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Abstract

We describe an efficient algorithm to calculate all solutions of unit
equations in several variables over global function fields. Note that
using the present tools it is not possible to solve completely unit equa-
tions in more than two variables over number fields. In the function
field case such equations are completely solved here for the first time.
As a typical application we determine all solutions of norm form equa-
tions.
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1 Introduction

Unit equations of type
u1 + . . .+ un = 1

where ui are elements in a unit group of a number field or a function field,
play an essential role in the theory and in applications of diophantine equa-
tions. For example, Thue equations and index form equations can be reduced
to unit equations in two variables. General norm form equations lead to unit
equations in several variables. J.H.Evertse and K.Győry [2] showed that any
decomposable form equation is equivalent to a system of unit equations in
several variables.

In the number field case Baker’s theory and reduction procedures allow
to solve unit equations in two variables, cf. I.Gaál [3]. However, using the
presently known tools it is hardly possible to solve unit equations in three or
more variables. So, I.Járási [8] was only able to calculate ”small” solutions
of unit equations in three variables.

In the function field case unit equations in two variables were considered
by R.C.Mason [9] and unit equations in several variables by R.C.Mason [10],
[11]. In these cases it was assumed that the constant field is algebraically
closed, both for characteristic zero and finite characteristic.

In [4], [5] and [6] we considered function fields over finite fields. We
developed an algorithm for solving unit equations in two variables and also
Thue equations over such function fields. In the present paper we give an
effective algorithm for solving unit equations in three variables: this is the
first time that such unit equations are completely solved. This algorithm
has several applications. Here, we describe an efficient method for solving
certain norm form equations.
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2 Auxiliary results

Let k = Fq denote a finite field with q = pd elements. The rational function
field of k is k(t) as usual, and K is a finite extension of k(t) of degree n and
genus g. The integral closure of k[t] in K is denoted by OK . We assume that
K is separably generated over k(t) by an element z belonging to OK and
that k is the full constant field of K. The set of all (exponential) valuations
of K is denoted by V , the subset of infinite valuations by V∞. For a non-
zero element f ∈ K we denote by v(f) the valuation of f at v. For the
normalized valuations vN (f) = v(f) · deg v the product formula∑

v∈V
vN (f) = 0, ∀f ∈ K \ {0}

holds. The height of a non-zero element f of K is defined to be

H(f) :=
∑
v∈V

max{0, vN (f)} = −
∑
v∈V

min{0, vN (f)} .

The following statements are generalizations of certain arguments of
R.C.Mason [11].

For any f ∈ K but not in Kp the genus g of the function field K is given
by

2g − 2 =
∑
v∈V

v

(
df

dv

)
deg v. (1)

For any f ∈ K and any valuation v ∈ V we have

v

(
df

dv

)
= v(f)− 1 if p 6 |v(f), v

(
df

dv

)
≥ v(f) if p|v(f). (2)

Using the product formula, equations (1) and (2) yield for any f ∈ K \Kp

∑
p|v(f)

(
v

(
df

dv

)
− v(f)

)
deg v = 2g − 2 +

∑
p 6 |v(f)

deg v . (3)
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3 Unit equations in two variables

Let V0 be a finite subset of V , containing the infinite valuations. Then
the non-zero elements γ ∈ K satisfying v(γ) = 0 for all v 6∈ V0 form a
multiplicative group in K. These elements are called V0-units. (For V0 = V∞
the V0-units are just the units of the ring OK .) We consider the unit equation

γ1 + γ2 + γ3 = 0 (4)

where the γi are V0-units for a suitable set V0.

Note that equation (4) can be written in the form(
−γ1

γ3

)
+
(
−γ2

γ3

)
= 1

which is a unit equation in two variables.

Remark It suffices to assume that the γ1/γ3, γ2/γ3 are V0-units which
makes the set V0 smaller, cf. the proof of Lemma 3.1 in [4].

When considering the general case we shall proceed by induction reduc-
ing the number of variables. The final step is the case n = 3 which we
excerpt from [4] for the convenience of the reader.

Lemma 3.1 Let V0 be a finite subset of V and let γi (1 ≤ i ≤ 3) be V0-units
satisfying (4). Then either γ1

γ3
is in Kp or its height is bounded:

H

(
γ1

γ3

)
≤ 2g − 2 +

∑
v∈V0

deg v . (5)

4 The general case: Reduction of the number of
variables

Let V0 be a finite subset of V containing the infinite valuations. Let γi, (i =
1, . . . , n) be V0-units. The equation

γ1 + . . .+ γn = 0 (6)
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is equivalent with the unit equation(
−γ1

γn

)
+ . . .

(
−γn−1

γn

)
= 1 (7)

in n− 1 variables. (Note that the remark at the end of the previous section
holds here, as well: it suffices if the above fractions are V0-units.) The
reason to consider unit equations in more than two variables is that several
well known diophantine equations (e.g. norm form equations, resultant form
equations) lead to such unit equations.

In this section we show how to describe all solutions of equation (7) by
the solutions of a unit equation in a smaller number of variables.

Theorem 4.1 Let V0 be a finite subset of V and let γi (1 ≤ i ≤ n) be
V0-units satisfying (6). Assume that no proper subsum of the sum in (6)
vanishes. Then we can explicitly construct a finite subset N of V , a solution
x1n of the V0 ∪N -unit equation

x1n + x3n + . . . xn−1,n = 1 ,

and a V0 ∪N -unit Φ satisfying

H(Φ) ≤ 2g − 2 +
∑
v∈V0

deg v , (8)

such that
γ1

γn
= x1n · Φ . (9)

Proof of Theorem 4.1. We divide all terms in equation (6) by γ2 and
apply local derivation at an arbitrary valuation v to obtain

x1 + x3 + . . . xn = 0 (10)

for xi := (γi/γ2)′ (i = 1, 3, . . . , n). (For simplicity, we denote by (.)′ the local
derivative at v.) The last equation is a unit equation of type (6), but with a
smaller number of variables. However, besides the valuations in V0 additional
valuations may appear for which the value of one of the xi is non–zero. The
set of such “new” valuations is denoted by N . The valuations v ∈ N satisfy
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v(γi) = 0 (1 ≤ i ≤ n), therefore also v(γi/γ2) = 0 (i = 1, 3, . . . , n),
but v(xi) = v((γi/γ2)′) 6= 0 for at least one i ∈ {1, 3, . . . , n}. We set
J := {i ∈ {1, 3, . . . , n} | ∃v ∈ V \ V0 v(xi) 6= 0}. (We note that v(xi) > 0 in
this case because of (2).) Then we put

f :=
∏
j∈J

γj
γ2

.

For v ∈ N ∪ V0 we then have v(f) = 0, hence p|v(f), and v(f ′) > 0 for
v ∈ N . We also know that v(f ′) − v(f) ≥ 0 for all v with p|v(f). Using
these inequalities and (3) we obtain∑

v∈N
deg v ≤

∑
v∈N

v(f ′) deg v =
∑
v∈N

(v(f ′)− v(f)) deg v

≤
∑
p|v(f)

(v(f ′)− v(f)) deg v = 2g − 2 +
∑
p6 |v(f)

deg v

≤ 2g − 2 +
∑
v∈V0

deg v. (11)

Here, the last equation is correct only if f is not a p-th power. But that is
guaranteed because of v(f ′) > 0.

Note that the valuations in N can be explicitly constructed. For this
purpose recall that tq

m−t is the product of all monic irreducible polynomials
of k[t] whose degree divides m. The finite valuations of degree ≤ m of OK
can all be obtained by splitting in OK the valuations of k[t] belonging to
monic irreducible polynomials with degrees ≤ m.

By (10) we obtain that xin = −xi/xn (i = 1, 3, . . . , n− 1) are solutions
of the V0 ∪N–unit equation

x1n + x3n + . . .+ xn−1,n = 1 (12)

in a smaller number of variables.

Let Φ be the element satisfying

γ1

γn
= −x1

xn
· Φ (13)
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that is

−Φ =
γ1

γn
· xn
x1

=
γ1
γ2
γn
γ2

·

(
γn
γ2

)′
(
γ1
γ2

)′ =:
1
f · f

′

1
h · h′

, (14)

where f = γn/γ2, h = γ1/γ2, and f ′, h′ denote the corresponding local
derivatives at an arbitrary valuation v.

Using (2), considering separately the four cases according to whether
v(f) and v(h) are divisible by p or not, and applying (3), we obtain

H(Φ) = −
∑
v∈V

min(0, v(Φ)) deg v

= −
∑
v∈V

min(0, v(f ′)− v(f) + v(h)− v(h′)) deg v

= −
∑

v∈V0∪N
min(0, v(f ′)− v(f) + v(h)− v(h′)) deg v

= −
∑

p|v(h),p|v(f)

min(0, v(f ′)− v(f) + v(h)− v(h′)) deg v

−
∑

p|v(h),p 6 |v(f)

min(0, v(f ′)− v(f) + v(h)− v(h′)) deg v

≤ −
∑
p|v(h)

min(0, v(h)− v(h′)) deg v −
∑

p|v(h),p 6 |v(f)

(−1) deg v

≤
∑

p|v(h),p 6 |v(f)

deg v +
∑
p|v(h)

(v(h′)− v(h)) deg v

=
∑

p|v(h),p 6 |v(f)

deg v + 2g − 2 +
∑
p 6 |v(h)

deg v

≤ 2g − 2 +
∑
v∈V0

deg v. (15)

We remark that the application of (3) (needed for the last equation) bases
on the assumtion that h is not a p-th power. Since no proper subsum of the
γi vanishes we have (γi/γ2)′′ 6= 0 in (13), hence h = γ1/γ2 cannot be a p-th
power.

In view of (13), (12) and the estimate (15) we obtain (9) and (8). 2

Remark 1 Splitting in K the valuations of k[t] of small degree, we
usually obtain far too many possible valuations, for which

∑
deg v exceeds
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the (usually very small) bound in (11). To speed up further calculations
at this stage it is advisable to consider several possible valuation sets N
containing just a few valuations, such that the bound in (11) holds. This
enables one also to parallelize the calculations.

Remark 2 From the proof of the last Theorem we can easily deduce
that

γi
γn

= xin · Φi (i = 1, 3, . . . , n)

with V0 ∪N -units Φi, xin subject to

x1n + x3n + . . .+ xn−1,n = 1

and
H(Φi) ≤ 2g − 2 +

∑
v∈V0

deg v .

Hence, the solution of a unit equation in n− 1 V0-units is reduced to deter-
mining the solutions of a unit equation in n− 2 V0 ∪N -units.

Remark 3 Assume that xin ∈ Kp. Then for any valuation v ∈ N (not
in V0) we have

v

(
γi
γn

)
= v(xin) + v(Φi).

Since v(γi/γn) = 0 and p|v(xin), we have p|v(Φi) for all these valuations.
In several examples the small bound (8) implies |v(Φi)| < p which in such
cases imply that N is in fact empty and both xin and Φi are V0–units. If
|v(Φi)| ≥ p then it can be used to exclude p-th powers with higher exponents
of p.

5 Unit equations in three variables

In this section we develop an explicit method for solving equation (6), re-
spectively (7), in the case n = 4.

According to Remark 2 in the previous section, the terms in equation
(7) can be expressed as

γ1

γ4
= x0Φ,

γ3

γ4
= y0Ψ,

γ2

γ4
= z0Λ (16)
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where x0, y0 are corresponding solutions of the V0∪N -unit equation x0+y0 =
1, z0 is a solution of a similar equation, and the elements Φ,Ψ,Λ are also
V0 ∪ N -units of small height, that can be considered as fixed elements (we
can explicitly determine all their possible values). Therefore equation (7)
can be written in the form

x0Φ + y0Ψ + z0Λ = −1. (17)

We need to consider two cases I and II.

I. If any of the three elements x0, y0, z0, say x0, is not a p-th power, then
we can calculate all potential values of x0 according to Theorem (4.1). Also,
we have y0 = 1− x0, and we get z0 from equation (17).

II. If all these elements are p-th powers, then using local derivation at
an arbitrary valuation we get

x0Φ′ + y0Ψ′ + z0Λ′ = 0. (18)

Note that x′0 = y′0 = z′0 = 0 in that case. We need to discuss two subcases
(A, B) of II.

A) If Φ,Ψ,Λ ∈ k, then equation (18) is meaningless but both sides of
(17) are p-th powers and we can take p-th roots to make the valuations of
x0, y0, z0 smaller. This can be applied repeatedly until we end up in case I.

B) If some of Φ,Ψ,Λ are not constants, then using y0 = 1− x0 we get

(Φ−Ψ) x0 + Λ z0 = −1−Ψ
(Φ′ −Ψ′) x0 + Λ′ z0 = −Ψ′. (19)

From this system of linear equations we can determine x0 and z0. Note that
the only case when this system of linear equations is not uniquely solvable
is when (Φ−Ψ)Λ′− (Φ′−Ψ′)Λ = 0 that is (Φ−Ψ)/Λ is a constant. In this
case we can use a further equation

(Φ′′ −Ψ′′) x0 + Λ′′ z0 = −Ψ′′.

6 Application to norm form equations

Let L be a finite extension field of K of degree m ≥ 4 and denote by OL
the integral closure of k[t] in L. Let α, β ∈ OL be linearly independent over
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K such that L = K(α, β). Let 0 6= µ ∈ OK and consider the norm form
equation in three variables

NL/K(x+ αy + βz) = µ (x, y, z ∈ OK). (20)

Denote by αi, βi (i = 1, . . . ,m) the conjugates of α, β over K. Then for any
distinct 1 ≤ i, j, k, l ≤ m the linear forms δh(X,Y, Z) = X +αhY + βhZ are
linearly dependent over L, hence we can explicitly calculate γh ∈ L (h =
i, j, k, l) such that for any solution x, y, z ∈ OK of equation (20) we have

γi · δi(x, y, z) + γj · δj(x, y, z) + γk · δk(x, y, z) + γl · δl(x, y, z) = 0

whence

−γi · δi(x, y, z)
γl · δl(x, y, z)

− γj · δj(x, y, z)
γl · δl(x, y, z)

− γk · δk(x, y, z)
γl · δl(x, y, z)

= 1.

Let V0 be the set of valuations of L containing the infinite valuations and
the valuations occurring in µ. Then all δi(x, y, z) are V0-units. Let V1 be
an extension of the set V0 containing also the valuations occurring in any
of the γh ∈ L (h = i, j, k, l). Then all fractions in the above equation are
V1-units and we can apply our results of the previous section. Usually p-
th powers can be excluded, if there exist valuations (not contained in V0)
which only occur in γi/γl with values not divisible by p, but cannot occur in
δi(x, y, z)/δl(x, y, z) or by considering Galois automorphisms (see Example
2).

In this way we can calculate elements νi such that

δi(x, y, z) = νi · δl(x, y, z)

for i = 1, . . . ,m. Substituting them into equation (20) we get(
m∏
i=1

νi

)
· δl(x, y, z)m = µ

which makes it possible to determine δl(x, y, z) and then all δi(x, y, z). By
solving systems of linear equations we can then determine all possible solu-
tions (x, y, z) of equation (20).
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7 Examples

Example 1
Let k = F5 and let α be a root of

z4 − t = 0.

Let K = k(t) and L = K(α) and consider the solutions of the norm form
equation

NL/K(x+ αy + α2z) = c · t (x, y, z ∈ k[t]) (21)

with an arbitrary c ∈ k∗.

The field L has genus g = 0 and L/K has a cyclic Galois group. The
conjugates of α over K are

α1 = α, α2 = 2α, α3 = −α, α4 = −2α.

The linear forms δi(x, y, z) = x+ αiy + α2
i z satisfy

δ1(x, y, z)− δ2(x, y, z) + δ3(x, y, z)− δ4(x, y, z) = 0

whence
δ1(x, y, z)
δ4(x, y, z)

− δ2(x, y, z)
δ4(x, y, z)

+
δ3(x, y, z)
δ4(x, y, z)

= 1.

There is one infinite valuation v∞ of degree 1 in L and there is one valuation
v0 of degree 1 corresponding to t. Set V0 = V1 = {v∞, v0}. Since 2g − 2 +∑
v∈V0

deg v = 0, the set N of new valuations (those introduced in Theorem
4.1) is empty and in the representation

δ1(x, y, z)
δ4(x, y, z)

= x0Φ

the solutions x0 of the V0-unit equation in two variables and the V0-units Φ
are constants. (Therefore the p-th powers of x0 are also constants.) Similarly
δ1(x, y, z)/δ4(x, y, z) and δ2(x, y, z)/δ4(x, y, z) are constants, whence

c1 · δ4(x, y, z)4 = c · t

with some c1 ∈ k∗. This implies δ4(x, y, z) = c2α4, whence δi(x, y, z) =
c2αi (i = 1, 2, 3) with c2 ∈ k∗. The only solution of equation (21) is x =
0, y = c, z = 0 for some c ∈ k∗.
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Example 2
Let k = F3 and let α be a root of

z4 + 2tz3 + tz + 1 = 0.

(Observe that this is in fact the family of simplest quartic fields, cf. [7]).

Let K = k(t) and L = K(α). Consider the solutions of the norm form
equation

NL/K(x+ αy + α2z) = c (x, y, z ∈ k[t]) (22)

with an arbitrary c ∈ k∗. L/K has a cyclic Galois group generated by

σ(α) =
α− 1
α+ 1

.

Let αi = σi−1(α) for i = 1, 2, 3, 4. The linear forms δi(x, y, z) = x+αiy+α2
i z

satisfy
ε δ1(x, y, z) + η δ2(x, y, z) + ρ δ3(x, y, z) = δ4(x, y, z) (23)

with certain units ε, η, ρ which are easy to calculate.

The function field L has genus g = 0, it has four infinite valuations
v∞,1, v∞,2, v∞,3, v∞,4 all of degree 1. By our notation V0 = {v∞,1, v∞,2, v∞,3, v∞,4},
then all summands in equation (23) are V0-units.

We have 2g−2+
∑
v∈V0

deg v = 2. For the set of new valuations N (those
introduced in Theorem 4.1) we have

∑
v∈N deg v ≤ 2. Factorizing t3

2 − t
over k we find that apart from the infinite valuations all valuations have
degrees at least two. Moreover, the only valuations of degree 2 are the two
valuations v0,1, v0,2 corresponding to t and the valuation v2 corresponding
to t2 +1. Hence the set N contains exactly one of the above three valuations
of degree 2.

Up to constant factors there are 115 V0 ∪ N -units Φ of height ≤ 2 and
there are 664 solutions of the V0∪N -unit equation x0 +y0 = 0 of height ≤ 4
which are not pth powers. Applying Theorem 4.1 to the equation

ε
δ1(x, y, z)
δ4(x, y, z)

+ η
δ2(x, y, z)
δ4(x, y, z)

+ ρ
δ3(x, y, z)
δ4(x, y, z)

= 1

we obtain
η δ2(x, y, z)
ε δ1(x, y, z)

= xp
κ

0 Φ
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where x0,Φ is as above, pκ is an unknown exponent. By Remark 2 after
Theorem 4.1 we also have

ρ δ3(x, y, z)
ε δ1(x, y, z)

= yp
κ

0 Ψ

where y0 = 1− x0 is the corresponding solution of the V0 ∪N -unit equation
x0 + y0 = 0, and Ψ is a V0 ∪N -unit of height H(Ψ) ≤ 2.

This yields
δ1(x, y, z)
δ2(x, y, z)

=
µ

xp
κ

0

, (24)

δ1(x, y, z)
δ3(x, y, z)

=
ν

yp
κ

0

, (25)

with
µ =

η

εΦ
, ν =

ρ

εΨ
.

Applying σ to (24) we get

δ2(x, y, z)
δ3(x, y, z)

=
σ(µ)
σ(x0)pκ

whence using (24) again we obtain

δ1(x, y, z)
δ3(x, y, z)

=
µ σ(µ)

xp
κ

0 σ(x0)pκ
.

This, compared with (25) implies

µ σ(µ)
xp

κ

0 σ(x0)pκ
=

ν

yp
κ

0

,

that is (
1− x0

x0 σ(x0)

)pκ
=

ν

µ σ(µ)
.

The right hand side of this equation is of bounded height. If the left hand
side is not constant, then by comparing heights, this equation allows to
bound the exponent pκ. Indeed, apart from 9 possible solutions x0, the
left hand side is not constant and considering all possible values of Φ,Ψ we
obtain κ ≤ 1.
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In order to exclude pth powers of x0 in the remaining 9 cases consider
the V0 ∪N -unit equation

−ε δ1(x, y, z)
ρ δ3(x, y, z)

− η δ2(x, y, z)
ρ δ3(x, y, z)

+
δ4(x, y, z)
ρ δ3(x, y, z)

= 1.

Similarly as above we become

η δ2(x, y, z)
ε δ1(x, y, z)

= xp
κ

0 Φ (26)

and
δ4(x, y, z)
ε δ1(x, y, z)

= yp
κ

0 Ψ (27)

where again we have the same possibilities for the values of x0, y0 = 1 −
x0,Ψ,Φ. Applying σ to equation (27) yields

δ1(x, y, z)
δ2(x, y, z)

= σ(ε) σ(y0)p
κ
σ(Ψ),

which, compared with equation (26) implies

σ(ε) σ(y0)p
κ
σ(Ψ) =

η

ε xp
κ

0 Φ
,

that is
(x0 σ(1− x0))p

κ
=

η

ε σ(ε)Φ σ(Ψ)
.

Comparing again heights on both sides of the last equation we usually get
κ ≤ 1 and we can exclude pth powers for all remaining x0 6∈ k∗. For x0 ∈ k∗
(i.e. x0 = 2) the exponent κ is of course arbitrary.

Now we use for example equation (24) to calculate

s =
xp

κ

0

µ

where we consider all possible values of x0 and Φ (in calculating µ), and
κ = 0, 1. Then we have

δ2(x, y, z) = s δ1(x, y, z)
δ3(x, y, z) = σ(s) δ2(x, y, z) = s σ(s) δ1(x, y, z) (28)
δ4(x, y, z) = σ2(s) δ3(x, y, z) = s σ(s) σ2(s) δ1(x, y, z),
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therefore by the original equation (22) we obtain

c = δ1(x, y, z) δ2(x, y, z) δ3(x, y, z) δ4(x, y, z) = s3 σ(s)2 σ2(s) δ1(x, y, z)4

which allows to determine all possible values of δ1(x, y, z), whence by (28)
we may calculate the values of δi(x, y, z), i = 2, 3, 4, as well. Solving the
corresponding systems of linear equations we obtain the following solutions
of equation (22):

x y z x y z x y z x y z x y z

0 0 1 0 0 2 0 1 0 0 1 1 0 1 2

0 2 0 0 2 1 0 2 2 1 0 0 1 0 2

1 1 0 1 1 1 1 2 0 1 2 1 2 0 0

2 0 1 2 1 0 2 1 2 2 2 0 2 2 2

x y z x y z x y z

1 t 1 2 2t t t + 2 t + 2 2

1 t 2 2 2t 2t 2t 1 t

1 t t 2 2t + 1 t + 2 2t t 2

1 t 2t 2 2t + 2 2t + 2 2t 2t 1

1 t + 1 t + 1 t 2 2t 2t + 1 0 t + 1

1 t + 2 2t + 1 t t 2 2t + 1 2t + 1 1

1 2t 1 t 2t 1 2t + 2 0 t + 2

2 t 2 t + 1 0 2t + 1 2t + 2 t + 1 2

2 2t 1 t + 1 2t + 2 1

2 2t 2 t + 2 0 2t + 2

x y z x y z

0 t t2 + 2 t2 + 2 t2 + 2t + 2 2t

0 2t 2t2 + 1 t2 + 2 2t2 + 2t + 1 t

0 t2 + 2 2t t2 + t + 2 t 2t2 + t + 1

0 t2 + t + 2 t2 + 2t + 2 t2 + t + 2 t2 + 2t + 2 0

0 t2 + 2t + 2 2t2 + 2t + 1 t2 + t + 2 2t2 + 1 t2 + 2t + 2

0 2t2 + 1 t t2 + 2t + 2 t 2t2 + 2t + 1

0 2t2 + t + 1 t2 + t + 2 t2 + 2t + 2 t2 + 2 t2 + t + 2

0 2t2 + 2t + 1 2t2 + t + 1 t2 + 2t + 2 2t2 + 2t + 1 0

t t2 + 1 2t 2t2 + 1 t 0

t t2 + 2 0 2t2 + 1 t2 + t + 2 2t

t t2 + t + 2 t2 + 2 2t2 + 1 2t2 + t + 1 t

t t2 + 2t + 2 2t2 + 1 2t2 + 2 t t2 + 1

2t 2t2 + 1 0 2t2 + t + 1 2t t2 + t + 2

2t 2t2 + 2 t 2t2 + t + 1 t2 + t + 2 0

2t 2t2 + t + 1 t2 + 2 2t2 + t + 1 2t2 + 1 2t2 + 2t + 1

2t 2t2 + 2t + 1 2t2 + 1 2t2 + 2t + 1 2t t2 + 2t + 2

t2 + 1 2t 2t2 + 2 2t2 + 2t + 1 t2 + 2 2t2 + t + 1

t2 + 2 2t 0 2t2 + 2t + 1 2t2 + t + 1 0
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x y z

t2 + 1 t3 + 2t 2t2 + 2

2t2 + 2 2t3 + t t2 + 1

t3 + t2 + 2t t4 + 2t3 + t + 1 t4 + 2t3 + t2 + t + 1

2t3 + 2t2 + t 2t4 + t3 + 2t + 2 2t4 + t3 + 2t2 + 2t + 2

t3 + 2t2 + 2t t4 + t3 + 2t + 1 2t4 + 2t3 + 2t2 + t + 2

2t3 + t2 + t 2t4 + 2t3 + t + 2 t4 + t3 + t2 + 2t + 1

2t3 + t t2 + 1 t3 + 2t

t3 + 2t 2t2 + 2 2t3 + t

t4 + 2t3 + t2 + t + 1 2t4 + t3 + 2t + 2 t3 + t2 + 2t

2t4 + t3 + 2t2 + 2t + 2 t4 + 2t3 + t + 1 2t3 + 2t2 + t

t4 + t3 + t2 + 2t + 1 t4 + t3 + 2t + 1 2t3 + t2 + t

2t4 + 2t3 + 2t2 + t + 2 2t4 + 2t3 + t + 2 t3 + 2t2 + 2t

Example 3
Let k = F5 and let α be a root of

z4 + (t+ 3)z2 + 1 = 0.

Let K = k(t) and L = K(α). Consider the solutions of the norm form
equation

NL/K(x+ αy + α2z) = ct (x, y, z ∈ k[t]) (29)

with an arbitrary c ∈ k∗. L/K has a bicyclic Galois group. The roots of f
are

α1 =
√
t+
√
t+ 1

α2 = −
√
t+
√
t+ 1

α3 =
√
t−
√
t+ 1

α4 = −
√
t−
√
t+ 1.

The authomorphism group of L/K is generated by σ1, σ2 with

σ1(
√
t) = −

√
t, σ1(

√
t+ 1) =

√
t+ 1

and
σ2(
√
t) =

√
t, σ2(

√
t+ 1) = −

√
t+ 1.

This implies that the non-trivial elements (all of order two) of the autho-
morphism group are σ1, σ2, σ1σ2 with

σ1(α1) = α2, σ1(α3) = α4
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σ2(α1) = α3, σ1(α2) = α4

σ1σ2(α1) = α4, σ1σ2(α2) = α3.

Solving equation (29) we shall use the ideas of Section 5. The linear forms
δi(x, y, z) = x+ αiy + α2

i z satisfy

δ1(x, y, z) + 4α2
1 δ2(x, y, z) + α2

1 δ3(x, y, z) = δ4(x, y, z), (30)

hence compared with equation (16) we have

γ1

γ4
= −δ1(x, y, z)

δ4(x, y, z)
γ3

γ4
= −α3

1

δ3(x, y, z)
δ4(x, y, z)

(31)

γ2

γ4
= −4α2

1

δ2(x, y, z)
δ4(x, y, z)

.

Further, we shall use that

δ2(x, y, z)
δ4(x, y, z)

=
δ2(x, y, z)
δ3(x, y, z)

· δ3(x, y, z)
δ4(x, y, z)

= σ1

(
δ1(x, y, z)
δ4(x, y, z)

)
· δ3(x, y, z)
δ4(x, y, z)

. (32)

The function field L has genus g = 0, it has two infinite valuations
v∞,1, v∞,2 and two valuations v0,1, v0,2 corresponting to t, all of degree 1.
Let V0 = {v∞,1, v∞,2, v0,1, v0,2}, then all summands in equation

γ1

γ4
+
γ2

γ4
+
γ3

γ4
= −1 (33)

are V0-units. We have 2g−2+
∑
v∈V0

deg v = 2. For the set of new valuations
N (cf. Theorem 4.1) we have

∑
v∈N deg v ≤ 2. Factorizing t5

2 − t over
k and considering elements of bounded height with non-zero values only
at given valuations we find that additionally only the valuations v1,1, v1,2,
corresponding to t+ 1 both of degree 1, may occur in N .

According to (17) we have

γ1

γ4
= −x0Φ,

γ3

γ4
= −(1− x0)Ψ, (34)
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where x0 and Φ,Ψ are V0∪N -units, x0 satisfying the unit equation x0+y0 =
1 with a V0 ∪N -unit y0, with H(Φ), H(Ψ) ≤ 2 and x0 is either a pth power
or H(x0) ≤ 4. Further, by (32) we get

γ2

γ4
= −4α2

1

δ2(x, y, z)
δ4(x, y, z)

= −4α2
1 σ1

(
δ1(x, y, z)
δ4(x, y, z)

)
· δ3(x, y, z)
δ4(x, y, z)

=

= (−4) α2
1 σ1

(
−γ1

γ4

)
· (−1)
α3

1

· γ3

γ4
=
(−4
α1

)
σ1(x0Φ) (1− x0) Ψ. (35)

This implies that equation (33) can be written in the form

x0Φ +
(−4 σ1(Φ) Ψ

α1

)
σ1(x0) (1− x0) + (1− x0) Ψ = 1 (36)

or equivalently
x0Φ + (1− x0) Ψ + z0 Λ = 1 (37)

with
Λ =

−4 σ1(Φ) Ψ
α1

, z0 = σ1(x0) (1− x0).

I. If x0 is a pth power then by H(Φ) ≤ 2 < p Remark 3 after Theorem 4.1
implies that N is in fact empty, and x0,Φ,Ψ are V0 units. Obviously 1− x0

and z0 = σ1(x0)(1 − x0) are also pth powers. Using local derivation at a
valuation by Section 5 equation (37) gives

(Φ−Ψ) x0 + Λ z0 = 1−Ψ
(Φ′ −Ψ′) x0 + Λ′ z0 = −Ψ′. (38)

Up to constant factors there are 55 V0 units of height ≤ 2. Observe that
Φ = Ψ is not possible and eliminate z0 from the above system of equations
to get

x0(Λ′(Φ−Ψ)− Λ(Φ′ −Ψ′)) = Λ′(1−Ψ) + ΛΨ′.

Considering all possible values for Φ and Ψ we calculated x0 from the above
equation. Note that in all cases when the coefficient of x0 was zero (that
is (Φ − Ψ)/Λ is constant) we had a non-zero right hand side, that is a
contradictory equation. We tested if x0 is indeed a V0 unit and a pth power.
We obtained, that all possible values of x0 are constants. By equations (31),
(34), (35) we can calculate the actual values of δi(x, y, z)/δ4(x, y, z) (i =
1, 2, 3). Further, by the original norm form equation (29) we have

δ4(x, y, z)4 = c · t ·
(
δ1(x, y, z)
δ4(x, y, z)

· δ2(x, y, z)
δ4(x, y, z)

· δ3(x, y, z)
δ4(x, y, z)

)−1
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which gives δ4(x, y, z), whence we can calculate the values of the other linear
forms. By solving a system of linear equations we get x, y, z. All solutions
we calculated in this case are

(x, y, z) = (1, 4, 0), (0, 4, 1), (1, 1, 0), (0, 1, 1)

and their constant multiples.

II. Assume that x0 is not a pth power. Then N = {v1,1, v1,2}. x0 and Φ,Ψ
are V0 ∪N -units with

H(x0) ≤ 4, H(Φ) ≤ 2, H(Ψ) ≤ 2.

There are 271 possible values for x0 and up to constant factor there are 743
possible values for Φ (and Ψ). To reduce the number of possible cases to
test we consider

1 =
δ1(x, y, z)
δ4(x, y, z)

· δ4(x, y, z)
δ1(x, y, z)

= (x0Φ) · σ1σ2(x0Φ)

1 =
δ2(x, y, z)
δ3(x, y, z)

· δ3(x, y, z)
δ2(x, y, z)

= σ1(x0Φ) · σ2(x0Φ).

Checking the above equations instead of 271 · 743 = 201353 pairs there
only remain 4235 possible pairs x0,Φ and for each pair we can calculate
the possible constant factors of Φ, as well. Further, equation (36) gives the
corresponding Ψ which also must be checked if it is a V0 ∪N -unit of height
≤ 2. From x0,Φ,Ψ we can calculate the solutions x, y, z of equation (29).
In this case we do not get any further solutions.

Remark All computations were performed by using Kash [1]. The com-
putations of Example 1 took just a few seconds, Examples 2 and 3 took
several minutes.
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