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Abstract
A real valued function f defined on a real open interval I is called �-monotone if, for all
x, y ∈ I with x ≤ y it satisfies

f (x) ≤ f (y) + �(y − x),

where � : [0, �(I )[→ R+ is a given nonnegative error function, where �(I ) denotes the
length of the interval I . If f and − f are simultaneously �-monotone, then f is said to be a
�-Hölder function. In the main results of the paper, we describe structural properties of these
function classes, determine the error function which is the most optimal one. We show that
optimal error functions for �-monotonicity and �-Hölder property must be subadditive and
absolutely subadditive, respectively. Then we offer a precise formula for the lower and upper
�-monotone and �-Hölder envelopes. We also introduce a generalization of the classical
notion of total variation and we prove an extension of the Jordan Decomposition Theorem
known for functions of bounded total variations.
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1 Introduction

The main concepts and results of this paper are distillated from the following elementary
observations. Assume that I is a nonempty interval and a function f : I → R satisfies the
inequality

f (x) ≤ f (y) + ε(y − x)p (x, y ∈ I , x < y) (1.1)

for some nonnegative constant ε and real constant p ∈ R. That is, f is nondecreasing with
an error term described in terms of the pth power function. Clearly, if ε = 0, then the above
condition is equivalent to the nondecreasingness of f . Conversely, one can notice that every
nondecreasing function f satisfies (1.1). On the other hand, if p = 1, then (1.1) holds if and
only if the function g(x) := f (x) + εx is nondecreasing and hence f (x) = −εx is a strictly
decreasing solution of (1.1). If p < 1, then the function f (x) := −εx p (x > 0) is a strictly
decreasing solution of inequality (1.1) on the interval I =]0,∞[.

Surprisingly, for p > 1, the situation is completely different. Fix a < b in I , then choose
n ∈ N arbitrarily, set u := (b−a)/n and apply inequality (1.1) for the values x := a+(k−1)u
and y := a + ku. Then we get

f (a + (k − 1)u) ≤ f (a + ku) + εu p (k ∈ {1, . . . , n}).
Adding up these inequalities side by side for k ∈ {1, . . . , n}, after trivial simplifications, we
arrive at

f (a) = f (a + 0u) ≤ f (a + nu) + nεu p = f (b) + εn1−p(b − a)p (n ∈ N).

Upon taking the limit n → ∞, it follows that

f (a) ≤ f (b) (a, b ∈ I , a < b),

which shows that f is nondecreasing. Therefore, for p > 1 a function f : I → R satisfies
(1.1) for some nonnegative ε if and only if f is nondecreasing.

Another motivation for our paper comes from the theory of approximate convexity which
has a rich literature, see for instance [1–34,36–39]. In these papers several aspects of approx-
imate convexity were investigated: stability problems, Bernstein–Doetsch-type theorems,
Hermite–Hadamard type inequalities, etc.

In the paper [35], the particular case p = 0 of inequality (1.1) was considered and the
following result was proved: A function f : I → R satisfies (1.1) for some ε ≥ 0 with p = 0
if and only if there exists a nondecreasing function g : I → R such that | f − g| ≤ ε/2
holds on I . In other words, certain approximately monotone functions can be approximated
by nondecreasing functions.

The above described observations and results motivate the investigation of classes of func-
tions that obey amore general approximatemonotonicity and also the relatedHölder property.
In fact, the class of approximate Hölder functions was introduced in the paper [26], but this
property was only investigated in the related context of approximate convexity. In this paper,
we describe structural properties of these function classes, determine the error functionwhich
is the most optimal one. We show that optimal error functions for approximate monotonic-
ity and for the Hölder property must be subadditive and absolutely subadditive, respectively.
Then we offer a precise formula for the lower and upper approximately monotone and Hölder
envelopes and also obtain sandwich-type theorems. In the last section, we introduce a gener-
alization of the classical notion of total variation and we prove a generalization of the Jordan
Decomposition Theorem known for functions of bounded variations.
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2 On8-monotone and8-Hölder functions

Let I be a nonempty open real interval throughout this paper and let �(I ) ∈]0,∞] denote
its length. The symbols R and R+ denote the sets of real and nonnegative real numbers,
respectively.

The class of all functions � : [0, �(I )[→ R+, called error functions, will be denoted
by E(I ). Obviously, E(I ) is a convex cone, i.e., it is closed with respect to addition and
multiplication by nonnegative scalars. In what follows, we are going to define four properties
related to an error function � ∈ E(I ).

A function f : I → R will be called �-monotone if, for all x, y ∈ I with x ≤ y,

f (x) ≤ f (y) + �(y − x). (2.1)

If this inequality is satisfied with the identically zero error function �, then we say that f
is monotone (increasing). The class of all �-monotone functions on I will be denoted by
M�(I ). We also consider the class of all functions that are �-monotone for some error
function � ∈ E(I ):

M(I ) :=
⋃

�∈E(I )

M�(I ).

A function f : I → R will be called �-Hölder if, for all x, y ∈ I ,

| f (x) − f (y)| ≤ �(|x − y|). (2.2)

The class of all�-Hölder functions on I will be denoted byH�(I ). The family of all functions
that are �-Hölder for some error function � ∈ E(I ) will be denoted by H(I ):

H(I ) :=
⋃

�∈E(I )

H�(I ).

Proposition 2.1 Let �1, . . . , �n ∈ E(I ) and α1, . . . , αn ∈ R+. Then

α1M�1(I ) + · · · + αnM�n (I ) ⊆ Mα1�1+···+αn�n (I ).

In particular, for all functions � ∈ E(I ), the classM�(I ) is convex. Furthermore,M(I ) is
a convex cone.

Proof To prove the first inclusion, let f ∈ α1M�1(I ) + · · · + αnM�n (I ). Then, there exist
f1, . . . , fn belonging to M�1(I ), . . . ,M�n (I ), respectively, such that

f = α1 f1 + · · · + αn fn . (2.3)

Then, for all x, y ∈ I with x ≤ y, we have

fi (x) ≤ fi (y) + �i (y − x) (i ∈ {1, . . . , n}).
Multiplying this inequality by αi and summing up side by side, we arrive at

f (x) =
n∑

i=1

αi fi (x) ≤
n∑

i=1

αi fi (y) +
n∑

i=1

αi�i (y − x) = f (y) + �(y − x),

where � := ∑n
i=1 αi�i . This shows that f ∈ M�(I ), which proves statement.

The additional statements are immediate consequences of what we have proved. �	
The following result is the counterpart of the previous statement.
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Proposition 2.2 Let �1, . . . , �n ∈ E(I ) and α1, . . . , αn ∈ R. Then

α1H�1(I ) + · · · + αnH�n (I ) ⊆ H|α1|�1+···+|αn |�n (I ).

In particular, for all functions � ∈ E(I ), the classH�(I )is convex and centrally symmetric,
i.e., H�(I ) is closed with respect to multiplication by (−1). Furthermore, H(I ) is a linear
space.

Proof To prove the first inclusion, let f ∈ α1H�1(I ) + · · · + αnH�n (I ). Then, there exist
f1, . . . , fn belonging to H�1(I ), . . . ,H�n (I ), respectively, such that (2.3) holds. Then, for
all x, y ∈ I , we have

| fi (x) − fi (y)| ≤ �i (y − x) (i ∈ {1, . . . , n}).
Multiplying this inequality by |αi | and summing up side by side, we arrive at

| f (x) − f (y)| =
∣∣∣∣

n∑

i=1

αi ( fi (x) − fi (y))

∣∣∣∣ ≤
n∑

i=1

|αi |·| fi (x) − fi (y)|

≤
n∑

i=1

|αi |�i (y − x) = �(y − x),

where � := ∑n
i=1 |αi |�i . This shows that f ∈ H�(I ), which proves the statement.

The additional statements are immediate consequences of what we have proved. �	
Proposition 2.3 Let � ∈ E(I ). Then

H�(I ) = M�(I ) ∩ (−M�(I )). (2.4)

Furthermore,

H(I ) = M(I ) ∩ (−M(I )). (2.5)

Proof Assume that f is a �-Hölder function. Then, for any x, y ∈ I , f will satisfy the
inequality (2.2) and hence for any x, y ∈ I with x ≤ y the inequalities

f (x) − f (y) ≤ �(y − x), f (y) − f (x) ≤ �(y − x) (2.6)

holds. Rearranging these inequalities, we have that both f and − f are �-monotone. That is
f ∈ M�(I ) ∩ (−M�(I )).
To show the inverse inclusion, let f ∈ M�(I ) ∩ (−M�(I )). Due to the property of

�-monotonicity of the two classes of function, f will satisfy the two inequalities in (2.6).
Hence, inequality (2.2) holds for x ≤ y. This inequality being symmetric in x and y, we get
that (2.2) is satisfied for all x, y ∈ I .

To verify (2.5), let first f be a member of H(I ). Then there exists � ∈ E(I ) such that
f ∈ H�(I ). In view of the first part, this implies that

f ∈ M�(I ) ∩ (−M�(I )) ⊆ M(I ) ∩ (−M(I )).

Thus, we have shown the inclusion ⊆ for (2.5).
For the reversed inclusion, let f ∈ M(I ) ∩ (−M(I )). Then there exist �1,�2 ∈ E(I )

such that f ∈ M�1(I ) and − f ∈ M�2(I ). Define � := max(�1,�2). Then, obviously,
f ∈ M�(I ) and − f ∈ M�(I ), therefore, f ∈ H�(I ) ⊆ H(I ). This completes the proof.�	
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We say that a family F of real valued functions is closed with respect to the pointwise
supremum if { fγ : I → R | γ ∈ �} is a subfamily of F with a pointwise supremum
f : I → R, i.e.,

f (x) = sup
γ∈�

fγ (x) (x ∈ I ), (2.7)

then f ∈ F . Similarly, we can define a family F of real valued functions is closed with
respect to the pointwise infimum.

Proposition 2.4 Let � ∈ E(I ). Then the classM�(I ) is closed with respect to the pointwise
infimum and supremum. Furthermore,M�(I ) is closed with respect to the pointwise lim inf
and lim sup operations.

Proof Assume that { fγ | γ ∈ �} is a family of �-monotone functions with a pointwise
supremum f : I → R, i.e., (2.7) holds. Let x, y ∈ I be arbitrary with x ≤ y. Then, by the
�-monotonicity property, for all γ ∈ �, we have that

fγ (x) ≤ fγ (y) + �(y − x) ≤ f (y) + �(y − x).

Taking the supremum of the left hand side with respect to γ ∈ �, we get

f (x) ≤ f (y) + �(y − x),

which shows that f is �-monotone. The proof of the assertion related to the pointwise
infimum is similar, therefore it is omitted.

To obtain the statements with respect to the liminf and limsup operations, let f : I → R

be the upper limit of a sequence fn : I → R. Then

f = inf
n∈N gn, where gn := sup

k≥n
fk .

If all the functions fn are�-monotone, then for all n ∈ N, the function gn is�-monotone. On
the other hand, the sequence (gn) is decreasing, therefore f is the pointwise chain infimum
of {gn | n ∈ N}, thus f is also �-monotone.

In a similar way, one can prove that the class of �-monotone functions is closed with
respect to the liminf operation. �	

As an immediate consequence, we can see that if f is�-monotone, then f+ = max( f , 0)
is also �-monotone.

Proposition 2.5 Let � ∈ E(I ). Then the class H�(I ) is closed with respect to the point-
wise infimum and pointwise supremum. Consequently, H�(I ) is closed with respect to the
pointwise lim inf and lim sup operations.

Proof Assume that f : I → R is the pointwise supremum of a family { fγ | γ ∈ �} ⊆
H�(I ). By Proposition 2.3, we have that ± fγ ∈ M�(I ) holds for all γ ∈ �. In view of
Proposition 2.4, this implies that

f = sup
γ∈�

fγ ∈ M�(I ) and − f = inf
γ∈�

(− fγ ) ∈ M�(I ).

Therefore, f ∈ M�(I )∩(−M�(I )) = H�(I ). The proof of the statement for the pointwise
infimum is analogous.

The statements concerning liminf and limsup operations follow from the first part exactly
in the same way as in the proof of Proposition 2.4. �	

As a trivial corollary, we obtain that if f is �-Hölder, then | f | = max( f ,− f ) is also
�-Hölder.
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3 Optimality of the error functions

In what follows, a function � ∈ E(I ) will be called subadditive if, for all u, v ∈ R+ with
u + v < �(I ), the inequality

�(u + v) ≤ �(u) + �(v) (3.1)

holds. Obviously, a decreasing function � ∈ E(I ) is automatically subadditive. Indeed, if
u, v ≥ 0with u+v < �(I ), then u ≤ u+v implies�(u+v) ≤ �(u), which, togetherwith the
nonnegativity of�(v), yields (3.1). A stronger property of a function� ∈ E(I ) is the absolute
subadditivity, which is defined as follows: for all u, v ∈ R with |u|, |v|, |u + v| < �(I ), the
inequality

�(|u + v|) ≤ �(|u|) + �(|v|) (3.2)

is satisfied. It is clear that absolutely subadditive functions are automatically subadditive. On
the other hand, we have the following statement.

Lemma 3.1 If � ∈ E(I ) is increasing and subadditive, then it is absolutely subadditive.

Proof Let u, v ∈ R with |u|, |v|, |u + v| < �(I ). If uv ≥ 0, then |u| + |v| = |u + v| < �(I )
and the subadditivity implies

�(|u + v|) = �(|u| + |v|) ≤ �(|u|) + �(|v|).
In the case uv < 0, one can easily check that |u + v| ≤ max(|u|, |v|). Therefore, the
monotonicity property of � yields

�(|u + v|) ≤ �(max(|u|, |v|)) = max(�(|u|),�(|v|)) ≤ �(|u|) + �(|v|).
Thus, we have proved (3.2) in both cases. �	

Wemention here another related notion, the concept of increasing subadditivity whichwas
introduced in [26]: � ∈ E(I ) is called increasingly subadditive if, for all u, v, w ∈ [0, �(I )[
with u ≤ v + w the inequality

�(u) ≤ �(v) + �(w)

holds. One can easily see that this property implies absolute subadditivity, but the converse
is not true in general.

The simplest but important error functions are of the form

�p(0) := 0, �p(u) := u p (u > 0),

where p ∈ R. Their subadditivity and absolute subadditivity is characterized by the following
statement.

Proposition 3.2 Let p ∈ R. Then

(i) �p is subadditive on R+ if and only if p ∈] − ∞, 1].
(ii) �p is absolutely subadditive on R+ if and only if p ∈ [0, 1].
Proof Let p ≤ 1. To show that �p is subadditive, it is enough to check (3.1) for � = �p in
the case uv �= 0. Then

1 = u

u + v
+ v

u + v
≤

( u

u + v

)p +
( v

u + v

)p
.
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Multiplying this inequality side by side by (u + v)p , we get

�p(u + v) = (u + v)p ≤ u p + v p = �p(u) + �p(v), (3.3)

which shows the subadditivity of �p .
If p > 1, then with u := v > 0 in (3.3), we get

�p(u + u) = (u + u)p = (2u)p = 2pu p > 2u p = �p(u) + �p(u),

therefore, �p cannot be subadditive (in fact, one can see that �p is superadditive).
If p ∈ [0, 1], then �p is increasing and also subadditive on R+ (by the first assertion),

hence, by Lemma 3.1, it is also absolutely subadditive on R+.
If p > 1, then�p is not subadditive, hence, it is also not absolutely subadditive. If p < 0,

then with u := n + 1 and v := −n, the absolute subadditivity of �p would imply

1 = �p(1) = �p(|u + v|) ≤ �p(|u|) + �p(|v|) = (n + 1)p + n p

for all n ∈ N. Upon taking the limit n → ∞ and using p < 0, we arrive at the contradiction
1 ≤ 0. Hence �p cannot be absolutely subadditive. �	

It is also not difficult to see that the class of subadditive functions as well as the class of
absolutely subadditive functions are nonempty (because they contain the 0 function) and are
closedwith respect to pointwise supremum.Therefore, for any� ∈ E(I ), there exists a largest
subadditive function �σ ∈ E(I ) and a largest absolutely subadditive function �α ∈ E(I )
which satisfy the inequalities 0 ≤ �σ ≤ � and 0 ≤ �α ≤ � on [0, �(I )[, respectively. The
functions �σ and �α will be called the subadditive envelope (or subadditive minorant) and
the absolutely subadditive envelope (or absolutely subadditive minorant) of the function �,
respectively. Obviously, the equalities � = �σ and � = �α are valid if and only if � is
subadditive and absolutely subadditive, respectively. More generally, the functions �σ and
�α can be constructed explicitly from � by the following results.

Proposition 3.3 Let � ∈ E(I ) be an arbitrary function. Define the function �σ : [0, �(I )[→
R+ by

�σ (u) := inf
{
�(u1) + · · · + �(un) | n ∈ N, u1, . . . , un ∈ R+ : u1 + · · · + un = u

}
.

Then �σ is the largest subadditive function which satisfies the inequality �σ ≤ � on
[0, �(I )[. Furthermore, �σ (0) = �(0) and, additionally, if � is increasing, then �σ is also
increasing, and hence �σ = �α .

Proof First we are going to prove the subadditivity of �σ . Let u, v ∈ R+ such that u + v ∈
[0, �(I )[. Let ε > 0 be arbitrary. Then there exist n,m ∈ N and u1, . . . , un, v1, . . . , vm ∈ R+
such that

u =
n∑

i=1

ui , v =
m∑

j=1

v j ,

n∑

i=1

�(ui ) < �σ (u) + ε

2
and

m∑

j=1

�(v j ) < �σ (v) + ε

2
.

We have that u + v = ∑n
i=1 ui + ∑m

j=1 v j . Therefore, by the definition of �σ and by the
last two inequalities, we get

�σ (u + v) ≤
n∑

i=1

�(ui ) +
m∑

j=1

�(v j ) < �σ (u) + �σ (v) + ε.
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Since ε is an arbitrary positive number, we conclude that �σ (u + v) ≤ �σ (u) + �σ (v),
which completes the proof of the subadditivity of �σ . By taking n = 1, u1 = u in the
definition of �σ (u), we can see that �σ (u) ≤ �(u) also holds for all u ∈ [0, �(I )[.

By the definition of �σ and the inequality �(0) ≥ 0, we have that

�σ (0) = inf
n∈N n�(0) = �(0).

Now assume that 	 : [0, �(I )[→ R+ is a subadditive function such that 	 ≤ � holds on
[0, �(I )[. To show that 	 ≤ �σ , let u ∈ [0, �(I )[ and ε > 0 be arbitrary. Then there exist
n ∈ N and u1, . . . , un ∈ R+ such that

u = u1 + · · · + un and �(u1) + · · · + �(un) < �σ (u) + ε. (3.4)

Then, due to the subadditivity of 	,

	(u) ≤ 	(u1) + · · · + 	(un) ≤ �(u1) + · · · + �(un) < �σ (u) + ε.

By the arbitrariness of ε > 0, the inequality 	(u) ≤ �σ (u) follows for all u ∈ [0, �(I )[,
which was to be proved.

To verify the last assertion, let u, v ∈ [0, �(I )[ with v < u. Let ε > 0 be arbitrary. Then
there exist n ∈ N and u1, . . . , un ∈ R+ such that (3.4) is satisfied. Define vi := v

u ui . Then
vi ≤ ui , hence �(vi ) ≤ �(ui ). On the other hand, v1 + · · · + vn = v

u (u1 + · · · + un) = v,
which implies that

�σ (v) ≤ �(v1) + · · · + �(vn) ≤ �(u1) + · · · + �(un) < �σ (u) + ε.

Passing the limit ε → 0, we arrive at the inequality �σ (v) ≤ �σ (u), which proves the
increasingness of �σ . If this is the case, then �σ is also absolutely subadditive, therefore,
�σ = �α . �	

The following lemma is instrumental for the construction of the absolute convex envelope
of a given error function.

Lemma 3.4 Assume that � ∈ E(I ) is absolutely subadditive. Then, for all n ∈ N,
u1, . . . , un ∈ R with |u1|, . . . , |un |, |u1 + · · · + un | < �(I ),

�(|u1 + · · · + un |) ≤ �(|u1|) + · · · + �(|un |).
Proof The statement is trivial for n = 1. For n ≥ 2, we prove the assertion by induction.
If n = 2, then it is equivalent to the absolute subadditivity of �. Let n ≥ 2 and assume
that the statement holds for n variables. Let u1, . . . , un+1 ∈] − �(I ), �(I )[ such that u0 :=
u1 + · · ·+ un+1 ∈]− �(I ), �(I )[. We may assume that u0 ≥ 0, (otherwise we can replace ui
by−ui for all i ∈ {1, . . . , n+1} in the argument). Then, for at least one i ∈ {1, . . . , n+1}, we
have that ui ≥ 0. By permuting the indices if necessary, we may also assume that un+1 ≥ 0.
Then, using the inequalities u0 ≥ 0, un+1 < �(I ), un+1 ≥ 0 and u0 < �(I ), respectively,
we get

−�(I ) ≤ u0 − �(I ) = u1 + · · · + un + (un+1 − �(I ))

< u1 + · · · + un ≤ u1 + · · · + un + un+1 = u0 < �(I ).

This shows that u1 + · · · + un ∈] − �(I ), �(I )[. Now, applying the inequality (3.2) with
u := u1 + · · · + un and v := un+1 and then the inductive assumption, it follows that
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�(|u1 + · · · + un+1|) ≤ �(|u1 + · · · + un |) + �(|un+1|)
≤ �(|u1|) + · · · + �(|un |) + �(|un+1|).

Therefore, the statement is valid also for n + 1 variables. �	
Proposition 3.5 Let � ∈ E(I ) be an arbitrary function. Define the function �α : [0, �(I )[→
R+ by

�α(u) : = inf
{
�(|u1|) + · · · + �(|un |) | n ∈ N, |u1|, . . . , |un |

< �(I ), u1 + · · · + un = u
}
. (3.5)

Then�α is the largest absolutely subadditive function which satisfies the inequality�α ≤ �

and hence �α ≤ �σ on [0, �(I )[.
Proof First we are going to prove the absolute subadditivity of �α . Let u, v ∈ R such that
|u|, |v|, |u + v| < �(I ). Without loss of generality, we may assume that u + v is nonnegative
(otherwise, we replace u and v by (−u) and (−v) in the argument below). Let ε > 0 be
arbitrary. Then there exist n,m ∈ N and real numbers u1, . . . , un, v1, . . . , vm ∈]−�(I ), �(I )[
such that

u =
n∑

i=1

ui , v =
m∑

j=1

v j ,

n∑

i=1

�(|ui |) < �α(|u|) + ε

2
and

m∑

j=1

�(|v j |) < �α(|v|) + ε

2
.

We have that u + v = ∑n
i=1 ui + ∑m

j=1 v j . Therefore, by the definition of �α and by the
last two inequalities, we get

�α(u + v) ≤
n∑

i=1

�(|ui |) +
m∑

j=1

�(|v j |) < �α(|u|) + �α(|v|) + ε.

Since ε is an arbitrary positive number, we conclude that �α(u + v) ≤ �α(|u|) + �α(|v|),
which completes the proof of the absolute subadditivity of �α . By taking n = 1 and u1 = u
in the right-hand side of (3.5), we can see that �α ≤ � holds.

Now assume that 	 ∈ E(I ) is an absolutely subadditive function such that 	 ≤ � holds
on [0, �(I )[. To show that 	 ≤ �α , let u ∈ [0, �(I )[ and ε > 0 be arbitrary. Then there exist
n ∈ N and u1, . . . , un ∈] − �(I ), �(I )[ such that

u = u1 + · · · + un and �(|u1|) + · · · + �(|un |) < �α(u) + ε. (3.6)

Then, due to the absolute subadditivity of 	 and Lemma 3.4, we get

	(u) ≤ 	(|u1|) + · · · + 	(|un|) ≤ �(|u1|) + · · · + �(|un |) < �α(u) + ε.

By the arbitrariness of ε > 0, the inequality 	(u) ≤ 
α(u) follows for all u ∈ [0, �(I )[,
which was to be proved.

The function�α being subadditive, the Proposition 3.3 implies that�α ≤ �σ also holds.�	
The following corollaries demonstrate cases when the subadditive and the absolutely

subadditive envelopes of an error function are the identically zero functions.

Corollary 3.6 Let � ∈ E(I ) such that, for all 0 ≤ u < �(I ),

inf
n∈N n�

(u
n

)
= 0. (3.7)

Then �σ = �α ≡ 0. In particular, for p > 1, �σ
p = �α

p = 0.
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Proof If n ∈ N and 0 ≤ u < �(I ), then, by the construction of �σ ,

�σ (u) ≤ n�
(u
n

)
.

Taking the infimum of the right-hand side of this inequality for n ∈ N, we get that �α(u) ≤
�σ (u) ≤ 0, which yields �α(u) = �σ (u) = 0.

For the particular case, let � = �p for some p > 1. Then 1 − p < 0, thus

inf
n∈N n�p

(u
n

)
= inf

n∈N n
1−pu p = lim

n→∞ n1−pu p = 0,

which shows that �σ
p = �α

p = 0. �	
Corollary 3.7 Let I be an unbounded interval and � ∈ E(I ) such that

lim
v→∞ �(v) = 0. (3.8)

Then �α ≡ 0. In particular, for p < 0, �α
p = 0.

Proof Let 0 < u. Then, by the construction of �α , for all v > 0, we have the inequality

�α(u) ≤ �(|u + v|) + �(| − v|) = �(u + v) + �(v).

Upon taking the limit v → ∞, the equality (3.8) yields that �α(u) = 0. �	
The next result shows that for the notions of �-monotonicity and �-Hölder property,

the error function � can always be replaced by its subadditive and absolutely subadditive
envelope, respectively.

Theorem 3.8 Let � ∈ E(I ). Then

M�(I ) = M�σ (I ) and H�(I ) = H�σ (I ).

If, in addition, I is an unbounded interval, then

H�(I ) = H�α (I ).

Proof The inclusionM�σ (I ) ⊆ M�(I ) is a trivial consequence of the inequality �σ ≤ �.
To prove the reversed inclusion, let f ∈ M�(I ). To show that f is also �σ -monotone, let
x < y be arbitrary elements of I and ε > 0 be arbitrary.

For u := y − x < �(I ), there exist n ∈ N and u1, . . . , un ∈ R+ such that (3.4) holds. For
the sake of convenience, let u0 := 0 and

xi := x + u0 + · · · + ui (i ∈ {0, . . . , n}).
Obviously, x = x0 ≤ x1 ≤ · · · ≤ xn = y. Applying the �-monotonicity of f , we get that

f (xi−1) ≤ f (xi ) + �(xi − xi−1) = f (xi ) + �(ui ) (i ∈ {1, . . . , n}).
Adding up the above inequalities for i ∈ {1, . . . , n} side by side, we obtain that

f (x) = f (x0) ≤ f (xn) + �(u1) + · · · + �(un)

< f (xn) + �σ (u) + ε = f (y) + �σ (y − x) + ε.

Upon taking the limit ε → 0, it follows that

f (x) ≤ f (y) + �σ (y − x),
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which completes the proof of the �σ -monotonicity of f .
Using Proposition 2.3 and the above verified equality, we get

H�(I ) = M�(I ) ∩ (−M�(I )) = M�σ (I ) ∩ (−M�σ (I )) = H�σ (I ).

Nowassume that I is unbounded. The inclusionH�α (I ) ⊆ H�(I ) is a trivial consequence
of the inequality �α ≤ �. To prove the reversed inclusion, let f ∈ H�(I ). To show that f
is also �α-Hölder, let x, y ∈ I and ε > 0 be arbitrary. We may assume that x < y. Then
u := y − x < �(I ) and there exist n ∈ N and u1, . . . , un ∈] − �(I ), �(I )[ such that (3.6)
holds.

Now we have to distinguish two cases according to the unboundedness of I . Assume first
that I is unbounded from below. Then wemay assume that−�(I ) := u0 < u1 ≤ · · · ≤ un <

�(I ). In view of (3.6), we have that un > 0, therefore there exists a unique k ∈ {1, . . . , n}
such that uk−1 ≤ 0 < uk . For the sake of convenience, let

x0 := x, xi := x + u1 + · · · + ui (i ∈ {1, . . . , n}).
By the construction of k, it follows that

x = x0 ≥ x1 ≥ · · · ≥ xk−1 < xk ≤ · · · ≤ xn = y.

Therefore, xi ≤ max(x, y) for all i ∈ {1, . . . , n}. Thus the unboundedness of I from below
yields that x1, . . . , xn ∈ I hold. Applying the �-Hölder property of f , we get that

f (xi−1) ≤ f (xi ) + �(|xi − xi−1|) = f (xi ) + �(|ui |) (i ∈ {1, . . . , n}).
Adding up the above inequalities for i ∈ {1, . . . , n} side by side, we obtain that

f (x) = f (x0) ≤ f (xn) + �(|u1|) + · · · + �(|un |)
< f (xn) + �α(u) + ε = f (y) + �α(y − x) + ε.

Upon taking the limit ε → 0, it follows that

f (x) ≤ f (y) + �α(|y − x |). (3.9)

In the case when I is unbounded from above, one should take the ordering −�(I ) < un ≤
· · · ≤ u1 < u0 := �(I ) and use a completely similar argument to obtain inequality (3.9).

Finally, interchanging the roles of x and y in the above proof, we can get

f (y) ≤ f (x) + �α(|y − x |),
which, together with (3.9), shows that f is �α-Hölder and hence completes the proof. �	
Corollary 3.9 Let� ∈ E(I ) such that, for all 0 ≤ u < �(I ), (3.7) holds. ThenM�(I ) equals
the class of increasing functions on I and H�(I ) consists of constant functions.

Proof In view of Corollary 3.6, we have that �σ = �α ≡ 0. Combining this with the result
of the Theorem 3.8, we get thatM�(I ) = M0(I ) andH�(I ) = H0(I ), which is equivalent
to the statement. �	

The following result demonstrates that the subadditive and increasing error functions
optimally determine the corresponding classes of monotone and Hölder functions.

Theorem 3.10 Let � ∈ E(I ) be a increasing and subadditive function with �(0) = 0 and
let 	 ∈ E(I ) satisfy the inequality 	 ≤ �. Then M	(I ) = M�(I ) if and only if 	 = �.
Similarly, H	(I ) = H�(I ) if and only if 	 = �.
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Proof The inclusions M	(I ) ⊆ M�(I ) and H	(I ) ⊆ H�(I ) follow from the inequality
	 ≤ �. To prove the statement, it suffices to show that if 	(p) < �(p) for some p ∈
]0, �(I )[ then both inclusionsM	(I ) ⊆ M�(I ) andH	(I ) ⊆ H�(I ) are proper. For this,
we construct a function f : I → R such that f ∈ H�(I ) but f /∈ M	(I ).

The inclusion p ∈ ]0, �(I )[ implies that there exist u, v ∈ I such that p = v − u. Define

f (x) :=
{
0 if x ≤ u

−�(x − u) if u < x
(x ∈ I ).

Then − f is increasing because � is increasing, hence − f ∈ M�(I ). To prove that f ∈
M�(I ), we fix x, y ∈ I with x ≤ y and distinguish three cases.

If x ≤ y ≤ u, then f (x) = f (y) = 0, hence the inequality (2.1) is a consequence of the
nonnegativity of �.

If x ≤ u < y, then f (x) = 0 and f (y) = −�(y − u), therefore the inequality (2.1) is
now equivalent to

�(y − u) ≤ �(y − x),

which is a consequence of the increasingness of �.
If u < x ≤ y, then f (x) = −�(x − u) and f (y) = −�(y − u), therefore the inequality

(2.1) is now equivalent to

�(y − u) ≤ �(y − x) + �(x − u),

which is a consequence of the subadditivity of �.
This completes the proof of the inclusion f ∈ M�(I ) and hence shows that f ∈ H�(I ).

To complete the proof, we have to verify that f /∈ M	(I ). Indeed, we have that

f (u) − f (v) = �(v − u) = �(p) > 	(p) = 	(v − u).

This strict inequality shows that f cannot be 	-monotone. �	

4 8-Monotone and8-Hölder envelopes

As we have seen it in Propositions 2.4 and 2.5, the classes M�(I ) and H�(I ) are closed
with respect to pointwise infimum and maximum. Therefore, for any function f : I → R,
the supremum of all �-monotone (�-Hölder) functions below f (provided that there is at
least one such function) is the largest �-monotone (�-Hölder) function which is smaller
than or equal to f . Similarly, the infimum of all �-monotone (�-Hölder) functions above
f (provided that there is at least one such function) is the smallest �-monotone (�-Hölder)
function which is bigger than or equal to f . The next result offers a formula for these
enveloping functions.

Proposition 4.1 Let � ∈ E(I ) with �(0) = 0 and let f : I → R be a function which admits
a �-monotone minorant. Then the function M�( f ) defined by

M�( f )(x) := inf
x≤y

(
f (y) + �σ (y − x)

)
(x ∈ I )

is real-valued and is the largest �-monotone function which is smaller than or equal to f .
Analogously, if f admits a �-monotone majorant, then the function M�( f ) defined by

M�( f )(x) := sup
y≤x

(
f (y) − �σ (x − y)

)
(x ∈ I )
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is real-valued and is the smallest �-monotone function which is bigger than or equal to f .

Proof Obviously,M�( f ) cannot take the value+∞ at any point in I , i.e.,M�( f )(x) < +∞
for all x ∈ I . The condition �(0) = 0 implies that �σ (0) = 0, therefore, by taking y = x
in the defining formula of M�( f )(x), we get that M�( f )(x) ≤ f (x) holds for all x ∈ I .

Now suppose g is a �-monotone function such that g ≤ f holds (by the assumption,
there is at least one such function g). Then, by Theorem 3.8, g is also�σ -monotone. In order
to show that g ≤ M�( f ), let x ∈ I be arbitrarily fixed. Then, for all y ∈ I with x ≤ y, we
have

g(x) ≤ g(y) + �σ (y − x) ≤ f (y) + �σ (y − x).

Upon taking the infimum of the right-hand side with respect to y ≥ x , we get

g(x) ≤ inf
x≤y

(
f (y) + �σ (y − x)

) = M�( f )(x),

which proves the desired inequality g(x) ≤ M�( f )(x) and also that M�( f ) cannot take the
value −∞ at any point of I .

To see that M�( f ) itself is �-monotone, it is sufficient to show that M�( f ) is �σ -
monotone. Let u, v ∈ I with u ≤ v. Then, using the subadditivity of �σ , we obtain

M�( f )(u) = inf
u≤y

(
f (y) + �σ (y − u)

) ≤ inf
v≤y

(
f (y) + �σ (y − u)

)

≤ inf
v≤y

(
f (y) + �σ (y − v)

) + �σ (v − u) = M�( f )(v) + �σ (v − u),

which completes the proof of the �-monotonicity of M�( f ).
The proof of the second assertion is completely similar. �	
The following result is of a sandwich-type one.

Corollary 4.2 Let � ∈ E(I ) with �(0) = 0 and let g, h : I → R. Then in order that there
exist a �-monotone function f : I → R between g and h it is necessary and sufficient that,
for all x, y ∈ I with x ≤ y, the inequality

g(x) ≤ h(y) + �σ (y − x) (4.1)

be valid.

Proof Assume first that f is a �-monotone function such that g ≤ f ≤ h. Then, f is
�σ -monotone and, for all x, y ∈ I with x ≤ y, we have

g(x) ≤ f (x) ≤ f (y) + �σ (y − x) ≤ h(y) + �σ (y − x),

i.e., (4.1) holds.
Conversely, assume that (4.1) holds true for all x, y ∈ I with x ≤ y. For a fixed x ∈ I ,

define

f (x) := M�(h)(x) = inf
x≤y

(
h(y) + �σ (y − x)

)
.

Now, in view of inequality (4.1), we have that g(x) ≤ f (x). By taking y = x in the definition
of f , the condition�(0) = 0 ensures that f (x) ≤ h(x) is also valid. Finally, arguing similarly
as at the end of the proof of Proposition 4.1, it follows that f is �σ -monotone and hence
�-monotone as well. �	
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In the next proposition and corollary, we present formulas for the �-Hölder envelopes of
a given function and also a characterization of the existence of a �-Hölder separation. Their
proofs are completely parallel to those of Proposition 4.1 and Corollary 4.2, therefore they
are left to the reader.

Proposition 4.3 Let I be an unbounded interval,� ∈ E(I )with�(0) = 0 and let f : I → R

be a function which admits a �-Hölder minorant. Then the function H�( f ) defined by

H�( f )(x) := inf
y∈I

(
f (y) + �α(|y − x |)) (x ∈ I )

is real-valued and is the largest �-Hölder function which is smaller than or equal to f .
Analogously, if f admits a �-Hölder majorant, then the function H�( f ) defined by

H�( f )(x) := sup
y∈I

(
f (y) − �α(|x − y|)) (x ∈ I )

is real-valued and is the smallest �-Hölder function which is bigger than or equal to f .

Proof Obviously, H�( f ) cannot take the value +∞ at any point in I , i.e., H�( f )(x) < ∞
for all x ∈ I . The condition �(0) = 0 implies that �α(0) = 0, therefore, by taking y = x
in the defining formula of H�( f )(x), we get that H�( f )(x) ≤ f (x) holds for all x ∈ I .

Now suppose g is a �-Hölder function such that g ≤ f holds (by the assumption, there
is at least one such function g). Then, by Theorem 3.8, g is also �α-Hölder. In order to show
that g ≤ H�( f ), let x ∈ I be arbitrarily fixed. Then, for all y ∈ I , we have

g(x) ≤ g(y) + �α(|y − x |) ≤ f (y) + �α(|y − x |),
Upon taking the infimum of the right-hand side with respect to y ∈ I , we get

g(x) ≤ inf
y

(
f (y) + �α(|y − x |)) = H�( f )(x),

which proves the desired inequality g(x) ≤ H�( f )(x) and also that H�( f ) cannot take the
value −∞ at any point of I .

To see that H�( f ) itself is �-Hölder, it is sufficient to show that H�( f ) is �α-Hölder.
For any u, v ∈ I , using the absolute subadditivity of �α , we obtain

H�( f )(u) = inf
y

(
f (y) + �α(|y − u|) ≤ inf

y

(
f (y) + �α

(|(y − v)|) + �α
(|(v − u)|)

)

= inf
y

(
f (y) + �α(|y − v|)

)
+ �α(|v − u|) = H�( f )(v) + �α(|v − u|).

In the same pattern as above, interchanging the roles of u and v in the above equation, we
obtain

H�( f )(v) ≤ H�( f )(u) + �α(|v − u|),
which shows that H�( f ) is �-Hölder.

The proof of the second assertion is completely similar. �	
Corollary 4.4 Let I be an unbounded interval, let� ∈ E(I )with�(0) = 0 and let g, h : I →
R. Then in order that there exist a �-Hölder function f : I → R between g and h it is
necessary and sufficient that, for all x, y ∈ I , the inequality

g(x) ≤ h(y) + �α(|y − x |) (4.2)

be valid.
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Proof Assume first that f is a�-Hölder function such that g ≤ f ≤ h. Then, f is�α-Hölder
and, for all x, y ∈ I , we have

g(x) ≤ f (x) ≤ f (y) + �α(|y − x |) ≤ h(y) + �α(|y − x |),
i.e., (4.2) holds.

Conversely, assume that (4.2) holds true for all x, y ∈ I . For a fixed x ∈ I , define

f (x) := H�(h)(x) = inf
y∈I

(
h(y) + �α(|y − x |)).

Now, in view of inequality (4.2), we have that g(x) ≤ f (x). By taking y = x in the
definition of f , the conditions �(0) = 0 ensures that f (x) ≤ h(x) is also valid. Finally,
arguing similarly as at the end of the proof of Proposition 4.3, it follows that f is �α-Hölder
and hence �-Hölder as well. �	

Before we formulate and prove the next theorem we shall need the following auxiliary
result.

Lemma 4.5 Let �,	 ∈ E(I ) such that (−�) is 	-monotone on ]0, �(I )[. Then (−�σ ) is
also 	-monotone on ]0, �(I )[.
Proof To prove this lemma, let x, y ∈]0, �(I )[ with x < y and ε > 0 be arbitrary. Then
by definition of �σ , there exist n ∈ N and u1, . . . , un ∈ R+ such that x = u1 + · · · + un
satisfying

�(u1) + · · · + �(un) < �σ (x) + ε. (4.3)

Using the 	-monotonicity of (−�), we have

(−�)(un) ≤ (−�)(un + (y − x)) + 	(y − x),

from which we obtain

�(un + (y − x)) ≤ �(un) + 	(y − x).

Observe that y = u1 + · · · + un−1 + (un + (y − x)). Thus, using the inequality in (4.3), we
arrive at

�σ (y) ≤ �(u1) + · · · + �(un−1) + �(un + (y − x))

≤ �(u1) + · · · + �(un−1) + �(un) + 	(y − x) < �σ (x) + 	(y − x) + ε.

As ε is an arbitrary positive number,we can conclude that (−�σ )(x) ≤ (−�σ )(y)+	(y−x),
which completes the proof of the 	 monotonicity of (−�σ ). �	
Theorem 4.6 Let�,	 ∈ E(I ) such that (−�) is	-monotoneon ]0, �(I )[and let f : I → R.
Then f is �-monotone if and only if there exist two 	-monotone functions f∗, f ∗ : I → R

such that f∗ ≤ f ≤ f ∗ hold on I and, for all x, y ∈ I with x < y,

f (x) ≤ f∗(y) + �σ (y − x) and f ∗(x) ≤ f (y) + �σ (y − x). (4.4)

Proof First assume that f is �-monotone. Then, by Theorem 3.8, it is also �σ -monotone.
For a fixed point x ∈ I , define

f∗(x) := sup
u<x

(
f (u) − �σ (x − u)

)
and f ∗(x) := inf

x<v

(
f (v) + �σ (v − x)

)
.
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In view of the �σ -monotonicity of f , for all u < x < v, we have that

f (u) − �σ (x − u) ≤ f (x) and f (x) ≤ f (v) + �σ (v − x).

Therefore, upon taking the supremum for u < x and the infimum for x < v, we get that
f∗(x) ≤ f (x) and f (x) ≤ f ∗(x), respectively. That is, we have that f∗ and f ∗ are real
valued functions and the inequalities f∗ ≤ f ≤ f ∗ hold on I .

In the next step, we establish the 	-monotonicity of f∗ and f ∗. By the definition of f ∗,
for all x, y ∈ I with x < y, we have

f∗(x) = sup
u<x

(
f (u) − �σ (x − u)

)
≤ sup

u<y

(
f (u) − �σ (x − u)

)
. (4.5)

By Lemma 4.5, we have the 	-monotonicity of (−�σ ), which, for all u ∈ I with u < x ,
implies

−�σ (x − u) ≤ −�σ (y − u) + 	((y − u) − (x − u)) = −�σ (y − u) + 	(y − x).

Applying this inequality to the right most expression of inequality (4.5), we arrive at

f∗(x) ≤ sup
u<y

(
f (u) − �σ (x − u)

)

≤ sup
u<y

(
f (u) − �σ (y − u)

)
+ 	(y − x) = f∗(y) + 	(y − x),

which shows that f∗ is also 	-monotone.
Take x, y ∈ I with x < y. Then, by the definition of f ∗, we have

f ∗(x) = inf
x<v

(
f (v) + �σ (v − x)

)
≤ inf

y<v

(
f (v) + �σ (v − x)

)
. (4.6)

By the 	-monotonicity of (−�σ ), for all v ∈ I with y < v, we obtain

�σ (v − x) ≤ �σ (v − y) + 	((v − x) − (v − y)) = �σ (v − y) + 	(y − x).

Applying this inequality to the right most expression of inequality (4.6), we arrive at

f ∗(x) ≤ inf
y<v

(
f (v) + �σ (v − x)

)

≤ inf
y<v

(
f (v) + �σ (v − y)

)
+ 	(y − x) = f ∗(y) + 	(y − x),

which proves that f ∗ is 	-monotone.
Finally, for x, y ∈ I with x < y, from the definitions of f∗ and f ∗, we obtain the

inequalities

f (x) − �σ (y − x) ≤ f∗(y) and f ∗(x) ≤ f (y) + �σ (y − x),

respectively, which prove that f∗ and f ∗ satisfy the inequalities stated in (4.4).
Conversely, if the first inequality in (4.4) holds for some function f∗ : I → R satisfying

f∗ ≤ f , then f (x) ≤ f∗(y) + �σ (y − x) ≤ f (y) + �σ (y − x), which shows the �σ -
monotonicity of f . Similarly, the existence of a function f ∗ : I → R satisfying f ≤ f ∗ and
the second inequality of (4.4), also implies that f is �σ -monotone. �	

By taking the error function 	 ≡ 0, the previous theorem directly implies the following
result. Observe that, in this case, 	-monotonicity is equivalent to increasingness.
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Corollary 4.7 Let � ∈ E(I ) such that � is decreasing on ]0, �(I )[ and let f : I → R. Then,
f is �-monotone if and only if there exist two increasing functions f∗, f ∗ : I → R such
that f∗ ≤ f ≤ f ∗ hold on I and, for all x, y ∈ I with x < y, the inequalities in (4.4) are
satisfied.

The analogue of Lemma 4.5 for the	-Hölder setting is contained in the following lemma.

Lemma 4.8 Let I be an unbounded interval, let �,	 ∈ E(I ) such that � ◦ | · | is 	-Hölder
on R. Then �α ◦ | · | is also 	-Hölder on R.

Proof To prove this lemma, let x, y ∈ R and ε > 0 be arbitrary. Then by definition of �α ,
there exist n ∈ N and u1, . . . , un ∈ R with y = u1 + · · · + un satisfying

�(|u1|) + · · · + �(|un |) < �α(|y|) + ε. (4.7)

Using the 	-Hölder property of � ◦ | · |, we have
�(|un + (x − y)|) ≤ �(|un |) + 	(|y − x |).

Observe that x = u1 + · · · + un−1 + (un + (x − y)). Thus, using the inequality in (4.7), we
arrive at

�α(|x |) ≤ �(|u1|) + · · · + �(|un−1|) + �(|un + (x − y)|)
≤ �(|u1|) + · · · + �(|un−1|) + �(|un |) + 	(|y − x |) < �α(|y|) + 	(|y − x |) + ε.

As ε is an arbitrary positive number, we can conclude that �α ◦ | · | is 	-Hölder. �	
Remark 4.9 The property that � ◦ | · | is 	-Hölder on R means that, for all x, y ∈ R,

�(|x |) ≤ �(|y|) + 	(|y − x |).
Denoting |x | and |y| by u and v, respectively, the above inequality implies, for all u, v ≥ 0,

�(u) ≤ �(v) + min(	(|v − u|),	(u + v)).

Conversely, one can see that the 	-Hölder property of the function � ◦ | · | is a consequence
of the last inequality. Therefore, if 	 is increasing, then � ◦ | · | is 	-Hölder if and only if
� is 	-Hölder.

Theorem 4.10 Let I be an unbounded interval, �,	 ∈ E(I ) such that � ◦ | · | is 	-Hölder
on R. Then f : I → R is �-Hölder if and only if there exist two 	-Hölder functions
f∗, f ∗ : I → R such that f∗ ≤ f ≤ f ∗ holds on I and, for all x, y ∈ I with x �= y

f (x) ≤ f∗(y) + �α(|y − x |) and f ∗(x) ≤ f (y) + �α(|y − x |). (4.8)

Additionally, for all x ∈ I ,

f ∗(x) − f∗(x) ≤ inf
y∈I 2�(|y − x |). (4.9)

Proof First assume that f is �-Hölder. Then, by Theorem 3.8, f is also �α-Hölder. For a
fixed point x ∈ I , define

f∗(x) := sup
u∈I

(
f (u) − �α(|u − x |)

)
and f ∗(x) := inf

u∈I

(
f (u) + �α(|u − x |)

)
.

In view of the �α-Hölder property of f , for all u, x ∈ I , we have that

f (u) − �α(|u − x |) ≤ f (x) and f (x) ≤ f (u) + �α(|u − x |).
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Therefore, upon taking the supremum and infimum for all u ∈ I , we get that f∗(x) ≤ f (x)
and f (x) ≤ f ∗(x), respectively. That is, f∗ and f ∗ are real valued functions and f∗ ≤ f ≤
f ∗ is satisfied on I . In the next step, we establish that f∗ and f ∗ are 	-Hölder.
In view of Lemma 4.8, the 	-Hölder property of � ◦ | · | yields that �α ◦ | · | is also

	-Hölder. Therefore, for all u, x, y ∈ I , we have

−�α(|x − u|) ≤ −�α(|y − u|) + 	(|(y − u) − (x − u)|) ≤ −�α(|u − y|) + 	(|y − x |).
Applying this inequality to the definition of f∗, we arrive at

f∗(x) = sup
u∈I

(
f (u) − �α(|u − x |)

)

≤ sup
u∈I

(
f (u) − �α(|u − y|)

)
+ 	(|y − x |) = f∗(y) + 	(|y − x |),

which shows that f∗ is 	-Hölder.
Similarly, by the 	-Hölder property of �α ◦ | · |, for all u, x, y ∈ I , we obtain

�α(|u − x |) ≤ �α(|u − y|) + 	(|(u − y) − (u − x)|) = �α(|u − y|) + 	(|y − x |).
Applying this inequality to the definition of f ∗, it follows that

f ∗(x) = inf
u∈I

(
f (u) + �α(|u − x |)

)

≤ inf
u∈I

(
f (u) + �α(|u − y|)

)
+ 	(|y − x |) = f ∗(y) + 	(|y − x |),

which proves that f ∗ is also 	-Hölder.
Next we prove that f∗ and f ∗ satisfy the inequalities stated in (4.8). Indeed, for x, y ∈ I ,

from the definitions of f∗ and f ∗, we obtain the inequalities

f (x) − �α(|y − x |) ≤ f∗(y) and f ∗(x) ≤ f (y) + �α(|y − x |),
respectively. Conversely, if the first inequality in (4.8) holds for some function f∗ : I → R

satisfying f∗ ≤ f , then f (x) ≤ f∗(y) + �α(|y − x |) ≤ f (y) + �α(|y − x |), which shows
that f is �α-Hölder. Similarly, the existence of a function f ∗ : I → R satisfying f ≤ f ∗
and the second inequality of (4.8), also implies that f is �α-Hölder.

Finally, to obtain the last inequality (4.9) of Theorem 4.10, we interchange x and y in the
first inequality of (4.8) and obtain that

− f∗(x) ≤ − f (y) + �(|y − x |)
By summing up this inequality with the second inequality of (4.8) side by side, we reach at
our desired conclusion. �	

5 Jordan-type decomposition of functions with bounded8-variation

Let� ∈ E(I ). Then a function f : I → R is called delta-�-monotone if it is the difference of
two �-monotone functions. In what follows, we shall extend the celebrated Jordan Decom-
position Theorem for delta-�-monotone functions. For this purpose, we have to extend the
notion of total variation to this more general setting.

Let [a, b] ⊆ I and let τ = (t0, . . . , tn) be a partition of the interval [a, b] (i.e., a = t0 <

t1 < · · · < tn = b). Then the �-variation of f with respect to τ is defined by
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V�( f ; τ) :=
n∑

i=1

(| f (ti ) − f (ti−1)| − �(ti − ti−1)
)
.

Finally, the total �-variation of f on the interval [a, b] is defined by
V�[a,b] f : = sup{V�( f ; τ) | τ is a partition of [a, b]}.

Lemma 5.1 Let � ∈ E(I ). Then, for all f : I → R and a < b < c in I , we have

V�[a,b] f + V�[b,c] f ≤ V�[a,c] f . (5.1)

Proof Let

u < V�[a,b] f and v < V�[b,c] f

be arbitrary real numbers. Then there exist a partition τ = (t0, . . . , tn) of [a, b] and partition
σ = (s0, . . . , sm) of [b, c] such that

u <

n∑

i=1

(| f (ti ) − f (ti−1)| − �(ti − ti−1)
)

and

v <

m∑

j=1

(| f (s j ) − f (s j−1)| − �(s j − s j−1)
)
.

Observe that τ ∪ σ := (t0, . . . , tn = b = s0, . . . , sm) is a partition of the interval [a, c].
Therefore, adding the above inequalities side by side, we get

u + v < V�( f ; τ ∪ σ) ≤ V�[a,c] f .

Using the arbitrariness of u and v, it follows that (5.1) holds. �	
Our first result characterizes those functions whose total �-variation is nonpositive on

every subinterval of I .

Theorem 5.2 Let � ∈ E(I ). Then V�[a,b] f ≤ 0 holds for all a < b in I if and only if f is a
�-Hölder function.

Proof Assume first that f is a �-Hölder function and let a < b in I . Then, for any partition
τ = (t0, . . . , tn) of [a, b], the �-Hölder property of f yields

| f (ti ) − f (ti−1)| − �(ti − ti−1) ≤ 0 (i ∈ {1, . . . , n}).
After summation, this results that V�( f ; τ) ≤ 0 for all partition τ and hence V�[a,b] f ≤ 0.

Now assume that, for all a < b in I , V�[a,b] f ≤ 0. Then V�( f ; τ) ≤ 0, where τ is the
trivial partition t0 = a, t1 = b. Therefore,

| f (b) − f (a)| − �(b − a) ≤ 0.

This shows that f is �-Hölder, indeed. �	
The main results of this section are as follows.

Theorem 5.3 Let �,	 ∈ E(I ). If f : I → R is the difference of a �-monotone and a 	-
monotone functions, then the total 2max(�,	)-variation of f is finite on every compact
subinterval of I .
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Proof Assume that f = g − h, where g : I → R is �-monotone and h : I → R is 	-
monotone. Let [a, b] ⊆ I and let τ = (t0, . . . , tn) be a partition of [a, b]. Then, by the
monotonicity properties of g and h, for all i ∈ {1, . . . , n}, we have

g(ti ) − g(ti−1) + �(ti − ti−1) ≥ 0 and h(ti ) − h(ti−1) + 	(ti − ti−1) ≥ 0.

Therefore, by the triangle inequality,

| f (ti ) − f (ti−1)| − 2max(�,	)(ti − ti−1)

= ∣∣[g(ti ) − g(ti−1) + �(ti − ti−1)] − [h(ti ) − h(ti−1) + 	(ti − ti−1)]
+(	 − �)(ti − ti−1)

∣∣ − 2max(�,	)(ti − ti−1)

≤ [g(ti ) − g(ti−1) + �(ti − ti−1)] + [h(ti ) − h(ti−1) + 	(ti − ti−1)]|
+|	 − �|(ti − ti−1) − 2max(�,	)(ti − ti−1)

= g(ti ) − g(ti−1) + h(ti ) − h(ti−1) + (� + 	 + |	 − �| − 2max(�,	))(ti − ti−1)

= g(ti ) − g(ti−1) + h(ti ) − h(ti−1).

Summing up these inequalities side by side for i ∈ {1, . . . , n}, we obtain
V 2max(�,	)( f ; τ) ≤ g(b) − g(a) + h(b) − h(a).

Upon taking the supremum with respect to all partitions τ of [a, b], it follows that
V 2max(�,	)

[a,b] f ≤ g(b) − g(a) + h(b) − h(a) < ∞.

Hence f is of bounded 2max(�,	)-total variation on [a, b]. �	
The particular case � = 	 of the above result yields the following statement.

Corollary 5.4 Let � ∈ E(I ). If f : I → R is a delta-�-monotone function, then the total
2�-variation of f is finite on every compact subinterval of I .

Theorem 5.5 Let � ∈ E(I ) and f : I → R such that the total 2�-variation of f on is finite
on every compact subinterval of I . Then, for all a ∈ I , f is a delta-�-monotone function on
I∩ ]a,∞[.
Proof Assume that the total 2�-variation of f on every compact subinterval of I is finite.

Let a ∈ I be an arbitrarily fixed point and, for x ∈ I , x > a, define

g(x) := 1

2

(
V 2�[a,x] f + f (x)

)
and h(x) := 1

2

(
V 2�[a,x] f − f (x)

)
.

Then, we immediately have that f = g − h.
Then, based on the Lemma 5.1, for a < x < y, we get

V 2�[a,x] f + f (x) − f (y) − 2�(y − x) ≤ V 2�[a,x] f + | f (x) − f (y)| − 2�(y − x)

≤ V 2�[a,x] f + V 2�[x,y] f ≤ V 2�[a,y] f .

Rearranging this inequality, it follows that

g(x) ≤ g(y) + �(y − x),

which proves that g is �-monotone. Similarly, we can see that h is also �-monotone.
This, together with the identity f = g − h show that f is delta-�-monotone function
on I∩ ]a,∞[. �	

123



On approximately monotone and approximately Hölder functions

6 Individual error functions

In this section we shall characterize the elements of the classes M(I ) and H(I ). For this
purpose, given a function f : I → R, we define the following two extended real valued error
functions on [0, �(I )[:
�σ

f (u) := sup
x∈I∩(I−u)

( f (x) − f (x + u))+ and �α
f (u) := sup

x∈I∩(I−u)

| f (x) − f (x + u)|.

Here, the positive part of a real number c is defined as c+ := max(c, 0).

Theorem 6.1 Let f : I → R. Then we have the following two statements.

(i) f ∈ M(I ) if and only if �σ
f is finite valued on [0, �(I )[. Additionally, if for some

� ∈ E(I ), we have f ∈ M�(I ), then �σ
f ≤ �.

(ii) f ∈ H(I ) if and only if�α
f is finite valued on [0, �(I )[. Additionally, if for some� ∈ E(I ),

we have f ∈ H�(I ), then �α
f ≤ �.

Proof Assume that f ∈ M(I ). Then there exists an error function � ∈ E(I ) such that
f ∈ M�(I ). Therefore, for all u ∈ [0, �(I )[,

f (x) − f (x + u) ≤ �(u) (x ∈ I ∩ (I − u)).

Using that � is nonnegative, we get

( f (x) − f (x + u))+ = max( f (x) − f (x + u), 0) ≤ �(u) (x ∈ I ∩ (I − u)).

Upon taking the supremum with respect to x ∈ I ∩ (I − u), we get that �σ
f (u) ≤ �(u),

which proves that �σ
f has finite values.

Conversely, assume that �σ
f has finite values. Then �σ

f ∈ E(I ) and, for all u ∈ [0, �(I )[
and x ∈ I ∩ (I − u),

f (x) − f (x + u) ≤ �σ
f (u).

This shows that f is �σ
f -monotone, and hence, f ∈ M(I ).

The proof about the second assertion is very similar and therefore, it is omitted. �	

Theorem 6.2 Let f : I → R. Then we have the following two statements.

(i) If f ∈ M(I ), then �σ
f is subadditive. Additionally, if for some � ∈ E(I ), we have

f ∈ M�(I ), then �σ
f ≤ �σ .

(ii) Provided that I is unbounded, if f ∈ H(I ), then �α
f is absolutely subadditive. Addition-

ally, if for some � ∈ E(I ), f ∈ H�(I ), then �α
f ≤ �α .

Proof Let f ∈ M(I ) and let u, v ∈ R+ such that u + v < �(I ). By the definition of �σ
f and

the subadditivity of the function (·)+, we have
�σ

f (u + v) = sup
x∈I∩(I−(u+v))

(
f (x) − f (x + (u + v))

)
+

≤ sup
x∈I∩(I−(u+v))

(
f (x) − f (x + u)

)
+ + (

f (x + u) − f (x + (u + v))
)
+

≤ sup
x∈I∩(I−(u+v))

(
f (x) − f (x + u)

)
+ + sup

x∈I∩(I−(u+v))

(
f (x + u) − f (x + (u + v))

)
+
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≤ sup
x∈I∩(I−u)

(
f (x) − f (x + u)

)
+ + sup

x∈(I−u)∩(I−(u+v))

(
f (x + u) − f (x + (u + v))

)
+

= �σ
f (u) + �σ

f (v),

which establishes the subadditivity of �σ
f .

Since,�σ is the largest subadditive function satisfying the inequality�σ ≤ �. Therefore,
the inequality �σ

f ≤ �σ follows.
Suppose that the interval I is unbounded from above. Let f ∈ H(I ) and let u, v ∈ R

such that |u|, |v|, |u + v| < �(I ). We may assume that u + v is nonnegative (otherwise we
replace u by (−u) and v by (−v)). Therefore, by the unboundedness of I , we have that
I ⊆ I − (u + v) holds. Then at least one of the values u and v is nonnegative. By symmetry,
we may also assume that u ≥ 0 and thus we have I ⊆ I − u. In this case, x + u ∈ I for all
x ∈ I . By the definition of �σ

f and the subadditivity of the function | · |, we have
�σ

f (u + v) = sup
x∈I∩(I−(u+v))

∣∣ f (x) − f (x + (u + v))
∣∣ = sup

x∈I
∣∣ f (x) − f (x + (u + v))

∣∣

≤ sup
x∈I

∣∣ f (x) − f (x + u)
∣∣ + ∣∣ f (x + u) − f (x + (u + v))

∣∣

≤ sup
x∈I

∣∣ f (x) − f (x + u)
∣∣ + sup

x∈I
∣∣ f (x + u) − f (x + (u + v))

∣∣

≤ sup
x∈I∩(I−u)

∣∣ f (x) − f (x + u)
∣∣ + sup

x∈(I−u)∩(I−(u+v))

∣∣ f (x + u) − f (x + (u + v))
∣∣

= �σ
f (|u|) + �σ

f (|v|),
which establishes the absolute subadditivity of �α

f if I is unbounded from above. The argu-
ment for the remaining case is similar, therefore it is left to the reader.

Since,�α is the largest absolutely subadditive function satisfying the inequality�α ≤ �.
Therefore, the inequality �α

f ≤ �α follows. �	
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