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1 Introduction

The concept of semistable distributions was introduced by Paul Lévy in 1937 (see
[17]). The characteristic function of a semistable distribution was obtained by
Kruglov [16]. The domain of geometric partial attraction of a semistable law was
described by Grinevich and Khokhlov [13]. In Csörgő and Megyesi [7] the theory
of semistable laws was studied in the framework of the ‘probabilistic’ approach of
Csörgő [5] and Csörgő, Haeusler, and Mason [6]. In the case of distributions being in
the domain of geometric partial attraction of a semistable law ordinary convergence
in distribution takes place only along some subsequences. However, a merge theo-
rem is valid (Csörgő and Megyesi [7]). We say that two sequences {µn} and {νn} of
probability measures are merging if limn→∞ %(µn, νn) = 0 where % is a distance of
probability measures (the Lévy distance or the Prokhorov distance, say).

A considerable part of probability theory is devoted to functional versions of
ordinary limit theorems (the standard references are [19], [21], [2]). The classical
result is Donsker’s theorem. Let ξ1, ξ2, . . . be independent identically distributed
random variables with Eξ1 = 0, D2ξ1 = 1. Denote by Xn(t) the usual step func-

tion constructed from the partial sums. Then Xn
d−→ W in D[0, 1] where W is

the standard Wiener process. However, if we assume that ξ1, ξ2, . . . belong to the
domain of geometric partial attraction of a semistable law, then the step functions
constructed from ξ1, ξ2, . . . will not converge (as the finite dimensional distributions
will not converge). Therefore the following question arises. How can we describe
the asymptotic behaviour of the step functions?

In this paper we prove a functional merge theorem for laws being in the domain
of geometric partial attraction of a semistable law (Theorem 2.1). It is the functional
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version of the merge theorem by Csörgő and Megyesi [7]. The accompanying laws in
our theorem are distributions of semistable Lévy processes (random processes with
stationary independent increments). As we want to prove the precise functional
version of (a part of) Theorem 2 of [7], in the following sections we shall use the
same centering and norming constants as the ones in [7].

To handle the concept of merging distributions of stochastic processes, we need
some facts about merging probabilities on metric spaces (see Davydov and Rotar
[8]). It turns out that in our case both sequences of probabilities are tight.

In Section 2 first some known facts on semistable distributions and their domain
of geometric partial attraction are listed. Then the main result is given (Theorem
2.1). Section 3 describes the approximation of sums of independent random variables
being in the domain of geometric partial attraction of a semistable law. In Section
4 some general facts on merging probability measures are listed, moreover, tightness
of our sequences are proved.

We shall use the following notation. N is the set of positive integers, R denotes
the set of real numbers. D[0, 1] is the Skorokhod space of functions without discon-
tinuities of second kind (see [2]). The distribution of a random element ξ will be

denoted by Lξ. Sign
d−→ denotes the convergence in distribution.

Finally, we mention that in Berkes, Csáki, Csörgő, and Megyesi [1] an almost
sure limit theorem was proved for laws being in the domain of geometric partial
attraction of a semistable law. The almost sure limit theorem is valid with the usual
weights. In [10] a functional analogue of the a.s. limit theorem of [1] was obtained.

2 The merge theorem

Consider the probabilistic approach to the theory of infinitely divisible distributions
presented in Csörgő, Haeusler and Mason [6] and Csörgő [5]. We shall use it to
handle p-semistable distributions, 0 < p < 2, and the domain of the geometric partial
attraction of a p-semistable distribution, see Megyesi [18], Csörgő and Megyesi [7].

Let Ψ be the class of all non-positive, non-decreasing, right-continuous functions
g(·) defined on the positive half-line (0,∞) such that

∫∞
ε
g2(s)ds <∞ for all ε > 0.

Let Nj, j = 1, 2, be independent standard left-continuous Poisson processes. Let

Vj(g) =

∫ ∞

1

[Nj(s)− s]dg(s) +

∫ 1

0

Nj(s)dg(s)− g(1), j = 1, 2. (2.1)

Let U be a standard normal random variable such that N1(·), U , and N2(·) are
independent. Let g1, g2 ∈ Ψ and let σ ≥ 0. Introduce the random variable

V (g1, g2, σ) = −V1(g1) + σU + V2(g2). (2.2)

Up to an additive constant, any infinitely divisible distribution can be described in
this way.
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Infinitely divisible distributions which arise as limiting distributions of suitable
centered and normalized sums Skn = 1

Bkn

∑kn

i=1Xi − Akn of independent identically

distributed random variables X1, X2, . . . along subsequences {kn} satisfying con-
dition limn→∞ kn+1/kn = c ≥ 1 are called semistable laws. It is known that a
semistable law is either normal or p-semistable with 0 < p < 2.

We consider the case of the p-semistable distribution, 0 < p < 2. Suppose that

gj(s) = −Mj(s)s
−1/p, s > 0, j = 1, 2, (2.3)

are non-decreasing functions, whereM1, M2 are non-negative, right-continuous func-
tions on (0,∞), either identically zero or bounded away from both zero and infinity,
such that M1 +M2 is not identically zero, moreover Mj(cs) = Mj(s) for all s > 0,
j = 1, 2, for some constant c > 1. Let gj(s) be defined by (2.3) and let

Wj(Mj) = Wj(Mj, p) = Vj(gj), j = 1, 2,

W (M1,M2) = W2(M2)−W1(M1). (2.4)

A random variable W is a p-semistable random variable with 0 < p < 2 if and only

if W
d
= W (M1,M2) + b for some M1, M2 and b ∈ R. We will denote by

ψ(x) = ψ(x,M1,M2) = EeixW (M1,M2) (2.5)

the characteristic function of W (M1,M2).

Let X,Xi, i ∈ N, be independent identically distributed random variables. De-
note by F (x) = P(X ≤ x) the distribution function of X. Let {kn} be a sequence
of positive integers with the property

lim
n→∞

kn+1/kn = c > 1. (2.6)

Recall that F (or X) is said to belong to the domain of geometric partial attraction
of a semistable law, if for some sequence {kn} of positive integers with property
(2.6), for some norming numbers Bkn and some centering numbers Akn , the sequence

Skn = 1
Bkn

∑kn

i=1Xi − Akn

d−→ W , as n → ∞, where W is a p-semistable random

variable (W
d
= W (M1,M2), say). In this case we will write F ∈ Dgp(M1,M2, p), see

[18]. Denote by Q the quantile function of X, i.e.

Q(s) = inf{x ∈ R : F (x) ≥ s}, 0 < s < 1.

Denote by Q+ the right-continuous version of the quantile function Q.

Consider a subsequence {kn}∞n=1 ⊂ N satisfying (2.6). As c > 1, the sequence
{kn} is eventually strictly increasing. So for all s ∈ (0, s0), with s0 ∈ (0, 1] small
enough, there exists a unique kn∗(s) such that k−1

n∗(s) ≤ s < k−1
n∗(s)−1. We define

γ(s) = skn∗(s) for s ∈ (0, s0) and γ(s) = 1 for s ∈ [s0, 1). So 1 ≤ γ(s) < c+ ε for any
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fixed ε > 0 and all s ∈ (0, 1) small enough for the limiting c > 1 from (2.6). Then
F ∈ Dgp(M1,M2, p) along a subsequence {kn} satisfying (2.6), p ∈ (0, 2), if and only
if for all s ∈ (0, 1) small enough

Q+(s) = −s−1/pl(s)[M1(γ(s)) + h1(s)], (2.7)

Q(1− s) = s−1/pl(s)[M2(γ(s) + h2(s)], (2.8)

where l(·) is a right-continuous function, slowly varying at zero, and the error func-
tions h1 and h2 are right-continuous such that limn→∞ hj(t/kn) = 0, for every con-
tinuity point t > 0 of Mj, j = 1, 2 ([13], [18]).

We will use the norming and centering constants (see [7])

Bn = n1/pl
( 1

n

)
, Ank =

k

Bn

∫ 1−1/n

1/n

Q(s)ds, k = 1, . . . , n, n = 1, 2, . . . . (2.9)

Let

Snk =
1

Bn

∑k

i=1
Xi − Ank, k = 1, . . . , n, n = 1, 2, . . . . (2.10)

We will denote Snn and Ann by Sn and An, respectively.

The aim of this paper is to obtain a functional version of the following result.

Theorem A. (Merge theorem, i.e. Theorem 2 in [7].) Let F ∈ Dgp(M1,M2, p)
along a subsequence {kn} satisfying (2.6), 0 < p < 2. Then, as n→∞, we have

sup
x∈R

∣∣∣P{Sn ≤ x} − P{W (M1(γ(1/n)y),M2(γ(1/n)y)) ≤ x}
∣∣∣→ 0. �

Here and in what follows W (M1(γ(1/n)y),M2(γ(1/n)y)) denotes W (M̃1, M̃2)

with M̃1(y) = M1(γ(1/n)y) and M̃1(y) = M1(γ(1/n)y).

To obtain the functional version of Theorem A, consider the random processes

Zn(t) = Sn[nt], t ∈ [0, 1], (2.11)

with sample paths in the Skorokhod space D[0, 1].

Also we will consider the Lévy processes Yn(t), t ∈ [0, 1], such that

the distribution of Yn(1) is the same as that of W (M1(γ(1/n)y),M2(γ(1/n)y)).
(2.12)

(For the definition of a Lévy process see [20], Definition 1.6.) By Corollary 11.6 of
[20], there exists a Lévy process with property (2.12). In particular, the trajectories
of Yn belong to D[0, 1].

Theorem 2.1. Let F ∈ Dgp(M1,M2, p) along a subsequence {kn} satisfying (2.6),
0 < p < 2. Let Zn be defined by (2.10)–(2.11) and let Yn be the Lévy process given
by (2.12). Then, as n→∞,

%(LZn ,LYn) → 0 in D[0, 1]. (2.13)
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Proof. By Lemma 4.1, we have to show, that {LZn , n = 1, 2, . . . } and {LYn , n =
1, 2, . . . } are tight, moreover, the distances of the finite dimensional distributions
converge to 0. These facts are proved in Lemmas 4.3, 4.2, and 3.1. �

3 Approximation with semistable distributions

Let the sequences of processes Zn and Yn be defined by (2.11) and (2.12), respec-
tively. In this section we prove the convergence of the finite dimensional distribu-
tions. Moreover, we present the distribution of Yn in terms of Lévy’s description of
infinitely divisible laws.

First we collect some known facts on characteristic functions and infinitely di-
visible laws.

Remark 3.1. (See [4], Ch. 12.) 1. Let f(t) be a continuous, non-vanishing, complex
valued function of the interval [−T, T ] with f(0) = 1. Then there exists a unique
(single-valued) continuous complex valued function λ(t) defined on [−T, T ] with
λ(0) = 0 such that f(t) = eλ(t) for t ∈ [−T, T ]. Moreover, [−T, T ] is replaceable by
(−∞,∞).

2. The function λ(t) defined above is called the distinguished logarithm of f(t)
and is denoted by Logf(t). Also, for v ∈ R, exp(vλ(t)) is called the distinguished
vth power of f(t) and is denoted by f v(t).

3. Let f , fk, k = 1, 2, . . . , be continuous, non-vanishing, complex valued func-
tions of the interval [−T, T ] with f(0) = 1, fk(0) = 1, k = 1, 2, . . . . If fk → f
uniformly in [−T, T ], then Logfk → Logf uniformly in [−T, T ].

4. For an infinitely divisible characteristic function ϕ we have ϕ(t) 6= 0 for t ∈
R. The product of infinitely divisible characteristic functions is infinitely divisible.
(A characteristic functions is called infinitely divisible if it belongs to an infinitely
divisible law.)

5. The limit of infinitely divisible laws is infinitely divisible.

Remark 3.2. (See [15], Theorem 3.1.) Let {µn : n = 1, 2, . . . } and {νn : n =
1, 2, . . . } be families of probability measures on the real line with characteristic
functions {ϕn : n = 1, 2, . . . } and {ψn : n = 1, 2, . . . }, respectively. Let {µn : n =
1, 2, . . . } be relatively compact. Then %(µn, νn) → 0 if and only if ϕn(t)−ψn(t) → 0
for every t ∈ R. (Here % denotes the Lévy distance.)

Lemma 3.1. The Lévy distances of the finite dimensional distributions of the se-
quence Zn(·) and those of Yn(·) converge to 0, as n→∞.

Proof. We shall write W (M(γ(1/n)y)) instead of W (M1(γ(1/n)y),M2(γ(1/n)y)).

Both of the processes Zn(·) and Yn(·) have independent increments and their
values at zero are zero. So it is enough to prove that the distances of the distributions
of the increments converge to 0.
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Let 0 ≤ t0 < t1 ≤ 1 and let ∆t = t1 − t0. We shall use Remark 3.2. So first we
shall prove that the set of distributions of the increments on the interval [t0, t1] of
the family of processes Yn(·) is a relatively compact set of probabilities.

Let ϕn = ϕW{M [γ(1/n)y]} be the characteristic function of W{M [γ(1/n)y]}. Then
the characteristic function of the increment Yn(t1)−Yn(t0) is ϕ∆t

n . We have to prove
that every subsequence ϕ∆t

n′ contains a convergent subsequence. By Theorem 1 of [7]
the distributions of the sequence {Sn}∞n=1 is relatively compact. So, by Theorem A,
the sequence W{M [γ(1/n)y]}, n = 1, 2, . . . , is also relatively compact. Therefore,
the subsequence {n′} contains a further subsequence {n′′} such that ϕn′′ → ϕ∞
where ϕ∞ is a characteristic function. Here the convergence is uniform in any
bounded interval, and the characteristic functions involved are infinitely divisible.
We have to prove that ϕ∆t

n′′(x0) → ϕ∆t
∞ (x0) for each fixed x0. Let T be large enough

so that x0 ∈ [−T, T ]. By Remark 3.1, Logϕn′′(x0) → Logϕ∞(x0) for x0 ∈ [−T, T ].
Therefore,

ϕ∆t
n′′(x0) = e∆tLogϕn′′ (x0) → e∆tLogϕ∞(x0) = ϕ∆t

∞ (x0).

Therefore, the set of the distributions of the increments of the processes Yn(·) on
the interval [t0, t1] is relatively compact.

Now turn to the process Zn. The increment of Zn on the interval [t0, t1] is

Sn[nt1] − Sn[nt0] =
1

Bn

[nt1]∑
i=[nt0]+1

Xi − lnAn1

where ln = [nt1] − [nt0]. We have ln/n → ∆t. The characteristic function of the
increment is

(ψn(x))
ln =

(
ϕX (x/Bn) e

ixAn1
)ln

where ϕX is the characteristic function of X. By Remark 3.2, we have to prove that

ψlnn (x)− ϕ∆t
n (x) → 0 (3.1)

for every x ∈ R. Assume that it is not true, therefore there exists a fixed x0 ∈ R, a
positive ε and a subsequence {n′} such that

|ψln′n′ (x0)− ϕ∆t
n′ (x0)| > ε (3.2)

for each n′. As the sequence W{M [γ(1/n)y]}, n = 1, 2, . . . , is relatively compact,
we have a further subsequence {n′′} of {n′} such that

ϕn′′(x) → ϕ∞(x). (3.3)

As in (3.3) the characteristic functions are infinitely divisible, that is they are non-
vanishing, we have

ϕ∆t
n′′(x0) → ϕ∆t

∞ (x0). (3.4)
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From Theorem A and (3.3), we have ψn
′′

n′′ (x) → ϕ∞(x). Let T be so large that
x0 ∈ [−T, T ]. The previous convergence is uniform in the interval [−T, T ] and the
limit is infinitely divisible, so it is non-vanishing. Therefore ψn

′′

n′′ (x) is also non-
vanishing if n′′ is large enough and x ∈ [−T, T ]. By Remark 3.1, we can take
the distinguished logarithm and we have n′′Logψn′′(x) = Logψn

′′

n′′ (x) → Logϕ∞(x).
Therefore (ln′′/n

′′)n′′Logψn′′(x) → ∆tLogϕ∞(x). It implies that

ψ
ln′′
n′′ (x) = eln′′Logψn′′ (x) → e∆tLogϕ∞(x) = ϕ∆t

∞ (x). (3.5)

As (3.5) is valid for any x ∈ [−T, T ] and we have x0 ∈ [−T, T ], therefore (3.5)
combined with (3.4), contradicts to (3.2). So (3.1) is valid.

By Remark 3.2, the proof is complete. �

Now we turn to the description of Yn(·) in terms of Lévy’s original approach
to infinitely divisible distributions. Consider the random variable V (g1, g2, σ) =
−V1(g1) + σU + V2(g2) from equation (2.2). For any g ∈ Ψ let

θ(g) =

∫ 1

0

g(s)

1 + g2(s)
ds−

∫ ∞

1

g3(s)

1 + g2(s)
ds.

Then, by Theorem 3 of [6], the characteristic function of

V0(g1, g2, σ) = V (g1, g2, σ) + θ(g2)− θ(g1) (3.6)

is
E
(
eixV0(g1,g2,σ)

)
= (3.7)

= exp

{
−σ

2x2

2
+

∫ 0

−∞

(
eixu − 1− ixu

1 + u2

)
dL(u) +

∫ ∞

0

(
eixu − 1− ixu

1 + u2

)
dR(u)

}
for all real x, where L(u) = inf{s > 0 : g1(s) ≥ u}, u < 0, and R(u) = − inf{s >
0 : g2(s) ≥ −u}, u > 0. Here L(·) is left-continuous and non-decreasing on (−∞, 0)
with L(−∞) = 0 and R(·) is right-continuous and non-decreasing on (0,∞) with

R(∞) = 0, moreover
∫ 0

−ε u
2dL(u) +

∫ ε
0
u2dR(u) < ∞ for every ε > 0. Conversely,

consider two functions L(·) and R(·) with the properties just listed, and choose
g1(s) = inf{u < 0 : L(u) > s}, s > 0, and g2(s) = inf{u < 0 : −R(−u) > s},
s > 0, then g1, g2 ∈ Ψ. Using these g1, g2, the characteristic function of V0(g1, g2, σ)
satisfies (3.7).

Now fix the functions M1 and M2 in Theorem 2.1 and gj(s) = −Mj(s)s
−1/p,

j = 1, 2. Let L and R be the functions in Lévy’s approach corresponding to g1

and g2, respectively. Let an = kn∗(1/n)/n. Then 1 ≤ an ≤ c0 < ∞. The L-

function corresponding to the g1-function −M1 (ans)
1

s1/p = −M1

(
kn∗(1/n)

n
s
)

1
s1/p is

1
an
L
(
u
(

1
an

)1/p)
. The connection between M2 and R is similar.

We shall write
∫
· dJ(u) instead of

∫ 0

−∞ · dL(u) +
∫∞

0
· dR(u).
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So the characteristic function of Yn(1) is (compare with (2.12))

φ1
n(x) = exp

{∫ (
eixu − 1− ixu

1 + u2

)
d

[
1

an
J

(
u

(
1

an

)1/p
)]}

×

× exp {ixθ(an)}

where

an = kn∗(1/n)/n, θ(an) = θ1(an)− θ2(an),

θj(an) =

∫ 1

0

−Mj(san)s
−1/p

1 + (Mj(san)s−1/p)
2ds−

∫ ∞

1

(
−Mj(san)s

−1/p
)3

1 + (Mj(san)s−1/p)
2ds =

=
1

an

[∫ an

0

−Mj(v)(v/an)
−1/p

1 + (Mj(v)(v/an)−1/p)
2dv −

∫ ∞

an

(
−Mj(v)(v/an)

−1/p
)3

1 + (Mj(v)(v/an)−1/p)
2dv

]
,

j = 1, 2.

Finally, we obtain another version of Lévy’s description. Let H : R → R be a
truncation function (i.e. H is bounded, H(u) = u in a neighbourhood of the origin
and the support of H is compact). Then

φ1
n(x) = exp

{∫ (
eixv − 1− ixH(v)

)
d

[
1

an
J

(
v

(
1

an

)1/p
)]}

× (3.8)

× exp {ix (θ(an) + κ(an))} .

Here

κ(an) =

∫ (
H(v)− v

1 + v2

)
d

[
1

an
J

(
v

(
1

an

)1/p
)]

.

We see that the sequences θ(an) and κ(an), n = 1, 2, . . . , are bounded.

4 Approximation and tightness in space D[0, 1]

In this section some general facts on merging probability measures are listed, more-
over, tightness of our sequences of probabilities are proved.

Let H be a complete separable metric space. We shall consider probability mea-
sures on the Borel sets of H. Let % denote the Lévy-Prokhorov metric of probability
measures (see [9]).

Definition 4.1. We say that two sequences {µn} and {νn} of probability measures
on H are merging if limn→∞ %(µn, νn) = 0.
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Remark 4.1. (Theorem 1 of Davydov and Rotar [8].) limn→∞ %(µn, νn) = 0 if and
only if ∫

fdµn −
∫
fdνn → 0 (4.1)

for each bounded and uniformly continuous functions f : H → R. �

If at least one of the two sequences of measures are relatively compact, then the
situation is quite simple.

Remark 4.2. (See [8], p. 87.) Let {µn} be relatively compact and assume that
limn→∞ %(µn, νn) = 0. Then {νn} is also relatively compact.

To see it choose a subsequence {νn′}. Then we can choose a further subsequence
{n′′} of {n′} such that {µn′′} is convergent. Then {νn′′} converges to the same limit.
That is {νn} is relatively compact. �

Remark 4.3. (See [8], p. 87.) Let {µn} be relatively compact. Then limn→∞ %(µn, νn) =
0 if and only if (4.1) is satisfied for each bounded and continuous functions f : H →
R.

To see it first observe that the proposition is true if µn ≡ µ (see the usual theory
in [2]). Now both directions can be obtained using indirect proofs, and convergent
subsequences. �

Lemma 4.1. Assume that {µn} and {νn} are tight sequences of probability measures
on D[0, 1], moreover

the distances of the finite dimensional distributions of µn and νn converge to 0.
(4.2)

Then limn→∞ %(µn, νn) = 0.

Proof. Assume that limn→∞ %(µn, νn) = 0 is not satisfied. Then there exist an ε > 0
and a subsequence {mn} such that %(µmn , νmn) ≥ ε for every n. As {µn} and {νn}
are relative compact, therefore we can choose a further subsequence {m′

n} of {mn}
such that µm′

n

d−→ µ and νm′
n

d−→ ν, say. Then %(µ, ν) ≥ ε.

Now consider the finite dimensional distributions. First we list some known facts.
Let t1, . . . , tk be points in [0, 1]. The projection

πt1,...,tk : D[0, 1] → Rk

is defined by πt1,...,tk(x) = (x(t1), . . . , x(tk)), x ∈ D[0, 1].

Let T be a subset of [0, 1]. Let FT denote the class of sets π−1
t1,...,tk

H, where k is
arbitrary, the ti are arbitrary points of T , and H is arbitrary k-dimensional Borel
set. By Theorem 14.5 of [2], if T contains 1 and is dense in[0, 1], then FT generates
D (the class of the Borel sets of D[0, 1]).

For any probability measure P on D[0, 1], let TP consists of those t in [0, 1] for
which the projection πt is continuous except at points forming a set of P -measure
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0. It is known (see [2], Section 15) that TP contains 0 and 1 and its complement in
[0, 1] is at most countable.

If Pn and P are probability measures on D[0, 1] and Pn
d−→ P , then for the finite

dimensional distributions we have that Pnπ
−1
t1,...,tk

d−→ Pπ−1
t1,...,tk

holds if all the ti lie
in TP (see [2], Section 15).

By Theorem 15.1 of [2], if the family {Pn} is tight and Pnπ
−1
t1,...,tk

d−→ Pπ−1
t1,...,tk

holds whenever t1, . . . , tk all lie in TP , then Pn
d−→ P .

Now we can finish the proof in the following way. µm′
n

d−→ µ implies that

µm′
n
π−1
t1,...,tk

d−→ µπ−1
t1,...,tk

whenever t1, . . . , tk all lie in Tµ. This fact and

%(µnπ
−1
t1,...,tk

, νnπ
−1
t1,...,tk

) → 0

implies that

νm′
n
π−1
t1,...,tk

d−→ µπ−1
t1,...,tk

(4.3)

whenever t1, . . . , tk all lie in Tµ. However, νm′
n

d−→ ν implies

νm′
n
π−1
t1,...,tk

d−→ νπ−1
t1,...,tk

(4.4)

whenever t1, . . . , tk all lie in Tν . Now, by (4.3) and (4.4),

µπ−1
t1,...,tk

= νπ−1
t1,...,tk

if t1, . . . , tk ∈ Tν ∩Tµ = T . Now, FT is an algebra of sets and, by the above equality,
µ and ν coincide on FT . As T is dense in [0, 1] and it contains 1, therefore FT
generates D. So µ and ν coincide on D. It contradicts to %(µ, ν) ≥ ε. �

Remark 4.4. Let {µn} and {νn} be sequences of probability measures on C[0, 1].
Assume that {µn} is tight. Then limn→∞ %(µn, νn) = 0 if and only if {νn} is tight
and (4.2) is satisfied.

To see it first we remark that πt1,...,tk is continuous for every t1, . . . , tk ∈ [0, 1]
(see [2], Section 3). So, for any probability measures P, P1, P2, . . . the convergence

Pn
d−→ P implies for the finite dimensional distributions that Pnπ

−1
t1,...,tk

d−→ Pπ−1
t1,...,tk

for every t1, . . . , tk ∈ [0, 1]. Therefore the proof of Lemma 4.1 implies one direction.

To obtain the other direction let limn→∞ %(µn, νn) = 0. Then Remark 4.2 im-
plies tightness of {νn}. Now assume that (4.2) is not satisfied. Then there exists
t1, . . . , tk ∈ [0, 1] and a subsequence n′ such that

%(µn′π
−1
t1,...,tk

, νn′π
−1
t1,...,tk

) ≥ ε > 0.

However, there exist a further subsequence {n′′} of {n′} such that µn′′ → µ and
νn′′ → µ. Their finite dimensional distributions also converge. It is a contradiction.
�
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Now we turn to the proof of tightness of Yn(t). We shall use the notation of [14].
A process Y (t), t ≥ 0, is called a process with stationary independent increments, if
it is adapted to the filtration Ft, it is càdlàg, Y (0) = 0, Y (t)− Y (s) is independent
from Fs (0 ≤ s ≤ t), and the distribution of Y (t) − Y (s) depends only on the
difference t− s. (We shall consider Ft as the σ-field generated by {Y (s) : s ≤ t}.)

Let Yn(t), t ≥ 0, n = 0, 1, 2, . . . , be a sequence of processes with stationary
independent increments with characteristic functions

E
(
eixYn(t)

)
= exp

{
t

[
ixbn −

σ2
nx

2

2
+

∫ (
eixv − 1− ixH(v)

)
dKn(v)

]}
.

Here H is a truncation function that we choose to be continuous. Moreover, for
each n, bn ∈ R, σn ≥ 0, Kn is a positive measure on R that integrates min{x2, 1}
and satisfies Kn(0) = 0.

By Corollary 3.6 in Chapter VII of [14], we have the following criterion of conver-
gence. Let Yn(t), t ≥ 0, n = 0, 1, 2, . . . , be a sequence of processes with stationary
independent increments with characteristics bnt, σ

2
nt, dtKn(dx). Then there is equiv-

alence between the following three statements.

(a) Yn
d−→ Y0;

(b) Yn(1)
d−→ Y0(1);

(c) conditions bn → b0, c̃n = σ2
n +

∫
H2(x)dKn(x) → σ2

0 +
∫
H2(x)dK0(x) = c̃0,∫

g(x)dKn(x) →
∫
g(x)dK0(x) for each continuous bounded function g : R → R

which is 0 around 0 and has a limit at infinity.

Lemma 4.2. Let the sequence of processes with stationary independent increments
Yn, n = 1, 2, . . . , be defined by (2.12). Then the sequence of measures LYn, n =
1, 2, . . . is tight in D[0, 1].

Proof. We shall apply the above facts from the theory of processes with stationary
independent increments. Let Yn be defined by (2.12). Then, by (3.8), bn = θ(an) +

κ(an), σn = 0, Kn(·) = 1
an
J

((
1
an

)1/p

·
)

.

We have to prove that LYn , n = 1, 2, . . . is relatively compact. Consider an
arbitrary subsequence. We have 1 ≤ an ≤ c0 < ∞. Therefore our subsequence
contains a further subsequence n′ such that an′ → a0 where 1 ≤ a0 ≤ c0 <∞. It is
easy to see that the sequences bn′ is convergent. Moreover, using the properties of
H and g, we obtain

c̃n′ =

∫
H2(x) d

[
1

a′n
J

((
1

an′

)1/p

x

)]
→
∫
H2(x) d

[
1

a0

J

((
1

a0

)1/p

x

)]
= c̃0,

∫
g(x) d

[
1

a′n
J

((
1

an′

)1/p

x

)]
→
∫
g(x) d

[
1

a0

J

((
1

a0

)1/p

x

)]
.

Therefore the subsequence LYn′
is convergent. �
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Lemma 4.3. Let the sequence of processes Zn(t) be defined by (2.11). Then the
sequence of measures LZn, n = 1, 2, . . . , is tight in D[0, 1].

Proof. Introduce the auxiliary sequence S ′n = 1
Bn

∑n
i=1Xi − A′

n where

A′
n1 = (1/Bn)EXI{|X|≤Bn}, A′

nk = kA′
n1, k = 1, 2, . . . , n, A′

n = A′
nn,

for n = 1, 2, . . . .

Consider the random processes

Z ′
n(t) =

1

Bn

∑[nt]

i=1
Xi − [nt]A′

n1 = Zn(t) + [nt](An1 − A′
n1), t ∈ [0, 1].

We shall prove the tightness of the distribution family {LZ′n : n ∈ N}.
We denote by L0 the space of all random variables endowed with the topology of

convergence in probability. By Theorem 1 of [7], the sequence {Sn}∞n=1 is bounded
in L0.

By Megyesi [18] (see the proof of Theorem 3)

max{|Q+(s)|, Q(1− s)} ≤ Cs−1/pl(s), (4.5)

for s > 0 small enough, where C <∞.

We need the following facts. Let a > 0.

If a > Q(1− s), then 1− F (a) ≤ s. (4.6)

If − a < Q+(s), then F−(−a) ≤ s, (4.7)

where F− is the left-continuous version of F .

Let F (x) = P(|X| > x) = 1 − F (x) + F−(−x), for x > 0. Then, using basic
properties of slowly varying functions (see Ch. 1 of [3]), (4.5) and (4.6)–(4.7) give

sup
n∈N

nP {|X/Bn| > 1} = sup
n∈N

nF (Bn) = C1 <∞. (4.8)

Now let Un = 1
Bn

∑n
i=1 |Xi|I{|Xi|>Bn}, n = 1, 2, . . . . Integrating by parts, we obtain

P(|Un| > K) ≤ nF (Bn)

K
+

∫ 1

1/K

nF (KBnx)dx. (4.9)

Then, using known facts on regularly varying functions (see Potter’s theorem in

Ch. 1 of [3]), (4.5), (4.6)–(4.7), we can see that
∫ 1

1/K
nF (KBnx)dx < ε if K > Kε.

This fact, (4.9) and (4.8) imply that Un is bounded in probability. Therefore U ′
n =

1
Bn

∑n
i=1XiI{|Xi|>Bn}, n = 1, 2, . . . , is also bounded in probability.

Let Vn = 1
Bn

∑n
i=1XiI{|Xi|≤Bn}, n = 1, 2, . . . . Then Vn − An = Sn − U ′

n, n =
1, 2, . . . , is also bounded in probability. From this fact and using the same method
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(symmetrization, Lévy’s inequality, and stopping times) as in the proof of Theorem
10.1.1 in [4], we can prove that

sup
n∈N

nD2
(
(X/Bn)I{|X|≤Bn}

)
= C2 <∞. (4.10)

Using this fact and Tchebychev’s inequality, we can see that the sequence {S ′n} is
bounded in probability. As {Sn} and {S ′n} are bounded in probability, the sequence
{An − A′

n} is bounded.

Now, turn to the tightness of the distribution family {LZ′n : n ∈ N}. To this end
we apply Theorem 15.3 of Billingsley [2]. Let 0 < ε < 1 and 0 < u < 1. We have

P{ sup
0≤t≤u

|Z ′
n(t)| > ε} ≤ (4.11)

≤ P
{

sup
0≤t≤u

∣∣∣ 1

Bn

[nt]∑
i=1

(
XiI{|Xi|≤Bn} − EXiI{|Xi|≤Bn}

)∣∣∣ > ε

2

}
+ [nu]P{|X| > Bn}.

Now, applying Kolmogorov’s inequality, (4.11), (4.8) and (4.10), we obtain

lim
u→0

lim sup
n→∞

(
P{ sup

0≤t≤u
|Z ′

n(t)| > ε}+ P{ sup
1−u≤t≤1

|Z ′
n(1)− Z ′

n(t)| > ε}
)

= 0 (4.12)

Using the inequality in Sect. 6 Ch. 9 of [11], (4.11), Kolmogorov’s inequality, (4.8)
and (4.10), we obtain

lim
m→∞

lim sup
n→∞

m∑
k=1

P

{
sup

k−1
m

≤t1≤t2≤t3< k
m

min{|Z ′
n(t2)− Z ′

n(t1)|, |Z ′
n(t3)− Z ′

n(t2)|} > ε

}
≤

≤ lim
m→∞

lim sup
n→∞

m∑
k=1

(
P

{
sup

k−1
m

≤t< k
m

∣∣∣∣Z ′
n(
k

m
)− Z ′

n(t)

∣∣∣∣ > ε

4

})2

≤

≤ lim
m→∞

lim sup
n→∞

max
1≤k≤m

{
C([ k

m
n]− [k−1

m
n])

ε2

{
E
{ X
Bn

I{|X|≤Bn} − A′
n1

}2

+ P{|X| > Bn}
}}

×

×
m∑
k=1

C([ k
m
n]− [k−1

m
n])

ε2

{
E
{ X
Bn

I{|X|≤Bn} − A′
n1

}2

+ P{|X| > Bn}
}

= 0. (4.13)

Let Z ′
n(t) = Z ′

1n(t) + Z ′
2n(t), t ∈ [0, 1], where

Z ′
1n(t) =

1

Bn

[nt]∑
i=1

XiI{|Xi|≤Bn} − [nt]A′
n1 and Z ′

2n(t) =
1

Bn

[nt]∑
i=1

XiI{|Xi|>Bn},

for t ∈ [0, 1]. By Kolmogorov’s inequality, and (4.10), we have

sup
n∈N

P {‖Z ′
1n‖∞ > K} ≤ sup

n∈N

nE
(

1
Bn
XI{|X|≤Bn} − A′

n1

)2

K2
≤ C2

K2
→ 0, (4.14)
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as K → ∞. We have already proved, that the family of random variables {Un} is
bounded in L0. Therefore

supn∈N P {‖Z ′
2n‖∞ > K} ≤ supn∈N P {|Un| > K} → 0, as K →∞. (4.15)

From (4.14) and (4.15) we obtain

supn∈N P {‖Z ′
n‖∞ > K} → 0, as K →∞. (4.16)

Now, by Theorem 15.3 in Billingsley [2], relations (4.12), (4.13), and (4.16) imply
the tightness of the distribution family {LZ′n : n ∈ N}. Therefore for any ε > 0
there exists a compact set K ′

ε ⊂ D[0, 1] such that LZ′n(K ′
ε) > 1− ε for all n ∈ N.

Now, we prove the tightness of {LZn : n ∈ N}. Let cn = A′
n − An. We have

already proved that {cn} is bounded. Consider the sequence of functions

fn(t) = [nt](A′
n1 − An1) = cn[nt]/n, t ∈ [0, 1].

Let K1 = {fn : n = 1, 2, . . . }. Let Λ denote the class of strictly increasing, contin-
uous mappings of [0, 1] onto itself (i.e. Λ is the set of functions used to define the
topology of D[0, 1], see [2]). As t− (1/n) ≤ [nt]/n ≤ t, we have

|fn(λ(t))− cnλ(t)| ≤ |cn|/n.

From this inequality and from the boundedness of {cn} we obtain that from any
infinite sequence from K1 we can select a subsequence {fkn} such that

lim
n→∞

fkn(λn(t)) = ct (4.17)

uniformly in t for an arbitrary sequence {λn(.)} from Λ with limn→∞ λn(t) = t
uniformly in t.

Now we can prove that Kε = K ′
ε + K1 is a compact set in D[0, 1]. Consider

a sequence gn + hn from K ′
ε + K1. As K ′

ε is compact, we can choose a conver-
gent subsequence gkn . That is (see [2], section 14) there exists functions λkn in Λ
such that limn→∞ gkn(λkn(t)) = g(t) and limn→∞ λkn(t) = t uniformly in t. From
here, by (4.17), there exists a further subsequence such that limn→∞[gk′n(λk′n(t)) +
hk′n(λk′n(t))] = g(t) + ct uniformly in t. It means that gk′n(t) + hk′n(t) → g(t) + ct in
Skorokhod’s topology.

Finally, for all n ∈ N we have

LZn(D[0, 1] \Kε) ≤ LZ′n(D[0, 1] \K ′
ε) < ε. �
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[5] Csörgő, S. (1990). A probabilistic approach to domains of partial attraction.
Adv. Appl. Math. 11, 282–327.
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