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Informatikai Tudományok Doktori Iskola Diszkrét matematika,
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Témavezető: Dr. Hajdu András és Dr. Nagy Péter Tibor
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A b́ırálóbizottság:

elnök: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
tagok: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Chapter 1

Introduction

Differential geometry with its long, fruitful history has found new
relevance and produced useful achievements in various fields ranging
from e.g. machinery design, visualization to the study of DNA.

Differential geometry has become an expanding field of research
through the decades, as it plays an increasingly important role in
modern theoretical physics and applied mathematics. Three principle
examples are emphasized to show the importance of differential geom-
etry in physics. The general theory of relativity developed by Einstein
brought the tools of Riemannian geometry into physics. Moreover,
Gauge theories (like Maxwell and Yang-Mills theories) are more re-
cent fields of physics that involve the geometrical objects of connec-
tions on principle or vector bundles. A principle bundle associates a
Lie group to each point on a manifold. In case of Maxwell theory, the
Lie group associated to each point is U(1), while in Yang-Mills the-
ory it is SU(2) or SU(3). The Hamiltonian reformulation of classical
mechanics provided the motivation for symplectic geometry as it was
originally studied by Arnold.
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Differential geometry is concerned with understanding shapes and
their properties in terms of calculus. The tools of differential geome-
try are used e.g. to analyze shapes in computer vision, to process and
visualize data on non-flat surfaces in image processing. Diffeomorphic
transformations are often applied in computational anatomy to de-
scribe and analyze physiological processes guaranteeing the topology
of the objects to be preserved. Geometric modelling (including com-
puter graphics), architectural and computer-aided geometric design
draw on ideas from differential geometry, as well.

Differential geometry is closely tied up with differential equations.
Even in cases when explicit solutions to the relevant differential equa-
tions do not exist, numerical solutions can often produce a solution
shape. The development of computer algebraic systems makes this
feasible even for non-experts in computer programming.

The goal of this dissertation e.g. is to show some further investi-
gations, where (differential) geometric tools are applied to other fields
of science and mathematics.

The methods of associative algebra (e.g. group theory, linear alge-
bra) became established tools of differential geometry long ago. Later,
the effectiveness of the non-associative algebra was shown e.g. in web
theory, affine connection and smooth loops. A Lie group is smooth
manifold carrying a group structure whose multiplication and its in-
verse operation are smooth. Several concepts and results from Lie
group theory can be investigated for loops, i.e. for non-associative
multiplication, as well.

Next, we focus on the geometrical foundations common to the
computer graphics and related areas (e.g. medical imaging and vi-
sualization). For example, Diffusion Tensor Imaging (DTI) produces
a symmetric, positive definite matrix, at each voxel of an imaging vol-
ume. This method can be used to track the white matter fibres in
brain, demonstrating the higher diffusivity of water in the direction of
the fibre.
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Chapter 2

Differentiable n−loops

This chapter is devoted to the study of canonical coordinate systems
and the corresponding exponential maps of differentiable n−ary loops
and to the discussion of their differentiability properties.
Canonical coordinate systems can be determined by the canonical
normal form of the power series expansion of the n−th power map
x → x · . . . · x = m(x, x, . . . , x).
The exponential map of a Ck−differentiable local n−loop can be con-
structed as in Lie group theory, determined by the integral curves of
vector fields defined by the i−th translations of tangent vectors at the
unit element of the n−loop. The exponential map can be also defined
by applying the construction of canonical coordinate systems.

2.1 Introduction

The study of the non−associative structures was motivated by some
investigations in geometry (e.g. regarding coordinate systems of non−
Desarguesian planes). Another impulse for W. Blaschke to investigate
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the loops and quasigroups came from some topological questions of
differential geometry (e.g. the topological behavior of geodesic folia-
tions). In the last decades the theory of loops and quasigroups was
developed mainly in the following three directions: in the first one the
geometry associated with a loop is considered as an important tool
(Baer), the second one treats the theory of loops as a part of the gen-
eral algebra (Bruck), while the third one handles a loop as a section
in the group generated by translations (Albert).

V. D. Belousov has studied the loops, the quasigroups and their
associated geometry as abstract objects. The investigation of loops
from the perspective of the differential geometry, topological algebra,
topological geometry gained importance by A. I. Malcev, K. H. Hof-
mann, H. Salzmann and M. A. Akivis. L. V. Sabinin has shown how
useful the analytic methods can be in the theory of loops.

The theory of differentiable quasigroups has numerous applications
to different branches of mathematics and physics. We consider only
its application to classical algebraic geometry.

In geometry, the differentiable quasigroups are connected with
the theory of multidimensional three-webs, while in algebra they are
closely related to the theory of Lie groups.

The canonical coordinate systems of Lie groups are essential tools
in the investigation of local properties of group manifolds. They can
be generalized for non−associative differentiable loops, as well.

The first study of the expansion of analytical loop multiplication
in a canonical coordinate system using formal power series was given
in the paper [1] by M. A. Akivis. (cf. [18, Chapter 2])

The convergence conditions of power series expansions of loop mul-
tiplications were investigated later in [3]. E. N. Kuzmin treated the
local Lie theory of analytic Moufang loops using power series expan-
sion in canonical coordinate systems and gave a generalization of the
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classical Campbell-Hausdorff formula.[32]
V. V. Goldberg introduced canonical coordinates using power series

expansions in analytic local n−ary loops. (cf. [18, Chapter 3])
As it is well-known, differentiable groups are automatically (ana-

lytic) Lie groups. In the case of non−associative loop theory the class
of Ck−differentiable loops contains the class of Cl-differentiable loops
for any k < l; k, l = 0, 1, . . . ,∞, as a proper subclass. [45]

The theory of normal forms of C∞−differentiable n−ary loop mul-
tiplications has been investigated by J-P. Dufour and P. Jean. [15] S.
Sternberg’s linearization theorem has been applied to the coordinate
representation of (n + 1)−webs, which are the differential geometric
structures determined by the level manifolds of n−ary loop multipli-
cation and its inverse operation.

J. Kozma has defined the canonical coordinates of binary C∞-loops
by linearizing coordinate systems of the square map x → x · x =
m(x, x) of the loop multiplication m. [29] For Lie groups these canon-
ical coordinate systems coincide with the classical systems defined by
one-parameter subgroups.

Now, we consider a natural generalization of Kozma’s construction
to Ck−differentiable n−ary loops. [58], [59] According to Sternberg’s
linearization theorem the linearizing coordinate system of the n−th
power map x → x · . . . · x = m(x, x, . . . , x) for the loop multiplication
m has the same differentiability property as the n−ary loop multi-
plication map if k ≥ 2. Hence in the following we will assume that
the differentiability class Ck of the investigated n−ary loops satisfies
k ≥ 2. Similar construction for canonical coordinate systems was in-
troduced by V. V. Goldberg in case of analytic n−loop multiplications
using formal power series expansions. [18, Chapter 3]
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2.2 Basic concepts

We give a brief overview of definitions and results concerning loops
and webs. Webs (that are also called nets in the literature) form the
fundamental elements of the geometric loop theory.

A Lie group is an algebraic group that is also a smooth manifold.
Similarly, a loop can be considered as an algebraic and as a differential
geometric notion, as well. In algebraic sense, the loop can be defined
as a quasigroup with unit element:

Definition 2.2.1. Let H be a non−empty set with the multiplication

m : H2 → H, let e ∈ H be a given element. Then (H, e, m) is called

loop with unit element e if

1. m(e, x) = m(x, e) = x for all x ∈ H,

2. the equations m(a, x) = b and m(y, a) = b are uniquely solvable

for all a, b ∈ H.

Then the uniquely existing solutions x and y can be determined
by the left and right divisions:

x = a \ b and y = b/a .

From the fact that the solution of each equation is unique, it fol-
lows that each element occurs exactly once in any row or column of
the multiplication table on a finite set. This table is obviously a Latin
square of order n, if |H| = n. Conversely, a Latin square can be inter-
preted as a quasigroup.

In the definition of n−loop, an n−ary multiplication has to satisfy
similar properties given in the previous binary case:
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Definition 2.2.2. Let H be a non−empty set with the multiplication

m : Hn → H, let e ∈ H be a given element. Then (H, e, m) is called

n−loop with unit element e if

1. m(
(1)
e , . . . ,

(i−1)
e ,

(i)
a ,

(i+1)
e , . . . ,

(n)
e ) = a for all a ∈ H, 1 ≤ i ≤ n,

where
(i)
x means that the i−th argument has the value x,

2. the equation m(a1, . . . , ai−1, x, ai+1, . . . , an) = b is uniquely solv-

able for all ai ∈ H, 1 ≤ i ≤ n, b ∈ H.

Then this unique solution x can be determined by the i−th division
δi : Hn → H:

x = δi(b; a1, a2, . . . , ai−1, ai+1, . . . , an) .

In special case, when n = 2, we get the classical left and right divisions:

δ1(b; a) = a \ b and δ2(b; a) = b/a .

It follows from these definitions that a group (n−group) can be
considered as an associative loop (n−loop).

In differential geometric sense, we can define the Ck− differentiable
global or local n−loop.

Definition 2.2.3. Let H be a differentiable manifold of class Ck, let

e ∈ H be a given element and let m : Hn → H, δi : Hn → H be

differentiable maps of class Ck, where i = 1, . . . , n.

Then H = (H, e, m, δ1, . . . , δn) is called Ck−differentiable n−ary

loop (or shortly n−loop) with unit element e if the multiplication m

and the i−th divisions δi (i = 1, . . . , n) satisfy the following identities:
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1. m(
(1)
e , . . . ,

(i−1)
e ,

(i)
a ,

(i+1)
e , . . . ,

(n)
e ) = a for all a ∈ H, 1 ≤ i ≤ n,

2. m(a1, . . . , ai−1, δi(b; a1, . . . , ai−1, ai+1, . . . , an), ai+1, . . . , an) = b

for all ai ∈ H, 1 ≤ i ≤ n, b ∈ H,

3. δi(m(a1, . . . , an); a1, . . . , ai−1, ai+1, . . . , an) = ai for all ai ∈ H,

1 ≤ i ≤ n.

In the definition of a Ck−differentiable local n−loop, the multi-
plication and the i−th divisions are defined only in a neighborhood
of the unit element. Then the implicit function theorem provides the
Ck−differentiability of the i−th divisions locally around the unit ele-
ment.

Definition 2.2.4. If H is a differentiable manifold of class Ck, e ∈ H

is a given element and m : Hn → H, δi : Hn → H are differentiable

maps of class Ck (i = 1, . . . , n), which are defined in a neighbourhood

of e ∈ H, then H = (H, e,m, δ1, . . . , δn) is called Ck−differentiable

local n−loop with unit element e, if the multiplication m and the

i−th divisions δi (i = 1, . . . , n) satisfy the following identities:

1. m(
(1)
e , . . . ,

(i−1)
e ,

(i)
a ,

(i+1)
e , . . . ,

(n)
e ) = a for all a ∈ H, 1 ≤ i ≤ n,

2. m(a1, . . . , ai−1, δi(b; a1, . . . , ai−1, ai+1, . . . , an), ai+1, . . . , an) = b

for all ai ∈ H, 1 ≤ i ≤ n, b ∈ H,

3. δi(m(a1, . . . , an); a1, . . . , ai−1, ai+1, . . . , an) = ai for all ai ∈ H,

1 ≤ i ≤ n,

in a neighbourhood of e ∈ H.
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We give the definition of n−web, that is fundamental concept in
geometric loop theory. The close relationship between web geometry
and many branches of mathematics has been revealed since 1969.

Definition 2.2.5. A family of foliations (F1, . . . , Fn) on a manifold

V in general position is called n−web.

In other words: each foliation consists of leaves with the following
properties:

1. in each foliation, there exists exactly one leaf through a given
point of V ,

2. for different leaves Li, L
′
i from the same foliation Fi (Li, L

′
i ∈ Fi):

Li ∩ L′i = ∅.

In the beginning, our investigation was motivated by the results of
(n + 1)−webs because n−loops are associated with (n + 1)−webs.
If we consider an (n+1)−web with a family of foliations (F1, . . . , Fn+1)
of codimension q (dimension of the leaves) on a manifold V of dimen-
sion qn, we can construct a local n−loop and reverse, as well. [2]

This construction is shown for a (2−)loop and a 3−web. Let us
consider a (2−)loop (H, e,m) and M = H × H. Then three curves
x = a, y = b and m(x, y) = m(a, b) pass through a point (a, b). Thus
the three foliations x = constant, y = constant and m(x, y) = con-
stant form a 3−web on M .

A 3−web W on a manifold M = H × H gives a geometric inter-
pretation to the operation of multiplication in the loop. Namely, let
A ∈ M , H1 and H2 is a leaf of the foliation F1 and F2 passing through
A, respectively. The leaves of the third foliation F3 of W establish

9



bijective correspondence between the leaves H1 and H2 in a neighbor-
hood of the point A. Next, let u ∈ H1 and v ∈ H2 be the points
on the leaves H1 and H2. Then we consider the leaves Fu and Fv of
F1 and F2 passing through the points u and v, respectively. The leaf
w = constant of F3 passing through the common point Fu

⋂
Fv of the

leaves Fu and Fv, defines a point w on the leaf H1, and this point w
corresponds to the product of u and v in the loop: w = m(u, v) = u ·v.

Figure 2.1: The geometric definition of the (coordinate) loop

This construction for the foliations

F1 : x1 = constant, F2 : x2 = constant, F3 : x1 + x2 = constant

is shown in Figure 2.1.
J-P. Dufour and P. Jean has proved that any (n + 1)−web of Rqn

of codimension q is smoothly equivalent to a web whose foliations are
the following:

F1 : x1 = constant, . . . , Fn : xn = constant,

Fn+1 : x1 + . . . + xn + α(x1, . . . , xn) = constant,

10



where:

α(x, . . . , x) = 0 and α(0, . . . , 0,
(i)
x, 0, . . . , 0) = 0

for all 1 ≤ i ≤ n, x ∈ H.
Let (H, e, m) be a smooth binary loop. Then there exist local

coordinates near the unit element (vanishing at the unit element) such
that:

m(x, y) = x + y + α(x, y),

where:
α(x, x) = α(0, x) = α(x, 0) = 0

for all x ∈ H. It is called local normal form.
The theory of normal forms of C∞−differentiable n−ary loop mul-

tiplications has been investigated in the paper of J-P. Dufour and P.
Jean. [14]

2.3 Canonical coordinate system

The canonical coordinate systems of Lie groups are essential tools in
the investigation of local properties of group manifolds. This concept
can be generalized for non−associative differentiable loops, as well.

Definition 2.3.1. Let H = (H, e,m, δ1, . . . , δn) be a Ck−differentiable

local n−loop. A coordinate map ϕ : U → Rq of class Ck of the open

neighbourhood U ⊂ H of e ∈ H into the coordinate space Rq is called

canonical coordinate system of H if ϕ(e) = 0 and the coordinate

function M : ϕ(U)× · · · × ϕ(U) → Rq:

M = ϕ ◦m ◦ (ϕ−1 × · · · × ϕ−1)

11



of the multiplication map m : Hn → H satisfies:

M(x, x, . . . , x) = nx for all x ∈ ϕ(U).

We will need the following assertions in the investigation of canon-
ical coordinate systems. [55]

First, Poincare’s theorem can be rephrased as follows: Given a
system of analytic differential equations:

dxi/dt = Xi(x1, x2, . . . , xn)

defined near the origin such that Xi(0, 0, . . . , 0) = 0 and whose matrix
of linear terms is diagonalizable with eigenvalues λi satisfying:

1. all the eigenvalues λi lie in the same open half-plane about the
origin,

2. λj 6=
n∑

i=1

miλi for any non−negative mi such that
n∑

i=1

mi > 1,

then there exists an analytic change of coordinates:

yi = yi(x1, x2, . . . , xn)

transforming the differential equations dxi/dt = Xi(x1, x2, . . . , xn) into
the linearized form:

dyi/dt = λi yi.

Normal forms for smooth contractions in Euclidean n−space, that
is, invariants for Cn−contractions under inner automorphisms of the
group of local Ck−changes of coordinates can be defined. For the
problem of normal forms for differential equations, certain results of
Lattes on analytic surface transformations can be generalized (to n
dimensions and the non−analytic case). A generalization of the results
of [54] on invariant curves to n dimensions can also be obtained.
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Lemma 2.3.2. Let φ be a local Ck−diffeomorphism of Rq (k ≥ 2)

defined in some neighbourhood of 0 ∈ Rq, keeping 0 ∈ Rq (q ∈ N)

fixed. Let φ∗|(0) denote the tangent map of φ at 0 ∈ Rq. If φ satisfies

that φ∗|(0) = λidRq with λ 6= 0, 1,−1 then there exists a unique local

Ck−diffeomorphism ρ of Rq with the following properties:

1. it keeps 0 ∈ Rq fixed,

2. ρ · φ · ρ−1 = φ∗|(0),

3. ρ∗|(0) = idRq .

Proof. The existence of a local Ck−diffeomorphism ρ of Rq satisfying

the conditions of the assertion follows from Sternberg’s linearization

theorem for local contractions (cf. [55]), since either the map φ or its

inverse φ−1 is a local contraction, the minimum and maximum of the

eigenvalues of its tangent map coincide, k ≥ 2 and it satisfies the so-

called resonance condition λ 6= λm for any m > 1. The uniqueness of

the map ρ follows from the ideas of the proof of Sternberg’s theorem,

since the difference of two solutions must be a fixed point of a con-

tractive operator on a linear space of differentiable maps. Hence the

difference of these solutions is 0.

Lemma 2.3.3. Let κ : W → Rq be a differentiable map of a star

shaped neighbourhood W ⊂ Rp with κ(0) = 0. If there exists a real

number 0 < r < 1 such that κ(r x) = r κ(x) holds for all x ∈ W , then

κ is the restriction of a linear map.

13



Proof. Since the map κ : W → Rp is differentiable, we can define the

continuous map ω : W → Rp satisfying:

κ(x) = κ∗|(0)(x) + ‖x‖ω(x), ω(0) = 0.

Furthermore we have:

κ(r x) = r (κ∗|(0)(x) + ‖x‖ω(r x)),

r κ(x) = r (κ∗|(0)(x) + ‖x‖ω(x)).

From κ(r x) = r κ(x) it follows that ω(x) = ω(rm x) for any natural

number m ∈ N and hence:

ω(x) = lim
m→∞

ω(rm) = ω(0) = 0

for all x ∈ W .

Theorem 2.3.4. Let H = (H, e,m, δ1, . . . , δn) be a Ck−differentiable

local n−loop with k ≥ 2. Then there exists a canonical coordinate

system for H.

If (U,ϕ) is a canonical coordinate system of H, then for any linear

map τ : Rq → Rq the pair (U, τ ◦ ϕ) is a canonical coordinate system

of H, as well.

If ϕ : U → Rq and ψ : U → Rq are coordinate maps of canonical

coordinate systems of H defined on the same neighbourhood U , then

ϕ ◦ ψ−1 is the restriction of a linear map Rq → Rq.

14



Proof. Let (U, ϕ) be a coordinate system of H, let M be the coor-

dinate function of the local n−loop multiplication m with respect

to (U, ϕ). Then we introduce the map G : ϕ(U) → Rq defined by

G(x) = M(x, x, . . . , x). Clearly one has G(0) = 0.

From M(0, . . . , 0, x, 0, . . . , 0) = x it follows that the tangent map

G∗|0 : Rq → Rq of G at the point 0 satisfies G∗|0 = n idRq . The map

G is of class Ck in a neighborhood of 0 and it has an inverse map in

a neighborhood of 0 of the same class Ck. We can apply Lemma 2.3.2

for G
−1

, so there exists a local Ck−diffeomorphism ρ keeping 0 ∈ Rq

fixed such that (ρ ◦G ◦ ρ−1)∗|0 = ρ ◦G ◦ ρ−1.

We consider the composed map ϕ = ρ◦ ϕ as the coordinate map of

a new coordinate system (U,ϕ) with a suitable neighborhood U . The

coordinate function of the multiplication map m : Hn → H satisfies

M = ρ ◦M ◦ ρ−1. Let Q be the following function:

Q : Rq → Rq × Rq × · · · × Rq : x 7→ Q(x) = (x, x, . . . , x).

Then we have:

G = M ◦Q = (ρ ◦M ◦ ρ−1)(ρ ◦Q ◦ ρ−1) = ρ ◦G ◦ ρ−1 =

= (ρ ◦G ◦ ρ−1)∗|0 = n idRq .

Hence (U,ϕ) is a canonical coordinate system of H.

In the next step, the second statement will be proved. For a canon-

ical coordinate system (U,ϕ) of the local n−loop H, the coordinate

function:

M : ϕ(U)× · · · × ϕ(U) → Rq : M = ϕ ◦m ◦ (ϕ−1 × · · · × ϕ−1)
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of the multiplication map m : Hn → H satisfies M(x, x, . . . , x) = nx

for all x ∈ ϕ(U). Then for arbitrary linear map τ : Rn → Rn we have:

τ ◦M(τ−1y, . . . , τ−1y) = τ(n τ−1y) = n y, y ∈ τ ◦ ϕ(U).

It follows that if ψ = τ ◦ ϕ, then (U, ψ) is also a canonical coordinate

system of H.

Finally, let (U,ϕ) and (U, ψ) be canonical coordinate systems of

H given on the same neighbourhood U . Then let Mϕ and Mψ be the

coordinate functions of the multiplication map m : Hn → H, respec-

tively. For all x ∈ ϕ(U) and y ∈ ψ(U), we have:

Mϕ(x, x, . . . , x) = nx and Mψ(y, y, . . . , y) = n y.

We denote κ : ψ(U) → ϕ(U) : κ = ϕ ◦ ψ−1. Since:

Mϕ(κ(y), κ(y), . . . , κ(y)) = κ(Mψ(y, y, . . . , y)),

then we obtain: nκ(y) = κ(n y). After putting z = n y we get κ(r z) =

r κ(z) for all z ∈ ψ(U), where r = 1
n
. It follows by Lemma 2.3.3 that

the map κ = ψ ◦ ϕ−1 is the restriction of a linear map.

Example 2.3.5. The local loop−multiplication f(x, y) = x2y(x−y)+

x+y is non−associative, consequently it is not a group multiplication.

It is defined in a canonical coordinate system, as f(x, x) = 2x for all

x ∈ ϕ(U).
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2.4 Exponential map

A Lie group G is a differentiable group, it consists of a group structure
and a manifold structure such that the multiplication map and the
inversion map are differentiable. The simplest Lie group is the additive
group of the real numbers. A differentiable homomorphism of (R, +)
into a given Lie group G is called a one−parameter subgroup of G.

To each tangent vector X ∈ TeG at the identity e, there exists a
unique one−parameter subgroup φX : R → G with X as its initial
velocity. There exists a canonical bijection between TeG and the set
of all one−parameter subgroups. We define exp(X) = φX(1) for each
X ∈ TeG. The map exp : TeG → G : X 7→ φX(1) is called the
exponential map of G.

Observe that µc : R→ R : µc = c · t is a Lie homomorphism, hence
φX ◦ µc is also a one−parameter subgroup of G. It follows from the
chain rule of differentiation that φX ◦µc = φcX , so exp(tX) = φtX(1) =
φX(t) holds for all t ∈ R.

Since exp : TeG → G is a local diffeomorphism, we can use the
exponential map to define local coordinates for G. Let X1, . . . , Xn be
a basis of TeG. The mapping exp(α1X1 + . . . + αnXn) defines a local
diffeomorphism between the real n−tuples ((α1, . . . , αn) ∈ Rn) and
g ∈ G for g being sufficiently near the identity. Then we can consider
α : U ⊂ G → Rn as a coordinate mapping, where U is an arbitrar-
ily small neighborhood of the origin. Using this coordinate chart and
the left translation, we can construct an entire atlas for the Lie group
G. The functions (α1, . . . , αn) around the identity are called canonical
coordinates related to the basis X1, . . . , Xn.

There are several natural possibilities for the definition of the ex-
ponential map exp : W → H with 0 ∈ W ⊂ TeH of Ck−differentiable
local n−loops. One of them is analogous to the usual construction
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applied in Lie group theory, namely the map exp could be determined
by the integral curves of vector fields defined by the i−th translations
of tangent vectors at the unit element of the n−loop.

In binary Lie groups, these curves are one−parameter subgroups,
but for smooth loops it is not always the case. (cf. J. Kozma [29]) An-
other disadvantage of such a construction is that one can expect only
Ck−1−differentiability of the map exp : W → H with 0 ∈ W ⊂ TeH
which is determined by integral curves of Ck−1−differentiable vector
fields defined by the i−th translations of tangent vectors.

Definition 2.4.1. Let λi
x denote the i−th translation with x. Let γi

v(t)

be the integral curve of the differential equation:

γ̇i
v(t) = (λi

γ(t))∗v, where γi
v(0) = e, γ̇i

v(0) = v.

Then the mapping exp(i) : TeH → H, where exp(i)(v) = γi
v(1), is called

i−th exponential map.

Example 2.4.2. Let f(x, y) = x + y + x2y(x− y).

This loop−multiplication is considered in a canonical coordinate sys-

tem, as f(x, x) = 2x for all x ∈ ϕ(U). This loop−multiplication does

not generate a group because it is non−associative.

The exponential maps exp(1) and exp(2) are different, because:

f
′
y(x, 0) = 1 + x3

f
′
x(0, y) = 1.

Then γ1(t) and γ2(t) satisfy the following equations:

ln(|1 + γ1(t)| 13 · |γ1(t)
2 − γ1(t) + 1| 12 ) + 1√

3
· arctan( 2√

3
γ1(t)− 1√

3
) = t

and

γ2(t) = t.
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An alternative natural method for the definition of the exponential
map is given by using the construction of canonical coordinate systems
studied in the previous section.

Theorem 2.4.3. Let H = (H, e,m, δ1, . . . , δn) be a Ck−differentiable

local n−loop. Then there exists a unique local Ck−diffeomorphism

exp: W → H, where W is a neighbourhood of 0 ∈ TeH, such that the

following conditions hold:

(i) exp(nx) = m(exp(x), . . . , exp(x)),

(ii) exp(0) = e,

(iii) exp∗ |0 = idTeH .

Proof. Let ϕ : U → Rq be the coordinate map of a canonical coor-

dinate system (U,ϕ) of the local n−loop H. According to Theorem

2.3.4, (U,ϕ∗|−1
0 ◦ ϕ) is also a canonical coordinate system of H, where

the vector space TeH is the coordinate space and ϕ∗|−1
0 ◦ϕ : U → TeH

is the coordinate map. Let W ⊂ ϕ∗|−1
0 ◦ ϕ(U) be a neighbourhood of

0 ∈ TeH. Then the coordinate function M : W × · · · ×W → TeH :

M = ϕ∗|−1
0 ◦ ϕ ◦m ◦ ((ϕ∗|−1

0 ◦ ϕ)
−1 × · · · × (ϕ∗|−1

0 ◦ ϕ)
−1

)

of the multiplication map m : Hn → H satisfies M(x, . . . , x) = nx, or

equivalently:

m(ϕ−1 ◦ ϕ∗|0(x), . . . , ϕ−1 ◦ ϕ∗|0(x)) = ϕ−1 ◦ ϕ∗|0(nx)
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for any x ∈ W . Moreover one has (ϕ−1 ◦ ϕ∗|0)∗|0 = idTeH . Hence we

can define exp = ϕ−1 ◦ϕ∗|0 and this map satisfies the conditions given

in the assertion.

For proving the uniqueness, let us assume the map ẽxp: W → H

fulfills the conditions (i), (ii) and (iii). Then (ẽxp(W ), ẽxp −1)

is a canonical coordinate system of the n−loop H and according to

Theorem 2.3.4 the map ẽxp−1 ◦ exp: W → TeH is the restriction of

a linear map ε : TeH → TeH. Since both of the maps ẽxp and exp

satisfy even the condition (iii), then the linear map ε : TeH → TeH

must be the identity map. Hence ẽxp = exp: W → H, which proves

that the map exp: W → H is determined uniquely.

Theorem 2.4.4. Let exp: W → H, exp′ : W ′ → H ′ be the cor-

responding exponential maps for the Ck−differentiable local n−loops

H = (H, e, m, δ1, . . . , δn) and H′ = (H ′, e′,m′, δ′1, . . . , δ
′
n), respectively,

where W ⊂ TeH and W ′ ⊂ Te′H
′. If α : H → H′ is a continuous local

homomorphism then the composed map exp′−1 ◦ α ◦ exp: W → Te′H
′

is locally linear.

Proof. Let us consider the Ck−differentiable binary local loops H̃ and

H̃′ which are determined by the multiplication and division maps of

H and H′ in such a way that in the multiplication and division func-

tions the j−th variable (j ≥ 3) is replaced by the identity element

e ∈ H and e′ ∈ H ′, respectively. The map α : H → H ′ is clearly a

continuous local loop homomorphism. According to the result of R.

Bödi and L. Kramer [11], the map α : H → H ′ is Ck−differentiable.
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Then according to Lemma 2.3.3, we have:

exp′−1 ◦ α ◦ exp(nx) = n exp′−1 ◦ α ◦ exp(x),

or equivalently:

exp′−1 ◦ α ◦ exp(ry) = r exp′−1 ◦ α ◦ exp(y)

with y = nx and r = 1
n
, and it implies the assertion.

2.5 Conclusion

In this section we give the generalized definition of n−ary loop, first
in algebraic sense, then we have defined the Ck−differentiable (local)
n−ary loop in differential geometrical sense, as well. The concept of
canonical coordinate system, which is an essential tool for Lie groups,
has been generalized for non−associative differentiable loops. It has
been shown that there always exists a canonical coordinate system for
a Ck−differentiable local n−loop (k ≥ 2).

There are several natural options for the definition of the exponen-
tial map of Ck−differentiable local n−loops. One of these methods is
analogous to the usual construction in Lie group theory, namely the
map exp could be determined by the integral curves of vector fields
defined by the i−th translations of tangent vectors at the unit ele-
ment of the n−loop. We can also define the exponential map using
the construction of canonical coordinate systems by proving its unique
existence.
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Chapter 3

Diffusion Tensor Imaging

In the next two chapters it has been shown how useful the tools of (dif-
ferential) geometry can be in medical imaging and in image processing
problems, as well. For example, by the previous chapter, the problem
of image registration can be interpreted as finding a parameterizing
velocity field v, where the diffeomorphic transformation exp(v) min-
imizes a distance between moving and fixed image with respect to a
desired smoothness of the transformation.

In this chapter, the directional information of diffusion tensor maps
is used by fiber tracking to estimate connection pathways in white mat-
ter. When the diffusion is anisotropic, a scalar diffusion measure is
insufficient for describing diffusion properties. In this case, the dif-
fusion can be characterized by a second-order diagonally symmetric
tensor, called the diffusion tensor. This tensor model of diffusion is
able to get full description of the directional diffusion information:
molecular mobility along each direction and correlation between these
directions. The diffusion displacement profile may be represented as
an ellipsoid with the length of principal axes determined by the eigen-
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values of the diffusion tensor and the directions given by eigenvectors
of the diffusion tensor.

3.1 Introduction

Diffusion Tensor Imaging (DTI) is an emerging Magnetic Resonance
Imaging (MRI) technique based on water diffusion.[8] The spatial
properties of molecular diffusion processes can be characterized by
diffusion tensor imaging.[43], [64] The application of this technique to
the central nervous system has revealed that the diffusion of water in
white matter is anisotropic.[44] This directionality has been attributed
to constraints imposed upon water motion by the ordered structure of
axons and myelin sheaths.[10], [48], [49]

The white matter of human brain has a complex structure and
plays an essential role in brain function. In spite of the fact, that a
fair amount of information is available today about white matter, not
all the aspects of its structure are completely known and understood.
We know even less about how the white matter structure is affected
by neurological diseases, tumors or traumas.

Not only the magnitude of anisotropy but the orientation in which
water preferentially diffuses also can be quantified using diffusion ten-
sor imaging. By combining these two parameters (anisotropy and
orientation), DTI provides new and unique opportunities for studying
the white matter architecture.

Furthermore, MRI provides access to both superficial and deep
organs with high resolution and does not interfere with the diffusion
process itself: diffusion is an intrinsic physical process that is totally
independent of the MR effect or the magnetic field.
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Fiber tracking, also called White Matter Tractography (WMT),
uses the directional information of diffusion tensor maps to estimate
connection pathways in white matter. This method is presented in
[37].

The diffusion tensor field can be simplified to the vector field of the
main eigenvector by fiber tracking. If this vector field is considered
as a velocity field dropping a free particle on it, then a trajectory will
be followed due to the velocity field. The found trajectory can be
visualized as a fiber that represents a bundle of nerve fibres in the
brain or muscle fibres.

The diffusion model assumes homogeneity and linearity of the dif-
fusion within each voxel. Some diffusion anisotropy measures such as
the fractional anisotropy can be computed from the diffusion tensor.
Moreover, the principal direction of the diffusion tensor can be used
to gather the white-matter connectivity of the brain.

Nowadays, several brain pathologies may be best detected by re-
garding particular measures of anisotropy and diffusivity. The diffu-
sion process (by Brownian motion) causes water molecules to move out
from a central point, and in the anisotropic (isotropic) case the surface
of an ellipsoid (sphere) is reached gradually. The ellipsoid formalism
operates also as a mathematical method to organize tensor data.

The ellipsoid itself has a principal long axis and then two more
small axes describing its width and depth. All three axes are perpen-
dicular to each other crossing at the center point of the ellipsoid. The
axes of the ellipsoid represent the eigenvectors of the diffusion tensor
and the length of each axis is related to one of the eigenvalues of the
diffusion tensor. The length of the longest one pointing along the axon
direction is denoted by λ1 and the two small axes have lengths of λ2

and λ3. In the setting of the DTI tensor ellipsoid, each of them can
be considered as a measure of the diffusivity along each of the three
primary axes of the ellipsoid.
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The diffusivity along the principal axis, λ1 is also called the longi-
tudinal diffusivity (the axial or even the parallel diffusivity). Histori-
cally, this is the closest to what Richards originally measured with the
vector length.

The diffusivities in the two minor axes are often averaged to pro-
duce a measure of radial (or perpendicular) diffusivity λ2+λ3

2
. This

quantity characterizes the degree of restriction due to membranes and
other effects and it is proved to be a sensitive measure of degenerative
pathology in some neurological conditions.

Another widely used measure summarizing the total diffusivity is
the trace λ1 +λ2 +λ3, that is the sum of the eigenvalues. After divid-
ing this sum by three we have the mean diffusivity λ1+λ2+λ3

3
.

Our aim is to reconstruct the fiber tracts of the human brain from
measurements of fiber orientation and visualize them on the image of
the brain. [62], [63] Generally, the surface model clipped by orthogonal
sections (coronal, axial and sagital) is shown. We are capable to vi-
sualize the surface model clipped by (even more than the usual three)
planes having arbitrary directions. It is able to promote the recog-
nition of the brain diseases and after the diagnosis it helps to select
the appropriate way of cure. When surgical intervention is needed,
the point and the direction of the permeation can be determined more
exactly. This component can be parallelized by using the shading
languages. [50]

3.2 Theoretical background

During an MRI scanning process, radio waves are sent through the
brain which are 10 000 to 30 000 times stronger than Earth’s mag-
netic field. This method forces the nuclei into a different position and
after moving back into their place they send out radio waves of their
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own. These signals are picked up by the scanner and their strength as
numeric values are recorded into a file.

Diffusion MRI measures the diffusion of water molecules in bio-
logical tissues. In an isotropic medium (e.g. inside a glass of water),
water molecules naturally move randomly according to Brownian mo-
tion. However, in biological tissues the diffusion may be anisotropic
(the diffusion properties vary with orientation). The recent develop-
ment of Diffusion Tensor Imaging [57] enables diffusion to be measured
in multiple directions and the fractional anisotropy in each direction
to be calculated for each voxel. The most important concepts are
reviewed, while a complex overview of anisotropic water diffusion is
presented by Beaulieu. [9]

It is well-known that the diffusion in white matter is the largest
along fiber directions. When diffusion is anisotropic, a scalar diffusion
measure is insufficient for describing diffusion properties. It has been
shown that the diffusion in this case can be described by a second-order
diagonally symmetric tensor, called the diffusion tensor. This tensor
model of diffusion can be used to get full description of the directional
diffusion information: molecular mobility along each direction and
correlation between these directions.

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz




The six independent elements of the symmetric diffusion tensor D
can be estimated from a series of diffusion-weighted images. When
diffusion weighted measurements are performed along N directions,
the following matrix equation can be constructed:

B~d
T

= ~A
T

,

where:
~A =

(
ln S1

S0
ln S2

S0
. . . ln SN

S0

)
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is the vector of the corresponding logarithmic signal ratios and:

B =




~b1

~b2
...
~bN




includes the influences of all the encoding gradients. [46]
The same matrix can be applied simultaneously to describe the

shape and orientation of an ellipse. Futhermore, we can use this matrix
in a third way for matrix mathematics to sort out eigenvectors and
eigenvalues as explained below.

3.3 The process of calculation

In practice, 25 files are provided usually containing the results of diffu-
sion weighted measurements, and we need also a separate file describ-
ing the baseline data. All of them serve as input data of the algorithm
and they are referred as volume of voxels further on.

3.3.1 Diffusion tensor

During the calculation special volume iterators are used, that makes
more convenient to reach all the data belonging to the same voxel at
the same time in a very effective way. This makes also possible that
the algorithm remains independent from the size of volumes. The
names of input files are used as command line parameters, that is why
the number of input volumes can be handled dynamically. A function
was constructed to determine the six tensor elements of a voxel in the
following way:
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1. If the input data make possible the gradients themselves are
yielded or default values are used instead.

2. The components of vector ~A are calculated based upon the signal
values. (S0 denotes the value derived from the baseline data.)

3. The equation itself is solved by using the appropriate function of
GSL. The GNU Scientific Library (GSL) is a numerical library
for C and C++ programmers, which is a free software under
the GNU General Public License and provides a wide range of
mathematical routines. The selected GSL function is able to find
the least squares solution to our over-determined system.

4. Finally the resulted six values (the six independent elements of
diffusion tensor) are to be stored in appropriate position of new
volumes.

3.3.2 Parameters of diffusion ellipsoid

A principal frame of directions (x′, y′ and z′) can be defined by the
eigenvectors of the diffusion tensor for each voxel. The diffusion dis-
placement profile may be represented as an ellipsoid with the length
of principal axes described by the tensor eigenvalues λ1, λ2 and λ3

(principal diffusivities) and the directions given by the tensor eigen-
vectors (~e1, ~e2 and ~e3). Figure 3.1 shows the geometric meanings of
the computed values.

The diffusion eigenvectors are generally not aligned with the lab-
oratory frame. In the principal component frame, the displacements
along x′, y′ and z′ appear uncorrelated and the diagonal elements of
the tensor are equal to tensor eigenvalues. The major axes are given
by the diffusion tensor eigenvectors. The length of each axis is pro-
portional with the square root of the tensor eigenvalues.
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Figure 3.1: The diffusion ellipsoid.

Depending on the relation between the eigenvalues volume, three
types of diffusion and corresponding ellipsoidal shapes can be differ-
entiated:

a) Isotropic diffusion: λ1 ≈ λ2 ≈ λ3

Diffusion in gray matter and fluids generally appears isotropic.
The corresponding diffusion ellipsoid has a spherical shape.

b) Planar diffusion: λ1 ≈ λ2 À λ3

Planar diffusion is generally associated with diffusion in sheets
or it may describe regions of crossing fibers. The corresponding
diffusion ellipsoid has a special disk shape.

c) Prolate diffusion: λ1 À λ2 > λ3

Prolate or uniaxial diffusion is observed in highly organized white
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matter regions. The corresponding diffusion ellipsoid has a pro-
late shape.

White matter structures (corpus callosum and corticospinal tract)
are generally characterized by uniaxial diffusion. Planar diffusion is
dominant in regions of crossing or fanning fibers. For the visualization
of the stream directions at each voxel ellipsoids are used. These ellip-
soids can be incorporated with the brain model. Figure 3.2 shows how
the brain can be clipped by three arbitrary planes that is not common
in usual softwares.

Figure 3.2: Brain clipped by three arbitrary positioned planes.

After the computation, the fibers can be built up by the diffusion
ellipsoids [43]. In case of fiber crossings, only the stronger track is
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followed. For the dynamic modelling of the fibers, a particle system
is applied. [41] The molecule groups inspected by the measurements
can be modelled by points moving along the actual fiber. These fibers
make up a complex brain structure. For example, the tumors distort
the fibers, so change in the fiber structure prognosticates the illness.

Moreover, we can handle more pictures (e.g. one individual and
one picture that is common for a population) and blend them together
in any ratio. Besides, we can enhance a strip of the brain around any
given intensity value.

3.4 Conclusion

The fiber tracts of the human brain can be reconstructed from the
measurements of fiber orientation and can be visualized on the image
of the brain. Generally, the surface model clipped by orthogonal sec-
tions (coronal, axial and sagital) is shown. We are capable to visualize
the surface model clipped by (even more than the usual three) planes
having arbitrary directions.

The standard algorithms are improved and new methods are devel-
oped considering the branching and merging problems, as well. The
algorithms can be massively parallelized by using heavily the shader
languages (vertex, geometry and pixel shaders).

Beyond the completed new methods, the ellipsoids and the parti-
cle system can be integrated with the brain model having arbitrary
clipping planes.
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Chapter 4

Generalization of the

majority voting scheme

Generating ensembles from multiple individual classifiers is a popular
approach to raise the accuracy of the decision. As a rule for decision
making, majority voting is a usually applied model. In this chapter,
we generalize the classical majority voting by incorporating probabil-
ity terms pn,k to constrain the basic framework. These terms control
whether a correct or false decision is made if k correct votes are present
among the total number of n.

This generalization is motivated by object detection problems,
where the members of the ensemble are image processing algorithms
giving their votes as pixels in the image domain. In this scenario, the
terms pn,k can be specialized by a geometric constraint. Namely, the
votes should fall inside a region matching the size and shape of the
object to vote together. We give several theoretical results in this new
model for both dependent and independent classifiers, whose individ-
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ual accuracies may also differ. As a real world example, we present our
ensemble-based system developed for the detection of the optic disc
in retinal images. For this problem, experimental results are shown to
demonstrate the characterization capability of this system.

4.1 Introduction

Ensemble-based systems are rather popular to raise the decision ac-
curacy by combining the responses of different sources (voters, classi-
fiers). Regarding pattern recognition, the idea of combining the deci-
sions of multiple classifiers has also been studied [34]. As correspond-
ing examples, we can mention neural networks [12], [21], decision trees
[26], sets of rules [4] and other models [23], [24], [66]. As a specific ap-
plication field, now we will focus on object detection in digital images
which is a vivid field, as well. [16], [47], [53]

A usual way for information fusion is to consider the majority of
the votes of the classifiers as the basis of the decision. The current lit-
erature is quite rich regarding both theoretical results and applications
of such systems (ensembles). Strong focus is set to the combination of
votes of binary (correct/false) values. The related decision may take
place based on simple majority [21],[30],[31], weighted majority [30],
or using some other variants. [25],[38]

In the research of majority voting, a cardinal issue is the assump-
tions on the dependency of the voters. Several results are achieved
for independent voters, and the minimal and maximal accuracies of
such majority voting systems are also studied for the dependent case.
In this chapter, we investigate how such voting systems behave if we
apply some further constraints on the votes. Namely, we general-
ize the classical majority voting scheme by introducing real values
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0 ≤ pn,k ≤ 1 for the probability that a good decision is made if we
have k correct votes out of the n ones. In other words, in our case it
will be possible that a good decision is made even if the good votes
are in minority (less than half).

ROI

OD

Correct OD Cand.

Incorrect OD Cand.

d
OD

Figure 4.1: The optic disc (OD) of diameter dOD in a retinal image

and the OD center candidates (3 correct, 5 false) of individual detector

algorithms. Candidates inside the black circles can vote together for

possible OD locations.

The development of this new model is motivated by a retinal im-
age processing problem – the detection of the optic disc (OD), which
appears as a bright circular patch within the region of interest (ROI)
in a retinal image (see Figure 4.1). Namely, in a former work it was
observed that organizing more individual OD detector algorithms into
an ensemble may raise detection accuracy [22]. In the voting system
applied here, each individual OD algorithm votes in terms of a single
pixel as its candidate for the OD center. The application of exist-
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ing majority voting models are not adequate here, since they consider
only the correctness of the votes, which concerns falling into the true
OD region in this scenario. However, in our case, the spatial behavior
of the votes is also important, since they vote together for a specific
location of the OD, only if they fall within a region matching the OD
geometry. Consequently, we should consider discs of diameter of the
OD dOD ∈ R≥0 covering the candidates of the individual detector al-
gorithms as shown in Figure 4.1. The diameter dOD can be derived
by averaging the manual annotations made by clinical experts on a
dataset and can be adjusted to the resolution of the image. As a fi-
nal decision, the disc having diameter dOD with maximal number of
candidates included is chosen for the OD location. In this combined
system, we can make a good decision even if the false candidates have
majority such as in the case illustrated in Figure 4.1. A bad decision
is made only when a subset of false candidates with larger cardinality
than the number of correct ones can be covered by a disc having di-
ameter dOD.

In this chapter, we propose the generalization of the classical ma-
jority voting model by incorporating the probability terms pn,k men-
tioned before. With an appropriate geometric constraint, our general-
ized model can be specialized to be applicable for the above detection
scenario, as well. Namely, the corresponding values pn,k will be ad-
justed by requiring that the candidates should fall inside a disc of a
fixed diameter dOD to vote together. With the help of this model, we
can characterize our detector ensemble and gain information on fur-
ther improvability issues, as well.

The rest of the chapter is organized as follows. Section 4.2 recalls
the basic concepts of classical majority voting, which will provide fun-
damentals for our more general framework. In section 4.3, we show
how to incorporate the probability terms pn,k to constrain the basic
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formulation. We present theoretical results for the case of indepen-
dent voters. Since in applications independent detector algorithms can
hardly be expected, we also generalize the method to the dependent
case in section 4.4. As a main focus, we investigate the possible lowest
and highest accuracy of constrained ensembles. Moreover, we both
consider equal and different individual accuracies for the members of
the ensemble. Section 4.5 contains our empirical results regarding a
real world application (optic disc detection), where we apply this new
model to characterize our current OD detector ensemble. In section
4.6, the final decision rule of the ensemble is modified to result in fur-
ther improvement of the system accuracy. In section 4.7, we discuss
our results and draw some conclusions regarding other test datasets
and detection problems.

4.2 Majority voting

Let D1, D2, . . . , Dn be a set of classifiers (voters), the i−th classifier
Di : Λ → Ω (i = 1, . . . , n), where Λ can be any domain, and Ω is a
set of finite class labels. The majority voting rule assigns the class
label supported by the majority of the classifiers D1, . . . , Dn to α ∈ Λ.
Usually, ties (same number of different votes) are broken randomly.

In the literature, the classifier outputs are generally expected to be
independent. It means that for any subset of classifiers (Di1 , . . . , Dik):

(4.1) P (Di1 = ωi1 , . . . , Dik = ωik) =
k∏

j=1

P (Dij = ωij),

where {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} (1 ≤ k ≤ n), ωi ∈ Ω is the label
suggested for x by the classifier Di.
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In [31] Kuncheva et al. discuss exhaustively the following special
case. Let n be odd, |Ω| = 2 (each classifier has a binary (correct/false)
output value) and all classifiers are independent and have the same
classification accuracy p. A correct class label is given by majority
voting if at least dn

2
e classifiers give correct answers. The majority

voting rule with independent classifier decisions gives an overall correct
classification accuracy calculated by the following formula:

(4.2) P =
n∑

k=dn
2
e

(
n

k

)
pk(1− p)n−k.

The following result which is known as the Condorcet Jury The-
orem (1785) supports the intuition that we can expect improvement
over the individual accuracy p only when p is higher than 0.5.

• If p > 0.5, then P is monotonically increasing and P → 1 as
n →∞.

• If p < 0.5, then P is monotonically decreasing and P → 0 as
n →∞.

• If p = 0.5, then P = 0.5 for any natural number n.

This result proves that the majority voting method is guaranteed
to give a higher accuracy than the individual classifiers if the classifiers
are independent and p > 0.5 holds for the individual accuracy.

Several interesting results can be found in [34] applying the ma-
jority voting in pattern recognition. Different methods for combining
the decisions of classifiers for different types of outputs have been
described by Lam and Suen. [36] The combination methods can be
applied by various architectures. For each type of output, combina-
tion methods have been developed from simple operations requiring
no prior training, to complex and highly tailored methods that can
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produce higher recognition rates. However, these better recognition
rates may be accompanied by higher costs in terms of computation
requirements, quantity of training data, and difficulty of theoretical
analysis.

Lam and Suen proceed to analyze the case of even n and the ef-
fect on the ensemble accuracy of adding or removing classifiers. For
example, it can confidently be predicted that an even number 2n of
classifiers would produce more reliable combined recognition results
than can be obtained by adding another classifier, or by eliminating
one of the classifiers. This conclusion is valid whether the classifiers
are independent or not. Shapley and Grofman note in [52] that the
result is valid even for unequal p, provided the distribution of the
individual accuracies pi is symmetrical about the mean.

4.3 Generalization to constrained voting

As it has been discussed in the introduction, we generalize the classical
majority voting approach by considering some constraints that must
be also met by the votes. To give a more general methodology beyond
geometric considerations, we model this type of constrained voting by
introducing values 0 ≤ pn,k ≤ 1 describing the probability of making a
good decision, when we have exactly k good votes from the n voters.
Then, in section 4.5 we will adopt this general model to our practical
problem with spatial constraints.

As we have summarized in the introduction, several theoretical re-
sults are achieved for independent voters in the current literature, so
we start with generalizing them to this case. However, in the vast
majority of applications, we cannot expect independency among algo-
rithms trying to detect the same object. Thus, later we extend the
model to the case of dependent voters with generalizing such formerly
investigated concepts that have high practical impact, as well.
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4.3.1 The independent case

In our model, we consider a classifier Di with accuracy pi as a random
variable ηi of Bernoulli distribution, i.e.:

P (ηi = 1) = pi, P (ηi = 0) = 1− pi (i = 1, . . . , n).

Here ηi = 1 means correct classification by Di. In particular, the
accuracy of Di is just the expected value of ηi, that is, Eηi = pi

(i = 1, . . . , n).
Let pn,k (k = 0, 1, . . . , n) be given real numbers with:

0 ≤ pj0 ≤ · · · ≤ pjj ≤ 1 (j = 1, . . . , n),

and let the random variable ξ be such that:

P (ξ = 1) = pn,k and P (ξ = 0) = 1− pn,k,

where k = |{i : ηi = 1}|. That is, ξ represents the modified majority
voting of the classifiers D1, . . . , Dn: if k out of the n classifiers give a
correct vote, then we make a good decision (i.e. we have ξ = 1) with
probability pn,k.

Note that, in the special case, where:

(4.3) pn,k =





1, if k > n
2
,

1
2
, if k = n

2
,

0, otherwise,

this model results in the classical majority voting scheme.
The values pn,k as a function of k corresponding to the classical

majority voting can be observed in Figure 4.2 for both an odd and an
even n, respectively.

The ensemble accuracy of the classical majority voting system is
shown in Table 4.1 for different number of classifiers n for some equal
individual accuracies p (see also [30]).
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Figure 4.2: The graph of pn,k for classical majority voting for (a) an

odd, and (b) an even number of voters n.

n = 3 n = 5 n = 7 n = 9

p = 0.6 0.6480 0.6826 0.7102 0.7334

p = 0.7 0.7840 0.8369 0.8740 0.9012

p = 0.8 0.8960 0.9421 0.9667 0.9804

p = 0.9 0.9720 0.9914 0.9973 0.9991

Table 4.1: Ensemble accuracy for classical majority voting.

As the very first step of our generalization, we show that similarly
to the individual voters, ξ is of Bernoulli distribution, as well. We also
provide its corresponding parameter q, that represents the accuracy
of the ensemble in our model.

Lemma 4.3.1. The random variable ξ is of Bernoulli distribution

with parameter q, where:

(4.4) q =
n∑

k=0

pn,k

( ∑

I⊆{1,...,n}
|I|=k

∏
i∈I

pi

∏

j∈{1,...,n}\I
(1− pj)

)
.
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Proof. Since for any k ∈ {0, 1, . . . , n} we have:

P (|{i : ηi = 1}| = k) =
∑

I⊆{1,...,n}
|I|=k

∏
i∈I

pi

∏

j∈{1,...,n}\I
(1− pj),

the statement immediately follows from the definition of ξ.

The special case assuming equal accuracy for the classifiers received
strong attention in the literature, so we investigate this case first. That
is, in the rest of section 4.3, we suppose that p = p1 = . . . = pn. Then,
(4.4) reads as:

(4.5) q =
n∑

k=0

pn,k

(
n

k

)
pk(1− p)n−k.

Thus, if n is odd then by the particular choice (4.3) for the values pn,k,
we get q = P , where P is given in (4.2). In order to have our gen-
eralized majority voting model be more accurate than the individual
decisions, we have to guarantee that q ≥ p. The next statement yields
a guideline along this way.

Proposition 4.3.2. Let pn,k = k
n

(k = 0, 1, . . . , n). Then, we have

q = p, and consequently Eξ = p.

Proof. Since by Lemma 4.3.1 the random variable ξ is of Bernoulli

distribution with parameter q, we have Eξ = q. Thus, we just need to

show that q = p whenever pn,k = k
n

(k = 0, 1, . . . , n). By our settings,

from (4.5) we have:

q =
n∑

k=0

k

n

(
n

k

)
pk(1− p)n−k =

1

n

n∑

k=0

k

(
n

k

)
pk(1− p)n−k = p.
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Observe that the last sum just expresses the expected value np of a

random variable of binomial distribution with parameters (n, p). Thus,

we have q = p, and the statement follows.

The above statement shows that if the probabilities pn,k increase
uniformly (linearly), then the ensemble has the same accuracy as the
individual classifiers. As a trivial consequence we obtain the following
corollary.

Corollary 4.3.3. Let pn,k ≥ k
n

for all k = 0, 1, . . . , n. Then q ≥ p,

and consequently Eξ ≥ p.

The next result helps us to compare our model constrained by the
terms pn,k with the classical majority voting scheme.

Theorem 4.3.4. Suppose that p ≥ 1
2

and for any k with 0 ≤ k ≤ n
2

we have:

(i) pn,k + pn,n−k ≥ 1,

(ii) pn,n−k ≥ n−k
n

.

Let q be given by (4.5). Then, q ≥ p, and consequently Eξ ≥ p.

Proof. We can write:

q =
n∑

k=0

pn,k

(
n

k

)
pk(1− p)n−k =

bn
2
c∑

k=0

(
pn,k

(
n

k

)
pk(1− p)n−k+

+pn,n−k

(
n

n− k

)
pn−k(1− p)k

)
+ pn, n

2

(
n
n
2

)
p

n
2 (1− p)

n
2 .
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Here if n is odd, then the last term should be considered to be zero.

Now by our assumptions p ≥ 1
2
, together with (i) and (ii), using

also the identities
(

n
k

)
=

(
n

n−k

)
and k

n
+ n−k

n
= 1, for any k with

0 ≤ k < n
2

we have:

pn,k

(
n

k

)
pk(1− p)n−k + pn,n−k

(
n

n− k

)
pn−k(1− p)k ≥

≥ (1− pn,n−k)

(
n

k

)
pk(1− p)n−k + pn,n−k

(
n

n− k

)
pn−k(1− p)k =

=
k

n

(
n

k

)
pk(1− p)n−k +

n− k

n

(
n

n− k

)
pk(1− p)n−k+

+ pn,n−k

(
n

n− k

) (
pn−k(1− p)k − pk(1− p)n−k

) ≥

≥ k

n

(
n

k

)
pk(1− p)n−k +

n− k

n

(
n

n− k

)
pk(1− p)n−k+

+
n− k

n

(
n

n− k

) (
pn−k(1− p)k − pk(1− p)n−k

)
=

=
k

n

(
n

k

)
pk(1− p)n−k +

n− k

n

(
n

n− k

)
pn−k(1− p)k.

In the last inequality, we use (ii) and the non-negativity of the

term pn−k(1 − p)k − pk(1 − p)n−k . Furthermore, if n is even, by (ii)

we also have:

pn, n
2

(
n
n
2

)
p

n
2 (1− p)

n
2 ≥

n
2

n

(
n
n
2

)
p

n
2 (1− p)

n
2 .

Thus, we obtain:

q ≥
n∑

k=0

k

n

(
n

k

)
pk(1− p)n−k = p.
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Here, the last equality follows from the proof of Proposition 4.3.2.

Since Eξ = q, we have the inequality Eξ ≥ p.

As a specific case, we obtain the following corollary concerning the
classical majority voting scheme [31].

Corollary 4.3.5. Suppose that n is odd, p ≥ 1
2

and:

pn,k =





1, if k > n
2
,

0, otherwise.

holds for all k = 0, 1, . . . , n. Then q ≥ p, and consequently Eξ ≥ p.

Proof. Observing that by the above choice for the values pn,k both

properties (i) and (ii) of Theorem 4.3.4 are satisfied, the statement

immediately follows from Theorem 4.3.4.

Of particular interest is the case, when the ensemble makes exclu-
sively good decisions after t executions. That is, we are curious to
know the conditions to have a system with accuracy 100%. So write
ξ⊗t for the random variable obtained by repeating ξ independently t
times, and counting the number of one values (correct decisions) re-
ceived, where t is a positive integer. Then, as it is well-known, ξ⊗t is a
random variable of binomial distribution with parameters (t, q) with
q given by (4.5). Now we are interested in the probability P (ξ⊗t = t).
In case of using an individual classifier Di (that is, a random variable
ηi) with any i = 1, . . . , n, we certainly have P (η⊗t

i = t) = p t. To
make the ensemble better than the individual classifiers, we need to
choose the probabilities pn,k so that P (ξ⊗t = t) ≥ p t. In fact, we can
characterize a much more general case. For this purpose we need the
following lemma, due to Gilat [17].
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Lemma 4.3.6. For any integers t and s with 1 ≤ s ≤ t the function:

f(x) =
t∑

k=s

(
t

k

)
xk(1− x)t−k

is strictly monotone increasing on [0, 1].

Note that, for any x ∈ [0, 1] we obviously have:

t∑

k=0

(
t

k

)
xk(1− x)t−k = 1.

As a simple consequence of Lemma 4.3.6, we obtain the following
result.

Theorem 4.3.7. Let t and s be integers with 1 ≤ s ≤ t. Then:

P (ξ⊗t ≥ s) ≥ P (η⊗t
1 ≥ s),

if and only if q ≥ p, i.e. Eξ⊗t ≥ tp.

Proof. Let t and s be as given in the statement. Then, we have:

P (ξ⊗t ≥ s) =
t∑

k=s

(
t

k

)
qk(1− q)t−k,

P (η⊗t
1 ≥ s) =

t∑

k=s

(
t

k

)
pk(1− p)t−k.

Thus, by Lemma 4.3.6, we obtain P (ξ⊗t ≥ s) ≥ P (η⊗t
1 ≥ s), if and

only if, q ≥ p, and the theorem follows.
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4.4 The dependent case

We have assumed earlier that the coordinates ηi of η are independent
random variables. The classifiers are generally considered indepen-
dent if they produce independent errors. In our special application,
different algorithms detecting the optic disc are regarded as classifiers.
These algorithms can not be considered independent in all cases be-
cause it can happen that the performance of the algorithms is based
on very similar conditions. In case of dependent algorithms we have
to decide how to measure the dependencies of the algorithms. We can
consider the joint distribution of the outputs of the algorithms that is
a well-known method to calculate the dependency. It can be shown
that, similarly to the independent case, the overall performance of the
system is equal to the individual accuracies if linear pnk is given.

Theorem 4.4.1. Let η = (η1, . . . , ηn) be an n−dimensional random

variable, where Eηi = p (i = 1, . . . , n). We consider the joint distrib-

ution of (η1, . . . , ηn) such that

ca1,...,an = P (η1 = a1, . . . , ηn = an).

Let pn,k = k
n

(k = 0, 1, . . . , n). Then we have Eξ = p.

Proof. It follows from rearranging the sums in the following way:

Eξ =
n∑

k=0

∑

a1+...+an=k

k

n
qa1,...,an =

1

n

n∑
i=1

∑
ai=1

qa1,...,an =

=
1

n

n∑
i=1

P (ηi = 1) = p.
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More realistically, the different classifiers in general make errors
with different probabilities.

Remark 4.4.2. If the random variables ηi of η have different expected

values, that is Eηi = pi (i = 1, . . . , n), then we get that:

Eξ =
p1 + p2 + . . . + pn

n
,

if pn,k = k
n

(k = 0, 1, . . . , n).

It means that the overall performance of the system is equal to the
average of the individual accuracies if linear pn,k is considered.

The calculations of the majority voting error for such a system
(with classifiers making errors with different probabilities) is no longer
as easily tractable. Namely, it requires probability calculations for
all combinations of classifiers being in error in majority voting sense.
Computationally, this process is very complex (complexity of the order
of 2n) and calculations of majority voting errors tend to be intractable
very quickly even for small values of n.

In this section, we investigate how dependencies among the vot-
ers influence the accuracy of the ensemble; for related results, see e.g.
[5, 30]. For this purpose, we generalize some concepts that were intro-
duced for classical majority voting to measure the extremal behavior
(minimal and maximal accuracies) of an ensemble. First, we consider
pattern of success and pattern of failure [30] which are such realiza-
tions of the votes in a series of experiments that lead to the possible
highest and lowest accuracy of the ensemble, respectively. It is worth
noting that to define these measures, a rather serious restriction con-
sidering discretization of the model is needed to be applied. Namely,
not only the accuracies of the individual classifiers are given, but also
the precise numbers of successful decisions during the experiment are
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fixed: e.g. for a classifier having accuracy p = 0.6 we consider 6 correct
votes in 10 experimental runs.

Though there are some results in the literature for the case of
different accuracies pi of the classifiers Di (or, in other words, for the
case Eηi = pi (i = 1, . . . , n)) (see e.g. [21], [40], [65] and the references
there), the vast majority of the results (such as e.g. in [31]) concern
the case p = p1 = . . . = pn. Hence in section 4.4.1, we shall make
the latter assumption, too. However, in section 4.4.2, we give a much
more general framework which handles both dependencies without the
restriction considering discretization, and also different accuracies of
classifiers that makes the model realistic for applications.

4.4.1 Pattern of success and pattern of failure

In this section, we suppose that the individual classifier accuracies
coincide (p = p1 = . . . = pn). Repeat the experiments η1, . . . , ηn t

times, with some positive integer t, and write η
(j)
i for the j−th real-

ization of ηi (j = 1, . . . , t). Suppose (as a rather strong, but standard
assumption) that we have:

(4.6) |{j : η
(j)
i = 1}| = r for all i = 1, . . . , n.

Here r is a positive integer with r = np. We are interested in the
behavior (accuracy) of ξ repeated t times, or in other words in the value
Eξ⊗t, under the condition (4.6). Write ξ(j) for the j−th realization of
ξ (j = 1, . . . , t). Then, we clearly have Eξ⊗t = Eξ(1) + . . . + Eξ(t).

The number of one values is fixed for ηi, however, their positions
can be freely changed. For simplicity, we shall describe the situation
by a table T of size n× t: in the (i, j)−th entry T (i, j) of T we write

0 or 1, according to the actual value of η
(j)
i (1 ≤ i ≤ n, 1 ≤ j ≤ t).

Our first result in this interpretation concerns the case of linear pn,k.

48



Proposition 4.4.3. If pn,k = k
n

for all k = 0, 1, . . . , n, then we have

that Eξ⊗t = r.

Proof. Denote the number of ones in the j−th column of the table T

by uj for j = 1, . . . , t. Then, we have Eξ(j) =
uj

n
. Thus:

(4.7) Eξ⊗t = Eξ(1) + . . . + Eξ(t) =
u1

n
+ . . . +

ut

n
.

Since u1 + . . . + ut is just the total number of ones in T , we have:

(4.8) u1 + . . . + ut = nr.

Combining (4.7) and (4.8) we obtain Eξ⊗t = r, and the statement

follows.

In view of the proof of Proposition 4.4.3, we see that in case of a
general system pn,k we have:

(4.9) Eξ⊗t =
t∑

j=1

pn,uj
.

Then, to describe the pattern of success (the highest accuracy) and
the pattern of failure (the lowest accuracy), we need to maximize and
minimize the above quantity, respectively.

Our next result concerns the pattern of success. Here we consider
the problem only under some further assumptions, which in fact are
not necessary to study and describe the situation as it will be shown in
section 4.4.2. However, the statement together with its proof already
show the basic idea for construction. Furthermore, the former results
usually consider these assumptions, so in this way our model can be
fitted to the existing literature, as well. In section 4.4.2, we describe
the general method, which works without any technical restrictions.
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Theorem 4.4.4. Let the probabilities pn,k be arbitrary, up to pn,0 = 0.

Let k1 6= 0 be an index such that
pn,k1

k1
≥ pn,k

k
for all k = 1, . . . , n.

Then, Eξ⊗t ≤ nrpn,k1

k1
. Further, if tk1 = nr then the maximum can be

attained.

Proof. Using (4.9) and our assumption
pn,k1

k1
≥ pn,k

k
for all k = 1, . . . , n,

we get:

Eξ⊗t =
t∑

j=1

pn,uj
=

t∑
j=1

uj 6=0

uj

pn,uj

uj

≤
t∑

j=1

uj
pn,k1

k1

=

=
pn,k1

k1

t∑
j=1

uj =
nrpn,k1

k1

,

which implies the first part of the statement.

Assume now that we also have tk1 = nr. Fill in the n× t table T

with zeros and ones arbitrarily, such that we have r ones in each row.

If there is a column containing less than k1 ones, then by tk1 = nr

there is another column with more than k1 ones. Write j1 and j2 for

the indices of these columns, respectively. Then there exists a row say

with index i, such that T (i, j1) = 0 and T (i, j2) = 1. Change these

zero and one values, and continue this process as long as possible.

Since tk1 = nr, finally we end up with a table T containing r ones in

each row and k1 ones in each column. Then, we have:

Eξ⊗t =
t∑

j=1

pn,k1 = tpn,k1 = tk1
pn,k1

k1

=
nrpn,k1

k1

,
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and the theorem follows.

Our next theorem describes the pattern of failure, in a similar
fashion as the previous statement.

Theorem 4.4.5. Let the probabilities pn,k be arbitrary, up to pn,0 = 0.

Let k2 6= 0 be an index such that
pn,k2

k2
≤ pn,k

k
for all k = 1, . . . , n.

Then, Eξ⊗t ≥ nrpn,k2

k2
. Further, if tk2 = nr then the minimum can be

attained.

Proof. Since the proof follows the same lines as that of Theorem 4.4.4,

the details are omitted.

Similarly to the independent case in section 4.3.1, we also investi-
gate the case, when only good decision is made by the ensemble. In
other words, we would like to describe the situation, where:

(4.10) P (ξ⊗t = t) =
t∏

j=1

pn,uj

is maximal. Note that, in this case one can easily obtain a table T
with P (ξ⊗t = t) = 0. So now finding the minimum (i.e. investigating
the pattern of failure) does not make sense.

For the special case of pn,k = k
n
, we have the following result.

Theorem 4.4.6. Let pn,k = k
n

for all k = 0, 1, . . . , n, and assume that

nr ≥ t. Then P (ξ⊗t = t) is maximal for the tables T in which:
⌊nr

t

⌋
≤ uj ≤

⌈nr

t

⌉
(1 ≤ j ≤ t),

where uj denotes the number of ones in the j−th column of T . Further,

all these tables T can be explicitly constructed.
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Proof. Let T be an arbitrary table having r ones in each row such

that T has no column consisting only of zeros. Since nr ≥ t, such a

table T exists (and can be easily constructed). In view of the proof of

Proposition 4.4.3, for the corresponding ξ⊗t in (4.10) we have:

P (ξ⊗t = t) =
1

nt

t∏
j=1

uj.

Then (uj1 − 1)(uj2 + 1) > uj1uj2 clearly holds, if for some indices 1 ≤
j1, j2 ≤ t we have uj1 − uj2 ≥ 2. Hence moving a one from the j1−th

column to the j2−th column (keeping its row; just as at the end of the

proof of Theorem 4.4.4), the new value for P (ξ⊗t = t) will be larger

than the previous one. Continuing this process as long as possible,

finally we obtain a table T , where for any indices 1 ≤ j1, j2 ≤ t we

have |uj1 − uj2| ≤ 1. Obviously, this is equivalent to the following

inequalities: ⌊nr

t

⌋
≤ uj ≤

⌈nr

t

⌉
(1 ≤ j ≤ t).

Observing that for all such tables T the values P (ξ⊗t = t) coincide,

and these tables differ from each other only by a permutation of their

columns, the theorem follows.

Note that, if t > nr then T necessarily has a column with all zero
entries, whence P (ξ⊗t = t) = 0 in this case. For general values pn,k,
we have the following result.

Theorem 4.4.7. Let the probabilities pn,k be arbitrary, up to pn,0 = 0

and pn,k > 0 for 0 < k ≤ n. Let k0 6= 0 be an index such that
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ln pn,k0

k0
≥ ln pn,k

k
for all k = 1, . . . , n. Then:

P (ξ⊗t = t) ≤ p
nr
k0
n,k0

.

Further, if tk0 = nr then the maximum can be attained.

Proof. First, we have:

P (ξ⊗t = t) =
t∏

j=1

pn,uj
= exp

(
t∑

j=1

ln pn,uj

)
.

On the other hand, by the assumption
ln pn,k0

k0
≥ ln pn,k

k
(k = 1, . . . , n):

t∑
j=1

ln pn,uj
=

t∑
j=1

uj 6=0

uj ln pn,uj

uj

≤
t∑

j=1

uj ln pn,k0

k0

=

=
ln pn,k0

k0

t∑
j=1

uj =
nr ln pn,k0

k0

holds. Thus:

P (ξ⊗t = t) ≤ p
nr
k0
n,k0

,

which implies the first part of the statement. The second part can be

proved by following the argument at the end of the proof of Theorem

4.4.4.

4.4.2 Extremal accuracies by linear programming

In this section, we drop the condition (4.6), and give a compact tool
based on linear programming to calculate the minimal and maximal
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ensemble accuracies. We assumed earlier that the random variables ηi

(i = 1, . . . , n) are independent. In our application, we consider differ-
ent algorithms detecting the optic disc as classifiers. These algorithms
cannot be assumed to be independent in all cases, because it can hap-
pen that the operations of the algorithms are based on very similar
principles. In case of dependent algorithms, we have to decide how
to measure the dependencies of the algorithms. For this aim, we can
investigate the joint distribution of the outputs of the algorithms. So
let:

ca1,...,an = P (η1 = a1, . . . , ηn = an),

where ai ∈ {0, 1, ∗}. The star denotes any of the possible correctness
values, that is, ∗ = 0 or 1. The problem to determine the combina-
tion of voters achieving the best/ the worst ensemble performance is
equivalent to maximize/minimize the function:

(4.11) q(ca1,...,an) =
n∑

k=0

(
pn,k ·

∑

a1+...+an=k

ca1,...,an

)

under the following conditions:

∑
ai=1

c∗,...,∗,ai,∗,...,∗ = pi (i = 1, . . . , n),

∑
a1,...,an

ca1,...,an = 1,

ca1,...,an ≥ 0,

(4.12)

where Eηi = pi (i = 1, . . . , n) is the accuracy of the i−th classifier.
Observe that this is just a linear programming problem for the vari-
ables ca1,...,an , which can be solved by standard tools.

In the special case, when (η1, . . . , ηn) are totally independent, we
have:

(4.13) ca1,...,an = P (η1 = a1) . . . P (ηn = an).
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That is, the entries of the contingency table can be determined by
the probabilities p1, . . . , pn. In this case, the ensemble performance q
is simply given by (4.4).

From a practical point of view, it is very important to study the
improvability of an existing ensemble regarding its accuracy. To ad-
dress this issue, we investigate to what extent the addition of a new
classifier Dn+1 with accuracy pn+1 may improve the system. For this
study, we observe both the change of the system accuracy q and the
interval [qmin, qmax] for the minimal and maximal system accuracy.

After adding a new algorithm to the existing system, the new sys-
tem accuracy depends not only on the accuracies p1, . . . , pn+1, but also
on the values pn+1,k.

As an estimation for pn+1,k, from the definition of pn,k we have:

(4.14) pn,k ≥ pn+1,k,

(4.15) pn,k ≤ pn+1,k+1.

In (4.14), the added vote is supposed to be false, so the probability
of good decision after the extension cannot be greater than in the
existing system. The estimation (4.15) describes the case of adding a
correct vote to the system. To sum up (4.14) and (4.15), we get the
following properties for pn+1,k:

(4.16) pn,k−1 ≤ pn+1,k ≤ pn,k.

Applying inequalities (4.16), the values pn+1,k can be estimated from
the values pn,k.

4.5 Application – optic disc detection

Now we turn to show, how our generalized model supports real-world
problems in a clinical field. Progressive eye diseases can be caused
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by diabetic retinopathy (DR) which can lead even to blindness. One
of the first essential steps in automatic grading of the retinal images
is to determine the exact location of the main anatomical features,
such as the optic disc. The locations of these features play impor-
tant role in making diagnosis in the clinical protocol. In this section,
for the OD detection task, we start with showing how the general
formulation considering the probabilities pn,k is restricted for this spe-
cific challenge using geometric constraints defined by anatomic rules.
Then, we present the accuracy of our current ensemble, characterize
it by the achieved results and discuss the possibilities of its further
improvement.

4.5.1 Constraining by shape characteristics

In our application, the votes are required to fall inside a disc of di-
ameter dOD to vote together. For the calculation of the values pn,k

for our proposed method, the k correct votes must fall inside the true
OD region, however, the n − k false ones can fall within discs with
diameter dOD anywhere else within the ROI (region of interest in the
image). That is, more false regions are possible to be formed which
gives the possibility to make a correct decision even if the true votes
are in minority. Note that, a candidate of an algorithm is considered
to be correct if its distance from the manually selected OD center is
not larger than dOD

2
. For this configuration, see Figure 4.4.

If we assume independency among the algorithms, for our applica-
tion the behavior of the values pn,k as a function of k for a given n is
shown in Figure 4.3 for n = 9 and p = 0.9.

This function has been determined empirically by dropping random
pixels on the disc in a large number of experiments.

Figure 4.3 shows that the pn,k increases exponentially in k for a
given n. This is a consequence of the following result of [6] and [7]:
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Figure 4.3: The graph of pn,k for a fixed n = 9 and p = 0.9 with our

geometric constraint to fall within a disc of diameter dOD.

Theorem 4.5.1. Let U1, U2, . . . , Un, . . . be a sequence of independent

random points in the closed Euclidean disk B of unit radius (centered

at the origin). Let Hn = max{h(Ui, Uj) : 1 ≤ i ≤ j ≤ n} denote the

h-diameter of the set {Ui, i = 1, . . . , n}, that is the maximum pair-wise

h-distance among the first n points, where h is a symmetric measurable

function. Then we get that

lim
n→∞

P (n
4
5 (2−Hn) > ω) = exp(−4ω

5
2

5π
).

It says the probability that the diameter of a point set is not less
than a given constant decreases exponentially if the number of points
tends to infinity. In our case, this point set consists the pixel outputs
of the algorithms for the optic disc detection. Note that, this diameter
corresponds again to the diameter dOD of the OD.

The ensemble accuracy for our spatially constrained system is mea-
sured empirically by the help of a set of test images. The obtained
data are enclosed in Table 4.2 for different number of independent
classifiers (n) for some equal individual accuracies (p).

From Table 4.2 we can see a rapid increase in the ensemble accu-
racy. From trivial geometric considerations, it can be also seen why
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n = 3 n = 5 n = 7 n = 9

p = 0.6 0.6435 0.9076 0.9654 0.9893

p = 0.7 0.7889 0.9631 0.9938 0.9985

p = 0.8 0.9029 0.9906 0.9986 0.9997

p = 0.9 0.9697 0.9994 1.0000 1.0000

Table 4.2: Measured ensemble accuracy under the geometric con-

straint.

an ensemble with few members (e.g. n = 3) performs bad.
Now, to describe the spatially constrained case in detail, let us

assign the probability (1−pi)ri with ri ∈ [0, 1] to the i−th independent
classifier. This probability means that the i−th voter makes false
individual decision (term 1 − pi) and participates in making a false
ensemble decision (term ri). For the algorithm Di with accuracy pi

giving a false candidate having coordinates (xi, yi) for the OD center,
we consider that the distribution of (xi, yi) is uniform outside the true
OD region for all i = 1, . . . , n. With this setup, we have:

(4.17) r1 = . . . = rn =
T0

T − T0

,

where T0 and T are the area of the OD and the ROI, respectively, so
in this case ri is the same predetermined constant for all i = 1, . . . , n.
For better understanding, see also Figure 4.4.

For the interpretation of the values pn,k for this case, let us consider
n − k = k1 + . . . + kl, i.e. the decomposition of the number of false
candidates , where all the false votes are covered by the l disjoint discs
of diameter dOD, and ki is the cardinality of the false votes covered by
the i−th disc. Without the loss of generality, k1 ≥ . . . ≥ kl may be
assumed. To determine the values pn,k, we introduce the probability
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Figure 4.4: The geometric constraint applied to the candidates of the

algorithms: they should fall inside a disc of a fixed diameter dOD to

vote together.

P (n, k, k1, . . . , kl) for the good decision in case of a concrete realization
of the n votes:

P (n, k, k1, . . . , kl) =

n!

k!k1! . . . kl!
p1 . . . pk(1− pk+1) . . . (1− pn)

(
1− T0

T

)k1

. . .

(
1− lT0

T

)kl

.

Applying the geometric constraint, false decision is made only when
k1 > k hence pn,k = 0 for k1 > k, while pn,k = 1 for k > k1 should hold.
The case k1 = k is broken randomly. Based on these considerations
and summing for the possible distribution of the n − k false votes
among the discs, we can calculate the corresponding values pn,k as
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follows:

(4.18)

pn,k =
∑

k1+...+kl=n−k,k>k1

P (n, k, k1, . . . , kl)+

+
1

2

∑

k1+...+kl=n−k,k=k1

P (n, k, k1, . . . , kl).

The values pn,k calculated by (4.18) and the ones shown in Figure 4.3
slightly differ. The reason for this difference is that in our geometric
derivation to have the closed form (4.18), we have considered only
disjoint discs that completely fall inside the ROI, as well. However,
these differences are minor, and both approaches have exponential
trends.

4.5.2 An ensemble-based OD detector

To take advantage of the theoretical foundations of the previous sec-
tions for efficient OD detection, we have collected eight corresponding
individual algorithms to create an ensemble from. Then, with a brute
force approach (i.e. checking all the possible combinations) we select
such an ensemble which maximizes the accuracy of the combined sys-
tem. For measuring the accuracy of both the individual algorithms
and the ensembles, we used the dataset MESSIDOR [42] containing
1200 digital images, where the OD centers were manually labelled by
clinical experts. The images are losslessly compressed with 45◦ FOV
and of different resolutions (1440× 960, 2240× 1488, and 2304× 1536
pixels) that were re-scaled to 1500× 1152 for normalization. For this
specific resolution, we get dOD = 184 pixels from averaging the manual
annotations of clinical experts for this dataset. As a result of brute
force selection, we composed an ensemble from six OD−detectors. To
have an impression about the similarities and differences between these
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approaches, next we give a short description for each of them. Each in-
dividual accuracy (pi) has been measured on the dataset MESSIDOR.
[19]

• Based on pyramidal decomposition: Lalonde et al. created an
algorithm which generates a pyramid with simple Haar-based
discrete wavelet transform. The pixel with the highest intensity
value in the low-resolution image (4th or 5th level of decompo-
sition) is considered as the center of the OD. p1 = 0.767

• Based on edge detection: This method uses edge detection algo-
rithm which is based on Rayleight-based CFAR threshold. Next,
Hausdorff distance is calculated between the set of edge points
and a circular template like the average OD. The pixel with the
lowest distance value is selected for OD center. p2 = 0.958

• Based on entropy measurement: Sopharak et al. proposed this
method which applies a median and a CLAHE filter on the reti-
nal image. In a neighborhood of each pixel, the entropy of in-
tensity is calculated; the pixel with the largest entropy value is
selected as the OD center. p3 = 0.315

• Based on kNN classification: Niemeijer et al. extracted features
(number, width, orientation and density of vessels and their com-
bination), and applied a kNN classifier to decide whether a pixel
belongs to the OD region. The centroid of the largest component
found is considered as the OD center. p4 = 0.759

• Based on fuzzy convergence of blood vessels: This method thins
the vessel system and models each line-shape segment with a
fuzzy segment. A voting map of these fuzzy segments is created
and the pixel receiving the most votes is considered as OD center.
p5 = 0.977
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• Based on Hough transformation of vessels: Ravishankar et al.
proposed to fit lines to the thinned vessel system by Hough trans-
formation. The intersection of these lines results in a probability
map. A weighting is also applied considering the intensity values
corresponding to the intersection points. The pixel having the
highest probability is considered as OD center. p6 = 0.647

As for the decision of the ensemble, we select the disc of the fixed
diameter dOD containing the largest number of algorithm candidates.
Then, as the final OD center, we consider the centroid of these candi-
dates. The final OD center is correctly found, if it falls inside the disc
aligned to the manually selected OD center and having diameter dOD.

4.5.3 Characterizing and comparing OD-ensemble

accuracies

A natural question regarding the ensemble of the detectors is what
accuracies we can expect as the best or worst based on the given
individual detector accuracies. Then, we can see where the accuracy
of our current ensemble falls within this interval, and can also check
how it relates to a system which would contain independent ensemble
members.

In our application, the values pn,k for calculating the above charac-
terizing ensemble accuracies as a function of k for n = 6 is calculated
empirically and shown in Figure 4.5. Note that, though our system
naturally contains dependencies among its members, the exponential
behavior of the independent ensemble (see Figure 4.3) can be observed
here, as well.

Using the linear programming technique described in section 4.4.2,
we have the following minimal and maximal ensemble accuracies:

qmin = 0.899, qmax = 1
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Figure 4.5: The graph of pn,k for a fixed n = 6 in our OD detector

ensemble.

for the given individual accuracies, respectively.
Based on our experimental tests, the ensemble accuracy for our

system has been found to be:

q = 0.981,

which is quite close to the possible maximal accuracy qmax = 1. How-
ever, if we calculate the system accuracy using (4.11) under the con-
ditions (4.12) and with the assumption (4.13) on the independency of
the detectors, we have:

qind = 0.998.

That is, an ensemble of independent algorithms with the given
individual accuracies p1, . . . , p6 would lead to nearly perfect results
regarding accuracy. On the other hand, it is not surprising that our
current system performs worse, since in this specific detection task
it is quite challenging to find algorithms based on different (indepen-
dent/diverse) principles.
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4.6 Modifications on the decision rule

In this section, we modify the final decision rule of the ensemble which
will result in further improvement of the system accuracy. Our gener-
alization is based on the assignment of weights to the ensemble mem-
bers (classifiers) [60].

Weighted majority voting is widely examined in the literature (see
e.g. [21], [30]). For characterizing the accuracy of the weighted system
to our application a corresponding theoretical model is needed. If we
consider the bounding circle with the maximal weight sum, then sim-
ilarly to a traditional weighted majority setup, we can make a good
decision even in the case when the bad candidates have pure majority
in number. In [61], we have generalized the classical majority vot-
ing to our problem. Now, just as in the traditional case, we check
how weighted majority can outperform classical majority voting. In
the non-weighted generalized voting system bad decision can be made
only when a subset of bad candidates with larger cardinality than the
number of good ones can be bounded by a circle with an appropriate
radius such as in the case shown in Figure 4.6. In the weighted gener-
alized voting system we make a wrong decision only in that case when
a subset of bad candidates having larger sum of weights than the sum
of weights assigned to the good ones can be bounded by a circle with
an appropriate radius. In the case demonstrated in Figure 4.6. good
decision is made applying the weighted generalized voting system.

These observations motivated us to work out a corresponding theo-
retical model, where bad votes can overcome good ones only if a further
(e.g. geometrical) condition is fulfilled. This additional condition is
the spatial closeness of the candidates in the above application. With
this model we generalize the classical non-weighted and weighted ma-
jority voting scheme, since in the case of less good votes we may make
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Figure 4.6: Results of the different OD detecting algorithms

a good decision. This generalized method can be applied to several
problems corresponding to spatial location with additional constraints
(e.g. detecting a certain pixel or region).

First, we recall the necessary procedure for finding the weights in
classical majority voting (see e.g. [30]). Then, we derive how the
optimal weights can be found for our generalized voting case.

4.6.1 Weighted voting system

Let us consider a set of the classifiers {D1, D2, . . . , Dn} with accuracies
(p1, p2, . . . , pn), respectively, for weighted voting system. Then, let di,j

be defined in the following way: di,j = 1, if the classifier Di labels x in
the class ωj, and di,j = 0, otherwise. In case of weighted voting, the
discriminant function for class ωj is given as:

gj(x) =
n∑

i=1

bidi,j,

where the weight bi corresponds to the classifier Di.
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Note that the following discriminant functions are equivalent for
the given decision rule:

gj(x) = P (s|ωj)P (ωj), gj(x) = log(P (s|ωj)P (ωj)),

where s = [s1, . . . , sn] is the vector with the label output of the en-
semble. Here si ∈ Ω is the label suggested for x by the classifier Di

and P (ωj) is the prior probability for class ωj.

In a weighted majority voting system, the class label ωk is chosen
for x if

gk(x) = max
j=1,...,n

gj(x) =
n∑

i=1

bidi,k.

In a weighted majority system a natural question is that how to choose
the optimal weights for the classifiers. If we consider independent
classifiers, then the system accuracy is maximized by assigning weights
(see e.g. [30]):

bi ∝ log
pi

1− pi

(i = 1, . . . , n).

Note that, conditional independence is assumed here, that is:

P (s|ωj) =
n∏

i=1

P (si|ωj),

where s = [s1, . . . , sn] is the same as above.

The weights bi ∝ log pi

1−pi
do not guarantee the minimum classifica-

tion error, because the prior probabilities for the classes P (ωj) have to
be taken into account, as well. More precisely, if the individual clas-
sifiers are independent, and the a priori likelihood is that each choice
is equally likely to be correct, then the decision rule that maximizes
the system accuracy is a weighted majority voting rule obtained by
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assigning weights bi ∝ log pi

1−pi
.

In contrast to the classical majority voting, we equip each classifier
output with different weights bi, where 0 ≤ bi ≤ 1 (i = 1, . . . , n). It
seems natural to give the classifiers with larger accuracies larger im-
portance in making the final decision. Note that the classical majority
voting scheme can be considered as a special case of the weighted vot-
ing system since in the majority rule the weight of each vote given by
a classifier is constrained to be bi = 1 for all i = 1, . . . , n.

4.6.2 Generalized weighted voting system

We can also assign weights to the classifiers within our generalized vot-
ing scheme presented earlier. If the classifiers (D1, D2, . . . , Dn) with
respective accuracies (p1, p2, . . . , pn) and weights (b1, . . . , bn) are con-
sidered, then the final decision is made by choosing the maximal sum
of weights, where some additional constraints (e.g. a geometrical one
for OD detection) have to be fulfilled by the classifier outputs.

Similarly as in a previous section, let us consider the probability
(1 − pi)ri with ri ∈ [0, 1] for the i−th classifier that means that the
i−th classifier makes wrong classification and participates in making
a bad decision.

In our application, we choose the maximal sum of those weights
of the algorithms whose outputs can be bounded by a circle with an
appropriate radius. An algorithm takes part in making a bad decision
if its output falling outside the optic disc meets other bad candidates.
For the algorithm Di with accuracy pi giving a bad candidate (xi, yi)
for the optic disc, we consider that the distribution of (xi, yi) is uniform
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outside the optic disc for all i (i = 1, . . . , n). In this case, we have:

(4.19) r1 = . . . = rn =
T0

T − T0

,

where T0 and T are the area of the optic disc and the ROI (whole
useful image domain), respectively, so ri is a predetermined constant
and same for all i (i = 1, . . . , n).

The next theorem gives the answer on how to select the weights in
our generalized weighted majority voting model.

Theorem 4.6.1. If independent classifiers (D1, D2, . . . , Dn) are given

(conditional independence is assumed), then the optimal weight bi for

the classifier Di with accuracy pi can be calculated as:

(4.20) bi ∝ log
pi

(1− pi)2ri(1− ri)
.

Proof. Let s = [s1, . . . , sn] denote the vector with the label output

of the ensemble, where si ∈ Ω is the label suggested for x by the

classifier Di. A Bayes-optimal set of discriminant functions based on

the outputs of the n classifiers is:

gj(x) = log P ((ωj)P (s|ωj)), (j = 1, . . . , c).

From the conditional independence, for the discriminant functions
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gj(x) we get:

log P (ωj)P (s|ωj) = log

[
P (ωj)

n∏
i=1

P (si|ωj)

]
=

= log P (ωj) + log


 ∏

i,si=ωj

P (si|ωj)
∏

i,si 6=ωj

P (si|ωj)


 =

= log P (ωj) + log


 ∏

i,si=ωj

pi

∏

i,si 6=ωj

(1− pi)ri

∏

i,si 6=ωj

(1− pi)(1− ri)


 =

= log P (ωj)+

+ log


 ∏

i,si=ωj

pi(1− pi)

1− pi

∏

i,si 6=ωj

(1− pi)ri

∏

i,si 6=ωj

(1− pi)(1− ri)


 =

= log P (ωj)+

+ log


 ∏

i,si=ωj

pi

1− pi

∏

i,si 6=ωj

(1− pi)ri(1− ri)
n∏

i=1

(1− pi)


 =

= log P (ωj)+

+
∑

i,si=ωj

log
pi

1− pi

+
∑

i,si 6=ωj

log((1− pi)ri(1− ri)) +
n∑

i=1

log(1− pi).

The last term does not depend on the class label j, so we can
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reduce the discriminant function to:

gj(x) = log P (ωj) +
∑

i,si=ωj

log
pi

1− pi

+
∑

i,si 6=ωj

log((1− pi)ri(1− ri)) =

log P (ωj) +
n∑

i=1

di,j log
pi

1− pi

+
n∑

i=1

(1− di,j) log((1− pi)ri(1− ri)) =

log P (ωj) +
n∑

i=1

di,j log
pi

(1− pi)2ri(1− ri)
+

n∑
i=1

log((1− pi)ri(1− ri)).

The last term of the summation is also independent from the class

label j, so it can be omitted. If we consider the equations:

gj(x) = log P (ωj) +
n∑

i=1

di,j log
pi

(1− pi)2ri(1− ri)
,

and

gj(x) =
n∑

i=1

bidi,j ,

we get that the weights bi (i = 1, . . . , n), where

bi ∝ log
pi

(1− pi)2ri(1− ri)
,

are supposed to maximize the system accuracy.

Note that, similarly to classical majority voting, the weights given
as optimal do not always guarantee the minimum classification error.
Only if the individual classifiers are independent and the prior proba-
bilities for the classes P (ωj) are equal, the decision rule that maximizes
the system accuracy is a weighted majority voting rule, obtained by
assigning the above weights.
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4.6.3 Weighted majority voting in OD detection

In our application, the output of each OD detecting algorithm is the
OD center given as a single pixel with coordinates (x0, y0). In our
ensemble-based system we have the set of class labels {ω(x,y)|(x, y) ∈
ROI}. For an OD detector (as a classifier) with its output (x0, y0),
the class label ω(x0,y0) is assigned to the detector. In other words, the
classifier voted to the pixel (x0, y0) as OD center. The classification is
considered to be correct if the output (x0, y0) falls inside the true optic
disc on the retinal image. We can define the decision rule as the sum
of the weights of the OD detecting algorithms, whose outputs can be
bounded by a circle of the OD radius. Such a circle with the maximal
sum of weights is accepted as the final decision for the OD.

In this application, the condition for the equal prior probabilities
for the classes is fulfilled if we suppose uniform distribution of the
candidates both inside and outside the optic disc.

In contrast to the non-weighted systems, less conflicting situations
can be obtained when the decision is not exact because of the equal
number of outputs falling inside the discs of the predetermined radius.
Further improvement of this weighted system on majority voting is
that there is no need for accuracy constraints p > 0.5 on individual
algorithms to achieve larger system accuracy. It can be shown that
this weighted voting rule always outperforms the classical majority
rule because in case of a conflict (when the same number of votes
are densified in different discs of a given radius) majority rule decides
randomly between the disc candidates, while the weighted voting sys-
tem can handle the conflict determining to the sum of the weights
corresponding the output votes falling inside the discs.
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4.6.4 Experimental results

We compare the system accuracies of the classical and the weighted
majority voting for different accuracies and different weights. In our
tests, we considered three different types of accuracies for the algo-
rithms:

• A1 : p1 = p2 = . . . = p9 = 0.6,

• A2 : pi = 1− 0.1i, i = 1, . . . , 9,

• A3 : p1 = 0.6472, p2 = 0.9765, p3 = 0.3205, p4 = 0.7593,
p5 = 0.3153, p6 = 0.2276, p7 = 0.9582, p8 = 0.7671, p9 = 0.6432.

The case A1 is often examined in the literature with equal weights,
A2 is a theoretical example, while A3 contains true accuracies of OD
detecting algorithms measured on the Messidor test database contain-
ing 1200 retinal images.

For comparative studies, we apply the following weights bi for the
i−th algorithm having accuracies pi (i = 1, . . . , 9):

• B1 : bi = pi,

• B2 : bi = log pi

1−pi
,

• B3 : bi = pi

(1−pi)2ri(1−ri)
.

That is, in case B1 each weight is equal to the accuracy of the
individual algorithm (such as taken the i−th algorithm with accuracy
pi, then it participates in the final decision with weight bi = pi). B2 is
suggested as optimal for the classical weighted majority voting, while
B3 is the proposed assignment for our generalized weighted major-
ity voting. In this way, we give a practical example to confirm the
theoretical derivation of the optimal weights given in Section 4.6.2.
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We apply OD detecting algorithms as classifiers, so we can test
and compare the overall performance of the different voting systems
on classifier output generated artificially. In lack of independent OD
detecting algorithms providing these accuracies, we are not able to test
and compare the voting systems on retinal images. We generate the
classifier outputs in the following way: we consider a disc of radius R
(ROI) and a disc of radius R0 inside the ROI (optic disc), where R =
712 and R0 = 48 pixels, respectively. We generate 9 output points with
coordinates (xi, yi) (as outputs the Di’s), where the probability that
the point (xi, yi) falls inside the optic disc is pi and the distribution
of (xi, yi) is uniform outside the optic disc. Now, the probability ri

(i = 1, . . . , 9) can be determined as:

(4.21) r1 = . . . = rn =
T0

T − T0

=
R2

0

R2 −R2
0

.

In this test we compare the performance of the following voting sys-
tems: MV- majority voting, WMV- weighted majority voting, GMV-
generalized majority voting, WGMV- weighted generalized majority
voting. The system accuracies for the individual accuracy setups
A1, A2, A3 with the weight assignments (B1, B2, B3) are given in Figure
4.7(a)., Figure 4.7(b)., Figure 4.7(c)., respectively.

From the tables we can see that if all weights are equal, then it
naturally results in the same system accuracy as the non-weighted
voting scheme, otherwise, weighted voting outperforms non-weighted
voting. Our generalized non-weighted (weighted) voting system has
better overall performance than the classical non-weighted (weighted)
majority voting scheme.

For the OD detection application, we can test and compare our
generalized non-weighted and generalized weighted voting system on
a real database of retinal images, as well. The Messidor dataset
considered for this aim contains 1200 retinal images. In this test,
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A
1

MV WMV GMV WGMV

B
1

0.7323 0.7323 0.9948 0.9996

B
2

0.7380 0.7380 0.9941 0.9991

B
3

0.7326 0.7326 0.9948 0.9989

(a) System accuracies for the set A1

A
2

MV WMV GMV WGMV

B
1

0.5012 0.8066 0.9889 0.9943

B
2

0.4965 0.9688 0.9901 0.8712

B
3

0.5009 0.7289 0.9877 0.9951

(b) System accuracies for the set A2

A
3

MV WMV GMV WGMV

B
1

0.8241 0.9526 0.9996 1.0000

B
2

0.8260 0.9926 0.9989 0.9941

B
3

0.8258 0.9481 0.9989 0.9998

(c) System accuracies for the set A3

Figure 4.7: Overall system accuracies for the set of classifier accuracies
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we assigned the optimal weights derived in Section 4.6.2 to the par-
ticipating algorithms (classifiers) having individual accuracies p1 =
0.6472, p2 = 0.9765, p3 = 0.3205, p4 = 0.7593, p5 = 0.3153, p6 =
0.2276, p7 = 0.9582, p8 = 0.7671, p9 = 0.6432 (as given in case A3).
However, note that we have no information about the dependencies
among these algorithms. Despite the unknown dependencies of the
algorithms, we found that weighted majority voting with its system
accuracy 0.98 outperformed classical majority voting (system accuracy
0.974), and also all the individual accuracies.

4.7 Discussion and conclusions

In this chapter, we have introduced a new model that enables the in-
vestigation of majority voting systems in the spatial domain. We have
considered independent/dependent ensembles composed by classifiers
having not necessarily the same individual accuracies. We have de-
scribed how a constraint may raise from shape characteristics, and pre-
sented an ensemble-based system for optic disc detection in retinal im-
ages, where the object has a circular anatomical geometry. The general
theory of ensemble-based systems describes several voting methodolo-
gies. However, for spatial voting, corresponding models have not been
presented yet, and their adaptation is rather challenging to this do-
main. For instance, the extension of the approach proposed in this
chapter is currently under study for weighted spatial majority voting,
but for several cases (e.g. dependent voters) it is far from being trivial.

Our detailed experimental studies have been performed on the im-
age dataset MESSIDOR [42]. However, it is well-known in the com-
munity working with retinal images that we can expect high variance
among retinal image databases, so tests on different datasets are rec-
ommended. Thus, to validate more its efficiency, we have tested the
proposed ensemble-based approach on a database containing 327 im-
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ages provided by the Moorfields Eye Hospital, London from a real
mass screening process. Following the presented methodology, we have
composed ensembles from the individual OD detector algorithms, and
applied the spatially constrained decision rule. The highest accuracy
q = 0.921 has been found for the ensemble containing the four mem-
bers having individual accuracies p1 = 0.798, p3 = 0.150, p4 = 0.801,
p5 = 0.835, respectively (for the remaining three algorithms we have
measured p2 = 0.780, p6 = 0.342, and p7 = 0.297, respectively). Sim-
ilarly to MESSIDOR, the ensemble performed better than any of its
members for the Moorfields dataset, as well. Moreover, we can observe
that the individual accuracies have been varied more among the dif-
ferent datasets than that of the ensemble. This observation suggests
that we can expect a more stable and calculable behavior if we work
with ensembles.

Our approach can be extended to other detection problems with
keeping in mind that the presented results are suitable to handle such
shapes that can be described by set diameter. To demonstrate the ef-
ficiency of our method, we considered another detection problem: the
localization of the macula, which is the center of the sharp vision in
the retina and appears as a dark, disc-like object of diameter approx-
imately 6mm. That is, we have a very similar scenario to that of the
OD detection problem. We have set up an ensemble of five macula
detectors [19] having individual accuracies 0.583, 0.870, 0.714, 0.624,
0.962, respectively. By applying the proposed spatially constrained
decision scheme, we have found 0.968 for the accuracy of the ensemble
for the dataset MESSIDOR. From both the individual and ensemble
accuracy values, we can see that the consideration of the macula de-
tector algorithms are less reliable, however, in practical application we
can also take advantage of the detection of the OD, since the OD has
a fixed distance and direction from the macula. Nevertheless, from
these results we can see that our proposed ensemble-based approach
has leaded to improvement in this field, as well.
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This generalized voting system (when some additional geometri-
cal constraints have to be fulfilled) can be applied in that case when
weights are assigned to the classifiers, as well. In our specific appli-
cation better overall system accuracy is achieved than in case of indi-
vidual algorithm and weighted voting outperformed the non-weighted
one. Same results are expected for all image processing problems
where the algorithms vote with a single pixel or range as output. In
this application adding a new algorithm to the system seems to be
very effective, as well.

It will be a future research direction to characterize how the ac-
curacy can be raised by removing/adding algorithms from/to the ex-
isting system in consideration to individual accuracies and dependen-
cies. The performance of combination methods that are variations
of the majority vote have been studied in [35]. A Bayesian formula-
tion and a weighted majority vote (with weights obtained through a
genetic algorithm) are implemented, and the combined performances
of 7 classifiers on a large set of handwritten numerals are analyzed.
The genetic algorithm is capable of identifying dependencies among
classifiers, by assigning lower weights to those that are less effective
in influencing the group decision in the optimal direction. This is a
very useful feature, since this kind of knowledge is not available when
classifiers are designed and implemented. In general, it is a non-trivial
problem to decide whether classifiers are independent, since there can
exist many possible overlaps between feature sets and classification
methods. Even after a recognizer has been trained and tested, and
its individual performance is known, it is still difficult to know how
significant a role it would assume as a member of a group. The ge-
netic algorithm can help to obtain such information, which can lead
to simpler and more efficient multiple classifier systems.

In the future, the pattern of success and failure can be examined
in generalized weighted voting system, as well. This will give useful
information in clinical systems since they characterize the expected
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value of the system error and the boundary of the system accuracy.
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Chapter 5

Összefoglaló

Egy rövid bevezető után a 2. fejezetben számos, a Lie–csoport elmé-
letéből ismert fogalmat és eredményt vizsgálunk meg a loopok szem-
pontjából, ahol elhagyjuk a szorzás asszociat́ıv tulajdonságát.[58], [59]
A Lie–csoport egy sima sokaság, amelyen olyan csoportstruktúra ad-
ható meg, ahol a szorzásművelet és annak inverze is sima leképezések.
A Lie–csoporthoz hasonlóan, egy loopot is definiálhatunk algebrai és
differenciálgeometriai struktúraként egyaránt. Az n-loop defińıciójá-
ban egy n-változós szorzásműveletnek hasonló tulajdonságokat kell
kieléǵıtenie, mint a loop defińıciójában szereplő bináris műveletnek:

Defińıció. Legyen H egy nemüres halmaz, melyen értelmezve van egy

m : Hn → H n-változós szorzásművelet, és adott egy e ∈ H H-beli

elem. Ekkor (H, e, m) n-loop az e egységelemmel, ha teljeśıti a követ-

kező feltételeket:

1. m(
(1)
e , . . . ,

(i−1)
e ,

(i)
a ,

(i+1)
e , . . . ,

(n)
e ) = a minden a ∈ H és 1 ≤ i ≤ n

esetén, ahol
(i)
x jelöli azt, hogy az i. argumentum értéke x,
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2. az m(a1, a2, . . . , ai−1, x, ai+1, . . . , an) = b egyenlet egyértelműen

megoldható minden ai ∈ H, 1 ≤ i ≤ n, b ∈ H esetén.

Ezután definiáljuk a kanonikus koordináta-rendszer fogalmát.

Defińıció. Legyen H = (H, e, m, δ1, . . . , δn) egy Ck−differenciálható

lokális n-loop. Egy ϕ : U → Rq Ck− osztályú koordinátatérképet, mely

az e ∈ H egységelem U ⊂ H nýılt környezetét képezi le az Rq ko-

ordinátatérre, a H kanonikus koordináta-rendszerének nevezzük,

ha:

1. ϕ(e) = 0,

2. az m : Hn → H szorzás M : ϕ(U)×· · ·×ϕ(U) → Rq kooordináta-

függvénye

M = ϕ ◦m ◦ (ϕ−1 × · · · × ϕ−1)

rendelkezik az alábbi tulajdonsággal:

M(x, x, . . . , x) = nx

minden x ∈ ϕ(U) esetén.

Tétel. LegyenH = (H, e,m, δ1, . . . , δn) egy Ck−differenciálható lokális

n−loop, ahol k ≥ 2. EkkorH-nak mindig létezik kanonikus koordináta-

rendszere.

Ha (U,ϕ) kanonikus koordináta-rendszere H-nak, akkor (U, τ ◦ ϕ) is

kanonikus koordináta-rendszere H-nak minden τ : Rq → Rq lineáris

leképezés esetén.
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Ha ϕ : U → Rq és ψ : U → Rq a H kanonikus koordináta-rendszereinek

koordináta-leképezései, melyek ugyanazon U környezeten vannak defi-

niálva, akkor ϕ ◦ ψ−1 egy Rq → Rq lineáris leképezés leszűḱıtése.

A Ck−differenciálható lokális n-loopok esetén többféle természetes
lehetőség is adódik a W → H (0 ∈ W ⊂ TeH) exponenciális leképezés
definiálására. Az egyik lehetséges defińıció a Lie-csoport elméletében
gyakran használt konstrukcióval analóg, nevezetesen az exp leképezést
az egységelembeli érintővektorok i. eltolásai által létrehozott vektor-
mezők integrálgörbéi határozzák meg.

Defińıció. Legyen γi
v(t) a γ̇i

v(t) = (λi
γ(t))∗v differenciálegyenlet integ-

rálgörbéje, ahol γi
v(0) = e , γ̇i

v(0) = v és λi
x jelöli az x elemmel történő

i. eltolást. Ekkor az exp(i) : TeH → H leképezést: exp(i)(v) = γi
v(1),

az i. exponenciális leképezésnek nevezzük.

Az exponenciális leképezés egy természetesen adódó, másik lehetsé-
ges defińıcióját az előbbiekben tárgyalt kanonikus koordináta-rendszer
konstrukciója szolgáltathatja.

Tétel. LegyenH = (H, e,m, δ1, . . . , δn) egy Ck−differenciálható lokális

n−loop, ahol k ≥ 2. Ekkor egyértelműen létezik olyan exp: W → H

lokális Ck−diffeomorfizmus, ahol W a 0 ∈ TeH egy környezete, és

teljesülnek rá az alábbi tulajdonságok:

(i) exp(0) = e,

(ii) exp(nx) = m(exp(x), . . . , exp(x)),

(iii) exp∗ |0 = idTeH .
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Tétel. Legyenek H = (H, e,m, δ1, . . . , δn), H′ = (H ′, e′,m′, δ′1, . . . , δ
′
n)

Ck−differenciálható lokális n-loopok. Legyenek továbbá exp: W → H,

exp′ : W ′ → H ′ rendre ezek exponenciális leképezései, ahol W ⊂ TeH

és W ′ ⊂ Te′H
′. Ha α : H → H′ egy folytonos lokális homomorfizmus,

akkor az exp′−1 ◦ α ◦ exp: W → Te′H
′ leképezés lokálisan lineáris.

A 3. fejezetben megmutatjuk, hogy a differenciálgeometria eszközei
milyen hasznosak lehetnek akár az orvosi képalkotás terén is. Ani-
zotropikus diffúzió esetén ugyanis a skalár diffúziós együttható már
nem elegendő a diffúzió tulajdonságainak léırására. Ebben az esetben
a diffúziót egy másodrendű, szimmetrikus tenzorral lehet jellemezni,
melyet diffúziós tenzornak nevezünk:

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 .

A diffúziós tenzor hat független elemét diffúziós súlyozott képek
seǵıtségével tudjuk megbecsülni.

Ha N irány mentén végzünk diffúziós súlyozott méréseket, a követ-
kező mátrixegyenlet ı́rható fel:

B~d
T

= ~A
T

,

ahol
~A =

(
ln S1

S0
ln S2

S0
. . . ln SN

S0

)

a megfelelő logaritmikus jelarányok vektora,

B =




~b1

~b2
...
~bN



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a diffúziós gradiens paramétereit jellemzi.
Ez a diffúziós tenzormodell a diffúziós irányra vonatkozó informá-

ciók teljes léırását nyújtja.
A diffúziós elmozdulást egy ellipszoid seǵıtségével jellemezhetjük,

ahol a főtengelyek hosszát a diffúziós tenzor sajátértékei, mı́g az irá-
nyukat a diffúziós tenzor sajátvektorai ı́rják le.

Az agy rostszálainak rekonstruálása és képi megjeleńıtése volt a
célunk.[62], [63] A modellezés során általában csak három ortogonális
śıkkal történő metszeteket mutatnak, mely tetszőleges számú és állású
vágóśıkkal is elvégezhető.

A 4. fejezetben általánośıtjuk a klasszikus többségi szavazómodellt
a 0 ≤ pn,k ≤ 1 valósźınűségi értékek bevezetésével, melyek a jó döntés
valósźınűségét ı́rják le, amennyiben az n (összes) szavazat között pon-
tosan k helyes található. Ezt az általánośıtást azok a detektálási
problémák motiválták, ahol az összetett rendszer tagjai képfeldolgozó
algoritmusok, melyek szavazatként a kép egy pixelét adják vissza.
Ebben az esetben a pn,k valósźınűségi értékeket geometriai feltételek
határozzák meg.[19], [61]

Az általánośıtott modellünkben a Di osztályozókat, melyek pi pon-
tosságúak, ηi Bernoulli-eloszlású valósźınűségi változókként tekintjük,
azaz:

P (ηi = 1) = pi, P (ηi = 0) = 1− pi (i = 1, . . . , n).

Az ηi = 1 a Di általi helyes osztályozást jelöli. Ekkor a Di osztályozó
pontosságát az ηi valósźınűségi változó várható értéke adja meg, ahol
Eηi = pi (i = 1, . . . , n).

A pn,k (k = 0, 1, . . . , n) adott valós számok, ahol:

0 ≤ pj0 ≤ · · · ≤ pjj ≤ 1 (j = 1, . . . , n),

és a ξ valósźınűségi változót a következőképpen definiáljuk:

P (ξ = 1) = pn,k és P (ξ = 0) = 1− pn,k,
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ahol k = |{i : ηi = 1}|. Ekkor a D1, . . . , Dn osztályozókhoz tartozó
módośıtott többségi szavazást a ξ valósźınűségi változó reprezentálja:
ha az n osztályozó közül k esetén valósult meg helyes osztályozás,
akkor ezen többségi szavazást alkalmazva pn,k valósźınűséggel hozunk
helyes döntést (azaz ξ = 1).

A célunk, hogy az általánośıtott többségi szavazómodell minden
egyedi osztályozónál pontosabb legyen. Ehhez a q ≥ p feltételnek kell
teljesülnie.

Ezután megvizsgáltuk, hogy az osztályozók függősége mennyire be-
folyásolja az összetett rendszer pontosságát. Ezért általánośıtottuk
azokat a klasszikus többségi szavazással kapcsolatos fogalmakat, melyek
az összetett rendszer pontosságának maximumát (pattern of success),
illetve minimumát (pattern of failure) jellemzik.

Az előzőekben használt megkötések elhagyhatóak, ha egy olyan
átfogó, kompakt eszközt használunk a maximális, illetve minimális
pontosságú összetett rendszer feltérképezésére, mely ezt egy lineáris
programozási feladat megoldásaként valóśıtja meg. Az osztályozók
függőségének jellemzésére a valósźınűségi változók együttes eloszlását
tekintjük:

ca1,...,an = P (η1 = a1, . . . , ηn = an),

ahol ai ∈ {0, 1, ∗} és ∗ = 0 vagy 1.
Ahhoz, hogy meghatározzuk a legjobban/legrosszabbul teljeśıtő

összetett rendszert, illetve annak pontosságát (qmax/qmin), maxima-
lizálni/minimalizálni kell a:

q(ca1,...,an) =
n∑

k=0

(
pn,k

∑

a1+...+an=k

ca1,...,an

)

függvényt az alábbi feltételek mellett:
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∑
ai=1

c∗,...,∗,ai,∗,...,∗ = pi (i = 1, . . . , n),

∑
a1,...,an

ca1,...,an = 1,

ca1,...,an ≥ 0,

ahol Eηi = pi (i = 1, . . . , n) az i. osztályozó pontossága.
Ezután az OD detektálási probléma kapcsán, bemutatjuk, hogy a

pn,k valósźınűségi értékeket hogyan befolyásolják a geometriai feltételek.
Ebben az esetben egyben formalizálni is tudjuk a pn,k valósźınűségi
értékeket.

Ezt követően módośıtjuk a végső döntés meghozatalára vonatkozó
szabályt, mely további javulást eredményez az összetett rendszer pon-
tosságában. Az általánośıtás arra épül, hogy súlyokat rendelünk az
osztályozókhoz.[60]

Végül választ adunk arra a kérdésre, hogy független osztályozókat
tekintve, az általánośıtott súlyozott többségi szavazás esetén hogyan
lehet a súlyokat optimálisan megválasztani (a maximális rendszerpon-
tosság elérése érdekében).

Tétel. Független (D1, D2, . . . , Dn) osztályozók esetén, a pi pontosságú

Di osztályozóhoz az optimális bi súlyra teljesül, hogy:

bi ∝ log
pi

(1− pi)2ri(1− ri)

ahol a (1 − pi)ri (ri ∈ [0, 1]) érték annak a valósźınűségét jellemzi,

hogy az i. osztályozó helytelen osztályozás esetén részt vesz a végső

helytelen döntés meghozatalában.
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Chapter 6

Summary

After a short introduction, in the second chapter, several concepts and
results from the theory of Lie group are investigated for loops, i.e. for
non-associative multiplication.[58],[59]

A Lie group is smooth manifold which also carries a group structure
whose multiplication and its inverse operation are smooth as maps
of manifolds. Similarly to Lie group, we can consider a loop as an
algebraic and as a differential geometric notion, as well.

In the definition of n-loop, an n-ary multiplication has to satisfy
similar properties as in the binary case:

Definition. Let H be a non-empty set with the n-ary multiplication

m : Hn → H, let e ∈ H be a given element. Then (H, e, m) is called

n-loop with the unit element e if

1. m(
(1)
e , . . . ,

(i−1)
e ,

(i)
a ,

(i+1)
e , . . . ,

(n)
e ) = a for all a ∈ H, 1 ≤ i ≤ n,

where
(i)
x means that the i-th argument has the value x,
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2. the equation m(a1, a2, . . . , ai−1, x, ai+1, . . . , an) = b is uniquely

solvable for all ai ∈ H(1 ≤ i ≤ n), b ∈ H.

In the definition of a local Ck−differentiable n−loop, the multi-
plication and the i−th divisions are defined only in a neighborhood
of the unit element and the implicit function theorem provides the
Ck−differentiability of the i−th divisions locally around the unit ele-
ment.

Definition. If H is a differentiable manifold of class Ck, e ∈ H is

a given element and m : Hn → H, δi : Hn → H are differentiable

maps of class Ck (i = 1, . . . , n), which are defined in a neighbourhood

of e ∈ H, then H = (H, e,m, δ1, . . . , δn) is called Ck−differentiable

local n−loop with unit element e, if the multiplication m and the

i−th divisions δi (i = 1, . . . , n) satisfy the following identities:

1. m(
(1)
e , . . . ,

(i−1)
e ,

(i)
a ,

(i+1)
e , . . . ,

(n)
e ) = a for all a ∈ H, 1 ≤ i ≤ n,

2. m(a1, . . . , ai−1, δi(b; a1, . . . , ai−1, ai+1, . . . , an), ai+1, . . . , an) = b

for all ai ∈ H, 1 ≤ i ≤ n, b ∈ H,

3. δi(m(a1, . . . , an); a1, . . . , ai−1, ai+1, . . . , an) = ai for all ai ∈ H,

1 ≤ i ≤ n,

in a neighbourhood of e ∈ H.

Then, we define the notion of canonical coordinate system.

Definition. Let H = (H, e, m, δ1, . . . , δn) be a Ck−differentiable lo-

cal n−loop. A coordinate map ϕ : U → Rq of class Ck of the open
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neighbourhood U ⊂ H of e ∈ H into the coordinate space Rq is called

canonical coordinate system of H if ϕ(e) = 0 and the coordi-

nate function M : ϕ(U)× · · · × ϕ(U) → Rq of the multiplication map

m : Hn → H

M = ϕ ◦m ◦ (ϕ−1 × · · · × ϕ−1)

satisfies

M(x, x, . . . , x) = nx

for all x ∈ ϕ(U).

Theorem. Let H = (H, e, m, δ1, . . . , δn) be a Ck−differentiable local

n−loop with k ≥ 2. Then there exists a canonical coordinate system

for H.

If (U,ϕ) is a canonical coordinate system of H then for any linear

map τ : Rq → Rq the pair (U, τ ◦ ϕ) is a canonical coordinate system

of H, as well.

If ϕ : U → Rq and ψ : U → Rq are the coordinate maps of canonical

coordinate systems of H defined on the same neighbourhood U then

ϕ ◦ ψ−1 is the restriction of a linear map Rq → Rq.

There are several natural possibilities for the definition of the ex-
ponential map W → H with 0 ∈ W ⊂ TeH of Ck−differentiable local
n-loops. One of them is analogous to the usual construction in Lie
group theory, namely the map exp could be determined by the inte-
gral curves of vector fields defined by the i-th translations of tangent
vectors at the unit element of the n-loop.
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Definition. Let γi
v(t) be the integral curve of the differential equation

γ̇i
v(t) = (λi

γ(t))∗v, where γi
v(0) = e, γ̇i

v(0) = v

and λi
x denotes the i−th translation with x. Then exp(i) : TeH → H,

where exp(i)(v) = γi
v(1), is called i−th exponential map.

An alternative natural possibility for the definition of the expo-
nential map is given by using the construction of canonical coordinate
systems.

Theorem. Let H = (H, e, m, δ1, . . . , δn) be a Ck−differentiable local

n−loop with k ≥ 2. There exists a unique local Ck−diffeomorphism

exp: W → H, where W is a neighbourhood of 0 ∈ TeH, such that the

following conditions hold:

(i) exp(0) = e,

(ii) exp(nx) = m(exp(x), . . . , exp(x)),

(iii) exp∗ |0 = idTeH .

Theorem. Let H = (H, e, m, δ1, . . . , δn), H′ = (H ′, e′,m′, δ′1, . . . , δ
′
n)

be Ck−differentiable local n−loops. Let exp: W → H, exp′ : W ′ → H ′,

where W ⊂ TeH, W ′ ⊂ Te′H
′, be the corresponding exponential maps,

respectively. If α : H → H′ is a continuous local homomorphism then

the composed map exp′−1 ◦α ◦ exp: W → Te′H
′ is locally linear.

In the third chapter, it has been shown how useful the tools of
differential geometry can be also in biomedical imaging. When the
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diffusion is anisotropic, a scalar diffusion measure is insufficient for
describing diffusion properties. In this case, the diffusion can be de-
scribed by a second−order diagonally symmetric tensor, called the
diffusion tensor:

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 .

The six independent elements of the diffusion tensor can be es-
timated from a series of diffusion-weighted images. When diffusion
weighted measurements are performed along N directions, the follow-
ing matrix equation can be constructed:

B~d
T

= ~A
T

,

where
~A =

(
ln S1

S0
ln S2

S0
. . . ln SN

S0

)

is the vector of the corresponding logarithmic signal ratios and

B =




~b1

~b2
...
~bN




includes the influences of all the encoding gradients.
This tensor model of diffusion is able to get full description of the

directional diffusion information. The diffusion displacement profile
may be represented as an ellipsoid with the length of principal axes
described by the eigenvalues of the diffusion tensor and the directions
given by eigenvectors of the diffusion tensor.

Our aim is to reconstruct the fiber tracts of the human brain from
measurements of fiber orientation and visualize them on the image of
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the brain.[62], [63] Generally, the surface model clipped by orthogo-
nal sections is shown. We are capable to visualize the surface model
clipped by (even more than the usual three) planes having arbitrary
directions.

In the fourth chapter, we propose the generalization of the classical
majority voting model by introducing values 0 ≤ pn,k ≤ 1 describing
the probability of making a good decision, when we have exactly k
good votes from the n voters. This generalization is motivated by
object detection problems, where the members of the ensemble are
image processing algorithms giving their votes as pixels in the im-
age domain. In this scenario, the terms pn,k can be specialized by a
geometric constraint.[19], [61]

In our model, we consider a classifier Di with accuracy pi as a
random variable ηi of Bernoulli distribution, i.e.:

P (ηi = 1) = pi, P (ηi = 0) = 1− pi (i = 1, . . . , n).

Here ηi = 1 means correct classification by Di. In particular, the
accuracy of Di is just the expected value of ηi, that is, Eηi = pi

(i = 1, . . . , n).
Let pn,k (k = 0, 1, . . . , n) be given real numbers with:

0 ≤ pj0 ≤ · · · ≤ pjj ≤ 1 (j = 1, . . . , n),

and let the random variable ξ be such that:

P (ξ = 1) = pn,k and P (ξ = 0) = 1− pn,k,

where k = |{i : ηi = 1}|. That is, ξ represents the modified majority
voting of the classifiers D1, . . . , Dn: if k out of the n classifiers give a
correct vote, then we make a good decision (i.e. we have ξ = 1) with
probability pn,k.
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In order to have this generalized majority voting model be more
accurate than all the individual decisions, we have to guarantee that
q ≥ p.

Next, we investigate how dependencies among the voters influence
the accuracy of the ensemble. For this purpose, we generalize some
concepts that were introduced for classical majority voting to mea-
sure the extremal behavior (minimal and maximal accuracies) of an
ensemble. First we consider pattern of success and pattern of failure,
i.e. such realizations of the votes in a series of experiments that lead to
the possible highest and lowest accuracy of the ensemble, respectively.

Then we drop all the previous conditions and give a compact tool
(working without any technical restrictions) based on linear program-
ming to calculate the minimal and maximal ensemble accuracies. In
case of dependent classifiers, we can investigate the joint distribution
of the random variables to measure the dependencies of the classifiers:

ca1,...,an = P (η1 = a1, . . . , ηn = an),

where ai ∈ {0, 1, ∗}. The problem to determine the combination of
voters achieving the best/ the worst ensemble performance (qmax/qmin)
is equivalent to maximize/minimize the function:

q(ca1,...,an) =
n∑

k=0

(
pn,k

∑

a1+...+an=k

ca1,...,an

)

under the following conditions:

∑
ai=1

c∗,...,∗,ai,∗,...,∗ = pi (i = 1, . . . , n),

∑
a1,...,an

ca1,...,an = 1,

ca1,...,an ≥ 0,
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where Eηi = pi (i = 1, . . . , n) is the accuracy of the i-th classifier.
For the OD detection task, we start with showing how the general

formulation considering the probabilities pn,k is restricted for this spe-
cific challenge using geometric constraints defined by anatomic rules.
We can calculate the corresponding values pn,k in this case, as well.

At last, we modify the final decision rule of the ensemble which will
result in further improvement of the system accuracy. Our generaliza-
tion is based on the assignment of weights to the ensemble members
(classifiers).[60]

We give the answer on how to select optimally the weights (to
achieve the best system accuracy) for independent classifiers in our
generalized weighted majority voting model.

Theorem. If independent classifiers (D1, D2, . . . , Dn) are given (con-

ditional independence is assumed), then the optimal weight bi for the

classifier Di with accuracy pi can be calculated as:

bi ∝ log
pi

(1− pi)2ri(1− ri)
,

where the probability (1−pi)ri with ri ∈ [0, 1] is considered for the i−th

classifier meaning that the i−th classifier makes wrong classification

and participates in making a bad decision.
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Chapter 7

List of talks

1. Diversity measures for majority voting in the spatial domain,
8th International Conference on Hybrid Artificial Intelligence
Systems, Salamanca, September 11–13, 2013.

2. Generalized weighted majority voting with an application to al-
gorithms having spatial output, 7th International Conference on
Hybrid Artificial Intelligence Systems, Salamanca, March 28–30,
2012.

3. Az orvosi képfeldolgozás és a geometria, avagy mit tudhat egy
körlap a diabéteszről, Budapesti Műszaki és Gazdaságtudományi
Egyetem Geometria Tanszék Szemináriuma, Budapest, Decem-
ber 11, 2012.

4. A generalization of majority voting scheme for medical image
detectors, 6th International Conference on Hybrid Artificial In-
telligence Systems, Wroclaw, May 23–25, 2011.
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5. Általánośıtott többségi szavazás alkalmazása retinaképek elemzé-
sében, 14. Gyires Béla Informatikai Nap, Debrecen, December
16, 2011.

6. Bol reflection, XIth Conference Geometry and Graphics, Ustron,
June 28–30, 2010.

7. Detecting digital intersections using line approximation, 8th In-
ternational Conference on Applied Informatics, Eger, January
27–30, 2010.

8. Thickness-based binary morphological improvement of distorted
digital line intersections, 5th Hungarian Conference on Com-
puter Graphics and Geometry, Budapest, January 26–27, 2010.

9. New DTI visualization methods, 13th International Conference
on Geometry and Graphics, Dresden, August 4–8, 2008.

10. New visualization methods in radiology, 12th Colloquium of Croa-
tian Society for Geometry and Graphics, Vukovar, September
16–20, 2007.

11. On Bol closure condition, Loops 07, Prague, August 19–25, 2007.

12. On n−loops and (n + 1)−webs, 26th Conference on Geometry
and Computer Graphics, Nové Mesto na Morave, September 11–
15, 2006.

13. Exponential maps and canonical coordinate-systems of differ-
entiable n−loops, 9th International Conference on Differential
Geometry and Its Applications, Prague, August 30–September
3, 2004.

14. Exponential maps of differentiable n−loops, 3rd Workshop on
Differential Geometry, Olomouc, October 16–18, 2003.
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15. Exponential maps of n−ary differentiable loops, Loops 03, Prague,
August 11–17, 2003.

16. On the differentiability of n−loops, 4th Conference on Geometry
and Topology of Manifolds, Krynica, April 29–May 4, 2002.

17. Experiences about the mathematical and geometrical courses for
the students on Faculty of Informatics, 5th International Con-
ference on Applied Informatics, Eger, January 28–February 3,
2001.
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10. Tomán, H., Hajdu, A., Szakács, J., Hornyik, D., Csutak, A.,
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