Y
Hence xg cannot be in L. If L were a proper subinterval of I, then one of the
endpoints of L, say «,, would be an element of /. By taking the limit z — « in the
above equation, it follows that ® has a finite nonzero limit at «. By continuity,
this yields that ®(a) = % # 0. Showing that L is not maximal. The
contradiction so obtained proves that L = 1.
Applying (1.3.24) and the definition (1.3.8) of the function ®, we get
/! (I) _ 1
Ja) _ ®l) _ p we.
¢'(z)  pe T —x0

Integrating this equation, it results that

: aplr — zoP~t, ifp # 0
14 (1‘) = -1 .
alr —xo|~t, ifp=0

for some constant a. After integration this yields that ¢ is of the form (1.3.18).
Using (1.3.3), we get that ¥ is also of the form (1.3.18) with ¢ := —(p — 1)5—;

Obviously, (p — 1)(g — 1) = —(u2/12)(p — 1)? < 0.
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If (iii) holds and pq # 0 then (1.3.1) holds for all z, y € I if and only if

1

1 P
(/0 |t + (1 —t)y—xolpd,u(t)> +
(1.3.25)

1 l
+ (/ [t + (1 —t)y—qro\qdy(t))q +rg=x+y.
0

Letx — 29 =: u, y — o =: v and z¢ < inf I (the case x¢ > sup [ is analogous).
Then u,v € I —x9 & Ry and (1.3.25) is equivalent to

</°1(tu o (t)>; i (/01<tu +(1— t)v)qdu(t)>;

=u+v=(u—v)+ 2.

With the notation “-* = z we get that (1.3.25) holds for all x, y € I if and only if
(1.3.26)

(/01<1 +tZ)pdu(t)); + </01(1 +tz)qdy(t)> =24z (ze),

where J = {%—1|u,v € I—x0}, which is an open neighborhood of zero contained
in the interval | — 1, oo[. The left hand side of (1.3.26) is an analytic function of z,
therefore (1.3.26) is valid for all z € J if and only if it holds for all z €] — 1, o0|.

The proof of (1.3.26) in the case pg = 0 is similar. O

As we see from Theorem 1.3.5, the solutions of the invariance equation (1.3.1)
may have three different forms. They are either linear, or exponential, or power
functions. The following result formulates necessary conditions for the existence
of exponential solutions of the invariance equation (1.3.1).

PROPOSITION 1.3.6. Let 1 and v be a Borel probability measures with povo #
0. If pg # 0 and there exists a solution of the invariance equation (1.3.1) of the
form (ii) in Theorem 1.3.5, then

p L)
1.3.27 -=—-—
( ) q H2
and the following condition must be valid
n
(V) Hit1Vn—i + HiVng1—i
(1.3.28) Z(—l)z(i> 1T Zyn_ﬁ 0 (neN).
i=0 Haly
In particular, for n = 2, 3, 4, condition (1.3.28) can be written in the form
u3 V3
1.3.29 -+ =5 =0,
(1329 wi V3
3 1 3
(1.3.30) (B-2)-(5-2) =0
Ho o M2 vy 12
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(13.31) (% mZQ Cg—lqg):o

PROOF. If there exists a solution of the invariance equation (1.3.1) of the form
(i1) in Theorem 1.3.5, then equation (1.3.17) holds for all n € N. In the case n = 1
this equation is of the form

q(prv1 + pove) + p(pevo + pavy) = 0.

This equation simplifies to voq+ p2p = 0, whence we get (1.3.27). Using (1.3.27),
the equation (1.3.17) divided by (qr2)™ reduces to (1.3.28). In the particular cases
n = 2 and n = 3, from the equation (1.3.28) we obtain (1.3.29) and (1.3.30),
respectively. If n = 4, then (1.3.28) is of the form

Vv v 6 v
(13.32) Soans— (BB B8,
Vg vy o Hal2 N2 o 2 Ha F‘Q

Applying (1.3.29), we have
6 v 6 /—v — 3V v
8 (ny vy _ O (v iy gl gl
H2 V2 M2

p2v2 % 13
whence (1.3.32) simplifies to (1.3.31). Il

The next result formulates necessary conditions for the existence of power
function solutions of the invariance equation (1.3.1).

PROPOSITION 1.3.7. Let 1 and v be a Borel probability measures with povy #
0 and (1.3.10). If (p — 1)(¢ — 1) < 0 and there exists a solution of the invariance
equation (1.3.1) of the form (iii) in Theorem 1.3.5, then usva + v3u3 # 0,

 2u3v3 + vspo(po — vo) + 3(A1 — D1)pavs
B psvs + vsps
w33 + psva(va — o) + 3(U — 1) u3ve
B p3v3 + vajis

and the following condition must hold
(1.3.34)

27155 iy — 1) (p2 — v2) + 6u3v3 (v2 — p2) sy
+ 184313 (12 — vo) (fir — 1) (pave — vapa)

+ ( — 1203 (i1 — 01)* + Bpava(pz — v2) + 8(1i — D1) (2 + Vz)’/:s) A

)

(1.3.33)

- ( — 1205 (1 — 01)% + Bparva(ve — p2) + 8(P1 — fin) (u2 + V2)M3> 15v;3
+<<3V22(ﬁ1 — 1) +v3 (2 +V2)) (V%(—3ﬁ1M2 + 321 +p3) +r3(pove +2/~L§)>> fa

(<3u fi1—71 +M3(M2+V2)) (u§(3/71V2 —331V2+V3)+M3(M2V2+2V§)>) v4=0.
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PROOF. If ¢ and ¢ are of the form (1.3.18), then we have

) p—1 _ x) g1
(1.3.35) ®(z) = po Ja) pa— p_ U(z) =1p o) vy — e

By Corollary 1.3.2, we have (1.3.3), which is equivalent to (1.3.4). This equation
then yields

(1.3.36) (p— Vg + (g — 1wy = 0.
From (1.3.35) we obtain

1 p—1
(2) = —pp—L = " (z) = QgL
(1337) ($) H2 (SU _ 1’0)2’ (.’L’) M2 (l‘ _ $0)3
(m_xf)Q reduces to

Therefore, equation (1.3.9) multiplied by the expression il

Spipe +p3  3Uive + 3 p3 U3
- +{ g+ g Je(p—1) =0.
2 ) Ky V3

Here the coefficient of (p— 1) cannot be zero, otherwise both coefficients in (1.3.9)
are zero which contradicts condition (1.3.10). Solving (1.3.38) for p, we get the
first formula in (1.3.33). Using (1.3.36), the formula for ¢ also follows.

p—1)

(1.3.38) —<

Using (1.3.37) the equation (1.3.11) multiplied by the expression LZ?;E}? sim-
plifies to
Q(Gﬁ?uz4—4ﬁ1u34-u4__63%@—+4ﬁu@«+zq)
H2 V2
81z + 3pa 813 + 31y
(1.3.39) ——( 5 + 5 )uﬂp—l)
Ha Y3
pa—3p3 v —3U3N 2
+( - )u@—U =0.
" 2
Substituting the values of p in the equation (1.3.39) we obtain the condition
(1.3.34). O

THEOREM 1.3.8. Let i, v be a Borel probability measures with ji; + 1y = 1,
po = vo # 0, us = —vs, such that

(1.3.40) s # 3(% ~ ) a2

Assume also Cs. Then the invariance equation (1.3.1) is satisfied if and only if

(i) either there exist real constants a, b, c, d with ac # 0 such that
(1.3.41) o(x) =ar+b and Y(x)=cr+d (x €I
(ii) or there exist real constants a, b, c,d, p with acp # 0, such that
(1.3.42) o(x) =aeP* +b and  P(x) =ce P +d (x € 1)
and v is the reflection of p with respect to the point 1/2.
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PROOF. Assume first that (1.3.1) holds. Then, by Theorem 1.3.4 the function
® defined by (1.3.8) satisfies differential equations (1.3.9). In view of the condi-
tions of this theorem on the moments of the measures 1 and v, this differential
equation simplifies to

(3(2ﬁ1 — 1) + 2@)q> —0
12

which, in view of condition (1.3.40), yields that ®' = 0, i.e., ® is a constant.

If @ is identically zero then, following the argument of Case 1 of the proof of
Theorem 1.3.5, we obtain that ¢ and v are of the form (1.3.41). Conversely, if
(1.3.41) holds then one can easily see that (1.3.1) is satisfied.

If ® is a nonzero constant, then we can follow the argument of Case 2 of
the proof of Theorem 1.3.5 and obtain that ¢ and ¢ are of the form (1.3.16) and
condition (1.3.17) holds. Using Proposition 1.3.6, form formula (1.3.27), we get
that

Now, (1.3.28) reduces to the following condition:

(1.3.43) Z(—l)i (?) (Hig1Vn—i + pivni1-i) =0 (n €N).

=0

We show that these equalities imply that v is the reflection of i with respect to the
point % In view of Lemma 1.1.2, it suffices to show that, for all £ € N,

(1.3.44) ve = (=1)F .

These equalities hold true for £ = 1,2, 3 by the assumptions of this theorem.
Assume that (1.3.44) holds for k € {1,...,n}, where n > 3. Using (1.3.43) and
(1.3.44) for k € {1,...,n}, we obtain that

0= Z ( ) Mit1Vn—i + UiVnt1— z)
n
Z ( z> (Mn—i—l—iVi + Nn—iVi-H)
0

=

n
Z < ) ( fit1Vn—i + pivni1—i) + (=1)" (pnr1-ivi + 'unfiViJrl))
=0
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n—1

=) (-1) <7Z> ((—1)"_i (Mig1pim—i — pifins1—i)

=1

(=)™ (ptngr—ipti — /Lnfi,ui+1))

+

+ 2((M1Vn + povns1) + (=)™ (tns1v0 + MnVl))

=2(Vpg1 + (=1)" ttg1).
Therefore, (1.3.44) holds also for £k = n + 1.
Conversely, if (ii) holds then

Mo, y) + My, (2, y)

1 1
— ~1In (/ ep(tx+ (1-t)y
p 0

\_/

(/1 efp(t:r+(1*t)y)dy(t))

0

- lln (/1 eP(tz+(1-t)y ) (/1 efp((lft)wrty)du(t))
p 0 0

:1m</q¢mﬂlmumw) ]n@pwm/q§WHlmme>
p 0 0

L pltz+(1-t)) g
(g )

P e—PT—pY fol eP(tz+(1=0)y) (¢

E\H @M—‘@M—'

which proves that (1.3.1) is satisfied. U

THEOREM 1.3.9. Let p, v be a Borel probability measures with iy = U1 = %
o = o # 0, ug = —vs, g = vy4. Assume also C4. Then the invariance equation
(1.3.1) is satisfied if and only if one of the alternatives of Theorem 1.3.8 holds.

PROOF. Assume first that (1.3.1) holds. Then, by Theorem 1.3.4 the function
® defined by (1.3.8) satisfies differential equations (1.3.9) and (1.3.11). In view of
the conditions of this theorem on the moments of the measures x and v, these two
differential equations simplify to

(1.3.45) 23 — 0
2
and
(1.3.46) ey Lo 6—<I> ® =0,
2 Mz

respectively. If g # 0 then, by (1.3.45), we have that & = 0, hence ® is a
constant. If u3 = 0 then, by (1.3.46), the equality ®’'® = 0 follows. Hence
(@2), = 0, which implies that ®2 is a constant. By the continuity of ®, this yields
that @ is also a constant.

Now, following the argument of the proof of the previous theorem, the result
follows. O



1.3. THE INVARIANCE PROBLEM 49

In the next result we consider the particular case of Theorem 1.3.9 when y = v
is a symmetric measure.

COROLLARY 1.3.10. Let i be a Borel probability measure with po # 0 which
is symmetric with respect to the point 1/2. Assume also C4. Then the invariance
equation

(1.3.47) Mou(@,y) + My u(z,y) =z +y  (z,y €1)
is satisfied if and only if
(i) either there exist real constants a, b, c, d with ac # 0 such that
ox)=ax+b and  YP(z)=cr+d (x € I);
(ii) or there exist real constants a, b, ¢, d, p with acp # 0, such that
o(r) =ae’” +b and Y(x) =ce P*+d (x €1).

1.3.1. Examples and Applications. In the subsequent examples we demon-
strate how some known results of the literature follow from ours.

EXAMPLE 4. Consider the functional equation
(1.3.48)
_ x) + [ Y(x)+ Y
o 1<<P( ) sO(y))w 1< () +¢(y)

— I
5 5 > r+y (v,yel),

where ¢, : I — R are continuous strictly monotone functions.

If the measures . and v are choosen as,

0o+ 01

= =5

then (1.3.1) simplifies to (1.3.48). Observe that ¢ = v is a symmetric measure,
furthermore, o = vy = % # 0. Therefore, we can apply Corollary 1.3.10. If
C4 is assumed, then we get that one of the alternatives (i), (ii) of Corollary 1.3.10
holds and we deduce — under four times continuous differentiability assumptions
— the result formulated in the theorem by Dardczy—Pdles. This statement was
first proved by Sutd [71],[72] assuming analyticity and by Matkowski [57] who
supposed twice continuous differentiability. After some preliminary regularity im-
proving steps (cf. [22],[27]), the main goal of the paper [28] was to show that the
same conclusion can be obtained without any superflouos differentiability assump-
tions.

=V

EXAMPLE 5. Consider the functional equation

(1.3.49) o (@) + (1= Ney)) + ¢ (1= N(z) + () = 2+,

forall z,y € I, where ¢, : I — R are continuous strictly monotone functions
and A € [0,1]\ {0, 3,1}
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Defining the measures © and v by
w=(1—=X)dp+ o1 and v = A+ (1 —X\)dy,
we see that (1.3.49) is a particular case of (1.3.1). Then, v = i, furthermore,
=M\ 1vp=1—Aand
p2=v2 =A1-X)#0,  pz=-v3=A1-N(1-2\).

Observe that now (1.3.40) is satisfied because A ¢ {0, %, 1}. Therefore, we can
apply Theorem 1.3.8. If C3 is assumed, then, we obtain that one of the alternatives
(i), (i1) of Theorem 1.3.8 holds. The result so obtained has been discovered by
Jarczyk and Matkowski [44] and has recently been proved without any continuous

differentiability assumptions by Jarczyk [43].

EXAMPLE 6. Consider the functional equation

1 Y 1 Y
(1.3.50) 90_1(@/%/1, gp(t)dt) +¢—1<H/$ w(t)dt> e

forall z,y € I, x # y, where p,? : I — R are continuous strictly monotone
functions.

With an obvious substitution, (1.3.50) can be rewritten as
(1.3.51)

901</01g0(tx+ (1—t)y)dt> +¢1</01w(m+(1 —t)y)dt> =z+y,

forall z,y € I, x # y. If 4y and v are equal to the Lebesgue measure, then (1.3.51)
becomes a particular case of the invariance equation (1.3.1). Obviously, uy = visa
symmetric measure, furthermore, po = v = % = (. Therefore, we can apply the
Corollary 1.3.10. If C4 is assumed, then we obtain that one of the alternatives (i),
(ii) of Corollary 1.3.10 holds and we deduce the result of Matkowski [61] (with
stronger regularity assumptions).

EXAMPLE 7. Consider the functional equation

where ¢, : I — R are continuous strictly monotone functions.

The measures p and v are given by
60 + 251 4(50 + 4(51/2 —|— (51
=—5 and V= 9 .

Then, 1, = % and 7] = % and, for k£ € N, we have

AGHETES S
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and 1 k k k
2\k —4 4(—-1 4-2
Vk:/ (t—f) du(t):( )"+ 4 ]3 i .
0 3 9-6
Hence
_0 _ 2 _ 2 _ 2
M1 =U, H2 = 97 H3 = 277 Ha 277 y
0 1 1 1
v = Vg = — V3 = —— vy = —
1 ) 2 97 3 547 4 367

We can apply the Theorem 1.3.5. If C3 is assumed, then, one of the alternatives (i),
(i1), and (iii) of Theorem 1.3.5 holds.

If (i) holds then ¢ and 1) are nonconstant linear functions and, indeed, they are
solutions of (1.3.52).

If (ii) holds, then there exist constants a, b, ¢, d, p, ¢ with acpq(p — q) # 0 such
that (1.3.16) and (1.3.17) are satisfied for all n € N. In the case n = 1, (1.3.17)
simplifies to

g + pove) + p(pevo + pivi) =0,
which results ¢ = —2p. Instead of showing that (1.3.17) holds for all n > 2,
we prove that the functions ¢ and 1 given by (1.3.16) are solutions of (1.2.64).
Indeed,

o (290(56) + @(y)) Lyl (@D(x) + 49 () + 4¢(y)>

3 9
1 2eP* 4 ePY 1 eI 4 475" 4 4e¥
=-In({———|+-In
p 3 q 9
1 ! 2eP? + ePy 1 e 2% 4 e~ P(HY) 4 4o 2Py
() (T )

2P 4 ePY\ ¥ e P 4 2e7Py\ 2\ 7
() ()

1 1
2ePT 4 ePY \ p 2ePT 4 ePY \ »
— — PT+pyY _
=1In <e—lm mn 26—1’?/) =1In <e T 261996) =z+y.

If (iii) holds, then there exist real constants a,b,c,d,p,q with ac # 0,
(p—1)(¢g—1) <0, and zo ¢ I such that (1.3.18) and (1.3.20) hold. By Proposi-
tion 1.3.7, in order that solutions of (1.3.52) of this form exist, it is necessary that
(1.3.34) be valid. Substituting the values of the moments of x and v into (1.3.34),
we obtain a contradiction, which shows that there are no solutions of (1.3.52) of
the form (ii1).






CHAPTER 2

On the Lipschitz perturbation of monotone functions

2.1. An Auxiliary Result

Denote by R* the set R U {+oc}. Let Q be a non-void set and ) € P C 2%,
where 2 denotes the power set of 2. A function p : P — R* with x(0)) = 0 will
be called set function.

We define the relation < among two set functions p, v as follows:

n m
p=v ifandonlyif > u(A) <> w(B;)
i=1 Jj=1
for all systems of sets A1,..., Ay, B1,..., By € Pwith 331, 14, = >0 15,
where 1g stands for the characteristic function of a subset S C €.

Obviously (with n = m = 1, A} = By), it follows that y < v implies u < v,
but the converse is not necessarily true. It is also easy to see that < is transitive and
antisymmetric. However, this relation is not reflexive in general, therefore < is not
a partial order on the family of set functions. The relation ¢ < p has nontrivial
consequences. E.g., (by interchanging the roles of A; and B;), one gets that

D pu(A) =) u(By)
i-1 =1

for all systems of sets A1,..., A, Bi,...,Bpn € Pwith > " 14, = Z;”Zl 1p,;.
Taking pairwise disjoint sets A;,..., A4, € Pwith B =AU ---UA, € P, we
trivially have 2?21 14, = 1p, therefore

> u(Ai) = u(B).
=1

Hence p is additive on P.

In the sequel, the following theorem of Kindler [45] will play a crucial role.
This theorem characterizes the situation when two set functions can be separated
by a set function p with the property p =< p.

THEOREM l. [Kin88] Let o« : P — R* and 3 : P — R* be set functions. Then
there is a set function p : P — R* such that u =< pand o < p < 3 if and only if
a= 0.

In the proof of our main results we shall also need the next lemma.

53
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LEMMA 2.1.1. Let I be an interval of R, t; < s1,...,tn < 8y and u; <
V1, ..oy Um < Uy be real numbers in I such that

@2.1.1) D Utsd = O Ly
=1 i=1

be fulfilled. Then the following equality is true:

n
2.12) > (a(si) Z — q(w)).
i=1 i=1
PROOF. Lett| < 81,...,t, < Sp,u1 < U1,...,Un < Upy be real numbers in

I such that (2.1.1) is fulfilled. Let the set A be defined by

A:={t1,81,ytn, Sny UL, U1y« ooy Uy, U} =2 {wr, ..., wi}y
where wy < --- < wy. Then, for each interval Jw;, w;1] there exists a natural
number c; such that
n
Z Jti,sd Z Cj 1]1”] Wy
i=1

This number ¢; shows that how many times is the interval w;, w;1] contained in
one of the intervals ]t;, s;], that is, ¢; = tt{z' e {1,...,n}Jwj, wjt1] Clt, sl]}
(Here #S denotes the cardinality of the set S.) We intend to prove that

n k—1
Z (a(si) ZCJ q(wji1) — q(wy)).
i—1 =1
Indeed
(2.1.3)
> (alsi) —a(t) = (a(wjs1) = q(wy))
i=1 =1 Jw;,w;j1]CJts,s4]
k-1
ZZﬁ{ZE {1, n}wj, wia] Clti, sl } - (a(wj1) —q(wy)
e
=Y ¢i(q(wjs1) — qlwy)).
j=1

However due to (2.1.1), we have that

m m
Z Do) = Z ¢j 1]wj:wj+1}'
i=1 j=1
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We can similarly prove that

m

k-1
Z(CI( —q( Uz ZC] q(wj+1) Q(wj))'
J=1

i=1
This equation combined with (2.1.3) results that

n

> (alsi) —q(t) = (q(vi) — qlus)).
=1

=1 7
O
We can interpret the essence of the previous lemma that the left hand side of
(2.1.2) depends only on the sum of the corresponding characteristic functions (but

it is independent of its concrete form). Motivated by this, denote by (1) the class
of those functions that are of the following form

(2.1.4) F=Y Ysg = 2 Yuyuyls
i=1 j=1

where t1 < 81,...,tn < Sp, U1 < V1, ..., Uy < U, are in I. Then F(I) is closed
under the usual pointwise addition.

Given an arbitrary function ¢ : I — R, define now a functional J,(f) :
F(I) — Rby

n m

Jq(f):Z(Q(Sz _qtz Z _qu])

i=1 7j=1

where f is given by (2.1.4). If f is also represented in the form

m/
f= let' 1= )
7j=1
then

Z Lt s + Z Lt v = Z L) + D Lug 0)-
=1 j=1

By Lemma 2.1.1, we have
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that is,
Z (a(si) — a(t:)) - Z (q(vj) = q(uy)) =

(a(si) —a(t) = > (a(v)) — q(uf)),

1 1

(2

<.
Il

which shows that the value of J,( f) does not depend on the representation of f. It
also easily follows from the definition that J, is an additive function on F(1).

2.2. The case of general semimetrics

Let d : I? — I be a semimetric throughout the rest of the paper (i.e., d is a
nonnegative symmetric two variable function satisfying also the triangle inequa-
lity). A function ¢ : I — R is said to be d-Lipschitz if [{(z) — ((y)| < d(z,y)
for z,y € I. The notation ™ will stand for the positive part of x € R, i.e.,
" := max(0, z).

The next theorem contains our main result that gives the first characterization
for Lipschitz perturbations of increasing functions. The proof of the sufficiency
will directly utilize the theorem of Kindler quoted in the previous section.

THEOREM 2.2.1. A function p : I — R can be written in the formp = q + ¢,
where q is increasing and { is d-Lipschitz if and only if

2.2.1)
n m
+
D (p(si) — plti) — ditiys:)) " < (p(v) = pluy) + d(uy, v)))
i=1 j=1
is fulfilled for all real numbers t1 < S1,...,tn < spand u; < V1,..., Uy < Uy

in I satisfying (2.1.1).

PROOF. We prove first the necessity of the condition. When p = ¢ + ¢ and
x < y then ¢q(y) — ¢(z) > 0 since ¢ is monotone increasing furthermore ¢ is
d-Lipschitz, hence

q(y) — q(z) = p(y) — l(y) — p(z) + U(z) > p(y) — p(z) — d(z,y),

therefore

a(y) — a(z) > (p(y) — p(z) — d(z,))"

On the other hand,
q(y) — q(x) = p(y) — l(y) — p(z) + U(z) < p(y) — p(z) + d(z,y).
Thus, forall x < y in I,

(p(y) — p(x) — d(z,y)) " < aly) —alz) < p(y) — p(z) + d(z,y).
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Assume that (2.1.1) is fulfilled for ¢1 < s1,...,t, < Sp,u1 < V1y..., U < U
Then, using Lemma 2.1.1 and the above inequality, we get

> (p(si) — p(ts) — d(ts, s)) <Y (a(si) — alts))
i=1 i=1
= Z (Q(UJ) Q(UJ)) < Z (p(vj) p(“J) + d(“p”]))
= =1

Therefore (2.2.1) holds true.
Finally, we prove the sufficiency of the condition: Let P = {|x,y] | =,y €
I,z < y}, and define the set functions ®, ¥ : P — R by

+
o(Jz,y]) = (p(y) —p(z) —d(z, )", Y(=z,y]) =p(y) — plx) + d(z,y).
When, for t; < s1,...,tn < Sp,u1 < V1,...,Un < Up, equation (2.1.1) holds,
then, in view of (2.2.1), we have

ZQJ (Jts, si]) Si (Juj,v4])

Due to the theorem of Kmdler, there exists a set function I"' : P — R so that I
satisfiesI' < T"and ® < I' < W. Therefore I' is additive. Now let xo € I be fixed
and define the function ¢ : I — R by
U(Jzo,y])  if y > o,
q(y) =< 0 if x9=uy,
ff(]y,azo]) if y < zo.
We prove that T'(]z, y]) = q(y) — q() for # < y. In the proof we distinguish
the five cases:

Case 1: When 29 < = < y then q(y) = I'(Jzo,y]) and ¢(z) = T'(Jzo, 2]),
that is,

Q(y) - Q(x) = F(]:L‘o, y}) - F(]l‘O’:U])'
Since |z, y] =|xo, z]U]z, y| and I is additive, hence
I (Jzo,y]) = I'(Jzo, z]) + ' (Jz, y]).
Thus,

q(y) — a(z) =T (Jzo,2]) + L (Jz,y]) — T (Jzo, 2]) = (], 9]).
Case 2: When zg = = < y, then the statement is trivial.

Case 3: When z < g < y, then ¢(y) = I'(Jzo,y]) and ¢(z) = —T'(Jz, z0))
that is

q(y) — q(x) = T'(Jzo, y]) + T (Jz, o))
Since |z, xo)U]zo, y] =]z, y] and T is additive, hence

F(]x,xo]) —i—FGxo, ]) = F(]m,y])
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Thus,
q(y) — q(x) = T(Jz, y]).

Case 4: When = < y = x the statement is trivial.

Case 5: When z < y < zg then ¢(y) = —T'(]y, zo]) and q(z) = —I'(Jz, z0]),
that is

a(y) — a(z) = ~T(Jy, zo]) + T (Jz, z0)).-
Since |z, xo| =]z, y]U]y, xo] and T is additive, hence
T (Ja, wo]) = T(Jz,9]) + T (Jy, z0])-

Thus,

q(y) — q(x) = =T (Jy, xo]) + T (Jz,y]) + T (Jy, z0]) = (], y]).
Using the inequalities ® < T' < U we get

(p(y) — p(z) — d(z.y))" < aly) — qlz) < p(y) — p(z) + d(z,y),

for x < y. The left hand side inequality yields that 0 < ¢(y) — q(z), hence ¢ is
monotone increasing. It also follows that

p(y) — p(z) — d(z,y) < q(y) — q(z) < p(y) — p(z) + d(z,y),
hence,
—d(z,y) < (p— ) (y) — (p —a)(x) < d(z,y).
Thus ¢ := p — q is d-Lipschitz, that is, p has the desired decomposition p =
q+2. O

In what follows, we deduce an equivalent form of the condition offered by
Theorem 2.2.1.

LEMMA 2.2.2. Lett| < S1,...,tn < Spand up < v1,...,Up < Uy in 1
satisfying (2.1.1). Then (2.2.1) holds for a function p : I — R if and only if

(2.2.2) 0< Z min (d(t;, s:), p(si) — p(t:)) + Y _ d(u;,v5).
=1

PROOF. Using Lemma 2.1.1, we can see that (2.2.1) is equivalent to the in-
equality
n

S ((si) — plts) — dlti,s)) " < (p(si) — p(t) + > dlu;, v)),

i=1 i=1 j=1
which can be rewritten as

> (max (p(si) = plts) — dltis 1),0) = (p(s) — p(t)) ) < D dlujvy),
j=1

i=1
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that is, as
n m
> = min (d(ti, ), (p(si) = p(t:)) ) < 3 dlujvy).
i=1 j=1
This latter inequality is clearly equivalent to condition (2.2.2). (|

Using Lemma 2.2.2, we obtain another characterization of the decomposabi-
lity p = g + ¢. Here, instead of requiring (2.1.1) we need only inequality (2.2.4)
for the intervals |t1, s1], ..., |tn, sp] and Ju, v1], ..., Jum, Om).

THEOREM 2.2.3. A function p : I — R can be written in the formp = q + ¢,
where q is increasing and ¢ is d-Lipschitz if and only if

n m m n
223)  0<)) d(ti,si)+ Y d(uj,v;) +9, ( > Ly = > 1]ti,s1:])
i=1 j=1 j=1 i=1
for all real numbers t1 < s1,...,tn < Spand uyp < Vi,..., Uy, < Uy in [

satisfying

2.2.4) Z Lt s < Z 1]“]"”3'}‘
i—1 =1

PROOF. Assume that p is of the form ¢ 4+ ¢, where ¢ is increasing and ¢ is
d-Lipschitz. Lett; < s1,...,t, < spand uy < v1,...,Un, < Up, in I satisfying
(2.2.4). Then there exist t, 11 < Sp+1,--..,tNn < sy such that

N m
(2.2.5) D Utsd = D Yy
i=1 j=1

In view of Theorem 2.2.1, we have that

N

Y (p(sa) = plts) = dltiy )" <> (p(v;) = pluy) + d(uj, v)).

i—1 j=1
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Using Lemma 2.2.2, it follows from this inequality and from (2.2.5) that

0 < Zmln (ti, si),p(si) — p(ti)) —i—Zd(uj,vj)
=1
n N ’ m
< Y dtis)+ Y (plsi) —p(t) + D d(uy, v))
i=1 i=n+1 J=1
n N m
= Zd(ti,si)—l-i]p( Z 1]t¢,si]> —l—Zd(Uj,vj)
i=1 i=n+1 J=1

= Zd(tivSiHZd(“j’”ﬂ”( Yy 0;] = Zlm,sll)
i=1 j=1

||M3

which yields (2.2.3).

Conversely, assume that (2.2.3) holds for all ¢t; < s1,...,%, < s, and
Uy < V1, ..., Unm, < Up in I whenever (2.2.4) is satisfied. We intend to prove that
condition (2.2.1) of Theorem 2.2.1 is also fulfilled for all ¢t; < s1,...,t, < S,
and u; < v1,...,Um, < Uy in I satisfying (2.1.1). This, by Theorem 2.2.1, will
imply that p has a desired decomposition.

Lett; < s1,...,tp < Sp and uy < vi,...,Uyn < Uy in I with (2.1.1).
Denote by I" the set of those indices i € {1,...,n} such that

d(ti, si) < p(si) — p(ti).

Then, in view of (2.1.1), we have that

m
thl 84 SZ Jug,vs]

el

Thus, conditions (2.2.3) and (2.1.1) give

Ms

Vuj 0] = Z 1]%81?)

el

d(uj,vj) + 3p<z 1]ti,si]>

igl

uj,v] +Z

¢l

0<Zdtl,s Zd(uj,v])+f] (
j=1

el J

= " min (d(t;, si), p(s:) — p(ts)) +

™M: L

©
m
—
<
Il
—

Ms

= Z min (d(tu 5i),p(si) — p(ti )) +

~
m
—
<.
I
—
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= Z min (d(t;, s;), p(s:) — p(t:)) + Z d(uj,vj)
i€l 7j=1
+ > min (d(ti, s), p(si) — p(t:))
igT
= " min (d(t;, 5;), p(s:) — p(ts)) + Y d(u;,v5),
i=1 j=1
which yields (2.2.2). O

2.3. The case of concave semimetrics

In this section, provided that the semimetric d possesses further properties,
we are going to obtain simpler necessary and sufficient conditions in order that a
function p could be decomposed as ¢ + ¢ where ¢ is monotone increasing and /£ is
d-Lipschitz.

DEFINITION 2.3.1. A system of intervals {]a;, b;] : i = 1,...,k} is said to be
nested if, for all i, j € {1,...,k},
either [ai, bl] N [aj, bj] =0 or }ai, bl] C]aj, bj} or ]aj, bj] C]ai, bz]

DEFINITION 2.3.2. A semimetric d : I x I — R is called concave if, for all
x <y <z <win I, it satisfies

2.3.1) d(z,w) +d(y, z) < d(z,z) + d(y,w).

Observe that, with y = z, (2.3.1) reduces to the triangle inequality. The reason
why semimetrics satisfying (2.3.1) are called concave is explained by the following
result.

LEMMA 2.3.3. Let ¢ : (Ry-N(I—1)) — R be a monotone increasing function
with ¢(0) = 0. Then the function d, : I x I — R defined by

(2.3.2) do(z,y) = ¢(|lz —yl)
is a concave semimetric on I if and only o is concave on (R+ N{I—-1 ))

PROOF. Assume that d,, is a concave semimetric on /. Then, it follows from
(2.3.1) that

(2.3.3) pw—m)+ 9z —y) <p(z—z) +pw—y)

forallz <y <z<winl. Leta, € Ry N(I—1)with 0 < o < (3 be arbitrary.
Then there exist x < w in [ such that 8 = w — x. Let

y::w—a+ﬁ and z::x+a;ﬂ.
Then, one can see that z < y < z < w holds. Thus, by (2.3.3), it follows that

P(B) + () < 2@(0%5)



62 CHAPTER 2. PERTURBATION OF MONOTONE FUNCTIONS

forall o, € Ry N (I — 1) with 0 < a < . Thus, ¢ is Jensen-concave on
Ryn(I-1).

Assume that ¢ is concave on (R+ nNI-1I )) Obviously, the function d, is
symmetric, nonnegative and d,,(z, ) = 0. In order to prove (2.3.1), letz <y <
z < win I be arbitrary. If z = y or z = w then (2.3.1) is obvious. Thus, we may
assume that x < yand z < w. Denote o =y — 2z, =2z —y,and 7y = w — z.
Then a, vy > 0,

v o}
a+p= + a+p+7v),
b a—i—’yﬁ oz—l—’y( f+7)

and

o} v
+v= + a+p+7).
Aty a—I—’yﬁ a—l—’y( )

Since ¢ is concave, we get that

platf) > o)+ pla+f+9),

and

¥
o(B+7) > a+,y<p(ﬁ) + mw(a+ﬁ+v)-

Adding these inequalities, it follows that

pla+B)+p(B+7) = eB) +pla+B+7).

which is equivalent to (2.3.3) and also to (2.3.1). This property yields that d
satisfies the triangle inequality, too. Thus d,, is concave semimetric. U

REMARK. If 0 < p < 1 then ¢(t) := P is a concave function. Thus, if
O<pr <---<pg<landcy,...,c > 0,then the formula

k

d($7y)zzci‘x_y‘pi (1'72/6[)
=1

yields a concave metric on I. This way, a large class of concave metrics can be
obtained.

The next lemma describes a connection of concave semimetrics and nested
systems of intervals.

LEMMA 2.3.4. If d is a concave semimetric and u1 < v1,..., Uy < Up, are
in I, then there exist a nested system of intervals {|a;,b;] : i = 1,...,k} such that
m k
(2.3.4) D> Ly = D Lagbi)
j=1 i=1
k m
(2.3.5) > d(ai,bi) <Y d(ug,vp)
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and
(2.3.6) {al, ey ap, by, bk} C {ul, ey U, V1, .- ,vm}.

PROOF. If the system of intervals {Ju;,v;] : j = 1,...,m} is nested, then
there is nothing to prove. If this is not the case, then there exist [,n € {1,...,m}
such that
(2.3.7)

[Ul’ Ul] N [Una Un] 7é @7 ]Uh Ul] g}un) Un] and ]una Un] ,@]Ul, Ul]-

Due to the symmetry, we may assume that u; < u,,. Then, it follows from (2.3.7)
that u; < uy, < v; < v,. Obviously,

o) + Nuwonl = Dwon] Ll
therefore, using that d is a concave semimetric, we get that
d(ug, vn) + d(un, v;) < d(ug,vy) + d(tn, vy).

Then, replacing Ju;,v;] and |u,,vy] of the system of intervals {]u;,v;] : j =
1,...,m} by Ju, v,] and by (the possibly empty) uy,, v;], the sum of the charac-
teristic functions of the intervals remains unchanged, the sum of the d-length of
these intervals does not increase and the set of endpoints does not increase as well.
Observe that, due to the strict inequalities u; < u,, and v; < vn,
(vn — w)* + (v — un)® > (v — un)® + (0 — wy)?

holds. Therefore, by the above replacement, the sum of the squares of the (ordi-
nary) length of the intervals strictly increases.

When repeating the above replacement step, we cannot return to a previous
system of intervals because the sum of the squares of the lengths strictly increases.
There are only finitely many systems of intervals with the same sum of the corres-
ponding characteristic functions such that the set of endpoints of the intervals is
included in {u1, ..., Upm,v1,. .., Un}, therefore, there are only finitely many rep-
lacement steps and in each step the sum of the d-length of the intervals does not

increase. When the procedure terminates, the resulting system of intervals has to
be nested. O

The main result of this section is contained in the following theorem which
characterizes the decomposability p = ¢ + £ in case of concave semimetrics. The
sufficient and necessary condition of Theorem 2.2.3 dramatically simplifies in this
setting.

THEOREM 2.3.5. A function p : I — R can be written in the formp = q + ¢,
where q is increasing and ¢ is d-Lipschitz if and only if

238 0< Z d(zok—1,T2r) + d(T0, T2ns1) + Z (p(z2r41) — p(z21))
k=1 k=0

holds forall o < x1 < -+ < ®op < Top41 in 1.
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PROOF. The necessity of the condition (2.3.8). If p : I — R can be written
in the form p = ¢ + ¢, where ¢ is increasing and ¢ is d-Lipschitz, then in view
of Theorem 2.2.3, inequality (2.2.3) holds whenever t; < s1,...,t; < Sp,u; <
V1, .-, Un < Up in [ satisfies (2.2.4).

Letzg < 21 < -+ < T9p < Xop41 1In [ be arbitrary. Then (2.2.3) applied to
the system of intervals

1tk, sk] ==]won—1, 2k] (k=1,...,n), Jur, v1] ==]xo, T2n+2),

yields
Zd(xzk—l,ﬂﬁ%) + d(zo, Tan+1) + Z (p(z2k41) — plx2r)) >0
k=1 k=0

because
n

Jp (1}9007902714—1] o Z 1}9021@—1,@1@]) = jP( 1}$2k+1,x2k])
k=1 k=0

- Z (p(332k+1) - p(x%))‘

k=0
The sufficiency of the condition (2.3.8). Again by Theorem 2.2.3 it is enough
to show that (2.2.3) holds for all t1 < s1,...,t, < spand u; < v1,...,Um < Um
in [ satisfying (2.2.4). In view of Lemma 2.2.2, we may assume that the systems
of intervals
8 :={Jti,ss) :i=1,...,n} and Vi={luj,v;]: j=1,...,m}

are nested. We prove by induction on m.

If m = 1 then (2.2.4) shows that the intervals |¢;, s;] are disjoint subintervals
of Jui,v1]. Without loss of generality, we may assume that ug <1 < 53 < -+ <
tn < sp < 1. Set

xo 1= U1, X1 =11, T2 1= S1, .., T2p—1 1= tp, Top = Sp, Tapt1 1= V1.

The right hand side of (2.2.3) can be written as

> dltisi) + ) d(uj,vy) + Jp( Yugogl = D 11t1-,sz~1>
i=1 Jj=1 J=1 =1

= Z d(ti7 32’) + d(ul? Ul) + jp (1]U1,v1} - Z 1]ti75i]>
=1

i=1

m

n n—1
= Z d(ti, s;) + d(uy,vr) +7p (1]u1,t1] + Z Ysitivn) T 1]sn,v1})
i1 i1

= Z d(w2i-1,22i) + d(x0, Tant1) + Z (p(x2i11) — p(x2:)),
=1 1=0
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which is nonnegative by (2.3.8).

Now assume that we have proved the condition of Theorem 2.2.3 in the case
when m = k — 1 where k > 2. We shall prove that this condition is also true in
the case m = k.

Lett1 < s1,...,tn < Sp,u1 < V1,...,Uy < Uy are arbitrary elements
in I with (2.2.4). Let jo be an index so that the interval Ju;,, vj,] is maximal in
the system V. Furthermore let I'j, be a subset of {1,...,n} so that the system
Tj, = {lti, si] : i € T'j, } is a maximal disjoint subsystem of 8 such that ]¢;, s;] C
]Ujo,vjo] for all ¢ € Fjo‘

The intervals in T, are pairwise disjoint and are contained in |u;,, v;, ], there-

fore we get
2 tesd < Hugguagg)-
iGF]'O

What we have proved for the case m = 1 yields that

(2.3.9) 0< Z d(tia Si) + d(ujov Ujo) + Jp(l]Ujo,UjO] - Z ]‘]ti,Si])'

i€ly, i€ljo

Now we show that the inequality

(2.3.10) D Y < D Yy

Z'¢Fj0 .]76.70

is fulfilled, too. We prove this statement by contradiction. Assume that there exists

x € I such that
Z 1}ti,si} (:C) > Z 1]u]-,vj}(x)'
Z‘¢FJ'O J#do

Then, we also have that

Z ]uj,vj] > Z 1]tl,sl] Z Jti,8:] (:E) > Z 1]uj,vj](:l:)'

Ty, J#go

It follows from these inequalities that z €]u;,,vj,]. The left hand side is bigger
than the right hand side by one, therefore, the first two inequalities in the above
chain are equalities, in fact. Thus, x ¢]t;,s;] if ¢ € I'j;. On the other hand,
due to the strict inequality above, there exists ig ¢ I'j, such that x €]t;, s;,]
and the interval |¢;,, s;,] is maximal in 8. The maximal intervals in V cover the
interval |¢;,, si,]. These maximal intervals are nested and thus pairwise disjoint,
therefore one of them covers also the interval |¢;,, s;,]. Being = a common element
of ¢y, sip] and Jujy, vj,], we get that Ju;,, vj,] covers ]¢;,, s;,]. We also have that
Itio, SiolN)ts, si] # 0 if i € T'j, because the system of intervals 8 is nested. Thus
|tio, Sio] is @ maximal subinterval of Ju;,, vj,] which is disjoint from ]¢;, s;] for all
¢ € I'j,. This contradicts the construction of I';,. This contradiction validates
(2.3.10).
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By the inductive assumption, it follows from (2.3.10) that

@aany 0= D0 dltis) + 30 dlwyv) +95( 3 sy = D s
i¢ly, J#jo J#jo Ty,

Then, using the additivity of J,, and the inequalities (2.3.9), (2.3.11), we get

Z d(tm Si) + Z d(“/], Uj) + jp ( Z 1}Uj7vj] - Z 1}%,81‘})
=1 j=1 j=1 i=1
= Z d(ti, si) + d(ujovvjo) +Jp (1]uj0 Wigl T Z 1]151',81'])

i€ly, i€ly,
3 dltis) + D) 4 Tp( DT = D L) 2 0.

i¢Tj, J#do J#jo i#Ljq
Thus, the proof of the theorem is complete. O

In the case of when the semimetric coincides with the ordinary distance func-
tion, the condition (2.3.8) simplifies to a two variable inequality only.

THEOREM 2.3.6. If the metric d is given by d(z,y) = |y — | (x,y € I), then
the condition (2.3.8) holds for all xy < x1 < -+ < X2, < Xop+1 in I if and only

7 <
(23.12) p(z) < py) + d(z,y)
forallz < yinI.

PROOF. The necessity of the condition (2.3.12). When the condition (2.3.8)
holds for all zp < z1 < -+ < X2, < Xan41 in I then the condition (2.3.12) is
fulfilled trivially.

The sufficiency of the condition (2.3.12). We use that, for x < yin I, p(z) <
p(y) + d(z,y) and d(z,y) = y — x, that is,

r—y < p(y) —plx).

Thus
> d(wo—1, war)+d(wo, vani1) + Y (P(x2k11) — plaar))
k=1 k=0

=d(x1,x2) + d(x3,24) + - - - + d(T2n—1, T2n) + d(x0, T2n)
+p(z1) — p(x0) + - - + P(T2n+1) — P(720)

2T — X1 +Tg4 — X3+ -+ Top — Top—1 + Tapy1 — Xo
+2x0—x1+T2— T3+ -+ Top — Toptl

=2(z2 — r1) + 2(74 — 23) + - - + 2(T20 — T20-1)

>0,

which was to be proved. O



Summary

1. A. On the equality for two variable means

One of the aims of the dissertation is to investigate the equality and invariance
problem of generalized quasi-arithmetic means. We define the generalized quasi-
arithmetic mean as follows.

DEFINITION. Given a continuous strictly monotone function ¢ : I — R
and a probability measure y on the Borel subsets of [0, 1], the two variable mean
Mo, 0 I? — 1 is defined by

Meslo) = ([ olio+ (- 0)au@) Gy e

_50+51

If
at the point ¢ € [0, 1]. If ;1 = Lebesgue measure on [0, 1], then M, , = L.

In the first part of the first chapter contains the basic notations and lemmas,
which we need to present our results.

Given a Borel probability measure p on the interval [0, 1], we define the kth
moment and the kth centralized moment of 1 by

1 1
o= [ dat) and = [¢-a)'aue)  (keNU{0))
0 0
The reflection of the measure ;. with respect to the point 1/2 is defined by
A(A) = p(A),

where A is an arbitrary Borel subset of [0, 1] and A :=1— A := {1 —z | z € A}.

To formulate the main results of this chapter, we consider the cases when the
first n moments of the measures p and v in the equality problem are identical. For
n € NU{0, co}, we say that the nth-order moment condition My, holds if i, v are
Borel probability measures on [0, 1], furthermore,

pmr =1, forall 1<k<n.

, then M, ,, = M, where 0, 1s the Dirac measure concentrated

Thus the M, condition means that all the moments of ;1 and v are equal, whence,
by well-known results of measure and approximation theory, the equality of the
two measure p and v follows. On the other hand, the condition My simply means
that 41, v are probability measures on the Borel subsets of [0, 1]. For n € NU {0},

67
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we say that the exact nth-order moment condition N, holds if M, is valid but
My, 41 fails, ie.,

=10, forall 1<k<n and n+1 7 Uptl

In order to describe the various regularity conditions on the two unknown func-
tions ¢ and 1, for € N U {oc}, we say that the nth-order regularity condition C,,
holds if p,1) : I — R are n-times continuously differentiable functions with non-
vanishing first-order derivatives. For convenience, we also say that Cy holds if
©, % : I — R are just continuous strictly monotone functions.

In our first result, we compute the first partial derivatives of the mean M, , at
a point of the diagonal of I x I under a weak regularity assumption.

LEMMA. Let i be a Borel probability measure, let ¢ : I — R be a continuous
strictly monotone function and assume that  is differentiable at a point p € I and
¢'(p) # 0. Then My, ,u(p, p) = fi.

In the second part of the first chapter we characterize those pairs (¢, i) and
(1, v) such that

Msﬂ,,u(xay) :Mlb,u(x?y) (.’L',yGI)
holds.

In the following result we obtain the first necessary condition for the equality
of the generalized quasi-arithmetic means. This shows that, under weak regularity
assumptions, there is no solution of the equality problem if the exact moment
condition Mg holds.

COROLLARY. Assume Cy and My. Suppose that there exists a point p € 1
such that ¢ and 1) are differentiable at p and ¢'(p)y'(p) # 0. Then, in order that
M% w= Md,yy be valid, it is necessary that

p = v,
i.e., My be satisfied.

In our next result, assuming C;, we obtain a characterization of the equality
problem that does not involve the inverses of the unknown functions ¢ and .

THEOREM. Assume C1 and My. Then My, ,, = My, , holds for all x,y € I if
and only if

1 pl
/ / (t—s)¢ (tz+ (1 — t)y) ¢’ (sz + (1 — s)y)du(t)dv(s) = 0.
0 Jo
Assuming C,,+1, we now deduce further conditions that are necessary for the
equality problem.

THEOREM. Assume C,41 for some n € N and My. Then, in order that
My, = MW, be valid, it is necessary that

(i+1)  (n+1-i)

=0
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Conversely, if @, 1 are analytic functions and (1) holds for alln € N, then M, ,, =
My, is satisfied.

In this section we solve the equality problem, if the two measures p and v
coincide.

THEOREM. Assume Co and Meo. Then My, ,, = My, ,, holds if and only if
(i) either u = v = §, for some T € [0, 1] and ¢, 1) are arbitrary,
(ii) or u = v is not a Dirac measure and there exist constants a # 0 and b such
that
Y = ap +b.

If at least the first two moments of the measures p and v are the same but the
measures are not identical. The investigation of this case requires twice continuous
differentiability of the unknown functions ¢ and .

THEOREM. Assume Co and M, for some 2 < n < oco. Then My, = My,
holds if and only if there exist constants a # 0 and b such that

Yv=ap+b
and @ is a polynomial with deg p < n.

In the investigation of this case we consider two subcases according as povy =
0, respectively povs # 0.

THEOREM. Assume Cy and M7 with pove = 0. Then My, , = My, ,, holds if
and only if

(i) either p and 1) are arbitrary, v = 6y, and there exist constants a # 0 and b
such that
o(z)=ax+b (x €I).
(ii) or v and ¢ are arbitrary, |1 = d3,, and there exist constants ¢ # 0 and d such
that
Y(x) =cx+d (xel).

In the following result we derive further necessary conditions for the equality
problem.

THEOREM. Assume Co and My with psvo # 0 and assume that My, ,, = My, ,,
holds. Then

1 /!

o
- =

w2
(8 @
If C3 is valid then the function ® : I — R introduced above satisfies the differential

equation
(-2 )er s (2 - % )a o
M2 V2 SR D)

9]
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If C4 is also valid, then v and 1) are analytic functions and ® satisfies the differen-
tial equations

3 3 — 32 — 3v3
(M_W>@+<@ﬁ_?»wq(mJ@_m3%>@20
p2 V2 Ky oV P2 V2

If My holds then the three coefficients in this equation do not vanish simultane-
ously.

In the main result of this part, we obtain a necessary and sufficient condition
for the equality problem under the additional assumption that & satisfies a first-
order polynomial differential equation.

THEOREM. Assume Cs and My with usvs # 0. Suppose that ugw—,,/ =

P
Mg% =: ® holds and that there exists integer numbers 0 < 2n < k and a cons-
tant vector (co, . .., cn) 7# (0,...,0) such that the function ® : I — R satisfies

the following first-order polynomial differential equation

n A )
D @ (@) = 0.
=0

Then My, ,, = My, ,, holds if and only if
(i) either there exist real constants a, b, ¢, d with ac # 0 such that

SO(x) =ar+b and 1/)(;1;) —cxr+d (:E e I);

(ii) or there exist real constants a,b, c,d, p,q with ac(p — q) # 0, pqg > 0 such

that
() = ae’” +b and P(x) = ce? +d (x€1)
and, forn € N
n
N i n—i
Z <Z>p q (/LiJernfi - ,Uz'Vn+1fi) = 0;
i=0

(iii) or there exist real constants a, b, ¢, d, p, g with ac(p—q) # 0, (p—1)(¢—1) >
0 and xo & I such that, for x € 1

alr — xo|P + b, ifp#0
p(z) = o
aln|x —xo|+0b, ifp=0,

oz —wolt+d, ifg#0
P(z) = o
cln|x — x| +d, ifq=0
and, forn € N

"N (p—1\[q—1
Z (p ; ) (;]l _ Z> (it1Vn—i — pivns1-i) = 0.

1=0
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By solving of the following examples we apply our main result.

EXAMPLE. Consider the functional equation
(Y +e(PF) | (9e) + 160 (*5Y) + ¢(y)
@ 2 =V 13 ;

where ¢, 1 : I — R are continuous strictly monotone functions.

If C4 is assumed, the generating functions ¢, ¢ : I — R satisfy this functional
equation if and only if there exist constants a # 0 and b such that ¢ = ap + b and
( is an arbitrary strictly monotone polynomial with deg ¢ < 3.

It remains an open problem to find the solutions of this functional equation
under the regularity assumption Cg only.

EXAMPLE. Consider the functional equation
9 1
0

where ¢, 1) : I — R are continuous strictly monotone functions.

If C3 is assumed, the generating functions ¢, ¢ : I — R satisfy this functional
equation if and only if there exist real constants a, b, ¢, d with ac # 0 such that
(i) either p(x) = ax + b and ¥ (x) = cx + d, i.e., they are affine functions,
(i) or p(r) = alnz +band (z) = cx 3 + d.
EXAMPLE. Consider the functional equation
L 20(@) +o(y)\ _ o (A(@) + 49 () + ()
90 3 - QIZ) 9 9

where ,1) : I — R are continuous strictly monotone functions.

If C3 is assumed, the generating functions ¢, ¢ : I — R satisfy this functional
equation if and only if

(i) either there exist real constants a, b, ¢, d with ac # 0 such that p(x) = ax+b
and ¢(z) = cz + d, i.e., they are affine functions,
(ii) or there exist real constants a, b, ¢, d, p with acp # 0 such that p(z) = aeP* +
band ¢ (x) = ce?* + d.
1. B. The invariance problem for two variable means

In the third part of the first chapter of the dissertation we characterize the
continuous strictly monotone functions ¢, ¥ and Borel probability measures p, v
such that

M@,H(xvy)_‘_mw,l/(xay) =T+Yy (.%',yEI)

holds.
The first result present a necessary condition of first-order.



72 SUMMARY

COROLLARY. Let p and v be a Borel probability measures. Assume Cy. Sup-
pose that there exists a point p € I such that ¢ and 1 are differentiable at p
and ' (p)Y'(p) # 0. Then, in order that the invariance equation be valid, it is
necessary that

w+ v =1

In the solution of the invariance equation, we consider two subcases according
as uavy = 0, respectively pavs # 0.

THEOREM. Let p and v be a Borel probability measures with psve = 0.
Assume Co. Then the invariance equation holds if and only if

(i) either p = d;, v = §1_ for some T € [0, 1] and p, 1) are arbitrary,
(ii) or u = 0 for some T € [0,1], vo # 0, V1 = 1 — 7, @ is arbitrary and there
exist constants a # 0 and b such that

Y(x) =ax+b (x el),

(iii) or v = 01—, for some T € [0,1], uo # 0, 1 = 7,  is arbitrary and there
exist constants a # 0 and b such that

o(z)=ax+b (x el).

Our first main result in this part offers a necessary condition for the validity of
the invariance equation in terms of two differential equations for the second-order
partial derivative 9?M,, ,, of the mean M, ,,.

THEOREM. Let u and v be a Borel probability measures with usve # 0 and

assume that the invariance equation is satisfied. If C3 holds then the function
® : I — R defined by

®(x) = M, (. 2)

satisfies the differential equation

30 3v
< Hip2 +ps V1V2+V3)@/+<M3+V§>q)2:0

2 19 2 1)
and if
31 —11), 5
3,3 —HMao, V3 ),
(1 ) # 12 + v (—p3,v3)

then the coefficients in this equation do not vanish simultaneously.
If, in addition, C4 holds then ® also satisfies the differential equation

(6/7%/& +Apps +pa 602vy + 4D1v3 + V4>q>//

M2 1)
8fi1p3 + 3 8v1v3 + 3v. —3u2 vy — 302
+( M1M32 ,u4+ 1 32 4><I><I>’+<M4 3#2_ 4 . 2)(1)3:0_
125 vy o vy
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By our second main result, under three times continuous differentiability as-
sumptions and certain non-degeneracy conditions on the second and third centra-
lized moments of the two measures, the solutions of the invariance equation fall
into three different classes. The unknown generator functions ¢ and 1) are either
linear, or exponential or power functions.

THEOREM. Let i and v be a Borel probability measures with pove # 0 and

(us,v3) # %(—u%, v3). Assume also C3. Then the invariance equation

holds if and only if iy + 17 = 1 and
(i) either there exist real constants a, b, c, d with ac # 0 such that

o(z)=axr+b and Y(z)=cr+d (x €I);
(ii) or there exist real constants a, b, c,d, p, q with ac # 0, pq < 0 such that
o(x)=ae? +b  and  P(x)=cet +d (x €1)
and, forn € N
n n . .
> (Z.)pzqnl (Hit1Vn—i + pivni1—i) = 0;
i=0

(iii) or there exist real constants a,b,c,d,p,q with ac # 0, (p —1)(¢ — 1) < 0,
and xy & I such that, for x € 1,

alr —zo[P +b, ifp#0
p(z) = :
aln|x —xzo| +0b, ifp=0,

o —molt+d,  ifq£0
P(x) = L
cln|x — x| +d, ifqg=0

and, with the notation

(i +epaun)’. o0

Fpu(z) = 1 ]
exp (fo In(1+ tz)d,u(t)), ifp=0 (z > —1),
the identity
Fouz)+Fgu(z)=2+2 (z>-1)
holds.

THEOREM G. Let i, v be a Borel probability measures with iy + 17 = 1,
o = vo # 0, us = —vs, such that

s #3(5 — o

Assume also Cs. Then the invariance equation is satisfied if and only if
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(i) either there exist real constants a, b, ¢, d with ac # 0 such that
o(r)=axr+b and Y(z)=cr+d (x € I);
(ii) or there exist real constants a, b, ¢, d, p with acp # 0, such that
o(x) =ae’* +b and Y(x) =ce P 4+ d (x eI
and v is the reflection of p with respect to the point 1/2.

THEOREM. Let i, v be a Borel probability measures with j1y = V) = %,
po = vy # 0, u3 = —vs, g = v4. Assume also C4. Then the invariance equation
is satisfied if and only if one of the alternatives of Theorem G holds.

In the next result we consider the particular case of the previous theorem when
[ = v is a symmetric measure.

COROLLARY. Let i be a Borel probability measure with o # 0 which is
symmetric with respect to the point 1/2. Assume also C4. Then the invariance
equation

MS@»H(xay)—l_Ml/),u(xay) :33+y (CB,yGI)
is satisfied if and only if
(i) either there exist real constants a, b, c, d with ac # 0 such that
o(r)=axr+b and Y(z) =cr+d (x € I);
(ii) or there exist real constants a, b, ¢, d, p with acp # 0, such that
o(r) =ae’” +b and P(x) =ce P +d (z el).

In the subsequent examples we demonstrate how some known results of the
literature follow from ours.

EXAMPLE. Consider the functional equation

o (B o (MO

where ¢, ¢ : I — R are continuous strictly monotone functions and z,y € I.

If G4 is assumed, the generating functions ¢ and v satisfy this functional equa-
tion if and only if

(i) either there exist real constants a, b, ¢, d with ac # 0 such that p(x) = ax+b
and (z) = cx+d (z € I);

(ii) or there exist real constants a,b,c,d,p with acp # 0, such that p(z) =
aeP” +band (x) =ce P* +d (x € I).

This statement was first proved by Sutd [71], [72] assuming analyticity and
by Matkowski [S57] who supposed twice continuous differentiability. After some
preliminary regularity improving steps [22], [27], the main goal of the paper [28]
was to show that the same conclusion can be obtained without any superflouos
differentiability assumptions.
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EXAMPLE. Consider the functional equation
P (Ap(2) + (1= Ne) + 971 (1= No(e) + Mb(y) =z +y,

where ¢, : I — R are continuous strictly monotone functions, A € [0, 1] \
{O,%,l} and z,y € I.
If C3 is assumed, the generating functions ¢ and v satisfy this functional equa-
tion if and only if
(i) either there exist real constants a, b, ¢, d with ac # 0 such that

o) =axr+b and Y(z)=cr+d (x €l);
(ii) or there exist real constants a, b, ¢, d, p with acp # 0, such that
o(x) =aeP* +b and Y(z) =ce P +d (x €I).
and v is the reflection of p with respect to the point 1/2.

The result so obtained has been discovered by Jarczyk and Matkowski [44]
and has recently been proved without any continuous differentiability assumptions
by Jarczyk [43].

EXAMPLE. Consider the functional equation

(s [owa) +o (s [Tewa) =+,

where ¢, : I — R are continuous strictly monotone functions and z,y € I, x #
Y.

If C4 is assumed, the generating functions ¢ and v satisfy this functional equa-
tion if and only if

(i) either there exist real constants a, b, ¢, d with ac # 0 such that p(x) = ax+b
and Y(z) =cr+d (z € I);
(ii) or there exist real constants a,b,c,d,p with acp # 0, such that p(z) =
aeP” +band (x) =ce P* +d (x € I).
This result has been discovered with stronger regularity assumptions by
Matkowski [61].

EXAMPLE. Consider the functional equation

() (M 0

3 9
where ,1) : I — R are continuous strictly monotone functions and z,y € 1.
If C3 is assumed, the generating functions ¢ and % satisfy this functional equa-
tion if and only if

(i) either there exist real constants a, b, ¢, d with ac # 0 such that p(x) = ax+b
and ¢(z) = cz +d,
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(ii) or there exist real constants a, b, ¢, d, p with acp # 0 such that p(z) = aeP*+
band ¢ (x) = ce” 2P +d.
2. Lipschitz perturbation of monotone functions

In the second chapter of the dissertation we investigate when a function p :
I — R can be decomposed in the form p = ¢ + ¢, where q is increasing and ¢ is
d-Lipschitz function.

The stability theory of functional inequalities started with the paper of Hyers
and Ulam [42] (cf. also [38]). They discovered that the so-called J-convex func-
tions can be decomposed as the sum of a convex and a bounded function if the
underlying space is of finite dimension. A more general form of this stability theo-
rem has recently been obtained in [69], where the stability of convex functions was
investigated under Lipschitz perturbations. A useful auxiliary concept introduced
in [69] was the notion of e-monotonicity which leaded to the stability properties of
monotonic functions. A function p : I — R is called e-increasing if

p(x) <py) +e

holds for all z < y. It turned out in [69] that e-increasing functions are closely
related to increasing functions, more precisely, p is e-increasing if and only if
p = q + h, where ¢ is an increasing function and h is a bounded function with
[Ihl] < /2.

Motivated by the above theorem, we investigate when a function p can be
written in the form p = ¢ + ¢, where q is increasing and ¢ is d-Lipschitz (i.e., it
satisfies

[U(z) — L(y)| < d(z,y)
for x,y € I.) Here d : I> — R is assumed to be a semimetric on I. Our main

results offer necessary and sufficient conditions for the above decomposability in
the cases of general semimetrics and concave semimetrics.

LEMMA. Let I be an interval of R, t;1 < s1,...,tp, < sp and u; <
Vly - e ey Um < U be real numbers in I such that

n m
Z Lt s, = Z Ly 4]
i=1 i=1

be fulfilled. Then the following equality is true:

D (alsi) = a(ti) = 3 (alw) — a(w)).

Let d : I — I be a semimetric throughout the rest of the paper (i.e., d is a
nonnegative symmetric two variable function satisfying also the triangle inequal-
ity). A function ¢ : I — R is said to be d-Lipschitz if |[{(x) — {(y)| < d(z,y)
for x,y € I. The notation % will stand for the positive part of z € R, i.e.,
T = max(0, z).



77

The next theorem contains our main result that gives the first characterization
for Lipschitz perturbations of increasing functions. The proof of the sufficiency
will directly utilize the theorem of Kindler quoted in the previous section.

THEOREM. A functionp : I — R can be written in the form p = q + £, where
q is increasing and { is d-Lipschitz if and only if
n m
+
Z (p(si) —p(t;) —d(ti,si)) " < Z (p(v)) — p(uy) + d(uj, v;))
i=1 j=1
is fulfilled for all real numbers t1 < S1,...,tn < Spand uy < V1, ..., Uy < Uy
in I satisfying > i1 11, 5] = D1 Lus,vi)-

Using this lemma, we obtain another characterization of the decomposability
p=q+L.

LEMMA. Lett] < s1,...,tn < spanduy < vi,..., Uy < Uy in I satisfying
Z?:l 1]ti75i] = Z?ll 1]ui7vi]' Then
n m
S (plsi) = p(t) — d(ti,s)) " <3 (p(v)) = plug) + dlug, v7)
i=1 j=1

holds for a function p : I — R if and only if

m

0< Z min (d(t;, s;), p(s;) — p(t;)) + Z d(uj,vj).
i=1

J=1

Denote by F(I) the class of those functions that are of the following form

@) F= Yesd = 2wyl
i=1 Jj=1

where t] < S1,...,tn < Sp, U] < Vl,..., Uy < Uy arein I. Then F(I) is closed
under the usual pointwise addition.

Given an arbitrary function ¢ : I — R, define now a functional J,(f) :
F(I) — Rby

n
To(f) = (alsi) —qlt) = (alvs) — q(uy)),
i=1 j=1

where f is given by (2).

THEOREM. A function p : I — R can be written in the form p = q + {, where
q is increasing and { is d-Lipschitz if and only if

0< ) dltiysi)+ Y dluj,v)) + 3p<z CEDD 1}t¢,si}>
i=1 j=1 j=1 1

1=
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for all real numbers t; < s1,...,tp, < Spand u; < Vi1,...,Un,< Uy € 1
satisfying
n m
Z Ltys) < Z L 51
i=1 j=1

If the semimetric d possesses further properties, we are going to obtain simpler
necessary and sufficient conditions in order that a function p could be decomposed
as ¢ + ¢ where ¢ is monotone increasing and ¢ is d-Lipschitz.

DEFINITION. A semimetric d : I x I — R is called concave if, for all z <
y <z < w € I, it satisfies
d(z,w) +d(y, z) < d(z,z) + d(y, w).
The following theorem characterizes the decomposability p = ¢ + £ in case
of concave semimetrics. In the case of when the semimetric coincides with the

ordinary distance function, our condition simplifies to a two variable inequality
only.

THEOREM. A function p : I — R can be written in the form p = q + {, where
q is increasing and { is d-Lipschitz if and only if

0< Y d(woe—1,m2r) + d(xo, 2n11) + Y (p(w2k41) — P(T2k))
k=1 k=0

holds forall tg < 1 < -+ < Tap < Topy1 € 1.
THEOREM. If the metric d is given by d(x,y) = |y — z| (x,y € I), then

n

0< > d(war—1,72) + d(x0, T2ns1) + Y (p(@2r41) — Pla2r))
k=1 k=0

holds forall xop < x1 < -+ < xop < Ton41 € I if and only if
p(x) < p(y) +d(=,y)
forallz <y el



Osszefoglalé

1.A Altalanositott kvazi-aritmetikai kizepek egyenléségi problémajarol

A klasszikus kvéziaritmetikai kozepek fogalmat sulyfiiggvények €s paraméte-
rek hozzaaddsa révén tobbféleképpen is altalanosithatjuk. A disszertacio
egyik célja altalanositott kvazi-aritmetikai kozepek egyenl6ségi és invarian-
cia problémdjanak vizsgdlata. A disszertaciéban vizsgalt altalanositott kvazi-
aritmetikai kozepeket a kovetkez6képpen definidljuk.

DEFINICIO. Legyen ¢ : I — R egy folytonos, szigortian monoton fiiggvény,
p egy, a [0,1] intervallum Borel halmazain értelmezett valdszintiségi mérték.
Ekkor az M, , : I? — I dltaldnositott kvazi-aritmetikai kozépet a kovetkezd
képlettel értelmezziik:

Meso) = ([ olio+ (- 0)au@) Gy e

do+ 0
Hap = - ; L ahol 5, at € [0, 1] pontra koncentrélt Dirac mérték, akkor

M, = M. Ha pedig p Lebesgue mérték a [0, 1] intervallumon, akkor M, ,, =

Az elsd fejezet elsd részében Osszefoglaljuk az eredmények bemutatdsdhoz
sziikséges jeloléseket és alapvetd eredményeket. Definidljuk egy p Borel
valdszintis€gi mérték k-adik momentumdt és k-adik centrdlis momentumdst:

1 1
o= [ dut) & = [ - (keNU()),
0 0
és az % pontra vonatkoz6 tiikorképét:
Ai(A) = p(A),

ahol A a [0, 1] intervallum Borel részhalmaza és A := 1 — A := {1 —xz | z € A}.
Az éltalanositott kvizi-aritmetikai kozepek egyenldségi problémédjira vonatkozé
eredményeket a kiilonb6z8 rendli momentum feltételek teljesiilése szerint mutatjuk
be, ehhez sziikségiink van a kdvetkezd definicidkra:

Azt mondjuk, hogy az n-ed rendii momentum feltétel M,, teljesiil valamely
n € NU{0, 0o} esetén, ha i, v a [0, 1] intervallumon definidlt Borel valszintiségi
mértékek, és

~

iy =0, minden 1<k<n,

79
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illetve, hogy az egzakt n-ed rendii momentum feltétel N}, teljesiil, ha M, teljesiil,
de M,,+1 nem teljesiil, azaz

i =7, minden 1<k<mn és fnt1 # Untl-
A kvazi-aritmetikai kozepek generdtor fiiggvényeire vonatkozé kiillonbozd
regularitasi feltételek megaddsahoz bevezetjiik az n-ed rendii regularitdsi feltétel
definicidjat. A @,v : I — R fliggvények teljesitik az n-ed renddi regularitisi

feltételt, ha n-szer folytonosan differencidlhatdak, és az elsé rendi derivaltjuk se-
holsem tiinik el.

LEMMA. Legyen p Borel valosziniiségi mérték, ¢ : I — R folytonos,
szigorian monoton fiiggvény, és tegyiik fel, hogy  differencidlhaté a p € I pont-
ban és ' (p) # 0. Ekkor 0\ My, ,,(p, p) = 1.

A fejezet tovabbi részeiben megadjuk azoknak a (o, i) és (¢, v) paroknak
a jellemzését, amelyek megolddsai az altalanositott kvazi-aritmetikai kozepek
egyenldségi, illetve invariancia problémajanak. Az elsé fejezet masodik részében
az egyenlGségi problémat, azaz a kdvetkezd egyenletet vizsgaljuk:

M%H(wvy) :Mw,l/(xvy) (.%',yEI)

Az alébbi sziikséges feltétel azt mutatja, hogy gyenge regularitdsi feltételek
mellett, ha az M{ egzakt momentum feltétel teljesiil, akkor az egyenlGségi
probléménak nincsen megoldésa.

KOVETKEZMENY. Tegyiik fel, hogy Cy és My teljesiil, és hogy létezik egy

p € I pont iigy, hogy ¢ és ¢ differencidlhaté a p pontban és ' (p)y'(p) # 0.
Ekkor az M, ,, = My, ,, egyenlet teljesiilésének sziikséges feltétele

p =i,
azaz, M teljesiil.

A kovetkez6 eredményben az egyenl&ségi probléma olyan jellemzését kapjuk,
melyhez nincs sziikség az ismeretlen fiiggvények inverzeire.

TETEL. Tegyiik fel, hogy C1 és My teljesiil. Ekkor az My, ,, = My, ,, egyenlet
akkor és csak akkor teljesiil bdarmely x,y € I esetén, ha

1 1
/0 /0 (t —s)¢' (tz + (1 — t)y) ¢’ (sz + (1 — s)y)du(t)dv(s) = 0.

Feltételezve, hogy az n + 1-ed rendii regularitasi feltétel teljesiil, egy djabb
sziikséges feltételt kapunk az egyenléségi probléma teljesiilésére.

TETEL. Tegyiik fel, hogy C,11 (n € N) és My teljesiil. Ekkor az
My, = My, egyenlet teljesiilésének sziikséges feltétele, hogy
n (i+1)  (n+1-i)

(1) Z <7Z> (NH’anfi - iuiyn+17i) (pgol . w/ =0.

=0
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Megforditva, ha o, analitikus fiiggvények, és (1) teljesiil minden n € N esetén,
akkor M, ;, = My, ,, teljesiil.

Ha a két mérték egyenld, az egyenldségi problémara a kovetkezd megoldast
kapjuk.

TETEL. Tegyiik fel, hogy Co és Mu teljesiil. Ekkor My, = My, ,, akkor és
csak akkor igaz, ha
(i) vagy i = v = o, valamely T € [0, 1] esetén és p, ) tetszbleges fiiggvények,
(ii) vagy p = v nem Dirac mérték és léteznek a # 0 és b konstansok iigy, hogy

Y =ap+Db.

Ha a két mérték nem egyenld, de legalabb az elsé két momentumuk meg-
egyezik, akkor az egyenl&ségi problémara az aldbbi jellemzést kapjuk.

TETEL. Tegyiik fel, hogy Co és M teljesiil valamely 2 < n < oo esetén.
Ekkor My, ,, = My, akkor és csak akkor dll fenn, ha léteznek a # 0 és b konstan-
sok gy, hogy

Yv=ap+b
és p n-tol nem nagyobb fokszdmii polinom.

Ha M teljesiil, akkor két esetet kiilonboztetiink meg aszerint, hogy pavs = 0,
illetve povs # 0.

TETEL. Tegyiik fel, hogy Co, M} és pavy = 0 teljesiil. Ekkor My, = My,
akkor és csak akkor igaz, ha

(i) vagy p és 1 tetszbleges, v = &y, és léteznek a # 0 és b konstansok iigy, hogy

A1
o(z)=ax+b (x eI,

(ii) vagy v és p tetszdleges, |1 = dp,, €s léteznek c # 0 és d konstansok 1igy, hogy
Y(x)=cx+d (xel).

Abban az esetben, amikor po15 # 0, tovabbi sziikséges feltételeket kapunk az
egyenldségi probléma teljesiilésére.

TETEL. Tegyiik fel, hogy Co, M1, uove # 0 teljesiil, és tegyiik fel, hogy fenndll
az My, ;, = My, , egyenlet. Ekkor
" B S0// B
Vzv = MQ? =
Ha teljesiil a 3-ad rendii regularitdsi feltétel is, akkor a fenti ® : I — R fiiggvény
kielégiti a kovetkezd differencidlegyenletet:

(22 )ar s (2 - a2 o
M2 V2 SR D)
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Ha még a 4-ed rendii regularitdsi feltétel is teljesiil, akkor ¢ és 1 analitikus
fiiggvények és © kielégiti az aldbbi differencidlegyenletet.

3 3 — 33 — 3v3
(mm>q),,+<ﬁg4?>wl+<u4 3 _ v 3V2>q)3:0_
p2 V2 Ky oV 2 V2

Ha teljesiil az elsd rendii momentum feltétel, akkor az utobbi differencidlegyenlet
egyiitthatoi egyszerre nem tiinnek el.

A kovetkez6 eredmény sziikséges és elégséges feltételt ad az egyenldségi
problémdra, azzal a feltétellel, hogy a ® fiiggvény kielégit egy els6rendii diffe-
rencidlegyenletet.

TETEL. Tegyiik fel, hogy Cs, My és psvo # 0, tovdbbd

" "
v o_.
1/2W = MZE =0

teljesiil, léteznek 0 < 2n < k egész szdmok és egy (co,...,cn) # (0,...,0)
konstans vektor 1igy, hogy a ® : I — R fiiggvény teljesiti a kovetkezd polinomidlis
differencidlegyenletet:

n
D @ (@) = 0.
i=0
Ekkor My, ,, = My, ,, akkor és csak akkor teljesiil, ha
(i) vagy léteznek valds konstansok a, b, ¢, d, ac # 0 1igy, hogy
o(z) =azx +b, és P(z) =cr+d (x eI,
(ii) vagy léteznek valos konstansok a,b,c,d,p,q, ac(p — q) # 0, pg > 0 gy,
hogy
) o(x) =aeP* +b és Y(x) =ce™ +d (x € 1),

ésn € N esetén
" /n
Z <i>plqn_l (Mz‘—i—l’/n—z' - ﬂil/n+1—7j) = 0;
i=0

(iii) vagy léteznek valds konstansok a, b, c,d, p,q, ac(p—q) #0, (p—1)(¢—1) >
0, és xo & I iigy, hogy x € I esetén

alr —xolP +b, hap#0
p(x) =
aln|z — x| +b, hap=0,

() = cle —xol?+d, haq#0
chn|z —xo|+d, haqg=0

ésn € N esetén
n

Z <p i > <i - Z> (Hit1Vn—i — Hivns1-i) = 0.

1=0
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Ha 1%51%] 75 0 és (,U,g,Vg) 75 (0,0), vagy sto 75 0, (,U,3,I/3) = (0,0) és
povy = vojig vagy pove # 0, (u3,v3) = (0,0) és povy # vopug és (us,vs) #
(0,0), akkor a megfeleld regularitdsi és momentum feltételek teljesiilése mellett
azt kapjuk, hogy az M, ;, = My, , egyenlet akkor és csak akkor igaz, ha az el6z6
tétel allitasai koziil valamelyik teljesiil, azaz a (¢, 1)) megoldas par vagy linedris,
vagy exponencidlis, vagy hatvanyfiiggvény. Ezen esetek mindegyikében megmu-
tathato, hogy @ kielégit egy polinomidlis differencidlegyenletet.

Az utolsé alfejezetben példakat mutatunk be arra vonatkozdan, hogy
eredményeink segitségével hogyan kaphatjuk meg kiilonboz6 fiiggvényegyenletek
megoldasait.

PELDA. Tekintsiik a
(e +o(F)N (@) + 160 () + ¢(y)
14 2 =¥ 18

fliggvényegyenletet, ahol ¢,v» : I — R folytonos, szigordan monoton
fliggvények.

Ha G4 teljesiil, a ¢, : I — R fliggvények akkor €s csak akkor megoldasai a
fenti fiiggvényegyenletnek, ha léteznek a # 0 és b szamok ugy, hogy ) = ap + b
és ¢ egy tetszbleges 3-ndl nem nagyobb fokszdmu polinom.

PELDA. Tekintsiik a

o ! (W) = ¢! </01 2i(tx + (1 — t)y)dt)

fliggvényegyenletet, ahol ¢, : I — R folytonos, szigorian monoton
fliggvények.
Ha Cj teljesiil, a ¢ és v generatorfiiggvények akkor és csak akkor megolddsai
a fenti fliggvényegyenletnek, ha 1éteznek olyan a, b, ¢, d valds szdmok, melyekre
ac # 0 ugy, hogy
(i) p(x) =ax 4+ bés(x) = cx + d, azaz ¢ és 1 affin fiiggvények,
(i) vagy p(z) = alnz + bés Y(x) = cx3 + d.
PELDA. Tekintsiik a

o (290(96) + so(y)> ! <4¢(f£) +49 (Y + tb(y))

3 9

fliggvényegyenletet, ahol ¢,v» : I — R folytonos, szigortian monoton
fliggvények.

Ha Cj teljesiil, a ¢ és ¢ generatorfiiggvények akkor és csak akkor megoldasai
a fenti fiiggvényegyenletnek, ha

(i) léteznek olyan a, b, c, d valds szamok, melyekre ac # 0 gy, hogy p(z) =
ar +bésy(x) = cr +d,
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(ii) vagy léteznek a, b, ¢, d, p, olyan valés szamok, melyekre acp # 0 dgy, hogy
() = aeP® + b és Y(x) = ce®* +d.

1.B Az invariancia egyenlet altalanositott kvazi-aritmetikai kozepekre

Az els6 fejezet harmadik részében a Matkowski-Sutd problémdt, azaz a
kovetkezd egyenletet vizsgaljuk:

Mp,ﬂ(x,y)—}—M%V@,y) =r+y (fE,yGI)

Elsé eredményiink az els6é sziikséges feltétel az invariancia egyenlet tel-
jesiilésére.

KOVETKEZMENY. Legyen p és v Borel valdsziniiségi mérték. Tegyiik fel,
hogy Cq teljesiil, és létezik egy p € I pont tigy, hogy a p és 1 fiiggvények diffe-
rencidlhatok p-ben és ' (p)y' (p) # 0. Ekkor az My, ;. (x,y) +My (2, y) = x+y
egyenlet teljesiilésének sziikséges feltétele, hogy

pi 4+ =1

Az My (2, y) +My (2, y) = x+y egyenlet megoldasanal szintén két esetet
kiilonboztetiink meg aszerint, hogy uavs = 0, illetve povs # 0.

TETEL. Legyen i és v Borel valdsziniiségi mérték ugy, hogy uave = 0. Tegyiik
fel, hogy Ca teljesiil. Ekkor az invariancia egyenlet akkor és csak akkor igaz, ha
(i) vagy p = 6r, v = 01— valamely 7 € [0,1]-ra, és p,1) tetszdleges

fiiggvények,
(ii) vagy p = 0, valamely T € [0,1]-ra, vo # 0, 11 = 1 — 7, ¢ tetszbleges és
létezik a # 0 és b konstans 1igy, hogy

() =ax+b  (zel),
(iii) vagy v = 61— valamely T € [0,1]-ra, us # 0, iy = 7, ¥ tetszdleges, és
létezik a # 0 és b konstans gy, hogy
o) =axr+b (xel).
A pove # 0 esetben a kovetkezd eredményiink sziikséges feltételt ad az in-

variancia egyenlet teljesiilésére az M, , koz€p mdsodrendii parcidlis derivéltjaira
vonatkoz¢6 differencidlegyenletek segitségével.

TETEL. Legyen i és v Borel valdsziniiségi mérték iigy, hogy pave # 0 és
tegyiik fel, hogy az invariancia egyenletiink teljesiil. Ha Cs fenndll, akkor a
®(z) := OfMp,u(2, )
fiiggvény kielégiti az aldbbi differencidlegyenletet:

30 3
< Hip2 + ps V1V2+V3>®/+</Lg+’/3>¢,2_0
125; ) R D)

és ha R R
3(fih — V1)

,V
(ps,v3) # g
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akkor az el6z0 differencidlegyenletben az egyiitthatok egyszerre nem tiinnek el.
Ha Cy4 fenndll, akkor ® az aldbbi differencidlegyenletnek megolddsa:

(6/7%/12 +4flps +ps 60y + 4D + V4)<I>”

2 V2
8f1j3 + 3 8U1v3 + 3v. —3u2 vy — 302
+( #1#32 M4+ 1 32 4>q@/+<ﬂ4 3#2_ 4 . 2>q)3:0.
3 D) Ha vy

Az invariancia egyenletre vonatkoz6 f6 eredményiinkben megkapjuk, hogy az
M¢,u(x,y)—|—M¢7y(x,y) =z+y (I,yGI)
egyenlet megolddsai 3 kiilonb6z6 osztalyba sorolhaték. A ¢ és 1 generitor
fliggvények linedris, exponencidlis vagy hatvany fiiggvények.

TETEL. Legyen (i és v Borel valdsziniiségi mérték ugy, hogy 122 % 0 és
(us,v3) # %(— 13, v3). Tegyiik fel, hogy Cs teljesiil. Ekkor az invariancia
egyenlet akkor és csak akkor teljesiil, ha i, + 177 = 1 és

(i) vagy léteznek a, b, c, d konstansok, melyekre ac # 0 tigy, hogy
o(r) =ax+b és Y(z)=cxr+d (x € I);
(ii) vagy léteznek a, b, c, d, p, q konstansok, melyekre ac # 0, pq < 0 1igy, hogy
o(r) =ae’* +b és P(z) = ce? +d (x el
és minden n € N esetén
n
’rL . .
Z <i>pzqn Y(Mit1Vn—i + pivnr1-i) = 0;
i=0
(iii) vagy léteznek a,b, ¢, d, p, q konstansok, melyekre ac # 0, (p—1)(¢—1) <0,
és xo & I gy, hogy minden x € I esetén

( alx —xoP +b, hap#0
€Tr) =
4 aln|z — x| +b, hap=0,

cle —xol?+d, haq#0
P(z) = ~
chn|z —xo|+d, haqg=0
és az aldbbi jeloléssel

1
By (2) (o +t2pdun)’,  hap£0
exp (fol In(1 + tz)d,u(t)), hap=0  (z>-1),
a kovetkezd azonossdg teljesiil:
Fou(z)+Fgu(z)=2+=2 (z > —1).

Az alabbi két eredményben a p és a v mértékek elsd néhdny momentumara
kiilonbozd kikotéseket tesziink.



86 OSSZEFOGLALO

TETEL. Legyen i, v Borel valdsziniiségi mérték iigy, hogy jiy +v1 = 1, o =
vy # 0, u3 = —us, és
s #3(5 — 1 o
Tegyiik fel, hogy Cs teljesiil. Ekkor az invariancia egyenletiink akkor és csak akkor
teljesiil, ha
(i) vagy léteznek a, b, c, d valds konstansok, melyekre ac # 0 gy, hogy
o) =ax+b and Y(z) =cr+d (x €I);
(ii) vagy léteznek a, b, c, d, p valds konstansok, melyekre acp # 0 1igy, hogy
o(z) =ae’* +b and Y(x) =ce P +d (x el
és a v mérték a p mérték tiikorképe az 1/2 pontra nézve.

, ~ =~ 1
TETEL. Legyen p,v Borel valdsziniiségi mérték ugy, hogy 11 = v1 = 3,
o = vy £ 0, us = —us, g = vg. Tegyiik fel, hogy C4 teljesiil. Ekkor az

22y 2

invariancia egyenletiink akkor és csak akkor teljesiil, ha az el6z6 tétel valamelyik
dllitdsa teljestil.

A kovetkezd eredményben az a speciélis esetet tekintjiik, amikor ;1 = v szim-
metrikus mérték.

KOVETKEZMENY. Legyen p Borel valdsziniiségi mérték, po # 0 és p szim-
metrikus az 1/2 pontra nézve. Tegyiik fel, Cy teljesiil. Ekkor az invariancia egyen-
letiink akkor és csak akkor teljesiil, ha

(i) vagy léteznek a, b, c, d valds konstansok, melyekre ac # 0 gy, hogy
o(r) =axr+b and Y(z) =cr+d (x € I);
(ii) vagy léteznek a, b, c, d, p valds konstansok, melyekre acp # 0 tigy, hogy
o(r) =ae’* +b and P(x) =ce P +d (x €I).

Az alabbi példdkban bemutatjuk, hogy eredményeink hogyan alkalmazhat6k
fliggvényegyenletek megoldasara.

PELDA. Tekintsiik a
1 p(@) +¢(y) 1Y) + ()
() o (22

fliggvényegyenletet, ahol ¢, : I — R folytonos, szigordan monoton
fliggvények.

>=w+y (z,y €I,

Ha C4 teljesiil, a fenti fiiggvényegyenlet megolddsai linearis vagy expo-
nencidlis alaku fiiggvények, melyet el8szor, 1914-ben Sut6 [71],[72] bizonyitott,
aki megadta az analitikus megolddsokat. 1999-ben Matkowski [57] a kétszer
folytonosan differencidlhaté megoldésait adta meg ennek a fliggvényegyenletnek.
A generator fliggvényekre vonatkozé regularitési feltételeket Dardczy, Maksa és
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Piles [22],[27] fokozatosan gyengitették, majd végiil 2002-ben Dardczy és Péles
[28] minden regularitasi feltétel nélkiil megoldottak a problémat.

PELDA. Tekintsiik a

e (@) + (L= Ney) + ¢ H (1= Ni(@) + M(y) =2 +y,
fliggvényegyenletet, ahol o, : I — R folytonos szigordan monoton fiiggvények
ésAe0,1]\{0,1,1},és 2,y € I.

Ha Cj teljesiil, a vizsgalt fiiggvényegyenlet megolddsai linearis vagy expo-
nencidlis alakd fiiggvények. Ezt az eredményt Jarczyk and Matkowski fedezték
fel 2006-ban [44], és Jarczyk folytonos differencidlhatésagi feltételek nélkiil bi-
zonyitotta 2007-ben [43].

PELDA. Tekintsiik a

4,0_1(/0190(tx+ (1 —t)y)dt> +¢‘1</01¢(tx+ (1 —t)y)dt> =z+y,

fliggvényegyenletet, ahol ¢, 1) : I — R folytonos szigortian monoton fiiggvények,
ésx,yel, z#y.

Ha C4 teljesiil, a fliggvényegyenlet megoldasai linedris vagy exponenciilis
alaku fiiggvények, amelyet Matkowski, erésebb regularitasi feltételek mellett, bi-
zonyitott 2005-ben [61].

PELDA. Tekintsiik a

(p_1<2<p(3;)+¢(y)) +w_1<1/1(ﬂf)+41/)($2ﬂ’) +4¢(?/)) —z+y,

3 9
fliggvényegyenletet, ahol ¢, ¥ : I — R folytonos szigortian monoton fiiggvények.

Ha Cj teljesiil, a  és v generatorfiiggvények akkor és csak akkor megoldasai
a fenti fliggvényegyenletnek, ha
(i) léteznek olyan a, b, ¢, d valds szamok, melyekre ac # 0 gy, hogy p(z) =
ax +bés(x) = cx +d,
(ii) vagy léteznek a, b, ¢, d, p, olyan valds szamok, melyekre acp # 0 ugy, hogy
o(x) = aeP® + bésh(x) = ce 2% +d.
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2. Monoton fiiggvények Lipschitz perturbacigjarol

A fiiggvényegyenletek stabilitds vizsgalatanak elmélete 1952-ben indult
Hyers és Ulam [42] cikkével. Hyers és Ulam felfedezték, hogy az in. §-konvex
fliggvények felbonthaték egy konvex €s egy korlatos fiiggvény Osszegére véges
dimenzios terek folott. E stabilitasi tétel még altalanosabb form4jat Pales adta meg
2003-ban [69]. Bevezette az e-monotonitds fogalmat, amely elvezetett a monoton
fliggvények stabilitdsi tulajdonsdgaihoz. A p : I — R fiiggvényt e-ndvekvdnek
nevezziik, ha

p(x) <ply) +e
minden z < y esetén. Pdles ebben a cikkében megmutatta, hogy egy fiiggvény
akkor és csak akkor e-novekvd, ha felbonthaté egy novekvd és egy korldtos
fliggvény Osszegére. A disszertdcid6 mdsik célja annak vizsgdlata, hogy egy
fliggvény mikor bonthat6 fel egy novekvd és egy d-Lipschitz fiiggvény 6sszegére.
Ad : I? — [ fiiggvény szemimetrika, ha nemnegativ, szimmetrikus és teljesiti a
haromszogegyenlbtlenséget.

DEFINICIO. Az ¢ : I — R fiiggvényt d-Lipschitznek nevezziik, ha
[£(x) = L(y)] < d(z,y)

minden =,y € I esetén teljesiil.

A f6 eredményeink sziikséges és elégséges feltételeket adnak a fenti fel-
bontdsra tetsz6leges szemimetrika és konkdv szemimetrika esetén.
F6 eredményiink bizonyitdsdhoz felhaszndljuk a kdvetkez6 lemmat.

LEMMA. Legyen I C R, t1 < S1,...,tn < Sp €5 Ul < U1y, Uy < U
olyan I-beli valos szamok, melyekre

n

Z Lty = Z Do v
i=1

=1

Ekkor az aldbbi egyenldség teljesiil.

> (alsi) —q(t) = (a(vi) — qlus)).
=1 =1

Ha d tetszbleges szemimetrika, a kdvetkezd tétel megadja novekvd fiiggvények
Lipschitz perturbacidjdnak egyik jellemzését. Jelolje z az x € R pozitiv részét,
azaz 1 := max(0, z).

TETEL. A p: I — R fiiggvény akkor és csak akkor irhaté p = q + ¢ alakban,
ahol q névekvd és £ d-Lipschitz, ha

n
+
> (plsi) = p(ti) = dti i) " < D (p(vy) = pluy) + d(u,v5))

i—1 j=1
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teljesiil minden t1 < s1,...,tp < Sp €s Uy < V1,...,Un < Uny [-beli valos
szamra, melyekre teljesiil, hogy

n

: : tz,sz : : ]U'L/Uz

i=1

A kovetkez6 lemma felhasznalasdval a p = q + /¢ felbontds egy masik
jellemzését kapjuk.

LEMMA. Legyenek t; < S1,...,tn < Sp €S U1 < V1,..., Uy < Uy I-beli

valds szdmok iigy, hogy Y i | 1y, o1 = > iy l]u. v teljesiil. Ekkor

n

Z (p(si) — p(ti) — d(ti, s:)) < Z p(uz) + d(uj,v5))

=1

akkor és csak akkor teljesiilap : I — R fuggvenyre, ha
m
0< Z min (d(ti, s:),p(si) — p(t:)) + Y _ d(uz,v5).
j=1

Jelolje F(I) azon fiiggvények osztilyat, melyek felirhaték

f= Zl]t“sz] Z Jug,vj]

7j=1
alakban, ahol t; < s1,...,tp < Sp, U1 < V1,...,Um < Uy € 1.
Adott egy tetsz6leges ¢ : I — R fiiggvény, az J,(f) : F(I) — R funkciondlt
a kovetkezé modon definidljuk:

n m

To(f) = (alsi) —qlt)) = > (alvy) — q(uy)),

i=1 j=1
ahol f € F(I).

TETEL. A p : I — R fiiggvény akkor és csak akkor irhaté fel p = q +
alakban, ahol q novekvd, £ pedig d-Lipschitz, ha

0< Z d(ti, Si) + Z d(uj, vj) + jP(Z 1}%.’1,].] — Z 1]“,87:])
i=1 j=1 j=1 i=1

minden t1 < S1,...,tn < Sp és UL < V1,...,Um, < Umym [-beli valés szdmra,

melyre
n m
Z Ltis < Z Ljuj ;-
i=1 j=1

Ha a d fiiggvény konkdv szemimetrika, akkor egyszerlibb sziikséges és
elégséges feltételeket kapunk arra, hogy egy p fiiggvényt mikor tudunk felbontani
egy monoton névekvd €s egy d-Lipschitz fiiggvény Osszegére.
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DEFINICIO. A d: I x I — R szemimetrikat konkdvnak nevezziik, ha minden
x <y < z < w I-beli valés szam esetén

d(z,w) +d(y, z) < d(z,z) + d(y, w)
teljesiil.

A kovetkez6 £6 eredmény abban az esetben ad sziikséges és elégséges feltételt
a vizsgalt felbontasra, amikor a d konkdv szemimetrika. Ha a d metrika
a szokdsos tavolsag fliggvénnyel egyenlS, akkor a feltételiink egy kétvaltozds
egyenl6tlenséggé egyszertisodik.

TETEL. A p : I — R fiiggvény akkor és csak akkor irhaté fel p = q + ¢
alakban, ahol q novekvd, £ pedig d-Lipschitz, ha

0< Z d(w2k—1, T2k) + d(zo, Tont1) + Z (p(z2k41) — p(221))
k=1 k=0

teljesiil minden o < 1 < - -+ < Top < xopt1 [-belivalos szdm esetén.

TETEL. Ha d(z,y) = |y — x| (z,y € I), akkor

n n
0< > d(wo—1, ) + d(xo, 2011) + Y (p(w2841) — P(T2k))
k=1 k=0
akkor és csak akkor teljesiil minden xo < 1 < --- < xay < Topy1 [-beli valds
szdmra, ha
p(z) < p(y) +d(z,y).

fenndll barmely x < y I-beli valos szdmok esetén.
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