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Abstract
Backgrounds and objectives: High molecular weight gluten subunits (HMW‐GS) 
are generally considered to play a key role in gluten formation and structure and are 
closely related to wheat quality. In this study, two spring wheat cultivars (PAN3497 
and SST806) with the same HMW‐GS composition (1Ax1, 1Bx7, 1By8, 1Dx2, and 
1Dy12) were tested in the greenhouse, over 2 years, in order to determine how dif-
ferent genetic backgrounds, and low‐nitrogen and low‐phosphorus treatments, influ-
enced the expression and quantity of the HMW‐GS, as measured by reverse‐phase 
high‐performance liquid chromatography (RP‐HPLC).
Findings: Cultivar effect was highly significant for all HMW‐GS, except for 1By8. 
A large treatment effect was found on subunits 1Ax1, 1Dy12, and 1By8. Cultivar‐by‐
treatment interaction was highly significant and contributed to variation of subunit 
1Dx2. Subunits 1Dy12 and 1By8 were highly influenced by low‐N conditions. Ratio 
of HMW‐GS x type/y type was higher for PAN3497 than for SST806. Furthermore, 
a strong treatment effect was observed for the ratio of x type/y type, which was 45% 
higher in PAN3497 under optimal and low‐N conditions, compared to SST806.
Conclusions: This study showed that fertilization level had a considerable effect on 
HMW‐GS composition and on FPC, with low‐N conditions having the largest influ-
ence, followed by a combination of low N and low P.
Significance and novelty: The results highlighted the importance of the y‐type 
subunits in the bread wheat quality breeding programs, especially under low‐N and 
low‐P growing conditions.

K E Y W O R D S
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1  |   INTRODUCTION

Wheat is one of the most important staple cereal crops in 
the world. It is grown on 215 million ha, and its world trade 

is more than that of other crops combined. Wheat produc-
tion was 757 million metric tons in 2017. It is consumed by 
2.5 billion people in 89 countries in many forms, of which 
bread is one of the most important end‐uses (FAO, 2018). 
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Wheat and flour quality largely determines the quality of 
bread; therefore, knowledge of the bread‐making param-
eters and the factors influencing them is crucial. Wheat 
grains contain approximately 75%–80% carbohydrates, 
and their protein content may vary between 8% and 20% 
of the total dry matter. Storage proteins play a major role 
in wheat quality. The two most important storage proteins 
are gliadins and glutenins (gluten), which constitute about 
80%–85% of the total protein content. Glutenin determines 
the viscoelastic properties that are essential for dough for-
mation, while gliadin influences the viscosity and confers 
extensibility of the dough. Glutenin is subdivided accord-
ing to molecular weight of the protein into high molecular 
weight (HMW) and low molecular weight (LMW) subunits 
(Payne, Holt, & Law, 1981). About 50% of the storage 
proteins consist of gliadin, while the other 50% consist of 
HMW (10%) and LMW (40%) glutenin subunits (GS), re-
spectively (Payne, Holt, Jackson, & Law, 1984).

The HMW‐GS are encoded by three loci, Glu‐A1, Glu‐
B1, and Glu‐D1, located on the long arms of chromosomes 
1A, 1B, and 1D, respectively (Rogers, Payne, & Harinder, 
1989). Among HMW‐GS subunits, the x types (subunits 
1–7) are more important than the y types (subunits 8–12) 
for baking quality characteristics. In particular, the presence 
of subunit 1Bx7 was reported to contribute to good wheat 
quality (Lukow, Forsyth, & Payne, 1992). Quantitative anal-
yses demonstrated that the concentration of HMW‐GS varied 
within a broad range, depending on the genotype and grow-
ing conditions. Environmental conditions, such as nutrient 
deficiency, tend to increase the relative concentration of glia-
dins and decrease the relative concentration of glutenin in the 
kernel (Johansson, Prieto‐Linde, & Svensson, 2004; Zörb, 
Ludewig, & Hawkesford, 2018). Furthermore, nitrogen (N) 
management can influence the metabolic activity within the 
plant and the protein composition within the kernel (Garcia‐
Molina & Barro, 2017; Xue et al., 2016).

In this study, the influence of low‐N and low‐phosphorus 
(P) application and a combination of the two on concentra-
tion of HMW‐GS 1Ax1, 1Bx7, 1By8, 1Dx2, and 1Dy12, as 

determined by RP‐HPLC, in two spring wheat cultivars over 
2 years was investigated.

2  |   MATERIAL AND METHODS

2.1  |  Greenhouse trials
Two commercial South African hard red spring wheat 
cultivars, PAN3497 and SST806 (which is the commer-
cial standard for spring wheat baking quality in South 
Africa), with excellent baking quality were used. These 
cultivars had the same HMW‐GS composition of 1Ax1, 
1Bx7, 1By8, 1Dx2, and 1Dy12. The cultivars were sown 
in 2‐L pots, filled with 2  kg soil. The soil was collected 
from 1.5‐m‐deep subsoil, with very low nutrient content. 
The trial was conducted in the greenhouse in a randomized 
complete block design.

Four treatments (optimal, low N, low P, and a combina-
tion of low N and low P) were applied to the two cultivars, 
with three replications, 15 pots per replication in 2016, and 
20 pots per replication in 2017. Each pot contained three 
plants. The trials were carried out from June to the end of 
October 2016 and the same time in 2017. The day/night tem-
perature in the greenhouse was maintained at 22 and 18°C, 
respectively, for both years. Low N, low P stress, and a com-
bination of the two were initiated at three‐leaf stage accord-
ing to the protocol given in Table 1. For the control, the plants 
were optimally fertilized and irrigated with deionized water. 
Once a week, all pots were flushed with deionized water to 
prevent salt buildup. Treatments were applied twice a week 
(250 ml nutrient solution per pot). The electric conductivity 
was maintained at 1.5 mS/cm2 until tillering and 1.80 mS/
cm2 after tillering.

All treatments received the same micronutrient fertilization 
that consisted of 3.45 mg/L C10H13FeN2O8, 0.30 mg/L MnSO4, 
0.13 mg/L ZnSO4, 0.62 mg/L H3BO3, 0.05 mg/L CuSO4, and 
0.02 mg/L Na2MoO4. At maturity, the seeds were harvested 
and milled into whole flour with a laboratory mill (IKA A10 
Yellowline analysis grinder; Merck Chemicals Pty Ltd).

Chemicals Optimal Low N Low P Low N and P

(mg/L) UT AT UT AT UT AT UT AT

KNO3 261 313 0 0 228 273 0 0

K2SO4 210 252 210 252 196 235 196 235

KCl 0 0 193 231 56 67 223 268

NH4H2PO4 87 104 87 104 0 0 0 0

Ca(NO3)2 758 909 0 0 797 956 0 0

CaCl2 0 0 353 424 0 0 446 446

MgSO4 348 418 348 418 369 443 443 443

Abbreviations: AT, after tillering; UT, up to tillering.

T A B L E  1   Fertilization applied during 
the greenhouse experiment for both seasons 
for two wheat cultivars
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2.2  |  Reverse‐phase high‐performance liquid 
chromatography
Samples for RP‐HPLC were prepared according to Vawser 
and Cornish (2004) with some modifications. Filtered deion-
ized water (Elix®; Millipore) was used to prepare solvents 
and eluents. The flour samples (200 mg) were extracted in 
50% propanol containing 1% dithiothreitol (DTT) followed 
by vortexing for 30 s. Samples were incubated in a water bath 
at 60°C for 30  min (with 5  min of intermittent vortexing) 
followed by centrifugation (1,700 g) for 10 min. Supernatant 
was transferred into a clean reaction tube, and extraction was 
done twice. Propanol concentration of the combined superna-
tants was increased to 600 ml/L to precipitate the HMW‐GS. 
Samples were incubated for 1 hr at 4°C and centrifuged at 
1,700 g for 10 min. The pellet was then suspended in 600 µl 
RP buffer containing 50% propanol, 2 M urea, 0.2 M Tris‐
HCl (pH 6.6), and 1% DTT, followed by incubation at 60°C 
in a water bath for 1 hr (vortexed every 10 min). Then, 50% 
propanol containing 71% 4‐vinylpyridine was added, fol-
lowed by vortexing (30 s) and a further incubation at 60°C 
for 15  min and then centrifugation (1,700 g for 4  min). 
Supernatants were filtered through Acrodisc® syringe fil-
ters with a 0.45‐µm HT Tuffryn® membrane (Pall®; Life 
Science), each sample into its own glass vial. Routine HPLC 
analyses were performed on a Shimadzu 20A HPLC system 
(Shimadzu Scientific Instruments) fitted with a SPD‐M20A 
Prominence Diode Array detector, equipped with a Class‐
VP™ chromatography data system for integration events, 
CTO‐10AS VP column oven set at 50°C; and a Gilson 
FC204 fraction collector (Gilson Inc.). Separation was per-
formed with a Jupiter 300 C18 column (Phenomenex®) over 
70 min. Injection volume was 15 µl, and quantification was 
achieved at 210 nm. Elution system A contained deionized 

water with trifluoroacetic acid (TFA, 1  ml/L); elution sys-
tem B consisted of acetonitrile containing 1 ml/L TFA. The 
linear elution gradient was as follows: 0–3 min 260 ml/L B, 
3–49.8 min 260–350 ml/L B, 49.8–50 min 350–500 ml/L B, 
50–53.5 min 500 ml/L B, 53.5–54 min 500–260 ml/L B, and 
54–70 min 260 ml/L B. Flow rate was 1 ml/min. Absorbance 
units under different peaks were calculated according to 
Vawser and Cornish (2004) and expressed as percentages of 
the total peak area.

2.3  |  Flour protein content
Flour protein content was determined with AACC procedure 
44‐15A (AACC (American Association of Cereal Chemists) 
2000).

2.4  |  Statistical analysis
Analysis of variance (ANOVA) and correlation analysis were 
done with Agrobase (2018) software on the data generated 
from RP‐HPLC. The data represented each HMW‐GS peak 
as a percentage of the total peak area (Vawser & Cornish, 
2004) in order to make the data comparable for the four dif-
ferent treatments.

3  |   RESULTS

The mean values (combined for 2 years) of flour protein con-
tent (FPC) varied between 7.87% (low N) and 18.19% (low 
P) for PAN3497 and ranged from 7.84% (low N) to 19.11% 
(low P) in SST806 (Figure 1). FPC was significantly lower 
(p ≤ .01) under low N than optimal conditions in PAN3497 
and SST806. FPC decreased significantly under the com-
bined low‐N and low‐P treatment (p ≤ .01) in both cultivars. 
Low P did not have any detrimental effects on the FPC.

Although the HMW‐GS composition was the same for both 
cultivars, cultivar played an important role in the quantity of 
each subunit expressed. The average values for HMW‐GS 1Ax1, 
1Bx7, and 1By8 were higher in SST806 than in PAN3497. The 
difference between the two cultivars was approximately 18% 
in the case of 1By8. In addition, a large difference between the 
cultivars was also observed in the 1Dy2 and 1Dy12 subunits, 
with values being higher in PAN3497 than in SST806. The con-
centration of HMW‐GS 1Bx8 decreased by 27% due to low N 
in PAN3497 and by 47% in the case of the combined low‐N 
and low‐P treatment. A significant decrease was also detected 
in 1Dy12 due to the low‐P treatment (23%; Table 2).

The effect of the low‐N treatment was by far the most se-
vere on HMW‐GS 1By8 in SST806, causing a 44% decrease 
in this subunit. The concentration of 1Dx2 increased by 19% 
due to the low‐N treatment. The same HMW‐GS decreased 
by 45.5% due to the low‐P treatment (Table 3).

F I G U R E  1   Percentage flour protein content of two cultivars 
at four different fertilizer treatments for 2 years. ** and *** indicate 
significant (p ≤ .01) and highly significant (p ≤ .001) from the optimal 
control
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The results of the analysis of variance showed that cultivar 
effect (as seen from significance of F ratios of mean squares) 
were highly significant (p  ≤  .001) for 1Ax1, 1Bx7, 1Dx2, 
and 1Dy12 (Table 4). Cultivar effect contributed the most 
to variation in HMW‐GS 1Dy12. Furthermore, there was a 
large treatment contribution to variation in this same subunit. 
Year contributed highly to variation in HMW‐GS 1By8 and 
1Dy12. HMW‐GS 1Dx2 showed large cultivar x treatment 
interaction.

To get a better understanding of the effect of the treat-
ments on the HMW‐GS without the effect of genotype play-
ing a role, values were averaged for the two cultivars (Table 
5). Low N and a combination of low N and low P caused a 
significant increase in the concentration of 1Ax1. The aver-
age value for 1Dy12 was highly significantly decreased when 
plants were grown under low levels of N (57%) and a combi-
nation of low N and low P (46.6%). The standard deviation 
for this subunit was also very high. No treatment effect was 
detected on 1Dx2, and its concentration remained similar for 
all four treatments. Low N and a combination of low‐N and 
low‐P treatment caused a significant increase in the concen-
tration of subunit 1By8.

An interesting trend was that the low‐N treatment caused 
a significant decrease in FPC, but it caused a significant 
increase in subunits coded by Glu‐A1 and Glu‐B1 (1Ax1, 
1By7, and 1By8) for combined data of the two cultivars, but 
a significant reduction in subunit 1Dy12. A combination of 
low N and P also caused a significant reduction in the FPC, 
although not as severe as in the case of the low‐N treatment, 
and it caused a significant increase in subunits 1Ax1 and 
1By8, but not in subunit 1By7. As in the case of the low‐N 
treatment, it caused a significant reduction in subunit 1Dy12.

The x‐type HMW‐GS concentration was higher than that 
of the y‐type subunits in all samples. The x:y ratio for the 

Glu‐D1 subunits was more than doubled due to the effect of 
low N and low N and low P combined (Table 6). For the 
Glu‐B1 subunits, there was a decrease in the x:y ratio due 
to especially low N and a combination of low‐N and low‐P 
conditions. Overall, the x:y ratio was increased due to low N 
and combined low‐P and low‐N conditions, mainly due to the 
large increase in the ratio of the Glu‐D1 subunits.

4  |   DISCUSSION

Liu et al. (2016) concluded that dough strength and baking per-
formance of wheat cultivars are related to allelic variation in 
HMW‐GS. Vasil and Anderson (1997) stated that the HMW‐
GS alleles 1Ax1 and 1Ax2* and the 1Dx5 + 1Dy10 subunit 
pair are associated with stronger dough and better baking prop-
erties, and the 1Dx2 + 1Dy12 pair with weaker dough. Sabine, 
Oberfoster, Werteker, Grausgruber, and Lelly (1997) reported 
that the Glu‐B1 alleles 7 + 9 and the Glu‐D1 alleles 5 + 10 oc-
curred more frequently in cultivars with better bread‐making 
quality, and no cultivar with good quality contained subunits 
6 + 8 and 2 + 12. Both PAN3497 and SST806 had subunits 
2 + 12, but they both have excellent baking quality. Moreover, 
SST806 is the commercial standard for spring wheat baking 
quality in South Africa. According to several studies, the ex-
pression of storage proteins and the quantity of HMW‐GS are 
strongly associated with genotype (Plessis, Raval, Bordes, 
Balfourier, & Martre, 2013; Rodriguez‐Nogales, Garcia, & 
Marina, 2006). In the current study, a significant cultivar ef-
fect was found in the case of 1Dy12, 1Dx2, 1Bx7, and 1Ax1. 
HMW‐GS composition was found to be genetically deter-
mined (Johansson, Henriksson, Svensson, & Heneen, 1993; 
Payne, Nightingale, Krattiger, & Holt, 1987), but the con-
centration of subunits is largely determined by environmental 

HMW‐GS Optimal Low N Low P Low N and P

1Ax1 11.89 ± 0.98 11.87 ± 0.21 11.87 ± 0.63 12.33 ± 0.27

1Bx7 45.75 ± 1.50 47.44 ± 1.88 49.01 ± 1.83 48.04 ± 0.61

1By8 9.84 ± 1.21 7.18 ± 1.53*  10.90 ± 2.41 5.24 ± 0.75** 

1Dx2 19.52 ± 1.61 19.95 ± 1.02 18.24 ± 0.85 22.33 ± 0.97

1Dy12 13.01 ± 0.95 13.56 ± 0.48 9.97 ± 0.50**  12.07 ± 0.10

*p > .05; **p > .01; and ***p > .001represent significant difference compared to the optimal treatment. 

T A B L E  2   Peak percentage areas of 
high molecular weight glutenin subunits 
1Ax1, 1Bx7, 1By8, 1Dx2, and 1Dy12 
in PAN3497 at different nitrogen and 
phosphorus treatments

HMW‐GS Optimal Low N Low P Low N and P

1Ax1 14.03 ± 1.88 16.09 ± 1.55 12.17 ± 0.69 18.47 ± 2.39

1Bx7 47.34 ± 6.24 45.17 ± 7.22 48.98 ± 0.67 40.72 ± 7.43

1By8 12.02 ± 0.53 6.82 ± 0.69***  6.55 ± 0.88***  11.37 ± 1.97

1Dx2 15.64 ± 2.52 19.23 ± 3.15 21.63 ± 1.16*  16.18 ± 0.73

1Dy12 10.96 ± 2.08 12.70 ± 2.85 10.67 ± 0.70 13.24 ± 2.36

*p > .05; **p > .01; and ***p > .001 represent significant difference compared to the optimal treatment. 

T A B L E  3   Peak percentage areas of 
high molecular weight glutenin subunits 
1Ax1, 1Bx7, 1By8, 1Dx2, and 1Dy12 
in SST806 at different nitrogen and 
phosphorus treatments
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factors such as N in the soil (Cho, Kang, Kang, Cho, & Park, 
2018; Graybosch, Peterson, Shelton, & Baenziger, 1996). A 
significant treatment effect was evident for 1Ax1, 1Dy12, and 
1By8 in the current study. Low N and a combination of low‐N 
and low‐P treatments had a very large influence on the y subu-
nits, specifically 1Dy12 and 1By8.

High yield and good bread‐making quality are the most 
important characteristics in the wheat industry. Both can be 
improved through N fertilization strategies, such as the rates 
and timing of N fertilization (Li et al., 2016; Zhong et al., 
2019). Yu et al. (2018) reported that grain protein content 
was more sensitive to N application than grain yield and that 
protein content was mainly determined by genotype.

Several studies have shown that the increase in flour pro-
tein content resulting from N application can lead to changes 

in protein composition (Gupta, Khan, & MacRitchie, 1993; 
Saint Pierre et al., 2008; Xue et al., 2016). Studies reported 
previously were based on various timings of N fertilization, 
when the application at an early stage increased yield, and at 
a later stage increased the amount of protein, and improved 
the baking quality properties (Jia, Fabre, & Aussenac, 1996). 
In the current study, the low‐N treatment decreased FPC 
significantly, but it changed the protein composition in the 
sense that HMW‐GS coded by Glu‐A1 and Glu‐B1 were in-
creased, but those coded by Glu‐D1 were decreased, espe-
cially HMW‐GS 1Dy12. On average, the low‐P treatment did 
not have a significant effect on either FPC or the HMW‐GS.

Robert, Peterson, Shelton, and Baenzicar (1996) noted that 
flour protein concentration and the percentage of protein pres-
ent as gliadin and nongluten proteins were most sensitive to en-
vironmental stress conditions, although in the current study it 
was seen that the HMW‐GS were also significantly influenced 
by low‐N and low‐P conditions. Glutenin composition was re-
ported to be almost totally genotype dependent (Graybosch et 
al., 1996), which was also the case in the current study.

5  |   CONCLUSIONS

This study showed that fertilization level had a consider-
able effect on HMW‐GS composition and on FPC, with 
low‐N conditions having the largest influence, followed by a 

T A B L E  4   Analysis of variance for high molecular weight glutenin subunits in a trial of two wheat cultivars with four treatments over 2 years

Mean squares

  Cultivar (C) Treatment (T) Season (S) C × T C × S T × S C × T × S

1Ax1 12.37**  9.80**  6.40 3.48 0.21 0.99 1.38

1Bx7 600.24**  20.42 21.63 21.72 5.19 20.91 15.91

1By8 12.68 40.00**  45.70**  0.86 3.00 4.04 6.04

1Dx2 111.29**  2.49 0.06 25.65**  3.32 6.94 5.24

1Dy12 1,121.72**  178.94**  114.52**  45.68 1.09 17.48 2.73

**p ≤ .01. 

T A B L E  5   Average peak percentage areas of high molecular 
weight glutenin subunits 1Ax1, 1Bx7, 1By8, 1Dx2, and 1Dy12 in 
PAN3497 and SST806 for all four treatments combined

  PAN3497 SST806 LSD (0.05)

1Ax1 10.72 ± 1.35 11.73 ± 1.53 0.39

1Bx7 40.62 ± 4.67 33.55 ± 3.89 1.53

1By8 13.59 ± 2.38 12.56 ± 2.71 0.64

1Dx2 30.61 ± 2.57 27.56 ± 1.71 0.69

1Dy12 4.92 ± 6.86 14.59 ± 6.33 1.35

Note: Values are followed by standard deviations.

T A B L E  6   Average peak percentage areas for PAN3497 and SST806 of high molecular weight glutenin subunits 1Ax1, 1Bx7, 1By8, 1Dx2, 
and 1Dy12 for four treatments

  Control Low N Low P Low N and P LSD (0.05)

1Ax1 10.33 ± 0.711 11.73 ± 1.47 10.61 ± 0.63 12.23 ± 1.43 0.54

1Bx7 36.22 ± 4.62 38.87 ± 3.81 36.02 ± 4.38 37.23 ± 5.72 1.53

1By8 11.22 ± 1.10 14.68 ± 2.19 11.80 ± 1.37 14.61 ± 2.31 0.90

1Dx2 29.76 ± 3.78 28.95 ± 2.02 28.86 ± 2.86 28.77 ± 0.98 0.99

1Dy12 13.40 ± 7.42 5.76 ± 4.35 12.71 ± 7.30 7.15 ± 5.04 1.91

x:y ratio (B) 3.23:1 2.65:1 3.05:1 2.53:1  

x:y ratio (D) 2.22:1 5.03:1 2.27:1 4.02:1  

x:y ratio (total) 2.68:1 3.32:1 2.65:1 3.03:1  

Note: Values are followed by standard deviations.
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combination of low N and low P. A strong cultivar effect was 
also evident. The 1Dy12 subunit was the most influenced by 
low N and a combination of low N and P fertilization, where 
it was highly significantly decreased. Subunits 1Ax1, 1Bx7, 
and 1By8 were significantly increased due to low N levels. 
Subunits 1Ax1 and 1By8 were also significantly increased 
under a combination of low N and low P levels. Subunits 
1Ax1, 1Bx7, and 1By8 were significantly increased due to 
low N levels. Subunits 1Ax1 and 1By8 were also signifi-
cantly increased under a combination of low N and low P 
levels. Although there was a large decrease in FPC due to 
the low‐N treatment, the same treatment had a very differ-
ent effect on the HMW‐GS, where the subunits coded for by 
Glu‐A1 and Glu‐B1 generally were increased, while those 
coded by Glu‐D1 were generally decreased, especially subu-
nit 1Dy12. The same pattern was seen in the combined low‐N 
and low‐P treatment, although to a lesser extent than in the 
low‐N treatment.

The current results were obtained under controlled green-
house conditions, and results may be different under field 
conditions, where effects such as N leaching may occur and 
where other factors could affect results.
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