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Introduction

1 List of the topics of the thesis

Two dimensional systems occupies a quite special place in mathematical
physics. In many ways, they are often simpler than the higher dimensional
system.Sometimes this allows not only a mathematically rigorous treatment,
but a complete solution of the problem. Moreover, they serve as simple
models of more complicated systems. In this thesis, we present several
separate examples of two dimensional physics. We list here the topics of
our dissertation:

e We study the deformations of the commutative algebra of functions
on a cylinder. The nontrivial topology of the cylinder allows us to
derive an interesting modification of von Neumann’s formula for the
deformed product.

e The deformed product of functions on a surface is used to describe
the motion of an oriented membrane in M-theory. We extend this
method to nonorientable surfaces. The nonsymplectic nature of
nonorientable surfaces is circumvented by the use of Jordan algebras
instead of associative ones.

e The simplest solvable two dimensional lattice model of statistical
physics is two dimensional lattice gauge theory. Solvable two dimen-
sional models often provide solutions of the Quantum Yang-Baxter
Equation. However, the solution corresponding to gauge theory is
not invertible. We present a modification of the model circumvent-
ing this problem.



e In lattice gauge theory the gauge group can be replaced by a semi-
group if the semigroup possesses an involution. In two dimension,
the solvability of the model is usually lost by this replacement. We
study the conditions which makes these models solvable.

e Here we turn our attention to an other type of solvable models, to
a complex variant of the Kortaweg-de Vries two dimensional par-
tial differential equation. The KdV equation can be written as an
isospectral deformation of a Schroedinger operator L. We present a
scheme when L is replaced by its absolute value |L| = vLL*.

e We study the structure of the coadjoint orbits of some Lie algebras,
which emerge in the description of the motion of an quantum me-
chanical particle in two dimension under the influence of a magnetic
field and a periodic cosine potential. We basically present some ex-
amples of wild (T'ype II) groups in solid state physics.

e Conformal field theories with nonconformal boundary conditions
might possess an extra central extension term in the algebra of the
stress tensor at tha boundary. This extension was discovered by
Goncharova. We present some argument for the absence of this
term in the model of a massless scalar field with a semitransparent
boundary condition.

2 Overview of the thesis

e To describe the motion of a single particle in one dimension two
variable (position and velocity) are needed. In quantum mechanics,
the are replaced by two noncommuting operators. This replacement
can be interpreted as a deformation of the algebra of functions of
the two classical phase space variable. An explicit formula for the
deformed noncommutative (but associative product was calculated
by von Neumann. He discovered that the kernel generating the
product on R? can be written as

Fin o) = (f 4 9)(x) =
| 2.1 3rH /! ! " — ;o
hznzjd r'd2"f(r")g(r") exp = Ar,r',r"),
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where A is the (symplectic) area of the triangle spanned by r,r’ and
r”. This expression can be used to calculate the deformed product
on a cylinder and torus, too. On the plane A can be calculated as
either the integral of the symplectic form over the triangle, or as
the integral of a suitable one-form over the straight line segments
of the boundary of the triangle. On a cylinder three line segments
between three point do not necessarily bound a triangle, so it is
reasonable to ask what happens if this topologically nontrivial situ-
ation is included in a modified form of von Neumann’s formula. We
study the effect of these nontrivial paths, and conclude that in this
case the product remains associative, but the new product is not an
algebraic deformation of the commutative one.

An interesting application of the deformation of algebras on an ori-
entable surface is the regularization of the equations of membrane
motion, developed by Goldstone and Hoppe. It was developed as
a two dimensional analogue of the dynamics of strings. Recently
the supersymmetric version of the theory received quite a lot of
attention as a possible nonperturbative formulation of superstring
theory.

In the method of Goldstone and Hoppe algebraic deformation the-
ory requires orientable (symplectic) surfaces. But the equations of
motion looks the same for nonorientable surfaces, too. So we looked
for an algebraic structure on the functions on the surface which
made no reference to the sign of the symplectic form (i.e to the
orientation of the surface). We found that the Jordan algebraic de-
formation satisfies this criteria, and we were able to formulate the
regularized version of the equation of motion in term of the Jordan
product. We determined what sort of Jordan algebra could be used
for the description of a membrane with the topology of RP?.

The popularity of group theory in physics enormously increased by
the invention of quantum mechanics. The behavior of quantum sys-
tems are quite counterintuitive, but their axiomatic mathematical
description is quite elegant. The state of a system is described by an
unit vector of a Hilbert space, while the symmetries and the dynam-
ics are given by the action of unitary operators. Since very often
the symmetry operations are the same in the classical and the corre-
sponding quantum systems, the understanding of quantum theory
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is greatly facilitated by the knowledge of the unitary (projective)
representations of the symmetry group. This group theoretical ap-
proach is able to describe the kinematics of a single quantum particle
as the representation of the Galileo or the Poincare groups.

This approach was initiated by Dirac, Wigner and Weyl. We should
also mention as a major success the theorem of Stone-von Neumann,
which roughly states the unicity of the irreducible selfadjoint rep-
resentation of the Heisenberg commutation relation [P, Q] = i. This
is basically the most simple nilpotent Lie-algebra.

The Stone-von Neumann theorem is the most simple example of an
interesting link between unitary representation theory and quan-
tum mechanics. The “Orbit Method” of Kirillov (and Kostant and
Souriau) [45] is able to relate the irreducible representations of a
nilpotent group to the structure of its coadjoint orbit space. On
a coadjoint orbit there is a natural symplectic two-form, which is
the basic structure of the Hamiltonian formulation of classical me-
chanics. An irreducible unitary representation can be described as
a “quantization” of this system. This philosophy was applied for the
case of solvable Lie groups by Auslander and Kostant. However, in
this case the success was only partial, since these groups are able to
exhibit a quite pathological behavior. It might happen that their
unitary representations are decomposable as a direct integral of uni-
tary ones several distinct ways. Groups with this sort of behavior
are called wild (or Type II) as opposed to “tame” or Type I. One is
tempted to think that they belong to the zoo of counterexamples,
but they actually occur in the solid-state physics of quasi-periodic
systems. We explain this in the case of the Mautner group.

This is a five dimensional solvable Lie-group, whose Lie-algebra can
be represented by the following operators:

cos(x), sin(x), cos(oax + ¢), sin(ax + ¢), 0y,

where ¢ € R and « are irrational. These operators can be assem-
bled into the Hamiltonian of an electron moving in a quasiperiodic
potential:

H = —1/20% + cos(x) + cos(ax + ).

The spectral properties of this operator is quite different compared
to a periodic one. The spectrum has nontrivial singular part. This
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behavior is foreshadowed by the wild nature of the group. It is ar-
gued that in this case the reason of the wildness is the fact that it is
impossible to separate inequivalent representations by any reason-
able topology. Indeed, two realization are equivalent if ¢ — ¢ =
(ak 4 1)27) for some k,1 € Z. As equivalent ¢s are dense in R, the
cannot be reasonably separated from other ones.

Similar groups occur in the description of the motion of an elec-
tron in a periodic crystal if magnetic field is applied. They can
often proved to be wild by the Auslander-Kosant theorem. We re-
gard this as an indication that the system’s nature is similar to the
phenomenas of the quasiperiodic systems.

An other example of the influence of physics in group representation
theory is the case of the braid group [20, 21]. The braid group B,
is described by the following relations of Artin:

OOk 410k = Ok+10k0k(1, OOy = 010k hak—1/> 1.

A very similar relation occurs in the theory of solvable (integrable)
two dimensional lattice statistical systems:

REFRY (A + wRY (1) = RE(WRE (A + wREM(A)

Two dimensional lattice gauge theory is an almost trivial example
of solvable systems, so it is a natural idea to check if one can de-
rive from it “R” matrices satisfying this relation. This can be easily
checked by the application of some standard character identity from
group theory. However, these matrices do not produce representa-
tions of B,,, due to the lack of invertibility. Nevertheless, this prob-
lem can be eliminated by a small modification of the system. We
checked the question of solvability in the case when the gauge group
is replaced by certain semigroups. Here solvability is not automatic,
but we managed to establish it at certain special cases.

The existence of symmetries can simplify the solution of a time-
evolution equation. According to a fundamental theorem of Emmy
Neother, a symmetry of a variational problem implies an existence of
a conserved quantity. In certain cases there are so many conserved
quantity, that the dynamics is almost trivial in some sense. This
happens in the case of completely integrable systems.
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A 2n-dimensional system is completely integrable if there are m
conserved quantity [; in involution, i.e. their Poisson brackets {I;, Iy}
are zero. Then typically they generate commutative translations
on an n dimensional torus. If the Hamiltonian of the system is a
linear combination of them, then it generate a simple quasiperiodic
motion.

Most of these (often infinite dimensional, PDE) systems can be writ-

ten in a Lax form: _
L=PL-—-LP

As this is the infinitesimal form of a similarity transformation, the
spectrum of L remains invariant, which signals the existence of con-
served quantities. The most famous example of this scheme is the
Kortaweg-de Vries equation

LL(X, t)t = Uxxx T ULy,

which can be written as an isospectral deformation of the L = 92+u
Sturm-Liouville or Schroedinger operator. We describe a variant of
this procedure, where we preserve the spectrum of LL* instead of L.
The general form of these equation is

[ =i(PL-1Q), P=P", Q=0Q"

If this is applied to a Sturm-Liouville operator, then one obtains a
complex equation

Up = Uy — Iy — 6UU, + 6u, L + 12U,

which is basically a variant of the Hirota-Satsuma equation. As an
other application, we derived a complex analog of the Kadmontsev-
Petviasvilli hierarchy.

The existence of a large number of symmetries is very successfully
exploited in Conformal Field Theory. In a restricted sense, this the-
ory might be considered as a representation theory of the Virasoro
algebra, which is a central extension of diff(S') by the Gelfand-Fuks
cocycle. The case when the CFT system has a conformal boundary
condition was intensively studied recently. Hoverer, the case of non-
conformal boundary conditions received much less attention. In this
case the usual Virasoro type algebra of the stress tensor potentially
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acquires an extra central extension term, discovered by Goncharova
in her description of the cohomology ring H*(Ly (1)), where L, (1) is
the Lie algebra of the vector fields of the form

k+1 k+2 k
VX + 6X+vk+1x + ax-|-\)k+zx +36X—|—

The boundary condition ¢(0)+¢’(0) = 0 is preserved by only L;(1),
so Goncharova’s central extension might be present when the bound-
ary condition contains the values and the derivatives of a scalar field.
Despite of this possibility, we provide some heuristic arguments that,
at least in the case of a scalar field on an interval, Goncharova’s term
does not occur.






Nonperturbative effects in deformation

quantization

1 Introduction

In this introductory section we briefly review the connection between defor-
mation quantization and the theory of quantum mechanics in the simplest
case of the two dimensional v = (x,p) phase space of a point-like particle
moving in one dimension. In classical mechanics, the Hamiltonian formal-
ism assign a vector field X; to every function f(x,p) by the rule

f — X¢ = 1,05 — fx0p,

which generates the ’time’ evolution corresponding to the Hamiltonian f.
In quantum mechanics, the function f(x,p) is replaced by an operator

O(f) = f(%,p)

, Where X = x and p = —1ho,. Since X and P does not commutes with each
other, one can define the map ® for example by the requirement that if
f is a two variable polynom, then f(X,p) is obtained from f by averaging
all the possible ordering of X and p. This prescription is called the Weyl
ordering. Then the map ® defines a noncommutaive, deformed product of
the functions of the (x,p) phase space by the rule

fang =0 ' (D(F)D(g)).
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We do not go into any further details (see for example [1]), but recall only
the famous formula of von Neumann, which gives an explicit integral rep-
resentation for f %}, g:

1

= e
where A is the symplectic area of the triangle spanned by three points. This
formula works for periodic functions, too, so it describes a deformation of
the functions of a cylinder or a torus. A is the integral of the symplectic
two form w so if w = df3, then by Stokes theorem, it can be written as
a line integral of 3 over the boundary of the triangle. On a cylinder one
can draw the three straight line segments between the three point, in a
manner so that they do not bound a triangle, so one is forced to use the
line integral definition of A in von Neumann’s formula. By mere curiosity,
one can check if this product remains associative. We perform this task in
the next section. We also try to provide some more reasonable motivation
by recalling the recent results [2] on the path integral representation of the
deformed product on Poisson manifolds.

4

P 9(1) = (P 9)(r) = (s | /e f(x)glx") exp — “Alr, 11",

2 A quantization on a cylinder

Kontsevich’s solution [2] of the problem of deformation quantization of the
algebra of smooth functions on a Poisson manifold M was interpreted by
Cattaneo and Felder [3] with the help of a path integral construction. They
gave the following formula for the star product of two functions f and g:

(2.1) (f*n g)(x) =
[ DX D fxi-Tgix(U)exp | < n,ax > 4o X)mm)
D2

where « is the Poisson bivector field, X is a map from the unit disc D? of
the complex plane fulfilling X(1) = x and n is also a map from D? to the
cotangent space of M, mapping z € D* to Ty, .

On a symplectic manifold this formula simplifies further:

(2.2) (f %0 ) (x) = ij FX(~1))g(X({)) exp ~AX

where the path integral is over such maps from the boundary 0D? = S
of the unit disk that X(1) = x, and the phase factor A is the integral of
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the symplectic form w over the image of an extension of the map X from
S' = 9D? to D?. Since w is closed, so at least locally w = df, A can be
written as fx(y)  in the perturbative expansion of (3.2).

The perturbative expansion of these integrals provides local solution to
the problem of deformation quantization. It was suggested [4] that in the
expression (3.2) for certain physical applications one should study nonper-
turbative effects, i.e. the path integral over the maps X should contain
such maps X; and X;, that the union of their images represent a nontrivial
element of 7,(M) (considered as a map from D? U D? = S?) to M.

The full nonperturbative evaluation of (3.2) might not give an associa-
tive product, but it might be necessary in some circumstances, like in the
noncommutative geometric description of D-brane physics [5].

If we regard the factor A[X] in (3.2) not as the integral of w over X(D?),
but as the integral of B over X(0D?) = X(S'), then one can investigate
the effect of the inclusion of nontrivial paths in the path integral, i.e. the
case when X(S') represent a nontrivial element of 71;(M). We perform this
program in probably the simplest case, when the symplectic manifold is the
cylinder C = S' x R with coordinates x = 0..27, p € R and symplectic form
is w = dx A dp. Note that w = d(—pdx) = d where f is globally defined
on C.

Let us recall that on R? there is an explicit formula for the deformed
product [6, 7]

1
T hn2

_4i
J d?r’d’r"f(r')g(r") exp TlA(r, r' r"),

(2.3) (f #n g)(r)
where r = (x,p) and A is the symplectic area of the triangle T = A(r,r’,r”).

The expression (3.3) makes sense if f and g are periodic functions with
period vector (27r,0). As these functions can be identified with the functions
of the cylinder C, von Neumman’s formula solves the deformation problem
on C, too.

By the comparison of (3.3) and (3.4) we see that if the values X(—1) =
r',X(1) =r”,X(1) = r are fixed, then the integral over the remaining degrees
of freedom of the map S' — R is equivalent to an expression involving only
straight line segments between the vertices r,r’,r” of the triangle T. We
make the (hopefully reasonable) assumption that this remains true if the
target space of the map from S' is not R? but our cylinder C.

On C the three line segments between r,r’,and r” do not necessarily
bound an image of a triangle, so in the expression (3.4) we substitute

13



— — —
A(r,r’,r") by [,—p dx where the integral is over A = rr’ Ur'r” Ur’r.

Now let us take R? as the universal covering space of C.

——
Then the path r,r'r”, r, can be uniquely lifted to R? once an image of r
—

is chosen. The result is denoted by ¥, r'r,”r, On R? the difference between
the starting and ending images of r must has the form w- (2/pi,0), w € Z.
In the following we fix the value of w and compute this modified deformed
product for the basis functions e, = expi(nx +1p), n € Z,r € R.

To compute the value of e,, - exs at r we lift both functions to R?,
choose a representative of r (denoted also by r), perform the integration
over r’ and r” in (3.3) with the sole difference that the phase factor A is
r&placeg by tge line integral of —pdx over the path of straight line segments

rr’ Ur'r” Ur”r where T is the other lift of r with T — r = w - (271, 0). This

sort of modified evaluation of the product of basis functions gives
(2.4)

1 A
(enr*nwens) (X, ) = 2 J dx'dp’dx"dp” eXp[i(nX/+rp’—|—ﬁx”—|-f-p”)_|_F1]],

where

(2.5) JT=1((x,p), (x",p")) + L{(x",p"), (x",p") + L((x",p), (x + 2wm, p)),

(c,d)
(2.6) I((a,b),(c,d)) = J —pdx.

(a,b)
Since the integral is Gaussian, its evaluation is straightforward:

ith . .
(27) €nr *how CiF = eXp[?(Tn - TT'L) + 21h7TW] i, r-F+dwr/he

14



Surprisingly, this multiplication rule is associative. In fact, by a redefinition
of the of the basis

(2.8) enr — fnr = en . awn/m €Xp(—2ithw)

we regain the original w = 0 multiplication rule of the e, , basis:

ith
(2-9) fn,r *hw fﬁ,f = fn+ﬁ,r+? : exp{%[ﬁ(r —4wm/h) — n(¥ — 4wm/h)]}

(2.10) = frtdirts - exp(%(ﬁr —n¥)).

However, the path integral representation (3.2) of the product suggest the
inclusion of paths with different winding numbers, possibly weighted by
some system of coefficients. So we do not assume anymore that w is fixed,
and for the sequence of coefficients ¢ ={...,c_1,co,C1,C2,...} we define the
multiplication rule by

(2.11) fx.g :chf *hw J-

weZ

Usually the linear combination of different associative products is no longer
associative, but in our case it is, as both

(2-12) (en,r *e eﬁ,f) *c €T and €n,r *c (eﬁ,f *e eﬁ,f)

evaluates to
(2.13)

. ih A e
Z CuCw e, 4+ (utw)/h €XPI2TTih (u+w) ‘|‘? [Air—nf-+Ar—nr+nv—mnl}.

uw

So we conclude that on a cylinder the full nonperturbative evaluation of
the path integral representation of our variant of von Neumann’s expression
(3.3) gives an associative product.

Now one might suspect that after a suitable redefinition of the basis
functions (like in (2.8)) the *. product turns out to be the same as the *y
product. However, we show that this is not quite the case. We demonstrate
that when the only nonzero elements of the sequence c is co = ¢y =1, then
the x. product algebra of the smooth functions on C does not possess an
unit element.
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Let us suppose (ad absurdum) that the unit u can be written as

(2.14) U=) Unsenr.
n,r
Then
(2.15) ens=Uxcens= Y ez e oot e%(Tﬁ_fn)+Zihﬂen+ﬁ,r+¥+4ﬂ/h-
n,r
This would imply that
iho. ihox | 9 1 if r=0
2.16 Un.e2 M ug eTrn+21h7r _ ) )
( ) ; O, 0,r—47/h O, if T 7& 0.
So
u, . .
o k-47t/h
fork=...,—-3,—-2,0,1,.... Consequently for k =1,2,3...
(2.18) , .
Upkdrm/h = Uo,f4n/h(—€_2lhn)k_1 and UQ k4r/h = uo,o(—ezlhn)k-

Since Uy + Ug _4n/n€” ™ = 1, either the {uy j4nm, k=1,2,...} or the
{Wo kan/m, k =1,2,...} geometrical sequence has nonzero elements with con-
stant absolute values. As the Fourier series

(2.19) D eMat = !

1 — xe™’
n>0

where || = 1 does not represent a smooth function of x, we conclude that
the unit u can not be represented by a smooth function on C. Let us note
that as an unital algebra can not be deformed to a nonunital one (see for
example [8]), this phenomena is a true nonperturbative effect.
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3

Matrix theory of unoriented membranes

and Jordan algebras

1 Introduction

The proposal of Matrix theory as a fundamental theory of physics [9] and its
connection with supermembrane theory [10] gave a strong impetus to the
study of noncommutative space-time models. The starting point of these
investigations is often the correspondence between the Poisson algebra of
functions on the surface of the membrane and the associative algebra of
the regularized matrix coordinates. Nevertheless, there are models, where
even the assumption of the associativity of the space-time coordinates is
dropped. We demonstrate that the nonassociative Jordan algebras can be
used to describe the motion of the bosonic membrane. In contrast to the case
of Poisson algebras, our construction does not require orientable surfaces, so
it can describe nonorientable surfaces, too. Let us note that Jordan algebras
were used for example in string theory [12] and matrix string theory [11].

In the second section we briefly review the Matrix theory - membrane
correspondence, while the third one contains the Jordan algebraic reformu-
lation of this theory.
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2 A short review of the oriented membrane

The classical equation of motion of a membrane is derived from the action

(3.1) S = —TJ d*o \/—det 9, X13pX,,,

where the X™"(0y, 07, 02) coordinates describe the embedding of the mem-
brane’s world-volume into the ambient Minkowski space. The Hamilton-
ian equations of motion in the light-front coordinates are generated by the
Hamiltonian

T T R
(3.2) H= | d2o [ XX+ S{XE, XX, X}
4 v?2
and the supplementary constraint
(3.3) Xt xh =0

The equation of motion is
4 . .
(3.4) Xt = S{X", X}, X}.
v

(For references, explanation of notation and further review of this topic we
refer to the article [13].)

In the regularization procedure of Goldstone and Hoppe [14] the X' co-
ordinate functions are replaced by finite size matrices, Poisson brackets by
matrix commutators, and the integration over the membrane’s surface by
suitably normalized traces. The regularized Hamiltonian and the equations
of motion are:

1 | BT
3.5 H=—Tr [ = XX'— - [X", X][X", X
(35) sy T (05 - G 30 ).

K+ 0K, X0,%0 =0, [X,XT =0,

where the X' coordinates are now Hermitian matrices.

This reformulation requires orientable surfaces. Nevertheless, this proce-
dure can be extended to nonorientable surfaces, too [15]. Indeed a nonori-
entable surface has an orientable double cover (the orientation bundle).
Inside the Poisson algebra of the functions of the double cover, one can
identify the sub-Lie-algebra of those functions, which generate the area-
preserving transformations of the nonorientable surface [16, 17]. On RP?
one obtains the USp(N) Lie-algebra.
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3 The unoriented membrane

The surface of the membrane has no intrinsic orientation. Indeed, the
Hamiltonian (3.2) is invariant against the flip of the sign of the symplectic
form w of the Poisson bracket. This fact suggest that it might be possible
to rewrite the expressions (3.2) and (3.3) with no reference to the sign of
w. Since the correspondence between (3.2) and (3.3) uses the replacement
of the commutative algebra of the X' functions by the noncommutative X!
matrices via deformation quantization, it is quite reasonable to search for a
deformed algebraic structure which does not depend on the sign of w. Let
us recall that on R? with w = dx A dy the deformed Moyal product look
like

(3.6)
h2

B

1

[fxy gxy - z(fxxgyy + fyygxx)] + e

ih

2 (fxgy - fygx) +

fxng="1g+

The second order term is symmetric with respect the exchange of the x
and y variables, so it makes no reference to the orientation of the surface.
Exactly this term is the first nontrivial term in the Jordan product of f and

g

2

1 h 1
(3.7) fong = z(f*hg—g*hf) = fg—|—§ [fxygxy — z(fxxgyy + fyygm)] +...,

so we try to rewrite (3.3), (3.4) with the help of anticommutators (Jordan
products) instead of commutators.
The Hamiltonian can be rewritten using the following calculation:

(3.8) Tr (X, YI[X, Y]) =2 Tr(XY)? — 2 Tr(X?Y?),
Tr(XoX) o (YoY)=Tr(X*Y?),
1 , 1

Tr(Xo (Yo (XoY))) = zTr(mz’) + zTr(xzxyz)

(here o is the usual Jordan product of matrices X o Y = (XY + YX)/2).
Consequently
(3.9)

1 1.. .. . . . . . . . .
H=—Tr [=XoX —Xio (X o (Xto X)) + (Xto XY o (X 0 X)) .
27[1139 2
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The accelerations X' of the matrix coordinates are given by double commu-
tators (3.4), so it can be expressed by with the help of the associator of the
Jordan algebra:

(3.10) (X,Y, Z) :(XOY)OZ—XO(YOZ):%[Y, X, Zll,

which identity gives the following equation of motion

(3.11) X' =4(X', X, X)) = [X, X, X].

The substitution of double commutators by associators occurs in almost all
papers on the Jordan algebraic reformulation of quantum mechanics. Our
next task is to express the constraints [Xi, X' = 0 with the Jordan product
of matrices. This is obviously impossible directly. The best we can do is to
require that

(3.12) A4XYL U, XY = U, XX =0

for any matrix U. Since only the multiples of the identity matrix commute
with all the other matrices, this equation implies that [X!, X! = ¢ -1, but it
is well known that this is impossible for finite size matrices (by taking the
trace of both sides).

So we managed to rewrite the equations (3.3), (3.4) in a Jordan algebraic
language. Since these equations are only finite dimensional approximations
of the continuous equation (3.2), we expect that a similar procedure can
be repeated for (3.2), at least up to the leading orders of a deformation
parameter. For this purpose, we would like to express [ do?{f, g}* with the
help of the Jordan multiplication oy,. This is possible in the sense that the
following identity holds on R?

(3.13) {f,9)% = (fxgy — fygx)? =

4
—5 [fon (gon (fong)) — (fonf) on (g on g)l + O(h?) + o + By
where the explicit forms of « and [3 are
(3.14) o = fx(fg — 2fyagy) + 9x(2f59 — ffygy),

B = fy(fgi - foggx) + gx(Zfig — ffxgx)-

The verification of these formulas consist of a fairly direct but quite long
calculation which can be easily performed by a symbolic algebra package. It
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is amusing to compare this to the simplicity of the matrix version (3.8), (3.9)
of this identities. Since the integral of the x, + (3, term is zero if f and g has
compact support (or the integration is done over a compact closed surface),
(3.2) can be expressed with the help of the deformed Jordan multiplication
up to terms of order O(h?).

Next we would like to see what sort of Jordan algebra can be associated
to a nonorientable surface. We treat here only the simplest case of the real
projective plane RP?, but we believe that the same conclusion would be
true for the other nonorientable surfaces, too. (It was demonstrated in [18]
that the Goldstone-Hoppe regularization procedure is applicable for higher
genus orientable surfaces.)

Let us recall that the Goldstone-Hoppe construction on the unit sphere
S? uses the correspondence

(3.15) Xq %]1» {xi, %5} = eixx, —i[Ji, Ji] = ey,

where the x; 3 are the three dimensional coordinates of S? satisfying x7 +
X5+ x3 = 1, while J;,; are the Hermitian generators of the N dimensional
irreducible representation of SU(2). As an algebra, these matrices generate
Matn(C), while as a (unital) Jordan algebra they generate the selfadjoint
part of Matyn(C) which is denoted by Hy(C). This is probably well known
for Jordan algebrists, but with the help of the standard representation of

Su(2)

(3.16) N =2j+1, J3m) = m|m),
Jim) =1/i(G+1) — m(m 4+ 1)jm),
J_Im) = /i +1) — m(m —1)|m),
= J++ - o J+ —J-
1 5 )2 n

this can be demonstrated quite explicitly. Let us denote by ej; the matrix
with zero entries except at (ej;);; = 1. Then ey can be written as a suit-
able polynomial of J3, since J; is diagonal with different diagonal entries.
Furthermore

1

1(11 Jiit1(€it14 + €iit1),

(J1)iir1(—leipri + ieivr).

(3.17) (eioJi)oeipripr =

IR

(eiioJ2) oeiprit1 =
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The successive Jordan products of these types of matrices generate the whole
of HN(C). (For example

: . T . .
(3.18) (eir14 + eiiy1) o (—leip1i42 Fiei2i41) = z(_lei,i—i—z +1iei21),
etc.)

Now let us turn our attention to the case of RP%. This projective plane
is the quotient of S? by the antipodal map (xi,%x2,%x3) — (—X1,—X2, —Xx3),
so we would like to keep those elements of the Jordan algebra generated
by J123 which are invariant with respect to the substitution J;,3 — —J123.
This part can be generated by the matrices {J; o Jx, i,k = 1,2,3}. We
restrict ourself to the very simple case when N is odd, so J; represent SO(3).
In this case J; can be chosen to be purely imaginary and antisymmetric,
so Ji o Jx is a symmetric real matrix. The Jordan algebra generated by
these matrices is formally real, i.e. Y ,a? = 0 implies a; = 0. Such unital
and finite dimensional Jordan algebras are direct sums of simple ones [19]
(p.72). If this direct sum were nontrivial, or the generated algebra were
realized as a diagonal embedding of for example Hy 2 (R) into Hy(R), that
would implicate the existence of a nontrivial decomposition of the vector
space CN into the direct sum of vector spaces, with invariant factors with
respect the action of SO(3) (since the linear span of the generating set {J; o
Jx, i,k =1,2,3} is also invariant against SO(3)), but this would contradict
to the irreducibility of the representation. So we conclude that the Matrix
theoretic description of a membrane with topology of the real projective
space requires the use of the Jordan algebra of real symmetric matrices. This
result is in sharp contrast compared to the construction of [15], where the
Lie algebra of USp(N) was used, since the closest Jordan algebraic relative
of USp(N) is Hy(H), i.e. the set of selfadjoint quaternionic matrices.
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4

Finite groups, semigroups and the

Quantum Yang-Baxter Equation

1 Introduction

An important development of the mathematics of the last two decades was
the discovery of the connections between several fields of mathematics and
physics, like the areas of operator algebras [21]|, Hopf algebras (quantum
groups) [1], three dimensional quantum field theory [22], and two dimen-
sional statistical physics [20]. In this chapter we study some aspects of
the relationship between statistical physics and the representation theory
of the braid group. Braid theory provides provides an algebraic description
of knots. The solvable models of two dimensional statistical physics often
provide in a natural way representations of the braid group. In the next
section we briefly describe this connection.

A very simple solvable system is the two dimensional lattice gauge the-
ory. Since there are no propagating local degrees of freedom, it is almost
trivial. Nevertheless, there are quite a few interesting results were obtained
in this topic in recent years [24, 25]. At any rate, one can derive some
simple representations of the braid relations of Artin with the help of these
systems. Unfortunately, these representations are noninvertible, so they
cannot represent the whole braid group. However, with a slight modifica-
tion of the theory this problem can be resolved [30]. We describe this in
the third section.

Two dimensional lattice gauge theory can be built on semigroups, too,
if the semigroup has an involution wich agrees with the invers on invertible
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elements. These systems, unlike their group theory counterparts, are not
automatically solvable. In the fourth section we determine the conditions
of solvability in some simple cases [30].

2 On the representation theory of the braid groups

The Braid group B, consisting of n strings can be described in the fol-
lowing manner [21]: Let us fix n points in a plane of R® = {(x,y,z)} eg.
{(1,0,0), 1 =1...n} and connect them with upward moving, nonintersect-
ing curves with the points {(i,0,1)}. The elements of B,, are the equivalence
calsses of these string configurations, where two configurations are equiva-
lent if the are continously deformable into each other while preservindg the
conditions on the curves. Multiplication is defined by the concatenation of
the configurations. B,, is genarated by the {0}, i=1...

n — 1} generators, where o; is the following braid:

| -1 i L A2 n resolved.

These generators satisfy the braid reletions of Artin:

0i0i4+10; = 0i410i0i4+1, 010j = 003 ha[i —j[ > 1,

as the following figure clearly shows:

Artin proved that every knot can be realised as a closure of a g € B,
barid.
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In principle the construction of the representations of B, is a distinct
problem for each n, but there are two uniform method which works inde-
pendently of n.

As an example for the first class, consider the Burau representation [21]:

(1 o\

1—t 1
t 0

\0 1)

where the 1 — t element occupies the (i,1) position. The representation
acts on the direct sum W = R® ... & R. The verification of the braid
reletions is reduced in this case to a 3 x 3 matrix calculation.

Instead the direct sum of vector spaces one can try to use direct product,
too. So one can try to represent B,, on the vector space

W=VaV®...oV=V",
We require that the structure of oj is
op = 1®...19R®1T®...®1,

R:V@V-VeV

In this case the braid relations are reduced to an identity on operators acting
omVeoVeV:
R12R23R12 = Ra3R12R23,
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where Ry, acts nontrivially on the first two factors of V® V® V, etc. In the
component notation

R(e; @ €j) = Ri'exey

this equation reads as
Inpmgpop _ pnmpolpPd
Ri)' Rnk le - Rik Rianm'

Yang and Baxter obtained a similar, but more general equation during their
study of integrable two dimensional statistical physical systems:

Ri2(H)R23(p + A)R12(A) = Roz(A)Ryz (1 + A)Roz ().

This equation is the Quantum Yang-Baxter Equation (QYBE). Here the
R matrix depends on a spectral parameter, but in many cases in the limit
A = u = oo it reduces to the equation without spectral paramater. This
equation emerges in the sudy of solvable vertex models. The definition of
theses models is the following:

Let us take a two dimensional square lattice.

Vxy

= w(a,b,c,d)

x,y)

To describe a config-

uration of the system we assign an element to each edge form a prescribed
finite set {1...1}. Then we assign to each vertex (x,y) of the lettice a
number Wy, (A) = W(vyxy—1, Ney, Vxy, -1yl A), where w is a function (which
might depend on the spectral parameter A) w: {1...1}* — C. If we intend
to stay within the boundaries of statistical physics, then w should take its
values in R, Finally we assign to the configuration the weight ny Wyy. In
statistical physics, this describes the probability of the configuration. The
basic problem of this theory is the computation of the partiton sum

Z(}\) - Z HW(Vx,y—1»hx,y,vx,y»hx—hyp\)

confs. xy

Yang and Baxter recognised that the computation of Z is possible when the
matrix

R4 (A) =w(a,b,c,d|A)
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satisfies the QYBE. The complete classification of its solution is achieved
only in the dimV = 2 case [23]. In the next sections we present some
special solutions based on the two dimensional lattice group and semigroup
gauge theories.
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3 Finite groups and solutions of the Quantum
Yang-Baxter Equations

The solvability of many 2d lattice statistical models is closely connected
to the Quantum Yang-Baxter equation (QYBE) [26, 27]. Solutions of the
QYBE provide the weight functions of vertex models.

Probably the most simple 2d integrable system is (lattice) gauge theory.
The weights of the field configurations around a plaquette (Fig.1a) satisfy
the QYBE. (The gauge group is assumed to be finite.)

(4.1) w(a,b,c,d) =R, '(A)= > A'x:(abcd)
reR(G)

711 —1 i
(42) ) RITOVRMWRE (V) = Y Ry “(VREL (RS ().
9,hieG g,h,ieG

(a,b,c,... are elements of the group G, x; is the character of irreducible
representation r € R(G). [28])

Fig. 1a Fig. 1b Fig. 1c

Equation (4.2) is satisfied since since both side depend only on the ho-
lonomy abcdef around the three plaquettes, which is the same on Fig.1b
and Fig.1c. A more direct proof is based on the character identity

) 5 xe(@)x D) = Do xlab),

xeG T

where d, is the dimension of the representation r. Using (4.3) three times,
both sides of (4.2) evaluate to

3
(4.4) Z )\rurvr’G’

daz -’
reG T
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A slight modification of (4.2) also satisfies QYBE:
(4.5)
w(a,b,c,d) =R{y < (A) =

Z ( oxr(abed) + Ay (Xr(bd) + X+(ac) ) Z }\2 x¢(bd)x.(ac),

rER(G) t,ueR(G

where AS* = AYt. We omit the proof, since it is a lengthy, but straightforward
application of (4.3).

If G is a compact Lie-group, (4.5) can be obtained as weights of the
lattice version of the continuous 2d Lie-algebra valued vector field model
with action

dim G
(46) s=3 { TR+ a[(0,AD + (A7) + B(axAﬁ)%atAsf},
a=1
where A$ AL are the spatial end the temporal components of the vector
field. (The Killing-metric on G is assumed to be 8,p.) Since (4.6) is a
continuous version of an integrable quantum system, it is reasonable to be-
lieve that the classical Euler-Lagrange equations are also integrable ones.
The transfer matrices of the lattice system commute for different o« and (3
parameters. However, the classical system is constrained since A; is not dy-
namical. The allowable initial conditions live on different constraint surfaces
for different parameters, so it is not quite clear to us that the integrability
of the lattice version really implies the integrability of its classical version.
After this short digression we return to the lattice world and present
another modification of lattice gauge theory. The weight of a field configu-
ration around a plaquette is given by

(4.7) w(a,b,c,d) = {;: Z Z A'xr (@%b de).

{ox==%1}r€R(G)

As it does not matter if the variable assigned to a link is g or g~ the set of
link variables are the equivalence classes G = G/{g ~ g~'}. For this weight
system QYBE does not hold automatically. Summation over the variables
g, h,1 generates terms like (on Figure 1b):
0a1Opb1 0 Oh ,0e£0f) __ ‘G‘ 0a1WO0Ob ~O0c£—0f ,—0c1,—Oh
(4.8) ZXT(G b1%g)xs(gh®ef’") = d—érgxr(a b cf e %ch ).
geG T
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(5 is the complex conjugate of the representation s.) Since the cyclic order
of the variables a, b, f,e would change a different way on Fig.1c, QYBE is
not necessarily satisfied. There are two ways to avoid this problem. The
first is to require that if A, £ 0 then A+ = 0. Unfortunately, in this case
weights of variable configurations are not real, so they are not weights of a
statistical mechanical system. The second method is to use abelian groups,
so the order of group elements is irrelevant.

4 Phase structures

In this section we investigate the ground state structure of these models.
Two dimensional lattice theory reduces to a collection of one-dimensional
systems in the gauge where all the vertical links are equal to e, so its phase
structure is trivial. Although the ground state degeneracy is somewhat
lifted in model (4.5) by the extra A, A, terms, the number of ground states
is still infinite, since if ai,b; € Ga, then configuration on Fig.2a has the
same weight as the configuration where all the link variables are equal to e.
We assume that w(a,b,c,d) in (4.5) is real and attains its maximum iff

(4.9) abcd = ac = bd =,

so configurations with unit holonomy around plaquettes and opposite sides
are preferred. We examine the structure of the Gibbs distribution associ-
ated to the weights in the low-temperature limit (i.e. when w(a,b,c,d) <
w(e, e, e,e) if (4.9) does not hold). Let us imagine that the boundary links
of a very large rectangular region of area A are set as on Fig.2a.

4 ) & Y
b, b, b, b, b,
4 aH a Y
b) by b) by b)
; L
4 & a4 Y
b, by b, by b
4 & a4 Y
by by by by by
4 & a4 Y
Figure 2.a Figure 2.b

We should not expect even at quite low temperature that the horizontal
links in a vertical column (or vice versa) are almost all the same, since if
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they are set to another group element a € G in a column of 1 consecutive
plaquettes, then the weights associated to the plaquettes are nonmaximal
only at the top and the bottom of the column, so the ’energy-penalty’ is
independent of 1. So the horizontal links of a column (or vertical links of a
row) are typically equal if they are closer to each other then a certain tem-
perature dependent length scale 1y. At this scale the energetic suppression
is balanced by the entropic factor 1. Since the links has |G| possible values
in such configurations, the entropy per plaquette is approximately

1 2A/1,
(4.10) ~;log (yGA| ) .

Consequently |Ga| should be maximal, otherwise the state is at most a
metastable one. So the non-uniqueness of low-temperature Gibbs-states is
expected only if G contains several maximal abelian subgroups.

Let suppose that H and F two maximal abelian subgroups of G. For
systems similar to the Ising-model the proof of the existence of multiple
pure Gibbs-states requires several ingredients [29]:

e The system must possess several ground states. This condition is
true in our case (H and F).

e The extra energy of a contour separating two ground states should
be proportional to the length of the contour. This condition is also
satisfied, since the number of plaquettes with non-maximal weights
on Fig.2b is proportional to L.

e The number of contours of length L should be less then e'" for some
¢y constant.

Unfortunately, the last condition fails. The reason of this failure is that the
unit e belongs to both F and H. The number of contours separating the F
and H phases is approximately e2'sl, where 1. is the typical width of the
padding region separating the F and H phases, where the links are equal to e
(solid links on Fig.2b). Nevertheless, it is still reasonable to conjecture that
such configurations are entropically suppressed. In the padding region the
links can take only one value, while if they were in F or H then they could
take |Ga| values, which would give an extra |Ga|" factor in the partition
sum (which is much larger then the factor 2 corresponding to the choice
between F and H). If these speculations are true, then the system must
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exhibit a phase transition at the temperature where the Gibbs-state becomes
nonunique.

In contrast to the previous cases, a system with weights (4.7) has unique
ground state if and only if there is no involution p = p~' in G, where we
assume that G is abelian and W(g) = ) _A"X,(g) is minimal at g = e. If
there is an involution p € G, then the configurations where a; and b; are
either e or p have the same weight as the configuration where all the link
variables are equal to e. The absence of involutions in an abelian group
implies to that |G| is odd. If W(g) has minimum at some g # e, then
the ground state is infinitely degenerate. Indeed, let us mark a subset of
the links so that each plaquette has exactly one marked side, and set the
marked link variables to g (or g~') and set to e the rest of the links. Such
configuration is ground state. Since the marking of the links can be done
in many ways, the ground state is highly degenerate. If W(g) has two
minimums at g; and ¢, then the marked links can be set either to g; or g
in a completely random manner, so the Gibbs-state remains unique even in
this case. Consequently the phase structure is trivial.
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5 On the solvability of semigroup gauge theories

Let us recall again that the link elimination method of Migdal is based only
on the single character identity

Xr(ab)
dimr’

(4.11) J dx Xr(ax)xs(x_1b) = O

where a, x, b are elements of a compact gauge group G, dx is the normalised
Haar measure on G, while r and s are irreducible representations of dimen-
sions dim r and dim s with characters x, and xs. For a finite group this
identity can be written as

G|
(4.12) ZXr ax)xs(x'b) = Wérer(ab)
xeG

With the help of this identity, in the partition function the summation over
a link variable joining two plaquettes can be performed. Let the weights
corresponding to the configuration on the figure be

(4.13) exp—B(Si(ax) + Su(x'b)) = wi(ax)wn(x'b),

where wy, wyp are conjugation invariant functions on G.

Then the summation over x gives

ZWI ax)wr(x Z?\Txr ax) | - Z?\gxs(xqb)

xeG reG seG

7\11
(4.14) |G|Z “Xr(ab) =b(ab),
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so the end result depends only on the holonomy around the union of the I
and II plaquettes. By the recursive application of this calculation the model
can be solved on any planar graph drawn on a surface.

Lattice gauge theory can be generalised to the class of semigroups G
possessing an involution i with i(g) = g~ ' for the invertible elements and
i(rs) = i(s)i(r) for ¥r,s € G. In these models, if s is associated to the

- —

oriented link 1, then to 1 i(s) is associated. The concept of holonomy
around a plaquette can be defined just as in ordinary lattice gauge theory
by the replacement of inverses by involutions. The Boltzmann weight of a
configuration around a plaquette is required to be invariant against gauge
transformations by the group of invertible elements of G. Several aspects
of semigroup gauge theories were extensively studied, see for example [31]
and its references.

Are these models solvable? The answer is no in general, since the ar-
gument at the beginning of the paper (the gauging out of the variables
attached to vertical links) does not work in this case as only the invertible
elements can be transformed to the identity. Nevertheless, the formula (5)
might be true in some cases, at least for suitably chosen weight systems.
This would ensure the solvability of the model.

In the next section we demonstrate that this expectation is fulfilled for
the fairly simple type of semigroups Gy, where Gy is obtained from a finite
group G by adjoining a zero element O with the multiplication rules 0g =
g0 =00 =0 for any g € G. The involution i leaves the zero unchanged.

After these studies we investigate the same problem in the case of the
semigroup of partial permutations of two elements with the help of symbolic
algebra calculations.

6 Semigroups with a zero element

Now let us check if (5) is satisfied for Gy. Let w: Go — R be a conjugacy
invariant function, i.e. w(c) = w(gcg™') for Vg € G. Then w can be ex-
panded as a linear combination of the characters xs, s € G of the irreducible
representations of G plus an additional term ¥, for the zero element

(4.15) w(c) = ZASXS(C) + Aoxol(c)
seG

where x(0) =0, and x0(0) =1, xo(g) = 0 for Vg € G.
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As the next step, we calculate

(4.16) > wlax)w(i(x)b) =

D 1D Axs(ax) + Aaxolax)| | D Axr(i(x)b) + Aoxoli(x)D)

x€Go | seG reG

For the calculation of the sum we distinguish three cases:
(4.17) 1) a,beQqG, 2) a=0,beqG 3) a=b=0.

1) The expression (4.16) evaluates to

AsAs .
4.18 G b AoA
(4.18) 1Y —xc(ab) + Aok,
seG
where the first term calculates the sum over the group elements, while the

second is responsible for the 0.
2) Now xs(ax) =0, xo(ax) = 1 independently of x, so we obtain

(4.19) D> Ao () Axs(x B |+ Aoho = AoMi| Gl + Aoho,
xeG seG
since
(4200 Y x(x"0) =Y xix) — 166 X0 g,
xeG S xeG ol 1 )

where x; is the identically 1 character of the identity representation of G.
3) This is the easiest case, since now only the x0(0x) and the xo(i(x)0)
terms are nonzero for any x € G, so the result is

(4.21) (1G] + D) AoAo.
Our end result is that
(4.22)
( el AAe o (A]) L XD Y A
|Ls€G dtmsxs O) — Aoy, 1L G,0C G4,
> wlax)w(i ?\OA1|G|+7\07\0, if a=0,b€G,

x€Go (IG| + 1)AoAo. if a=b=



We intend to write this expression in the form w(ab) for a conjugacy
invariant function w. Since in the second and the third cases ab = 0, this
is possible only if A = Ao (and A; = A from the a € G, b =0 case). Under
this condition (4.22) is equal to

(4.23)
W(ab) = > set s Glgnsxs(ab) + (MA+Aodo)xi(ab) if a,b € G,
(1G] + T)AoAo if ab=0.
Ashs < . .
(424) = ) IGl==xs(ab) + (WA +Aoholxi(ab) + (1G] + 1)Aoko.

seG,s#1

So we see that if the statistical summation is performed over a link
joining two plaquettes, then the coefficients of the character expansions of
the effective weights of the joint plaquette is obtained by the rule:

(4.25)

I 3 Y 3 3 }\si\s
(}\0)}\1))\3)) (}\0))\1))\8) — <(G+])}\O)\O)(G+1))\])\1)Gd )
Tm s

if A\g = A7 and 7\0 = 7\1. Note that this condition remains true for the
coefficients of the joint plaquettes, too. This ensures that the recursive
elimination of the link variables can be continued indefinitely. So we con-
clude that the 2d lattice semigroup gauge theory of Gy is solvable under the
derived restriction on the weight system.

As a byproduct of this investigation, we obtain some simple solution of
the Quantum Yang-Baxter Equation. In a previous paper [30] we associated
some solutions of the QYBE to every finite group. Since the corresponding
calculations were based on the character identity (5), the arguments pre-
sented in that paper can be entirely carry over to the case of Gy, so the
following (|G| + 1)?) x (|G| + 1)? matrix solves the QYBE:

(4.26)

Rap ™ =3 (Aexs(abed)+A (x5 (bd)+xs(ac)))+Ao(abed)+Aj (xo(bd)+xo(ac))
seG

a,b,c,d € Gy, provided that Ao = A; and Aj = A;.
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7 The semigroup PP,

Our result on G, shows that for a semigroup the character identity (5) holds
only for a restricted set of weight system w. However, we obtained only a
single A\g = A; condition on w, so one might suspect that semigroup gauge
theories are solvable under quite mild restrictions. we study this problem
in the case of the semigroup of partial permutations of two elements, which
we denote by PP,. This semigroup consists of the following matrices:

10 01 01 00
/10 /00 /00
g5 = 0 0/’ O6 = 01/’ g7 = 0 0/

The multiplication is the standard matrix multiplication, while the involu-
tion is the matrix transposition. The elements g; and g, form the group
Z,, while the rest of PP, is not invertible. The conjugacy classes are

(4.28) {o1}, {92}, {93,94}, {95,906}, {07}

So our task is to find those weight systems
(4.29) wr =w(g1), w2=wl(gs), ws3=w(gs3), ws=w(ga),

W5 :W(g5)) WGZW(QG)) W7:W(g7))

such that w; = wy, ws = wg and

(4.30) > wiHax)w!(i(x)b) =w"(ab).
cePP;

We solved these equations with the help of a symbolic algebra package
(MuPad). In order to simplify the calculation, we assumed first that w! =
w!l. Then the only nontrivial (not identically zero on the noninvertible

elements or on the group elements) solution was

w1 + Wy w1 +wy

ST I

(4.31) wh oo wh = {wy,wy,

Next we verified that if w'l has the same form with different w; and w,
values, then (4.30) still held.
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So we managed to construct a solvable lattice model for the semigroup
PP,. However, this solution is only a slightly disguised form of the con-
struction of the previous section in the case of G = 7Z;,. Indeed, PP; has a
homomorphism ¢ onto Z, U0 with ¢(x) = 0 if x is not invertible. So when
we check (4.30) for a weight system which is constant on the nonivertible
elements, we basically substitute PP, with a semigroup consisting of Z;, plus
five copies of the zero element. Since w is constant on these copies, their
multiplication rule is irrelevant. The effect of the four extra copies in the
computation of (4.22) is that

(4.32) > w(ax)Ww(i(x)b)
XEGoU{O] ,02,03,04 ,05}

(

IS L AA o (ak) L B if
1G] 2_sc@ TimXs\ADJ T 3ApAg, II 4,0 € G,

= < AoA1|G| + 5AoA, if a=0,b € G,
(IGl + 5)Aoo. if a=b=

This expression can be rewritten in the form (4.23) if Ag = A;, just as in
the case of Gy. As (w7 +w;)/2 is just the coefficient of the character of the
identity representation of Z,, the weight system (4.31) is the same than the
weight system of Gy = Z; U 0. Presumably too general conclusions should
not be drawn from a single example, but we think it is reasonable to believe
that the solvable weight systems for the semigroups PP, are derivable from
the weight systems of the symmetric groups S,, in a similar fashion.

This example suggest that the solvability of semigroup lattice gauge
theories is less widespread than one might think. However, if we delete the
group elements g; and g, from PP,, then the result is somewhat different.
We still require that the conditions w3 = wy and ws = wg, so the theory
still possess a Z, gauge group. Then a symbolic algebra calculation shows
that (4.30) holds (with the modification x € PP, — {g1, g2}) if the weight
systems has one of the following forms:

(4.33) a) W3 =Wy, Ws5=Wws Ww7=020,

(4.34) b) w3 =w+4=2w; —ws, Ws5=Wg.

Moreover, if w! and w'' has either the form a) or b), then wyy has the
corresponding form, too. This ensures the complete sovability of the model.
In this case there is a considerable freedom in the choice of the weight
system: one can choose two out of three numbers arbitrarily.
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A modification of the Lax equation

1 Introduction

It is quite rare that an equation of classical point or continuum mechanics is
solvable. The most important class of expections are the linear equations,
which are the primary examples of the completely integrable systems. In
the next section we present a variation of a very famous integrable system,
the KdV (Kortaweg-de Vries) equation, or more precisely, the quite simi-
lar Hirota-Satsuma equations. In calssical mechanics, solvability is closely
connected with the existence of conserved quantities. The extreme case is
when there are n conserve quantity I;,...,I, in a system with n degrees
of freedom, and the Poisson brackets of the conserved quantities are zero.
Some sporadic examples of this situation were found quite long ago, like
the motion of a rigid body or the geodetic motion an an ellipsoid. Liouville
maneged to solve the nonlinear partial differential equation

(btt - (bxx - ed)-

These scattered results were quite ad hoc, but in 1967, Gardner, Green,
Kruskal and Miura were able to solve the

A = Uyxx + 66U,

KdV equation [36]. The discovered the connection between this equation
and the Sturm-Liouville operator

L(t) = 0 +u(t,x).
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They observed that if the time development of u is governed by the KdV
equation, then the 'spectrum’ of L remains unchanged. This phenomena
was further calrified by Peter Lax, who discovered that the KdV equation
can be written as the L operator isospectral deformation:

w=L=I[LP], aholP =203+ %(aquruax).

This equation is the infinitesimal form of the similarity transformation
L—L—e L™,

If L were a finite dimensional matrix, then I, = Tr L* would be conserved,
since

k—1 k—1
Lo=) LYLP—PLL*"'=) 1*'(LP-PL)=0,
i=0 i=0

by the cyclicity of the trace operation. Adler and Manin were able to define
a similar trace on the space of Volterra operators, so with the help of this
scheme the conserved quantities of the KdV equations are computable [33].

The paper of Lax left open the question that how could one find those
P operators that the [, P] commutator does not contain terms with 9,, so
the L is a partial differential equation on u. An elegant solution for this
problem was discovered by Gelfand and Dickey [37]. L should commute
with its half integer powers, as for example

[L, L1/2] _ (L1/2)2L1/2 o L]/Z(Ll/Z)Z —0.

Now L*/? can be split to parts containing nonnegative and negative povers
of 0,.

Lk/Z —
L L L Lo e o M. LI (Ll I
= (L¥23), + (L)
Then
0=[L"] =, (L"), + (L") ] = [, (LY%),] =L, (L**)_].

As (L¥?), contains only the nonnegative powers of 9, this commutator can
not contain any negative powers of 0. Moreover

L, (L)) = [(0% +w), 1% +1%02 +...] =
2(l[l<1/2])X + (valami)d ' + ...,
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so [L, (L*?),] can contain only the zeroth power of 0. This means that
L = [L,(L*?),] is a partial differential equation on u. For a more detailed
and precise presentation of this material see for example [33]. In the next
section we present a slight modification of this scheme.

2 Unitary deformations and complex soliton equa-
tions

Since the Lax-equation -
L=PL-LP

is the infinitesimal form of the similarity transformation L — e"Le ", such
equations leave invariant the ’spectrum’ of L [32], ensuring the existence
of nontrivial conserved quantities. In many cases this scheme leads to the
complete integrability of the corresponding equation (see [33] for a textbook
account). In the theory of integrable systems on lattices a generalization of
the Lax-equation emerges:

t

L =PL-LQ,

where Q = 7(P), and 7 is an automorphism which commutes with the
'R-matrix’ of the problem (see [34] for details). Another example of this
modification of the Lax equation was observed by Drinfeld and Sokolov
[39]. They noted, that the spectrum of 1L, is preserved by the following
transformations:

L — etPL1€7tQ, L, — etQLze’tP.
The infinitesimal forms or these transformations are
L, =P, — LQ, L, = QL, — L,P.

With the choice of Ly = 02 +u+ ¢, L, = 024+ u— ¢ one obtains the Hirota-
Satsuma equations [40], [41]. Another example of this sort of scheme is
the constrained KP (cKP) hierarchy [42]. Here the spectrum of 1;'L; is
preserved by the

L — etPL1€_tQ, L, — etPLze_tQ
transformations.
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The generalized Lax-equation also arises if L can be regarded as a linear
operator on a Hilbert-space $). In this case one can try to preserve the
spectrums of L*L and LL* instead of L’s one. In fact, it is fairly natural
to associate the operator L*L to L, since every L € B($) can be uniquely
written as L = U|L|, where |L| = (L*L)"/? is a positive operator, while U is a
partial isometry [35].

The spectrum of L*L is not preserved by general similarity transforma-
tions of L. However, the transformation

[ — eitPLefitQ

does leave it invariant if e'*® and e ''Q are unitary, i.e. if P and Q are

self-adjoint operators. Indeed
L1 — <eitPLe—itQ> <<e—itQ> ] ¢ (eitP) *> _ P [ *eitP

These considerations suggest that it might be possible to obtain inte-
grable equations in the following form:

(5.1) L=1i(PL-LQ), P=P" Q=Q"

As an illustration of this method, we derive a hierarchy of complex evolution
equations of Kortaweg-de Vries type [36].

First, let us recall the Gelfand-Dickey [37, 33| construction of the KdV
hierarchy. Their starting point is the Schroedinger operator

L=29%4u(x)
(0 = 0,). Its square root L'/? is a pseudo-differential operator

L2 =317 1% 2 102 .

where the lg/ s are polynomials of u and its derivatives. They are recur-
sively determined by the condition (L'/?)? = L. The crucial property of L'/?
is that

[L, LY =0

Then
0=[L"] =L (L"), + (L") ] = [L,(L¥%),] =L, (L¥%)],
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where (L*/2), is the differential operator containing the nonnegative powers
of of 9, while (L*/2)_ consists of terms with negative powers of 0. Since
[L, (L*?),] is a differential operator, and [L, (L*/?)_] cannot contain positive
powers of 0, both expressions must be polynomials of u and its derivatives,
SO

atkL = atku = [L) (Lk/z)—i—] = _[I—» (I—k/z)—]

is a partial differential equation for u(x,t).

With some minor modification, this scheme works for the generalized
Lax-equation, too. As the self-adjointness of operators has an important
role, we use the self-adjoint derivation D = 10 instead of 0. Let

L =D?+v(x)D + u(x),

where u and v are complex functions of x. Instead of L'/? (which is not self-
adjoint), we would like to obtain self-adjoint pseudo-differential operators

A=D+ay+a D' +a,D%2+...,

B=D+by+b D '"+b,D?+...,

satisfying
i(AL—-LB) =0.

So
AL=1B = L'TAL=B=B*=L'AL" = A(LL") = (LLYA,
which implies that
A=(LL")"* and B=(LL)""
The operator equations
(5.2) 0, L = 3¢, vD + 3 u = 1 {(A¥),L—L(B*),}
= —i{(AY)_L—L(B")_}
generate integrable equations for u(x,t) and v(x,t). Note that the splitting
X = X;+X_ respects self-adjointness, i.e. X =X*= (X, =X{ A X_ =X").

In the KdV hierarchy v can be set to zero, since the term containing 0 drops

out from
O L = 3¢, (3% +u) =—[(3* +u), (L¥?)_]

= —[?+u, 1Mo+, + ...

k
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This reduction does not necessarily works in our case, since
—i((AY)_(D* +u) — (D* +u)(B")-)
= (@D 4. D +w) — (D + W KD +..)) = ~i(a "),

so the constraints v(x) = 0 can be violated by the evolution equation. Since
the evolution of LL* and L*L have the usual Lax form

Oy, (LL*) = i[(A%), LL*], 3y, (L'L) = il(B®)4, L],

the standard machinery of the KdV equations [33] can be applied. For
example, the integrals of motion are

JresAkdx, JresBkdx, k=1,23....,

where res X is the coefficient of D! in the pseudo-differential operator X.
The fact that the equations (5.2) can be embedded into the KdV hierarchy
generated by the Lax-operator

LW = D* + 13D +wuD? + wD1 + g
ensures their integrability. The embedding is determined by the constraints
LY =LL" = (D*+vD + uw)(D*+ Dv+w) =D*+ (v+9)D* +....

Since in the KAV hierarchy of L* the constraint u; = 0 is preserved by the
evolution equations, the constraint v+ v =0 — Rv = 0 can be imposed on
the equations (5.2), too. However, it seems that even v = 0 is compatible
with (5.2) for odd k. This was verified by explicit computations for k =
1, 3, 5.

Now we! compute the explicit forms of the first few of the hierarchy (5.2).
For the odd flows, we present only their constrained, v = 0 form, while for
the even flows, v’s value is constrained to be pure imaginary (v = iw).

(1) flow:
O, u=1u'

!1Me and a symbolic algebra package.
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(2) flow:
O, w = 2Ju’

Oy, U = %(w’” —W (2w 42w —4u) —w(u' — @’ —w”))

(3) flow:
] " =/ / ! = —/
O, U = g(u —3u" —6uu’ +o6u'l+ 12uu)
(4) flow:
at4u = at4W =0
(5) flow:

1
L = 3—2{ ~3u 150 45U (3u— @) + 50" (—5u + @)

+5u’ (—3u’ + 6uil + U — 3u” — 51”)
+ 50 (4w + dui - 3u” - 30") }

The adjoint operator L* was computed with respect to the standard in-
ner product (Pq,{;) = fll?ﬂl)z dx. However, it is possible to use more gen-
eral inner products (not necessarily positive definite ones), like ({q,1;) =
[1F(W2) dx, where F is some pseudodifferential operator (with constant
coefficients). In this way, further generalizations of the KdV hierarchies can
be obtained.

The operators P = (A¥), and Q = (B¥), in (5.1) are quite similar to
each other. In fact, one is the same as the other, if (u,v) and (ii,V) are
swapped. This raises the possibility that the presented scheme is a subcase
of the twisted Lax equation of Semenov-Tian-Shansky [34]. However, in
his group theoretical formulation the conserved quantities were functions
invariant under twisted conjugations h — gh®™g~' (where 7 is a certain fixed
automorphism of a group G). If our results can be formulated in a similar
framework, it is likely that the conserved quantities are such functions on a
group G, which are invariant under h — w, hu2_1 where u;, u; are members
of a compact subgroup of G, (so w; and u, can be represented by unitary
operators). Nevertheless, there could be close connections between these
frameworks.

45



The presented construction can be applied to other integrable systems,
too. For example, a Kadomtsev-Petviashvilli type hierarchy [38, 33] can be
derived without any difficulty. Let

L=D+u+u D '"+u,D?+...,

Onl =i (Bnl —LBp), Bp=(LL*)™ By = (L)

Then the zero-curvature condition
amBn - aan - i[Bm» Bn] =0

provides the equations of a KP type hierarchy. The proof of the zero-
curvature condition is almost the same as for the standard KP equations:

amBn — aan — i[Bmy Bn] —
n—1

_ i(Z(LL*)“” ([ByL — LB, L
j=0

LBl —L'Bnl ) (LU = (n 3 m)) B, Bl

= i([Brm, (LU} = [By, (LU} — [, Bul
= i ([Bp — (L), B — (L)) = [(LL)™, (L)) = 0

It seems reasonable to believe that this equation holds for the half-integer
n and/or m, too. The verification of the commutativity of the flows 0., is
standard.
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6

Coadjoint orbits of wild groups in

solid-state physics

1 Introduction

Lie-groups are divided into two classes (Types I and II) according to the be-
haviour of their representations [43]. The unitary representations of Type I
(tame) groups have essentially unique decompositions into irreducible repre-
sentations, while in the case of T'ype II (wild) groups such decomposition can
be highly nonuniqe. Finite groups, semisimple and nilpotent Lie-groups are
tame, while infinite discrete groups (except those which contain an Abelian
subgroup of finite index) are wild. The type of a solvable Lie-group is deter-
mined by the behaviour of its coadjoint orbits. According to a theorem of
Auslander and Kostant [44], a solvable Lie-group is tame if and only if the
set of its coadjoint orbits are separable and the their standard symplectic
two-forms are exact. This theorem provides a fairly convenient method to
prove the wildness of some solvable groups. The notation of Type I and
IT representations comes from the theory of von Neumann algebras. This
operator algebraic aspect might be especially relevant in physical applica-
tions, where one is interested in the properties of the representations of the
enveloping algebra. However, we have little to say about this topics in the
present paper.

In Kirillov’s book [45] two simple examples of wild solvable groups are
given. These examples are not just mathematical curiosities, but they
emerge naturally in the description of some quasi-periodic systems in solid-
state physics. Kirillov’s first example has the following physical realization:
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The functions acosx, asinx, bcos xx, bsin «xx, and the derivation 9, form
a five dimensional Lie-algebra. If « is irrational, then its Lie-group is wild.
These operators are the building blocks of the Hamiltonian of an electron
moving a quasi-periodic cosine potential.

The Lie-algebra of the second example can be represented by operators
which are necessary for the description of the motion of an electron in two
dimension under the influence of periodic cosine potentials and uniform
magnetic field. The corresponding group contains the magnetic translation
group [46, 47].

The physics of quasi-periodic systems has many characteristic features
like the unusual band structure, various types of (de)localisations, etc. [48].
The wildness of the groups in these examples foreshadows the appearance
of such features, so the theorem of Auslander and Kostant can be used to
predict the qualitative nature of physical systems connected with solvable
Lie-groups.

We study what happens if the magnetic translation group is extended
by generators generating fluctuations of the magnetic field. In this case the
conditions of tameness in the Auslander-Kostant theorem is violated only
by a single exeptional coadjoint orbit. As all the other orbits satisfy the
conditions of the theorem, we expect that this physical system does not
exhibit the unusual phenomenas of the quasiperiodic disordered systems.

In the next section we re-present the examples of [45] and give physical
realizations of the wild solvable groups. We also determine how the char-
acters of the systems changes if some parameters like the magnitude of the
potential and magnetic field is allowed to fluctuate. This paper is basically
an extra exercise for the last section of [45].

2 Solvable Lie-groups in solid-state physics.

Let us first recall the notation of coadjoint orbits. Let G be a Lie-group, g
its Lie-algebra, and g* its dual. The coadjoint action of G on g* is defined
by

(6.1) (AdyE,AdgX) = (§,X), &€g',Xeg,geG.

By differentiating (6.1) we obtain

(6.2) (ady&,Y) = —(&, [X,Y]).

48



On the orbits Q;, = {Adg&o, ge G} ady 1s represented by a vector field
fa, (X) . The symplectic two-form B on Q is given by

(6.3) Bo, (fa,(X),fa,(Y)) (&) = (&, [X,Y]).

A theorem of Auslander and Kostant characterizes the simply connected
solvable Type I Lie-groups:

THEOREM 1. Let G be a stmply connected solvable Lie-group. Then
G 1s Type I (tame) if and only if

(1) all coadjoint orbits of G are Gs sets (i.e. they are countable
intersections of open sets) in the usual topology on g .

(2) The symplectic forms Bq, are exact for all & € g*.

We use this theorem for the study of some Lie-groups connected with
the theory of quasi-periodic systems in solid-state physics.

The simplest example of wild groups is the five dimensional Mautner
group [45] consisting of certain 3 x 3 complex matrices:

et 0 z
(6.4) gt,w,z) = 0 e* w|, teR,z,weC,
0O 0 1

where o 1s a fixed irrational number. The non-zero commutators of the
Lie-algebra of this group are

[P,S]] = C], [P,Soc] = OCC(X,

(6:5) P,C1] = —S,, [P, Cal = —aSa.

Operators satisfying the same algebra occur in the theory of one-dimensional
quasi-periodic systems. A representation of (6.5) is provided by the follow-
ing operators acting on L*(R, dt):

S1 = asin (t + ¢1), So = ag sin (ot + ¢y ),

) P =04,
(6.6) ¢ Cy =acos(t+ ¢q), Cyx = aygcos (ot + dpy).

A representation with different ai,al, ¢, ) parameters is isomorphic to
(6.6) iff a1 = af,ay = a} and ¢ — d/ax = d] — ¢'/x + 2mm + 2nn/« for
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some m,n € Z. One can build the Hamiltonian of an electron moving in a
quasi-periodic cosine potential out of these operators:

(6.7) H= —%ai—l—cu cos (t+ 1)+ axcos (axt + ¢y) = —%Pz—l—ch +a,Cq.

In [45] two inequivalent decompositions of the regular representation of
(6.4) into irreducible ones are presented. Inequivalent decompositions of a
representation of (6.5) occurred in the physics literature, too. It was noted
in [49, 50, 51, 52] that although (6.7) has no translational symmetry, it is
not completely random either. By adding an extra dimension, translations
by 27 and 27t/ can be executed in separate dimensions. For that purpose,
we consider the following representation of (6.5) on L?(IR?, dxdy):

S1 = a;sinx, Sy = aysin oy,
. P=0,+0
(6.8) * k C; = ajcosx, Cy = ay,cos ay.

Since P is the generator of translations only along the lines 1. : y = x + ¢,
the representation (6.10) is decomposable into irreducible representations
acting on the Hilbert-spaces L%(1.). These representations are isomorphic
to (6.6) with parameters ¢; = 0, ¢ = cx. A different decomposition of
[?(R?, dxdy) is based on the periodicity of (6.8) on the xy-plane. The oper-
ator H = —1/2P? + a;C; 4+ a,Cy is indeed invariant against the translations
(x,y) — (x+2m,y) and (x,y) — (x,y+27/x). The translational symmetry
entails the existence of Bloch wave-functions

. 2 .
(6.9)  W(x+2my) =e“ix,y), Yo,y + =) = ehlx ).

The operators acting on such wave-functions for fixed s and t provide ex-
actly the infinitesimal form of the irreducible representation occurring in
the second decomposition of the regular representation in [45]. Indeed, if
we introduce the periodic functions

(6.10) P(x,y) = e Ty (x y),

then the operators (6.8) act on 1 as

~

(6.11) P =0, 4+ 0y +i(s + at), (Sq,Cq, S4, Cy are unchanged).

Since ﬁ) is periodic, we can regard it as a function defined on the torus
ST x S' = [0,2m) x [0,27/ct). The action of the operators (6.11) on L(S" x
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S') is irreducible. The existence of a representations with Bloch wave-
functionals does not a prior: implies the occurance of extended states in the
physical representation (6.8). Indeed, as it was stressed in [53], inequivalent
representations of the same algebra might have very different spectral and
localizational properties. Nevertheless, the existence of extended states in
this system was established in [54, 55, 56].

Next we study the effect of the fluctuation of the magnitude of the
potential. For this purpose we add the generator M = 0, to the operators
of (6.6). M changes the amplitudes of the potentials S; and C;. To keep
the algebra closed we need to add the operators So = sin(t + ¢7) and Cy =
cos(t+ ¢1) to (6.6), too. The extra non-zero commutators (compared to
(6.5)) of the extended Lie-algebra g are

(612) [P) SO] - CO) [P) CO] - _SO) [M) S]] — SO) [M, C]] — CO-

The Lie-group G of g has a representation by 4 x 4 matrices

et ' a 0 u
0 et 0 =z

(6.13) g(t,a,u,w,z) = 0 0 et |0 a,teR, uw,zeC.
0O 0 0 1

If g* is represented by matrices of the following form

/ifr 0 0 O\
|l 0 0O

(614) E(T)palam)) - O O O O ) T,tER, I’»m)necy
Il mn O

so the pairing between g and g* is
(6.15) (&) =R(Tr(gh)), Eeg'hey,

then the coadjoint action is

(6’16) AdZ(t,a,u,w,z)‘i (Tv P, l) m, T'L) -
&(T+I(lu+zm+ anw),p — R(lz), le ™, me ™ — R(1z),ne ™) .

The four dimensional orbits are given by the parametric equations
(6.17) 1 =loe", n = nge™,
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Since the orbits are dense subsets of the sets
(6.18) m = ],0, ‘TL’ = TNy

the first criteria of the Auslander-Kostant theorem fails, so the group re-
mains wild despite the fluctuation of the potential.

In the following we turn our attention to Kirillov’s second example of
wild groups. This group is closely related to the magnetic translation group,
whose Type II nature at irrational magnetic flux was pointed out by [57]
This is a seven dimensional Lie-algebra whose nonzero commutators are

[PX) Sx] — Cx> [Py>sy] - Cy>

Py, Pyl = 2B,
(6'19) [ y] [Py, Cil = =S,, [PLM Cy] - _SU'

This algebra is represented by the operators

ﬁxziax—by, C\X:cosx, C\y:cosy, 81

6.20
(6:20) lﬁ\y = 10y + bx, S, =sinx, g;, =siny,

on L?(R3, dx dydz). The Hamiltonian of an electron moving in constant
magnetic field in a periodic crystal can be formed out of these operators:

(6.21) A= ﬁxz+ﬁy2+ ¢+ C,.

If we regard the generators as linear functions on g*, then the coadjoint
orbits are

(6.22) C2+ 82 =14 Ci + Si =17, B =r;.
If the orbits are parametrized as
(6.23)
Cy =T1yc08 ¢, Sy =T1ys8in ¢, Cy =r12c08, Sy = 128inp,

then the symplectic two-form Bg, is

(6.24) Bo = dd A dPy + dip A dPy + 2r3ddp A dip.
Since
(6.25) J Bo = 87’3,

{Px:Py =0,B=r3}
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B is not exact, so the second criteria of the Auslander-Kostant theorem
fails, consequently the group of magnetic translations is wild.

Now let us see what happens if the external magnetic field is dynamical,
too. To describe the fluctuation of b we extend the set of generators (6.22)
by £ = 10y. In order to keep the commutators closed, we need to adjoin
the operators Y = —i[ﬁ, ﬁx] and X = i[ﬁ, 15\9], too. So the following eleven-
dimensional Lie-algebra is necessary to describe the coupled system of an
electron and the fluctuating external magnetic field:

[Py, Sx] = Cy, [Py, Syl = Cy, [Py, X] =1,

(626) [Px, Cx] — _SX, [Py, Cy] — —S, [Py,Y] = I,

[E) Px] — _Y> [PX) Py] - 2B>
E,P]=X,  [EBl=L

If we use the generators of the Lie-algebra as linear functions on g* then the
coadjoint action corresponds to the following vector fields:

VPX = —Cxagx + Sxacx + ZBapy + Y0 + 10y,

(6.27) Vo, = —C,ds, + Sydc, — 2Bdp, — Xdr + 10y,
Vs, = C0p,, Vs, = Cyop,,

(6.28) AP, X?:Ia_:y—a;%’px 1 Xd,,
Vy = —10p,, Vy = —I0p,

(6.29) Vi = 0.

Note that 0; does not occur in these expressions, so I = [ = const. on each
orbit. The form of Vp_and Vp implies that

(6.30) Ci+S:=r3, Ci+S; =1l

If B # 0, then (6.28) entails

(6.31) L ({Vx, Vv, V&, V}) = £ ({0p,, dp,, O¢, 08}) .

So the orbits are generated by the vectors dp , 0p,, Og, 0p and by

(6.32) Vp, =—C,0s, +Sxdc, +1ody,  Vp, =—Cyds, + Sydc, + lo0x.
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The integral manifolds of these vectors are

CX:TXCOS(I), SX:TXSiIl(b, Y:IO((b—'_d)O)
(6.33) Cy = 1y cosp, Sy =1ysin, X =IT(P + o),

while E, B, P, P, are arbitrary. So the maximal dimensional orbits are home-
omorph to R®. Since H?(R®) = 0, the symplectic two-form Bg is necessarily
exact. However, if Ip = 0, then the vector fields \~/px and Vpu generates the
product of two circles (a torus) instead of the product of two spirals, and
the nonzero integral of the symplectic form violates the conditions of the
Auslander-Kostant theorem. This violation happens only at a single vaule
of the I, coordinate,! so the fact that the bulk of the orbits satisfy the condi-
tions of the theorem might imply that this system behaves like the periodic
crystalls of solid-state physics.

IThis case was overlooked in the published version of this chapter. The error was pointed out by Zoltan
Magyar in the Mathematical Reviews.
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7

On the stress tensor near a nonconformal

boundary

1 Introduction

Boundary conformal field theory has received quite a lot of attention re-
cently. It occurs in D-brane physics, in the description of the critical behav-
ior of two dimensional statistical mechanical systems, or in one dimensional
guantum systems with ends or with a point-like defect. It has grown into a
separate subfield of mathematical physics, too. A simplest example of these
systems is a single real scalar field ¢ on an interval. In this case, however,
one can prescribe nonconformal boundary conditions for ¢, so it is a rea-
sonable project to study what happens in this case to the usual ingredients
of conformal field theory.

In [59] the authors considered the case of a massless scalar field on the
figure eight as the simplest example of quantum field theory on a network.
They realized that the system has a nontrivial analogue of conformal sym-
metry only in special cases. In this paper we study only the “half” of this
network, i.e. the quantum field theory of a massless scalar on a circle with
a point-like impurity.

Before performing any calculation, we try to guess what sort of modifica-
tion can be expected for the usual Virasoro algebra of the stress tensor. Let
us imagine that ¢ satisfies the nonconformal boundary condition at x = 0:

(7.1) $'(0) + adp(0) = 0.
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(Actually this is not a very sensible boundary condition for a closed physical
system, so we consider only it as an illustration.) This condition is invariant
against the transformation ¢(x) — &(f(x)) only if f(x) = x + f1x> + .. ..
The Lie algebra of such transformation is contained in L;(1), i.e. in the Lie
algebra of formal vector fields on a line of the form

(7.2) v=vx?0 +vx> +0+....

In general, L(1) is the formal vector fields on the one dimensional line with
the following form:

(7.3) v =X F v x4

The (nontrivial) central extensions of [;(1) was computed by Gonca-
harova [60]. Since for a free scalar field ¢ the commutator [¢p, ] ~ const,
the schematic form of the Lie algebra of bilinear stress tensor T must be

(7.4) LT~ [dd, pd] ~ P + const.

(In this condensed notation for example [¢, d] ~ const stands for

(b (x), b(y)] = d(x —y).) The ¢ term in the result has the same structure
as in the classical system, while the const term of the central extension
must be some sum of the Virasoro (Gelfand-Fuks) and the Goncharova
cocycles. We note here that Goncharova’s cocycle is local in the sense that
it can be calculated from the first few derivatives of the vector field v at
x = 0. Of course we cannot guess in advance the coefficients of the various
cocycles in the const. central extensions. They might be even 0 or oo in a
QFT calculation. In the rest of the paper we try to calculate them for our
massless case on an interval with semitransparent (permeable) boundary
conditions. We argue that in this case the central extension is absent.

2 Massless field on an interval

Let d(x,t) be a massless real scalar field on the interval [0, 7t] with action

1 (™.

(7.5) sz—J d? — 2 dx dt
2 Jo

and equation of motion

(76) (bxx - (btt =0.
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There are several possible treatment of the boundaries at x =0 and x = 7.
One can, for example require energy conservation:
(7.7)

d (™. " -
0= g | 02 dx = | & ot 67+ by dx = bllepa () — b10)(0),
0 0

This is satisfied if (but not “only if”)

b(m) ) _ $(0)
m (M) n(29), meom,

A simple example of this relation is ¢(71) = AG(0), dy(m) = A "dhy(0).
These conditions describe a scale invariant defect. This system was studied
in [58] under the name of “permeable brane”.

Another possibility to obtain acceptable boundary conditions is to re-
quire that the single particle Hamiltonian

(7'9) Hs - _axx

is self adjoint on the real Hilbert space L%([0,7]), so the system can be
decomposed into an infinite collection of harmonic oscillators with real fre-
quencies. This path was followed in [59]. In this case

(7.10) J:q)axxcp dx = r O PP dx,

0

which is equivalent to

(7.11) (Wb — Dby ) = 0.

This condition is fulfilled if ¢, = 0 or ¢ = 0 at the endpoints. A more
interesting possibility is

(7.12) (ﬁj{%) _R <(g’x(&))) . ReSL2R).

This can be interpreted as a semitransparent boundary condition corre-
sponding to an impurity at x = 0 = 7. In order to get some intuition
about the nature of this system, first we study the solution of the boundary
conditions in the case when R € SO(2).

COS & —smoc) 50(2).

(7.13) R = ( .
SIn X COS &
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In order to construct the quantum field theory of ¢, we must find the
eigenfunctions of H;. They can be written in the form

(7.14) bn(x) ~cos (knx + 0n).
The boundary conditions give
(7.15) (kco§ (KnX + 61 ) _ (cgsoc —sin oc) ( co§(6n) )
asin (kpx + on) sinx cos K sin (04,).
There are two types of solutions, roughly corresponding to the modes of a

vibrating open string with integer and half-integer wave numbers. We hope
that the structure of these solutions are evident from the following figure.

/ ’ 8
VOS]
Y N
(Here the vectors on the outer large circles represent the (¢, ¢’) quanti-

ties.)
The first possibility is

1 ain 8]
Ckpsindy,

(7.16) K4 6! = —8] + 2nm, cossl = e

LI
*_,

With the help of the approximation

cos 8! 1
) (ned) = (&)

we obtain the following approximative solution

2 a a
(7.18) $!(x) ~ \Ecos <(2n + m) X — E)
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The second possibility is

k2 sin 62 x
2 2 _ 2 _ _
(7.19) ket + 05 = (m— &%) + 2nm, 205 6%1“ = ctanz =a

Then

) N 2 a’ a’

The quantum field operator ¢(x,t) is

A(X) A + LA
d(x,t) = Z e (aﬁe_lk“t + a) elk“t)
(7.21) n=012,.. A=12 V 2k

A BTt
[an’ A = OABOmn.

The zero time fields ¢(x) = ¢(x,0) and 7t(x) = d(x, 0) satisfies the commu-
tation relation

(7.22) [p(x), 7t(y)] =1d(x —y).

In principle, one can try to commute the commutators of the various
components of the stress tensor with the help of the approximative single
particle wave functions, since they correctly reproduce the ultraviolet be-
havior of ¢, but this computation becomes very cumbersome,so it is easier
to calculate the Green functions of the Euclidean version of the theory, end
extract the energy-momentum algebra with the help of the techniques of
conformal field theory.

To close this section we recall a partial case of a theorem of Goncharova
on the cohomology of L;(1). (She actually computed H*(L,(1)) for any n
[60, 61].) According to this theorem, H?(L;(1)) (which classifies the central
extensions of (1)) is two dimensional with generators « and  whose
nonzero values on pairs of the basis vectors

(7.23) €1 = Xzax, € = X3ax, €3 = X4ax,

are

(7.24) o(er, es) = —x(eq,e1) =1, Blez,e5) = —Plez, e5) =1,
' x(ez, er) = —«afes, e) = =3, B(es, es) = —Ples, e3) =3



These cocycles are localized at x = 0 in the sense that they can be written
as
(7.25)
(f(x)0x, g(x)0x) =
1 " (5) (5) " 3 " (4) (4) "
= (F7(0)970) — £)(0)g"(0)) — 7 (£7(0)g ¥ (0) — £19(0) ' (0),
B(f(x)am Q(X)ax) =

1 " (6) (6) " 3
ﬁ(f (0)g™’(0) — *'(0)g (0))—4,—5,
so they might emerge in a local quantum field theory. As our boundary
conditions are invariant against vector fields from two copies of L;(1) (one
at x = 0 and a second one at x = 7), we might obtain central extensions
even from H?(L;(1) @ L;(1)). Generally,

(7.26) H%*(g @ g) = H*(g) ® H(g) @ ((g/[g,0]) ® (9/[g,9]))" .

To see this, let us write down the Jacobi identity for three elements a;, b», ¢»,
where a; is from the first summand of g g, while b,, ¢, are from the second
one:

(7.27) [ay, [by, coll + [c2, [ar, ba]] + [by, [c2, ay]] = 0.

(f9(0)g™(0) — £(0)g'" (0)),

Now let o be a cocycle from H?(g®g) which is zero when restricted to the firs
or the second summand of g g. If the central extension is generated by «,
i.e. [ar,by] = «(ay, by), etc., then the Jacobi identity gives «(ai, [bs,c2]) =0
(and by symmetry, «(a,,[b,c1]) =0, too), since for example

(7.28) [c2, [ar, b2]] = [c2, (@, b2)] = 0.
In our case [L;(1),L;(1)] = L5(1), since
(7.29)  [f1x?0, + X309, + f3x 0y + ..., g1x?0y + g2x30x + g3x*0 +...] =

(7.30) 3(f192 —fzg1)X4aX—|— oo
Since L;(1)/L;3(1) = R?,
(7.31) HA LM aLi(1) =ReR*e R =RS.

Note that the terms corresponding to R* are local, since they can be ex-
pressed with the help of the first two components of the vector fields.

In the next section we argue that only the zero cocycle is represented by
the behavior of our scalar field ¢ at the boundaries.
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3 A defect on the line

Although in the previous section we determined the eigenmodes on an in-
terval fairly accurately (at least in special cases), it is more convenient to
work an an infinite line with the boundary conditions located at x = 0. In
two dimension the massless Green function is

27
In the presence of the defect this is modified to

A(x ) BA (1| e—iPolt—5)
(7.33) G((x,t), (y,s)) = %{J ZA:],Z 08 L’;)f;;(zy)e
0

dpdpy.

dp de)

where cb{} are plane waves scattered on the defect:

x f Rle=x  if x < 0
(7.34) ol =4 e T X<t
T etPx, if x >0,

and
T2eipx if x <0
7.35 b= o i |
( ) (b‘p {elpx + Réewx, if x > 0.

These waves are orthogonal to each other and has the same normalization
as e 'P* has. If we denote the R matrix describing the boundary conditions
by (%), then the scattering coefficients are approximately (for large p)

2i 2id 2i
7.36 T R~x1-"—= T’r— Rix1-—.
Note that R} = RS = 1 correspond to two noninteracting half space with
Neumann (i.e. ¢’ =0 on the boundary) boundary conditions. If we write
down the x dependent term in the Green function G with the help of these
approximations, we obtain that (when x,y > 0)

(7.37) PRI CI RS

A=1,2

(e—ip(x—y) + eip(x—y)) 4 (e—ip(X+y) 4 eip(X+y)) 4+
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The terms in the first two parentheses are responsible for the Green function
on a half plane Gnha1(z,2') ~In|z—z/| +1n|Z—z'|. The third part has softer
large p behavior, so it should has only a |Z — z/|In|Z — z/| type singularity.
(Note that (xInx —x)’ = Inx, and the %—g term can be canceled in (4.30)
by a derivation with respect to x or y.) So we see that the correction term
in the Green function is less singular than the the original Gnaif(z,2z’). In

conformal field theory, the form of the Gelfand-Fuks cocycle

(7.38) xer(F(x)dy, g(x)3,) = jf’(x)g"(x) dx

in the Virasoro algebra can be derived from the short distance behavior of
the stress tensor expectation values

(7.39 (T2IT(2) ~ (0.0 Gptane(2,2) ~ = .
The rule of thumb is that exponent 4 is one higher than the number of
derivatives in agr. Now Goncharova'’s cocycles contains at least 7 derivatives
(and they are localized at x = 0), so they cannot be the result of a less
singular correction to the Gyq 1+ Green function. Of course, we are ready to
admit that this argument is not quite rigorous.
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8

Summary

Since the Introduction chapter provided an overview and motivation of the
results of this thesis, in this chapter we stress only those results and con-
structions which are original up to our best knowledge. We present them
for Chapter 2-7 as separate items.

e Chapter 2. Nonperturbative effects in deformation quantization.

First we describe the basic geometric idea. On C®(R?) there is a
deformed product

1
T

where r = (x,p) and A is the symplectic area of the triangle T =
A(r,r’,r”). This formula works for periodic functions, so it de-
scribes a deformed algebra on a cylinder instead of R%. The factor
A(r,r’,r”) can be written either as the integral of a closed two-form
over the triangle A(r,r’,r”), or as the integral of a one-form over the
boundary of the triangle. Now although on a cylinder the straight
edges between the points r,r’, r” does not necessarily bound a trian-
gle, the expression for A as the integral of a one-form over the edges
still makes sense. So it is reasonable to study the proprieties of the
expression of the deformed product when these topologically non-
trivial edge configurations are included. Our result is that if only
edge configurations with a fixed winding number w are included,
then the new deformed product looks as
ith, _ . .
€nr *hw CiF = eXp[?(Tn - TTL) + 2ih7w] Entit,rHi-Hwm/h

]

(Fon @) = 5 | A )glr”) exp S Ale, )
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where e, = e!™*™) The usual product correspond to w = 0. In
fact, the w # 0 product can be obtained from the w = 0 one by a
redefinition of the basis. However, this is no longer true if one allows
the inclusion of edge configurations with various winding numbers

freg =) Cufinwg,

weZ

where the c,,-s are arbitrary coefficients. We proved that when the
nonzero coefficients are co = ¢; = 1, then the algebra with the x.
product does not possess an unit element. This phenomena would
be impossible if the deformation were algebraic, i.e. when the prod-
uct depends polynomially on the deformation parameter h. More-
over, the product *. is associative, which is surprising as the linear
combination of associative products are usually not associative (pri-
mary examples are the Lie and Jordan algebras for a nonassociative
product).

Chapter 3. Matriz theory of unoriented membranes and Jordan
algebras.

This chapter is based on a simple observation. It is well known that
the equations of motion of an oriented surface with the standard
world-volume action can be regularized with the help of the non-
commutative algebra of large Hermitian matrices. This method uses
the

Poisson algebra on the surface &< Matrizx commutators cor-
respondence. The existence of a suitable Poisson algebra on the
surface requires orientability. However, the equation of motion of
a membrane looks the same for nonorientable ones, so there must
be some substitute of the above correspondence for nonorientable
surfaces. We found that this aim can be achieved by the

Jordan algebra of the deformed product on the surface

—

Jordanian matriz products
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correspondence. The applicability of this method for the description
of membrane motion is based on the simple identity

Tr (%[XRXH[XRXJ’]) =

Tr (Xi o (XN o(X'oX))— (XtoXYo (X o Xj)) ,
which expresses the potential energy of the regularized membrane
with the help of the Jordan product. We studied what types of
Jordan algebras can be used for the description of membranes with
S? or RP? topologies. It turned out that the latter requires Hy(R),
the Jordan algebra of real symmetric matrices.

e Chapter 4. Finite groups, semigroups and the Quantum Yang-
Bazxter Equation.

It is well known since the work of Migdal that two dimensional lat-
tice gauge theory is solvable. To a solvable two dimensional system
almost by default corresponds a solution of the Quantum Yang-
Baxter Equation, which is a close relative of Artin’s braid relations.
We wrote down this relation, and found that the resulting R matrix
is not invertible. However, this problem can be cured by a small
modification of the action of lattice gauge theory. We obtained the
following solution for the QYBE:

RE,CT(A) =

D ( oxr(abed) +Aj(x:(bd) +xr(aC))> + > Afxe(bd)xulac).
r€R(G) t,ueR(G)
(Here the group elements a,b,c,d labels the basis of underlying
vector spaces on which R acts, and x is a character of some rep-
resentation of the gauge group.) These results were based on the
repeated use of a character identity from group representation the-
ory:

ZATXT ax) | - Z?\gxs(x !

reG seG

}\IAII
=1GI)_ < ——x:(ab)
reG

65



Now if we can prove this for a semigroup G, possessing an involu-
tion (to replace the inverse in the formula), then we can duplicate
our previous results in the semigroup setting. Unfortunately, the
character identity is not satisfied unconditionally for semigroups.
However, for the case when the semigroup is obtained from a group
by the adjunction of a zero element, we were able to determine the
condition which ensures the satisfaction of this formula. This con-
dition is Ag = A;, i.e. the coeflicient of the unit representation of
the group must be the same as the coefficient of the character which
is nonzero only on the zero element. We studied the case of a few
small semigroups, too, partially with the help of symbolic computer
algebra.

Chapter 5. A modification of the Lax equation.

This chapter consist of some application to the theory of integrable
systems of a simple observation. If the linear operator L is replaced
by e*PLe "Q where P and Q are Hermitian, then the spectrum of
L*L remains invariant. The infinitesimal form of this transformation
is L = i(PL — LQ). Since many solvable PDE in two dimension
can be written as an isospectral deformation of some differential
operator L (Lax equation), it is reasonable to expect that we can
derive equations with many conserved quantities with the help of
this scheme. We applied this to the case of

L = (10,)% + v(x, 1)1 + u(x, t).

We managed to emulate the Gelfand-Dickey method of the con-
struction ofintegrable equation for this operator. An example of the
obtained PDEs is
O, w = 2Ju’
O, U = %(w’” — W (2w 2w —4u) —wu -1 — w”)).

Very similar equations occurred previously in the literature (Hirota-
Satsuma of Fordy-Dodd equations), since the idea of the preser-
vation of the spectrum of the product of operators was rediscov-
ered several times. So our equation is basically a reduction of the
complex Hirota-Satsuma equation. We applied this scheme to the
Kadmontsev-Petviashvilli hierarchy, too.
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e Chapter 6. Coadjoint orbits of wild groups in solid-state physics.

The cosine functions and the partial derivation operators form closed
solvable Lie algebras. Since one can build Hamiltonian operators de-
scribing the motion of a quantum particle in periodic or quasiperi-
odic potentials, it is reasonable to study the relation of the ’'type’
of the Lie algebra (or group) and the nature of the spectrum of the
Hamiltonian. For example, the coincidence of the strange nature
of the spectrum of a two dimensional lattice in constant magnetic
field and the Type II nature of the 'magnetic translation group’ was
pointed out by Zak.

For solvable Lie groups, there is a theorem of Auslander and Kostant
which decide the nature of solvable Lie groups. We check the condi-
tions of this theorem for several Lie groups connected to solid-state
physics. This requires the computation of the coadjoint orbit spaces
of these Lie algebras.

e Chapter 7. On the stress tensor near a nonconformal boundary.

In this chapter we attempt to compute the operator product expan-
sion of a two dimensional conformal massless scalar field around a
nonconformal boundary. These sort of problems are much studied
in the case of conformal boundary conditions. When the bound-
ary condition is nonconformal, potentially a new phenomena might
occur. This is related to the fact that a ¢(0) + ¢’(0) = O (here
the O refers to the space position of the boundary) type boundary
condition of a scalar field ¢ is left invariant by the transformation
d(x) — ¢(f(x)) only if not only f(0), but f'(0) is zero, too. The
(formal) Lie algebra of these transformations is called L;(1). This
Lie algebra has a two dimensional H?(L;(1)) (this was computed by
Goncahrova), so the corresponding central extensions in the Lie al-
gebra of the stress tensor might occur in addition to the Virasoro
one. We present some nonrigorous, heuristic argument that this
does not occurs in our case.

These results are contained in the following papers, preprints or manuscripts:

e 1. Nonperturbative effects in deformation quantization on a cylin-
der.

Submitted to the Journal of Physics A.
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e 2. Unoriented membranes and Jordan algebras.
Journal of Mathematical Physics, Vol. 46, no. 3.

e 3. Finite groups, gauge theories and the Quantum Yang-Baxter
Equation.
Lett. Math. Phys. 43 (1998), no. 4, 295-298.

e 4. On the solvability of two dimensional semigroup gauge theories.
Submitted to the Journal of Statistical Physics.

e 5. Unitary deformations and complex soliton equations.
J. Math. Phys. 40 (1999), no. 7, 3404-3408.

e 6. Taming of the wild group of magnetic translations.

Quantum problems in condensed matter physics. J. Math. Phys.
38 (1997), no. 4, 1864-1869.

e 7. On the stress tensor near a nonconformal boundary.

Unfinished manuscript.
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Osszefoglalas

Mivel a bevezets fejezetben mar attekintettiik dolgozatunk eredményeit, itt
csak azokat az eredményeket emeljiik ki, amelyek a legjobb tudomasunk
szerint eredetiek. Ezeket a kovetkez6ekben fejezetenként targyaljuk.

e 2.Fejezet. A deformdcios kvantdlds nemperturbative effektusas.

Ez a fejezet a kovetkezd geometriai képen alapul. A C®(R?)-beli
sima fliggvények szorzasanak egy deformaci6éjat Neumann formulaja
adja meg

1
T

ahol r = (x,p) és A a szimplektikus teriilete a T = A(r,r’,r”)
haromszognek. Mivel ez a formula értelemmel bir periodikus fiigg-
vények esetében is, egyszersmind egy henger fliggvényei algebra-
janak valamilyen deformaci6jatis. Az A(r,r’,r”) tényez6t felirhatjuk
egyrészt a szimplektikus forméanak a A(r,r’,r”) haromszog feletti
integraljaként, de gy is mint egy alkalmas egy-formanak a harom-
szog pereme fOolotti integraljat. Bar a geodetikus ivek harom pont
kozott egy hengeren nem feltétleniil hatarolnak egy haromszoget,
az A tényezd masodik megadésa ebben az esetben is miikddik. Igy
megvizsgalhatjuk a hatasat ezeknek a topologikus szempontbél nem-
trivialis konfigurdciéknak Neumann képletében. Ha ezek koziil csak
azokat vessziik figyelembe, amelyek pontosan w-szer csavarodnak a
hengerre, akkor a szorzasi szabaly a kovetkezd lesz
ith, . .
enr *hw CGafF = eXp[?(Tn - TT‘L) + ZlhT[W] Cntii,r+f+4wn/h)

]

(Fon @) = 5 | A )glr”) exp S Ale, )
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ahol e,, = e!™*™) Az eredeti szorzatot a w = 0 esetben kapjuk
vissza. Tulajdonképpen a w # 0 szorzat ekvivalens a régivel egy
megfelel6 bazistranszformacié utan. Ez azonban mar nem lesz igy,
ha kiilonboz6 csavarodasi szamokat is megengediink. Ekkor a szorzasi
szabdly

fxeg= Z CwT *hw g,

weZ

ahol a c,, szdmok tetszlleges egytitthatok. Megmutattuk, hogy ha a
nem nulla egyiitthatdék co = ¢y = 1, akkor a %, szorzas algebrajanak
nics egysegeleme. Ez a viselkedes nem fordulhatna el6 algebrai de-
formacidk esetében, igy ez egy valédi nemperturbativ effektus. Mi
tobb, a *. szorzas asszociativ marad, ami igazi meglepetés, mivel
altaldban asszociativ szorzatok linearis szuperpozici6ja nem asszo-
ciativ (erre a jelenségre a legismertebb példédk a Lie és Jordan alge-
brak).
3. Fejezet. Jordan algebrdk és a nemorientdlhato membrdnok
mdtriz elmélete.

Bz a fejezet egy egyszerd megfigyelésen alapul. J6l ismert, hogy a
egy orientalhaté feliilet relativisztikus mozgéasegyenlete kozelithets
a nagyméretd ermitikus matrixok nemkommutativ algebrdjanak a
segitségével. Ez a mbdszer a

Poisson algebra a feliuleten «+— Madtriz kommutdtorok

osszefliggést hasznalja ki. A megfeled Poisson algebra 1étezése kikénysz-
eriti a feliilet orientalhatésagat. Viszont a membréan lokalis mozgés-
egyenlete nem tartalmaz semmiféle utalast a membran orientaciéjara,
igy szinte biztos, hogy valahogy meg lehet taldni a fenti kapcsolat
megfelel6jét a nemorientalhat6 esetben is. Mi ezt a célt a

A felilet deformdlt algebrdajanak a Jordan szorzata

—
Jorddan mdtrixz szorzat

megfeleltetéssel értiik el. Mindez a membran mozgasadnak Jordan
algebrai leirasara a kovetkez6 egyszert Osszefiiggésen keresztiil hasz-
nalhat6 fel

Tr G[XRXH[XRXJ’]) =
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Tr (X'o (X 0 (X' o X)) — (X o XY o (X 0 X)) .

Igy ki lehet fejezni a membran potencialis energidjat a Jordan féle
szorzas segitségével. Meghataroztuk, hogy milyen Jordan algebrak
sziikségesek a gomb, illetve a projektiv sik topolégidju membranok
leirdsara. Ez utébbihoz a valés szimmetrikus métrixok Hy(R) alge-
braja kellett.
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e /. Fejezet. Véges csoportok, félcsoportok és a kvantum Yang-
Bazter egyenlet.

Migdal munkassdga nyomdan j6l ismert, hogy a kétdimenzibés racs
mértékelmélet egzaktul megoldhaté. A kétdimenziés megoldhatd
modellek igen gyakran megadjdk néhadny megoldasat a Kvantum
Yang-Baxter Egyenlet néhadny megoldasat. Ez utébbi egyenlet szoros
rokonsagban van az Artin-féle fonatrelaciékkal. Sajnos a kétdimenz-
16s racs mértékelméletnek megfelel6 megoldas nem invertalhaté. Ezt
a csorbat sikeriilt kikiiszObolni a modell egy apré modositasaval

REyS (A) =

D ( er(abcd)+7\¥(xr(bd)+xr(aC))) + > Afxe(bd)xulac).
TER(G) t,ueR(G)

(Itt az a, b, c, d csoportelemek a a cimkéi annak a vektortérnek ame-
lyen R hat, mig x a mertékcsoport karaktere.) Ez az eredmény egy,
a csoportok reprezentaciéelméletébdl jol ismert azonossadgon alapul:

> Axelax) | - | > Alxs(x"b)
reG seG

}\I)\II
- |G| Z dirTnTT‘XT(ab)

reG

Ha be tudnank bizonyitani ezt az Osszefliggést félcsoportokra is,
akkor az el6z6ek mar nem csak a csoportok esetén teljesiilnének.
Abban az igen egyszerid esetben, amikor a félcsoport egy véges cso-
port kibdvitve egy zéruselemmel, a fenti relacié megfelel6je igaz
marad, ha A\p = A;. Ez a feltétel azt jelenti, hogy a csoport trivialis
reprezentaciéjanak és a nulla elemhez tartozé karakternek az egyiit-
that6ja megegyezik. Ezenfeliill megvizsgaltuk ezt a kérdést néhany
kis méretd félcsoport esetében is egy szimbolikus algebra program
segitségével.

e 5. Fejezet. A Lax egyenlet eqy maddositdsa.

Ebben a fejezetben a kovetkez6 egyszeri észrevételt tessziik az in-
tegralhat6 parcialis differeencidlegyenletek elméletében: az L és az
e'tPLe 1Q operatorok spektruma megeggyezik, ha P és Q ermitikusak.
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Az ilyen transzformacioknak infinitezimalis formaja L = i(PL—LQ).
Mivel sok megoldhat6é kétdimenziés PDE felirhaté tigy, mint egy L
differencidloperator izospektralis deformaciéja, varhato, hogy ezzel
a sémaval le lehet szdrmaztatni olyan differencidlegyenleteket, ame-
lyek sok megmaradé mennyiséggel rendelkeznek. Mi mindezt az

L = (10,)% + v(x, 1)1 + u(x, t).

operator esetében vizsgadltuk meg. Sikeriilt reprodukadlnunk az in-
tegralhaté egyenletek generdlasdnak Gelfand és Dickey altal kife-
jlesztett modszerét. Az illusztracidé kedvéért leirjuk az egyik egyen-
letiinket:
O, w = 2Ju’
O, U = %(w’” — W (2w 2w —4u) —wu -1 — w”)).

Hasonl6é tipust egyenletek mar kordbban is megjenetek a szakiro-
dalomban, mivel az operdtorok szorzata megérzésének modszerét
tobben is felfedezték. A mi egyenleteink alapvetéen a komplex
Hirota-Satsuma egyenletek redukci6jai. Egy maéasik alkalmazasként
kidolgoztuk a Kadmontsev-Petviashvili egyenlet egy varidnsat is.

e 6. Fejezet. Vad csoportok koadjungdlt obitjar a szildrdtest-
fizikdban

A sikon a koszinusz fiiggvények és a parcidlis derivalasok operéa-
torai egy feloldhat6 Lie algebrat alkotnak. Mivel ezekbdl az opera-
torokbél felépithetd egy kvantummechanikai részecske periodikus
vagy kvaziperiodikus potencidlban torténé mozgasat leir6 Hamilton
operator, ésszerd feltételezni valamilyen kapcsolatot a Lie algebra
tipusa és a Hamilton operator spektruma kozott. Erre a kapcsolatra
valészinuleg el6szor J.Zak mutatott rd egy allandé méagneses térben
elhelyezkedd racs esetében.

A feloldhaté Lie csoportok tipusat meg lehet hatarozni Awuslan-
der és Kostant egyik tétele segiségével. Mi ellendriztiik ezen tétel
feltételeinek teljesiilését tobb, a szilardtest fizikdban el6fordulé cso-
port esetében. Ehhez a Lie algebrdk koadjungalt orbitjait kellett
megkeresniink.

e 7. Fejezet. Az energia-momentum algebra viselkedése nemkon-
formdlis hatdrfeltételek mellett.
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Ebben a fejezetben megkiséreltiik kiszdmitani a kétdimenziés nulla
tomegii skalaris tér viselkedését nemkonformaélis hatarfeltételek mel-
lett. Bzt a problémat igen sokat tanulmanyoztdk abban az esetben,
amikor a hatarfeltételek konformalisak voltak. A nemkonformalis
esetben elvileg 1) jelenség is felléphetne. Ennek az a potencialis
oka, hogy a ¢(0) + ¢'(0) = 0 tipusu hatarfeltételeket (itt a 0 a
hatar térkoordinatajat jeloli) a ¢(x) — ¢(f(x)) transzformacié csak
akkor hagyja invaridnsan, ha nem csak f(0), de f'(0) is eltiinik.
Ezeknek a transzforméciéknak a (formalis) Lie algebrajat L;(1)-nek
nevezik. Mivel H?(L;(1)) kétdimenziés, igy az ennek megfelel cen-
tralis kiterjesztés elvben el6fordulhatna az energia-momentum al-
gebra szokasos Virasoro tipusi kiterjesztése mellett. Mi felsorakoz-
tatunk néhany érvet amellett, hogy esetiinkben ez nem fordulhat
eld.

Mindezekeket az eredményeket a kovetkez6 dolgozatok, preprintek és
kéziratok tartalmazzak:

e 1. Nonperturbative effects in deformation quantization on a cylin-
der.

Submitted to the Journal of Physics A.

e 2. Unoriented membranes and Jordan algebras.
Journal of Mathematical Physics, Vol. 46 (2005), no. 3.

e 3. Finite groups, semigroups and the Quantum Yang-Baxter Equa-
tion.

Lett. Math. Phys. 43 (1998), no. 4, 295-298.

e 4. On the solvability of two dimensional semigroup gauge theories.
Submitted to the Journal of Statistical Physics.

e 5. Unitary deformations and complex soliton equations.
J. Math. Phys. 40 (1999), no. 7, 3404-3408.

e 6. Taming of the wild group of magnetic translations.

Quantum problems in condensed matter physics. J. Math. Phys.
38 (1997), no. 4, 1864-1869.
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e 7. On the stress tensor near a nonconformal boundary.

Publikalasra val6é el6keszités alatt 4ll6 kézirat.
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