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Abstract. In this paper, the functional equation

f(px + (1− p)y) + f((1− p)x + py) = f(x) + f(y), (x, y ∈ I)

is considered, where 0 < p < 1 is a fixed parameter and f : I → R is an unknown function.
The equivalence of this and Jensen’s functional equation is completely characterized in
terms of the algebraic properties of the parameter p. As an application, solutions of certain
functional equations involving four weighted arithmetic means are also determined.

1. Introduction

Let 0 < p < 1 be fixed. Consider the functional equation

(1.1) f(px + (1− p)y) + f((1− p)x + py) = f(x) + f(y),

where f : I → R is unknown, I ⊂ R is a non-void open interval, and (1.1) holds for
every x, y ∈ I. Let Sp(I) denote the class of all solutions (f : I → R) of equation (1.1).
Obviously, Sp(I) = S1−p(I). Using the terminology of Székelyhidi’s book [7], Lajkó’s result
[5] on equation (1.1) is the following

Theorem 1. f ∈ Sp(I) if and only if there exist symmetric k-additive functions Ak : Rk →
R (k = 0, 1, 2) with the property

(1.2) A2(px, (1− p)x) = 0 (x ∈ R)

such that

(1.3) f(x) = A2(x, x) + A1(x) + A0

for every x ∈ I.

There is a close connection between the functional equation (1.1) and p-Wright convex
functions (Maksa – Nikodem–Páles [6], Gilányi – Páles [3], Wright [8]). For a fixed p ∈ ]0, 1[,
f : I → R is p-Wright convex on I if

(1.4) f(px + (1− p)y) + f((1− p)x + py) 5 f(x) + f(y)
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holds for every x, y ∈ I. Obviously, if f : I → R and −f : I → R are p-Wright convex
functions on I, then f ∈ Sp(I), thus we may call the solutions of (1.1) p-Wright affine
functions on I. Due to Gilányi and Páles, we have the following theorem [3, Corollary 2].

Theorem 2. f ∈ Sp(I) if and only if, for every point ξ ∈ I, there is a δ > 0 such that
]ξ − δ, ξ + δ[ ⊂ I, and the restriction f | ]ξ − δ, ξ + δ[ belongs to the class Sp (]ξ − δ, ξ + δ[).

The property in Theorem 2 was called localizability by the authors. This theorem states
the following: if f : I → R is such that for any ξ ∈ I there is an open interval in I containing
ξ on which f satisfies equation (1.1), then f satisfies (1.1) on the whole I.

In a recent paper [2], Daróczy, Maksa, and Páles have studied the following problem: do
there exist numbers 0 < p < 1 such that there is a symmetric biadditive function A2 which
is not identically zero and which satisfies (1.2)? They showed the existence of such functions
if p is transcendental. They also solved the problem for algebraic numbers of second order.

In this paper we first give the complete solution of this problem. As an application, we
determine the solutions of the functional equation
(1.5) f(αx + (1− α)y) + f((1− α)x + αy) = f(βx + (1− β)y) + f((1− β)x + βy)

containing four weighted arithmetic means, which is supposed to hold for every x, y ∈ I,
where f : I → R is unknown, and 0 < α < 1, 0 < β < 1, α /∈ {β, 1 − β} are given real
numbers.

2. The structure of p-Wright affine functions

We begin by stating the following lemmas.

Lemma 1. If A2 : R2 → R is a symmetric biadditive function, not identically zero, and α
is an algebraic number such that

(2.1) A2(αx, x) = 0 if x ∈ R,

then −α is an algebraic conjugate of α.

Proof. We have to show that −α is a root of the defining polynomial of α if α is algebraic.
Assume that

∑n
i=1 tiα

i = 0, where ti ∈ Z, i = 0, . . . , n, and tn 6= 0.
Using induction, first we show that

(2.2) A2

(
αkx, y

)
= (−1)kA2

(
x, αky

)
for any integer k = 0 and x, y ∈ R. For k = 0 (2.2) holds obviously. Since

0 = A2(α(x− y), x− y) = A2(αx, x)− A2(αy, x)− A2(αx, y) + A2(αy, y)

= −A2(αy, x)− A2(αx, y)

for any x, y ∈ R by (2.1), therefore
A2(αx, y) = (−1)A2(x, αy),

thus (2.2) holds for k = 1 as well. Suppose that (2.2) holds for a k = 1. Then

A2

(
αk+1x, y

)
= A2

(
ααkx, y

)
= −A2

(
αkx, αy

)
= (−1)(−1)kA2

(
x, αkαy

)
= (−1)k+1A2

(
x, αk+1y

)
,
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i.e., (2.2) holds for k + 1 as well.
In contrast with our assertion, suppose that

β :=
n∑

i=0

ti(−α)i 6= 0.

Let x, y ∈ R be arbitrary and denote z :=
y

β
. Then, by the biadditivity and by (2.2),

0 = A2(0, z) = A2

(( n∑
i=0

tiα
i
)
x, z

)
=

n∑
i=0

tiA2

(
αix, z

)
=

n∑
i=0

ti(−1)iA2

(
x, αiz

)
= A2

(
x,

( n∑
i=0

ti(−1)iαi
)
z

)
= A2(x, βz) = A2(x, y),

which is a contradiction, since A2 is not identically zero. �

Remark. The algebraic numbers α and −α are algebraic conjugates of each other if and only
if the defining polynomial of α consists only of terms of even degree.

Lemma 2. There exists a not identically zero symmetric biadditive function A2 : R2 → R
with the property (2.1) if α is transcendental, or if α is algebraic, and −α is an algebraic
conjugate of α.

Proof. If both α and β are transcendental, by Daróczy’s known theorem [1] (see also Kuczma
[4]), there exists an additive function a : R → R, not identically zero, such that

a(αx) = βa(x) if x ∈ R.

Also by Daróczy’s result [1], if α is algebraic, and β is an algebraic conjugate of α, then
there exists an additive function a : R → R, not identically zero, such that

a(αx) = βa(x) if x ∈ R.

Therefore, if α is transcendental, or if α is algebraic, and −α is its algebraic conjugate, then,
in both cases, there exists an additive function a : R → R, not identically zero, such that

a(αx) = −αa(x) if x ∈ R.

With this function a : R → R, define
A2(x, y) := a(x)y + a(y)x if x, y ∈ R.

Obviously, A2 : R2 → R is a symmetric biadditive function, not identically zero, and
A2(αx, x) = a(αx)x + a(x)αx = −αa(x)x + a(x)αx = 0

holds for every x ∈ R. �

In the paper [2] by Daróczy, Maksa and Páles, the following problem was raised.

Problem. Let 0 < p < 1 be fixed. When will any f ∈ Sp(I) be a solution of Jensen’s
functional equation

(2.3) 2f
(x + y

2

)
= f(x) + f(y) (x, y ∈ I)?
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In our next result, we give a complete solution to this problem.

Theorem 3. Let 0 < p < 1.
(a) If 1−p

p
is algebraic, and −1−p

p
is not an algebraic conjugate of it, then any element

f ∈ Sp(I) is a solution of Jensen’s equation (2.3).
(b) If either 1−p

p
is transcendental, or 1−p

p
is an algebraic number such that −1−p

p
is one of

its algebraic conjugates, then there exists a function f ∈ Sp(I) which is not a solution
of Jensen’s equation (2.3).

Proof. By Theorem 1, it is sufficient to show in case (a) that every symmetric biadditive
function A2 : R2 → R with the property (1.2) is necessarily identically zero. From (1.2),
with the substitution px = y we obtain

A2

(1− p

p
y, y

)
= 0 if y ∈ R

by the symmetry of A2. Since 1−p
p

is algebraic, and −1−p
p

is not an algebraic conjugate of
it, our assertion follows from Lemma 1.

In case (b), by Lemma 2, there exists a symmetric biadditive function A2 : R2 → R, not
identically zero, such that

A2

(1− p

p
x, x

)
= 0 if x ∈ R,

which implies (1.2), thus x 7→ A(x, x) (x ∈ I) is not identically zero in (1.3), and this does
not satisfy Jensen’s equation (see Daróczy – Maksa – Páles [2, Lemma 4.2]). �

Theorem 3, together with Theorem 1, gives a complete description of the structure of p-
Wright affine functions (i.e., functions satisfying equation (1.1)). Thus, every Jensen affine
function is p-Wright affine, but there are numbers p such that there are p-Wright affine
functions which are not Jensen affine. These numbers p are characterized as follows: either
p is transcendental, or p is algebraic and 1−p

p
and −1−p

p
are algebraic conjugates. It can be

shown that, for an algebraic number p ∈ ]0, 1[, p 6= 1
2
, 1−p

p
and −1−p

p
are algebraic conjugates

if and only if p and p
2p−1

are algebraic conjugates as well (cf. [3, Theorem 4.3]).

3. On a functional equation involving four means

In what follows, we shall study the functional equation (1.5), which involves four means.
We may suppose, without loss of generality, that the weights α and β satisfy the condition

(3.1) 0 < α < β 5
1

2
.

Let a < b (a, b ∈ I) be arbitrary, and denote by Pa,b(I) the interior of the parallelogram
determined by the four points (a, a), (αa+(1−α)b, (1−α)a+αb), ((1−α)a+αb, αa+(1−α)b),
(b, b). Further, let

(3.2) P (I) :=
⋃

a,b∈I, a<b

Pa,b(I).
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Theorem 4. Suppose that f : I → R satisfies the functional equation (1.5) for every
x, y ∈ I, where (3.1) holds. Then, with the notation p := α+β−1

2α−1
∈ ]0, 1[, the function

f : I → R satisfies the functional equation

(3.3) f(pu + (1− p)v) + f((1− p)u + pv) = f(u) + f(v)

for every pair (u, v) ∈ P (I) ⊂ I2, where P (I) is the open subset of R2 defined in (3.2).

Proof. Consider the transformation

(3.4)
u = αx + (1− α)y

v = (1− α)x + αy
if (x, y) ∈ I2,

which takes any point (x, y) ∈ I2 to the point (u, v) ∈ I2. It is easy to see that
{(u, v) = (αx + (1− α)y, (1− α)x + αy)|x, y ∈ I} = P (I),

where P (I) is the set defined in (3.2). Solving the system of equations (3.4) for x and y, we
obtain

x =
α

2α− 1
u +

α− 1

2α− 1
v

y =
α− 1

2α− 1
u +

α

2α− 1
v

if (u, v) ∈ P (I).

Thus, by (1.5), we have

f(u) + f(v) = f

(
β
( α

2α− 1
u +

α− 1

2α− 1
v
)

+ (1− β)
( α− 1

2α− 1
u +

α

2α− 1
v
))

+ f

(
(1− β)

( α

2α− 1
u +

α− 1

2α− 1
v
)

+ β
( α− 1

2α− 1
u +

α

2α− 1
v
))

= f(pu + (1− p)v) + f((1− p)u + pv),

hence (3.3) holds indeed. �

Theorem 5. If f : I → R satisfies the functional equation (1.5) for any x, y ∈ I, and (3.1)
holds, then f ∈ Sp(I), where p := α+β−1

2α−1
∈ ]0, 1[.

Proof. By Theorem 4, (3.3) holds for every pair (u, v) ∈ P (I) ⊂ I2. By Theorem 2, it
suffices to show that, for any point ξ ∈ I, there is a δ > 0 such that ]ξ − δ, ξ + δ[ ⊂ I,
and f | ]ξ − δ, ξ + δ[ ∈ Sp (]ξ − δ, ξ + δ[). Since every point of diag I2 := {(ξ, ξ)|ξ ∈ I} is an
interior point of the set P (I), there is a δ > 0 for any ξ ∈ I such that ]ξ − δ, ξ + δ[2 ⊂ P (I),
and by (3.3) this means that f | ]ξ − δ, ξ + δ[ ∈ Sp (]ξ − δ, ξ + δ[). Thus we have proved the
theorem. �

Lemma 3. Let α, β ∈ ]0, 1[ such that α /∈ {β, 1 − β} and A2 : R2 → R a symmetric
biadditive function. Then

(3.5) A2(αx, (1− α)x) = A2(βx, (1− β)x) (x ∈ R)

holds if and only if

(3.6) A2

(α + β − 1

α− β
x, x

)
= 0 (x ∈ R).
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Proof. Using the symmetry and biadditivity, one can easily check the following identity:

(3.7) A2((α + β − 1)y, (α− β)y) = A2(βy, (1− β)y)− A2(αy, (1− α)y)

is satisfied for every y ∈ R. Therefore (3.5) holds, if and only if

(3.8) A2((α + β − 1)y, (α− β)y) = 0 (y ∈ R),

With the substitution x = (α − β)y, one can immediately see that (3.8) is equivalent to
(3.6). �

Theorem 6. Let α, β ∈ ]0, 1[ and α /∈ {β, 1− β}. The function f : I → R is a solution of
the functional equation

(1.5) f(αx + (1− α)y) + f((1− α)x + αy) = f(βx + (1− β)y) + f((1− β)x + βy)

(x, y ∈ I) if and only if there exist symmetric k-additive functions Ak : Rk → R (k = 0, 1, 2)
with the property

(3.9) A2(αx, (1− α)x) = A2(βx, (1− β)x) (x ∈ R)

such that

(3.10) f(x) = A2(x, x) + A1(x) + A0 if x ∈ I.

Proof. >From Theorem 5 it follows that f : I → R is a solution of (1.5) with (3.1) if and
only if f ∈ Sp(I), where p = α+β−1

2α−1
∈ ]0, 1[. By Theorem 1, this is equivalent to the existence

of symmetric k-additive functions Ak : Rk → R (k = 0, 1, 2) with the property

(3.11) A2(px, (1− p)x) = 0 (x ∈ R)

such that (3.10) holds. (3.11) holds if and only if

A2

( p

1− p
y, y

)
= 0 (y ∈ R),

i.e.,

A2

(α + β − 1

2α− 1
· 2α− 1

α− β
y, y

)
= 0 (y ∈ R).

This means that (3.6) holds, which is equivalent to (3.9) by Lemma 3. �

Now we have again the following question: when is there a solution f of (1.5), such that
x 7→ A2(x, x) (x ∈ I) is not identically zero in (3.10)? This question is completely answered
by the following

Theorem 7. If α, β ∈ ]0, 1[, and α /∈ {β, 1 − β}, then there is a not identically zero
symmetric biadditive function A2 : R2 → R satisfying (3.9) if and only if either α+β−1

α−β
is

transcendental or it is algebraic such that −α+β−1
α−β

is one of its algebraic conjugates.

Proof. The assertion follows from Lemmas 1, 2 and 3. �
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Remarks. 1. Theorems 6 and 7 together characterize the solutions of the functional equation
(1.5) involving four weighted arithmetic means. Thus, in (3.10) the term x 7→ A2(x, x)
(x ∈ I) is identically zero if and only if

t :=
α + β − 1

α− β
is algebraic, and − t is not an algebraic conjugate of t.

In this case, all solutions of the functional equation (1.5) satisfy Jensen’s equation (2.3).
2. Denote by A(α, β) the set of not identically zero symmetric biadditive functions A2 :

R2 → R satisfying (3.9) (α, β ∈ ]0, 1[, α /∈ {β, 1− β}.)
(i) If exactly one of the numbers α and β is transcendental, while the other is not 1

2
, then

α+β−1
α−β

is transcendental, thus A(α, β) 6= ∅.
(ii) If either α or β is 1

2
, then A(α, β) = ∅. In this case, (1.5) is equivalent to Jensen’s

equation (2.3).
(iii) If a ∈

{
2
√

2, 2 3
√

2
}
, and

α := lim
n→∞

(
1− 1

n

)n

=
1

e
, β :=

a

a− 1
− a + 1

a− 1

1

e
,

then α, β ∈ ]0, 1[, α /∈ {β, 1 − β}, and α+β−1
β−α

= 1
a
. Thus A(α, β) 6= ∅ if a = 2

√
2, but

A(α, β) = ∅ if a = 2 3
√

2.
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