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Chapter 1

Introduction

1.1 Motivation and historical background

Five years ago I chose probability theory on locally compact groups as the
topic of my Ph.D. thesis, since I was always interested in probability theory
and functional analysis, especially the theoretical part of them. I thought that
working on this field I would learn many new things from mathematics, not just
from probability theory. Now I think it was a good choice.

The idea of studying probability measures on spheres in Euclidean space R
d

rather than on the Euclidean space itself as old as the beginnings of probabil-
ity theory. In 1734 Daniel Bernoulli looked at the orbital planes of the planets
known at his time as random points on the surface of a sphere and asserted their
uniform distribution. In 1940 Itô and Kawada in their paper [32] established
the fundamentals of a probability theory on general compact groups. Bochner,
in his basic works [11] and [12], studied for the first time probability mesures
on locally compact Abelian groups. Then in 1963 Grenander, in his book [25],
summarized all the available knowledge at his time about probability measures
on locally compact groups. In 1965 Hannan, in his book [26], dealt with the re-
lationship between the theory of probability measures on groups and the theory
of group representations. In 1967 Parthasarathy, in his book [46], summarized
and improved the general theory of probability measures on second countable
locally compact Abelian groups (LCA2 groups). The content of this paragraph
comes from the book of Heyer [30].

In 1977 Heyer’s very famous book entitled Probability measures on locally
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2 INTRODUCTION

compact groups [30] appeared. The goal of his book is to give a fairly complete
treatment of the central limit problem for probability measures on a locally com-
pact group. In analogy to the classical theory his discussion is centered around
infinitely divisible probability measures on a locally compact group and their
relationship to convergence of infinitesimal triangular arrays. In 1988 Diaconis,
in his book [17], showed how the mathematical theory of group representations
can be used to solve very concrete problems in probability and statistics. It
is mainly concerned with noncommutative finite groups. In 1988 Ruzsa and
Székely, in their book [48], considered a number of problems in probability the-
ory from an algebraic viewpoint by studying the semigroup of distributions on a
locally compact group, endowed with the operation of convolution and the weak
topology. In 2000 Woess, in his book [61], dealt with random walks on infinite
graphs and groups. In 2001 Hazod and Siebert, in their detailed and compre-
hensive monograph [28], treated stability properties of probability measures on
locally compact groups.

Besides the above mentioned authors we have to refer to other active re-
searchers who are working on this field and with whom we have real contacts:
D. Applebaum, A. Bendikov, M. Bingham, Ph. Feinsilver, M. McCrudden, D.
Neuenschwander, R. Schott and M. Voit.

The present dissertation is based on two more or less independent topics
and we deal with probability theory on special topological groups. First we
investigate questions concerning Gauss measures on special noncommutative Lie
groups, such as on the Heisenberg group and on the affine group. We describe
the distribution of the convolution of two Gauss measures on the 3-dimensional
Heisenberg group. We show that a Gauss measure on the affine group can be
embedded only in a uniquely determined Gauss semigroup. Then we deal with
proving (central) limit theorems for infinitesimal triangular arrays of random
elements with values in special LCA2 groups, such as in the torus group, in
the group of p-adic integers and in the p-adic solenoid. We also consider the
problem of representation of weakly infinitely divisible probability measures on
these groups. In the next section we give a detailed presentation overview of
our results.

1.2 Presentation overview and our results

The present work consists of two main topics, these topics lead into three more
or less independent directions. Namely, we deal with calculating the Fourier
transform of a Gauss measure on the Heisenberg group, proving uniqueness of
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embedding of a Gauss measure on the affine group into a Gauss semigroup and
proving limit theorems on LCA2 groups.

More precisely, this dissertation consists of the following parts. The intro-
duction (first chapter) contains our motivation, the historical background, the
presentation overview and our main results.

In the second and third chapters we deal with some analytic properties of
Gauss measures on two special Lie groups, on the 3-dimensional Heisenberg
group and on the affine group.

In the second chapter we consider the case of the 3-dimensional Heisenberg
group. We derive an explicit formula for the Fourier transform of a Gauss
measure on this group at the Schrödinger representation (see Theorem 2.3.1).
Using this explicit formula necessary and sufficient conditions are given for the
convolution of two Gauss measures to be a Gauss measure (see Theorem 2.2.1).
It turns out that a convolution of Gauss measures on the Heisenberg group
is almost never a Gauss measure. We also give the Fourier transform of the
convolution of two Gauss measures on the Heisenberg group including the case
when the convolution is not a Gauss measure (see Theorem 2.6.1).

The third chapter is devoted to Gauss measures on the affine group. We
show that a Gauss measure on this group can be embedded only in a uniquely
determined Gauss semigroup (see Theorem 3.3.1). The proof is based on the
fact that a Gauss Lévy process in the affine group satisfies a certain stochastic
differential equation (SDE). Theorem 3.2.1 contains the solution of this SDE.
Moreover, we give a complete description of supports of Gauss measures on the
affine group using Siebert’s support formula (see Theorem 3.4.1).

The fourth chapter deals with proving (central) limit theorems on locally
compact Abelian groups. We also consider the question of giving a construction
of an arbitrary weakly infinitely divisible measure on special LCA2 groups using
only real valued random variables. First we collect all the necessary information
about measures on LCA2 groups and about their properties. Then we prove
limit theorems for row sums of a rowwise independent infinitesimal array of
random elements with values in an LCA2 group. We give a proof of Gaiser’s
theorem on convergence of triangular arrays [23, Satz 1.3.6], since it does not
have an easy access and it is not complete (see Theorem 4.3.1). This theorem
gives sufficient conditions for convergence of the row sums of a rowwise inde-
pendent infinitesimal array of random elements with values in an LCA2 group,
but the limit measure can not have a nondegenerate idempotent factor, i.e., a
nondegenerate Haar measure on some compact subgroup as its factor.
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As new results we prove necessary and sufficient conditions for convergence of
the row sums of symmetric arrays and Bernoulli arrays, where the limit measure
can also be a nondegenerate normalized Haar measure on a compact subgroup
(see Theorems 4.4.2 and 4.5.1). Then we investigate special LCA2 groups: the
torus group (see Section 4.6), the group of p-adic integers (see Section 4.7) and
the p-adic solenoid (see Section 4.8).

Besides proving limit theorems, we give a construction of an arbitrary weakly
infinitely divisible probability measure on the torus group and the group of p-
adic integers (see Theorems 4.6.4 and 4.7.4). On the p-adic solenoid we give a
construction of weakly infinitely divisible probability measures without nonde-
generate idempotent factors (see Theorem 4.8.4). In our constructions we only
use real valued random variables. We note that, as a special case of our results,
we have a new construction of the normalized Haar measure on the group of
p-adic integers and the p-adic solenoid.

In the fifth chapter we prove an analogue of the portmanteau theorem on
weak convergence of probability measures allowing measures which are finite on
the complement of any Borel neighbourhood of a fixed element of an underlying
metric space. We use this result in proving Gaiser’s limit theorem (Theorem
4.3.1). We present this separately, because it can be formulated in a more
general setting than it is needed in proving Gaiser’s limit theorem.

In terms of notations, we try to avoid using non-standard terminology. The
basic notations are given at the beginning of each chapter. In all chapters N,
Z, R and C denotes the set of positive integers, the set of integers, the set
of real numbers and the set of complex numbers, respectively. The expression
”a measure on a topological space” means a measure on the σ-algebra of Borel
subsets of the topological space in question. By a Borel neighbourhood U of
an element x of a topological space G we mean a Borel subset of G for
which there exists an open subset Ũ of G such that x ∈ Ũ ⊂ U . The weak
convergence of bounded measures on a topological space is denoted by w−→.

1.3 Credits

All the proofs of this dissertation are joint work with my supervisor, Gyula Pap.

The proofs of the chapter Gauss measures on the Heisenberg group are based
on
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M. Barczy and G. Pap, Fourier transform of a Gaussian measure on the
Heisenberg group, to appear in Annales de L’Institut Henri Poincaré Proba-
bilités et Statistiques.

The proofs of the chapter Gauss measures on the affine group are based on
M. Barczy and G. Pap, Gaussian measures on the affine group: uniqueness

of embedding and supports. Publ. Math. Debrecen 63(1-2) (2003), 221-234.

The proofs of the chapter Limit theorems on LCA2 groups are based on
M. Barczy, A. Bendikov and G. Pap, Limit theorems on locally compact

Abelian groups, submitted to Mathematische Nachrichten,

M. Barczy and G. Pap, Weakly infinitely divisible measures on some lo-
cally compact Abelian groups, submitted to Bulletin of Australian Mathematical
Society.

The proof of Gaiser’s theorem (see Theorem 4.3.1) is a correction of Gaiser’s
original proof ([23, Satz 1.3.6]). We clarify and complete some questionable
parts of the original proof.

The proofs of the chapter Portmanteau theorem for unbounded measures
are based on

M. Barczy and G. Pap, Portmanteau theorem for unbounded measures,
submitted to Statistics & Probability Letters.
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Chapter 2

Gauss measures on the
Heisenberg group

Fourier transform of a probability measure on a locally compact group plays an
important role in several problems concerning convolution and weak convergence
of probability measures. In case of a locally compact Abelian group, an explicit
formula is available for the Fourier transform of an arbitrary infinitely divisible
probability measure (see Parthasarathy [46]). The case of non-Abelian groups is
much more complicated. For Lie groups, Tomé [58] proposed a method how to
calculate Fourier transforms based on Feynman’s path integrals and discussed
the physical motivation, but explicit expressions have been derived only in very
special cases.

In this chapter we examine some properties of Gauss measures on the 3-
dimensional Heisenberg group. An explicit formula is derived for the Fourier
transform of a Gauss measure on the 3-dimensional Heisenberg group at the
Schrödinger representation (see Theorem 2.3.1). Using this explicit formula,
we give necessary and sufficient conditions for the convolution of two Gauss
measures to be a Gauss measure (see Theorem 2.2.1). It turns out that a
convolution of Gauss measures on the Heisenberg group is almost never a Gauss
measure. We also give the Fourier transform of the convolution of two Gauss
measures on the Heisenberg group including the case when the convolution is
not a Gauss measure (see Theorem 2.6.1).

The structure of the present chapter is similar to Pap [45]. Theorems 2.2.1
and 2.3.1 of the present chapter are generalizations of the corresponding results

7



8 CHAPTER 2. GAUSS MEASURES ON THE HEISENBERG GROUP

for symmetric Gauss measures on the Heisenberg group due to Pap [45]. We
summarize briefly the new ingredients. Comparing Lemma 6.1 in Pap [45] and
Proposition 2.5.3 of the present chapter, one can realize that now we have to
calculate a much more complicated (Euclidean) Fourier transform (see (2.5.6)).
For this reason we generalized a result due to Chaleyat-Maurel [13] (see Lemma
2.5.2). We note that using Lemma 2.6.3 one can easily derive Theorem 1.1 in
Pap [45] from Theorem 2.2.1 of the present chapter.

The results of this chapter are contained in our accepted paper [6].

2.1 Preliminaries

In what follows H will denote the 3-dimensional Heisenberg group which can
be obtained by furnishing R

3 with its natural topology and with the product

(g1, g2, g3)(h1, h2, h3) =
(
g1 + h1, g2 + h2, g3 + h3 +

1
2
(g1h2 − g2h1)

)
.

Then H is a connected nilpotent Lie group. The Schrödinger representations
{π±λ : λ > 0} of H are representations in the group of unitary operators of
the complex Hilbert space L2(R) given by

[π±λ(g)u](x) := e±i(λg3+
√

λg2x+λg1g2/2)u(x +
√

λg1) (2.1.1)

for g = (g1, g2, g3) ∈ H, u ∈ L2(R) and x ∈ R (see Taylor [56, p. 46,
Theorem 2.1]). The value of the Fourier transform of a probability measure µ
on H at the Schrödinger representation π±λ is the bounded linear operator
µ̂(π±λ) : L2(R) → L2(R) given by

µ̂(π±λ)u :=
∫

H

π±λ(g)uµ(dg), u ∈ L2(R),

interpreted as a Bochner integral.
The Lie algebra H of H can be realized as the vector space R

3 furnished
with multiplication

[(p1, p2, p3), (q1, q2, q3)] = (0, 0, p1q2 − p2q1).

To an element X ∈ H one can correspond a left-invariant differential operator
on H, namely, for continuously differentiable functions f : H → R we put

X̃f(g) := lim
t→0

1
t

(
f(g exp(tX)) − f(g)

)
, g ∈ H,



2.1. PRELIMINARIES 9

where the exponential mapping exp : H → H is now the identity mapping.
We note that the mapping X ∈ H �→ X̃ is injective and linear (see, e.g.,
Corwin–Greenleaf [15, p. 110]).

A family (µt)t�0 of probability measures on H is said to be a continuous
convolution semigroup if we have µs ∗ µt = µs+t for all s, t � 0, and µt

w−→
µ0 = δe as t ↓ 0, where δe denotes the Dirac measure concentrated on the
unit element e = (0, 0, 0) of H. Its infinitesimal generator is defined by

(Ñf)(g) := lim
t↓0

1
t

∫
H

(
f(gh) − f(g)

)
µt(dh), g ∈ H,

for suitable functions f : H → R. (The infinitesimal generator is always defined
for infinitely differentiable functions f : H → R with compact support.) A
convolution semigroup (µt)t�0 is called a Gauss semigroup if

lim
t↓0

1
t
µt(H \ U) = 0

for all Borel neighbourhoods U of e. We note that the definition of a Gauss
semigroup slightly differs from the Definition 6.2.1 in Heyer [30], since in our
definition, given a Gauss semigroup (µt)t�0, the measure µt can be a Dirac
measure for any t > 0 (see Remark 3.1.1 in Chapter 3).

Let {X1, X2, X3} denote the natural basis in H (that is, X1 = (1, 0, 0),
X2 = (0, 1, 0) and X3 = (0, 0, 1)). It is known that a convolution semigroup
(µt)t�0 is a Gauss semigroup if and only if its infinitesimal generator has the
form

Ñ =
3∑

k=1

akX̃k +
1
2

3∑
j=1

3∑
k=1

bj,kX̃jX̃k, (2.1.2)

where a = (a1, a2, a3) ∈ R
3 and B = (bj,k)1�j,k�3 is a real, symmetric,

positive semidefinite matrix. This easily follows from Theorem 4.2.4 and Lemma
6.2.6 in Heyer [30] and from the fact that given a Gauss semigroup (µt)t�0

such that µt0 is a Dirac measure on H for some t0 > 0, there exist
a1, a2, a3 ∈ R such that µt = δexp(ta1X1+ta2X2+ta3X3) for all t � 0. A
probability measure µ on H is called a Gauss measure if there exists a Gauss
semigroup (µt)t�0 such that µ = µ1. A Gauss measure on H can be
embedded only in a uniquely determined Gauss semigroup (see Baldi [4], Pap
[44]). (Neuenschwander [40] showed that a Gauss measure on H can not be
embedded in a non-Gauss convolution semigroup. We note that in Chapter
3 we show that a Gauss measure on the affine group can be embedded only
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in a uniquely determined Gauss semigroup, see Theorem 3.3.1.) Thus for a
vector a = (a1, a2, a3) ∈ R

3 and a real, symmetric, positive semidefinite
matrix B = (bj,k)1�j,k�3 we can speak about the Gauss measure µ with
parameters (a,B) which is by definition µ := µ1, where (µt)t�0 is the
Gauss semigroup with infinitesimal generator Ñ given by (2.1.2). If ν is a
Gauss measure with parameters (a,B) and (νs)s�0 is the Gauss semigroup
with infinitesimal generator Ñ given by (2.1.2) then νt is a Gauss measure
with parameters (ta, tB) for all t � 0, since µs := νst, s � 0 defines a
Gauss semigroup with infinitesimal generator tÑ . Hence νt = µ1, so it will
be sufficient to calculate the Fourier transform of µ1.

Let us consider a Gauss semigroup (µt)t�0 with parameters (a,B) on H.
Its infinitesimal generator Ñ can also be written in the form

Ñ = Ỹ0 +
1
2

d∑
j=1

Ỹ 2
j , (2.1.3)

where 0 � d � 3 and

Y0 =
3∑

k=1

akXk, Yj =
3∑

k=1

σk,jXk, 1 � j � d,

where Σ = (σk,j) is a 3× d matrix with rank (Σ) = rank (B) = d. Moreover,
B = Σ · Σ�. (We just diagonalise the quadratic form appearing in (2.1.2)
and use that the mapping X ∈ H �→ X̃ is injective and linear.) Then the
measure µt can be described as the distribution of the random vector Z(t) =
(Z1(t), Z2(t), Z3(t)) with values in R

3, where

Z1(t) = a1t +
d∑

k=1

σ1,kWk(t), Z2(t) = a2t +
d∑

k=1

σ2,kWk(t),

Z3(t) = a3t +
d∑

k=1

σ3,kWk(t) +
1
2

∫ t

0

(Z1(s) dZ2(s) − Z2(s) dZ1(s))

= a3t +
d∑

k=1

σ3,kWk(t) +
∑

1�k<��d

(σ1,kσ2,� − σ1,�σ2,k)Wk,�(t)

+
d∑

k=1

(a2σ1,k − a1σ2,k)W ∗
k (t),
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where (W1(t), . . . , Wd(t))t�0 is a standard Wiener process in R
d and

W ∗
k (t) :=

1
2

(∫ t

0

Wk(s) ds −
∫ t

0

s dWk(s)
)

,

Wk,�(t) :=
1
2

(∫ t

0

Wk(s) dW�(s) −
∫ t

0

W�(s) dWk(s)
)

.

(See, e.g., Roynette [47].) The process (Wk,�(t))t�0 is the so-called Lévy’s
stochastic area swept by the process (Wk(s),W�(s))s∈[0,t] on R

2.

2.2 Main results

Let (µt)t�0 be a Gauss semigroup of probability measures on H. By a
result of Siebert [53, Proposition 3.1, Lemma 3.1],

(
µ̂t(π±λ)

)
t�0

is a strongly
continuous semigroup of contractions on L2(R) with infinitesimal generator

N(π±λ) = α1I + α2x + α3D + α4x
2 + α5(xD + Dx) + α6D

2,

where α1, . . . , α6 are certain complex numbers (depending on (µt)t�0, see
Remark 2.3.2), I denotes the identity operator on L2(R), x is the multi-
plication by the variable x, and Du(x) = u′(x). One of our purposes is to
determine the action of the operators

µ̂t(π±λ) = etN(π±λ), t � 0,

on L2(R). (Here the notation (etA)t�0 means a semigroup of operators with
infinitesimal generator A.) When N(π±λ) has the special form 1

2 (D2 − x2),
the celebrated Mehler’s formula gives us

et(D2−x2)/2u(x) =
1√

2π sinh t

∫
R

exp
{
− (x2 + y2) cosh t − 2xy

2 sinh t

}
u(y) dy

for all t > 0, u ∈ L2(R) and x ∈ R, (see, e.g., Taylor [56], Davies [16]). Our
Theorem 2.3.1 in Section 2.3 can be regarded as a generalization of Mehler’s
formula.

It turns out that µ̂t(π±λ) = etN(π±λ), t � 0 are again integral operators
on L2(R) if α6 is a positive real number. One of the main results of this
chapter is an explicit formula for the kernel function of these integral operators
(see Theorem 2.3.1). We apply a probabilistic method using that the Fourier
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transform µ̂(π±λ) of an absolutely continuous probability measure µ on H

can be derived from the Euclidean Fourier transform of µ considering µ as a
measure on R

3 (see Proposition 2.4.1).
The second part of this chapter deals with convolutions of Gauss measures on

H. The convolution of two Gauss measures on a locally compact Abelian group
is again a Gauss measure (it can be proved by the help of Fourier transforms;
see Parthasarathy [46]). We prove that a convolution of Gauss measures on H

is almost never a Gauss measure. More exactly, we obtain the following result
(using our explicit formula for the Fourier transforms).

2.2.1 Theorem. Let µ′ and µ′′ be Gauss measures on H. Then the
convolution µ′ ∗ µ′′ is a Gauss measure on H if and only if one of the
following conditions holds:

(C1) there exist elements Y ′
0 , Y ′′

0 , Y1, Y2 in the Lie algebra of H such that
[Y1, Y2] = 0, and the supports of µ′ and µ′′ are contained in exp{Y ′

0 +
R ·Y1 +R ·Y2} and exp{Y ′′

0 +R ·Y1 +R ·Y2}, respectively. (Equivalently,
there exists an Abelian subgroup G of H such that supp (µ′) and
supp (µ′′) are contained in “Eucledian cosets” of G.)

(C2) there exist a Gauss semigroup (µt)t�0 and t′, t′′ � 0 and a Gauss
measure ν such that supp (ν) is contained in the center of H and
either µ′ = µt′ , µ′′ = µt′′ ∗ ν or µ′ = µt′ ∗ ν, µ′′ = µt′′ holds.
(Equivalently, µ′ and µ′′ are sitting on the same Gauss semigroup
modulo a Gauss measure with support contained in the center of H.)

By the support supp (µ) of a measure µ on H we mean the complement
of the union of all open subsets U of H on which µ vanishes in the sense
that for all continuous real valued functions f on H with compact support
contained in U we have

∫
H

f dµ = 0.
We note that in case of (C1), µ′ and µ′′ are Gauss measures also in the

“Euclidean sense” (i.e., considering them as measures on R
3). Moreover, Theo-

rem 2.6.1 contains an explicit formula for the Fourier transform of a convolution
of arbitrary Gauss measures on H.

2.3 Fourier transform of a Gauss measure

The Schrödinger representations are infinite dimensional, irreducible, unitary
representations, and each irreducible, unitary representation is unitarily equiva-
lent with one of the Schrödinger representations or with χα,β for some α, β ∈ R,
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where χα,β is a one-dimensional representation given by

χα,β(g) := ei(αg1+βg2), g = (g1, g2, g3) ∈ H,

(see Taylor [56, p. 49, Theorem 2.5]). The value of the Fourier transform of a
probability measure µ on H at the representation χα,β is

µ̂(χα,β) :=
∫

H

χα,β(g) µ(dg) =
∫

H

ei(αg1+βg2) µ(dg) = µ̃(α, β, 0),

where µ̃ : R
3 → C denotes the Euclidean Fourier transform of µ,

µ̃(α, β, γ) :=
∫

H

ei(αg1+βg2+γg3) µ(dg).

Let us consider a Gauss semigroup (µt)t�0 with parameters (a,B) on
H. The Fourier transform of µ := µ1 at the one-dimensional representations
can be calculated easily, since the description of (µt)t�0 given in Section 2.1
implies that

µ̂(χα,β) = E exp

{
i(αa1 + βa2) + i

(
α

d∑
k=1

σ1,kWk(1) + β
d∑

k=1

σ2,kWk(1)

)}
for α, β ∈ R. The random variable(

d∑
k=1

σ1,kWk(1),
d∑

k=1

σ2,kWk(1)

)
has a normal distribution with zero mean and covariance matrix

[
σ1,1 . . . σ1,d

σ2,1 . . . σ2,d

]⎡⎢⎣σ1,1 σ2,1

...
...

σ1,d σ2,d

⎤⎥⎦ =
[
b1,1 b1,2

b2,1 b2,2

]
,

since ΣΣ� = B. Consequently,

µ̂(χα,β) = exp
{

i(αa1 + βa2) − 1
2
(b1,1α

2 + 2b1,2αβ + b2,2β
2)
}

.

One of the main results of the present chapter is an explicit formula for
the Fourier transform of a Gauss measure on the Heisenberg group H at the
Schrödinger representations.
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2.3.1 Theorem. Let µ be a Gauss measure on H with parameters (a,B).
Then

[µ̂(π±λ)u](x) =

⎧⎪⎨⎪⎩
∫

R

K±λ(x, y)u(y) dy if b1,1 > 0,

L±λ(x)u(x +
√

λa1) if b1,1 = 0,

for u ∈ L2(R), x ∈ R, where

K±λ(x, y) := C±λ(B) exp
{
−1

2
z�D±λ(a,B)z

}
, z := (x, y, 1)�,

where, with δ :=
√

b1,1b2,2 − b2
1,2, δ1 := b1,1b2,3−b1,2b1,3, δ2 := a1b1,2−a2b1,1,

C±λ(B) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
2πλb1,1

if δ = 0,

√
δ

2πb1,1 sinh(λδ)
if δ > 0,

and D±λ(a,B) = (d±λ
j,k (a,B))1�j,k�3 are symmetric matrices defined for

b1,1 > 0 and δ = 0 by

d±λ
1,1(a,B) :=

λ−1 ± ib1,2

b1,1
, d±λ

1,2(a,B) := − 1
λb1,1

, d±λ
2,2(a, B) :=

λ−1 ∓ ib1,2

b1,1
,

d±λ
1,3(a,B) :=

a1 ± iλb1,3√
λb1,1

± i

√
λδ2

2b1,1
, d±λ

2,3(a,B) := −a1 ± iλb1,3√
λb1,1

± i

√
λδ2

2b1,1
,

d±λ
3,3(a,B) :=

(a1 ± iλb1,3)2

b1,1
+

λ2δ2
2

12b1,1
+ λ2b3,3 ∓ 2iλa3,

and for δ > 0 by

d±λ
1,1(a, B) :=

δ coth(λδ) ± ib1,2

b1,1
, d±λ

2,2(a,B) :=
δ coth(λδ) ∓ ib1,2

b1,1
,

d±λ
1,2(a, B) := − δ

b1,1 sinh(λδ)
, d±λ

1,3(a,B) :=
a1 ± iλb1,3√

λb1,1

+
λδ1 ± iδ2√

λb1,1δ coth(λδ/2)
,

d±λ
2,3(a,B) := −a1 ± iλb1,3√

λb1,1

+
λδ1 ± iδ2√

λb1,1δ coth(λδ/2)
,
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d±λ
3,3(a,B) :=

(a1 ± iλb1,3)2

b1,1
− (λδ1 ± iδ2)2

λb1,1δ3

(
λδ−2 tanh(λδ/2)

)
+λ2b3,3∓2iλa3,

and

L±λ(x) := exp
{
± i

√
λ

2

(√
λ(2a3 + a1a2) + 2a2x

)
− λ2

6
(3b3,3 + 3a1b2,3 + a2

1b2,2)

− λ3/2

2
(2b2,3 + a1b2,2)x − λ

2
b2,2x

2

}
.

We prove this theorem in Section 2.5.

2.3.2 Remark. Consider a Gauss semigroup (µt)t�0 with infinitesimal gen-
erator Ñ given in (2.1.2). Siebert [53, Proposition 3.1, Lemma 3.1] proved that(
µ̂t(π±λ)

)
t�0

is a strongly continuous semigroup of contractions on L2(R) with
infinitesimal generator

N(π±λ) =
3∑

k=1

akXk(π±λ) +
1
2

3∑
j=1

3∑
k=1

bj,kXj(π±λ)Xk(π±λ),

where
X(π±λ)u := lim

t→0
t−1
(
π±λ(exp(tX))u − u

)
for all differentiable vectors u ∈ L2(R). Here the infinitesimal generator
N(π±λ) of

(
µ̂t(π±λ)

)
t�0

is the linear operator defined by

N(π±λ)u := lim
t↓0

µ̂t(π±λ)u − u

t
for u ∈ D(N(π±λ)),

where

D(N(π±λ)) :=
{

u ∈ L2(R) : lim
t↓0

µ̂t(π±λ)u − u

t
exists in L2(R)

}
.

(Then N(π±λ) is always defined for all differentiable vectors u ∈ L2(R).) We
note that the infinitesimal generator Ñ of a Gauss semigroup (µt)t�0 can
also be considered as the infinitesimal generator of a suitable one-parameter
semigroup of bounded linear operators. Namely, for all t � 0 and for all
bounded continuous functions f : H → R vanishing at infinity, let

(Tµt
f)(g) :=

∫
H

f(gh)µt(dh), g ∈ H.
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Then (Tµt
)t�0 is a one-parameter semigroup of bounded linear operators on

the Banach space of all bounded continuous functions f : H → R vanishing at
infinity equipped with the supremum norm. Moreover, the infinitesimal gener-
ator of (Tµt)t�0 coincides with the infinitesimal generator Ñ of (µt)t�0.

We get

[X1(π±λ)u](x) =
√

λu′(x) =
√

λDu(x),

[X2(π±λ)u](x) = ±i
√

λxu(x),

[X3(π±λ)u](x) = ±iλu(x)

for all x ∈ R. Consequently,

N(π±λ) = α1I + α2x + α3D + α4x
2 + α5(xD + Dx) + α6D

2,

where

α1 = −1
2
λ2b3,3±iλa3, α2 = −λ3/2b2,3±iλ1/2a2, α3 = λ1/2a1±iλ3/2b1,3,

α4 = −1
2
λb2,2, α5 = ± i

2
λb1,2, α6 =

1
2
λb1,1.

2.4 Absolute continuity and singularity of a
Gauss measure

A probability measure µ on H is said to be absolutely continuous or singular
if it is absolutely continuous or singular with respect to a (and then necessarily
to any) Haar measure on H. It is known that the class of left Haar measures
on H is the same as the class of right Haar measures on H and hence we can
use the expression ”a Haar measure on H”. It is also known that a measure
ν on H is a Haar measure if and only if ν is the Lebesgue measure on
R

3 multiplied by some positive constant (see Corwin–Greenleaf [15, Theorem
1.2.10] and Hewitt–Ross [29, Remarks 15.8]). The following proposition is the
same as Proposition 2.1 in Pap [45]. But the proof given here is simpler, we do
not use Weyl calculus.

2.4.1 Proposition. If µ is an absolutely continuous probability measure on
H with density f then the Fourier transform µ̂(π±λ) is an integral operator
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on L2(R),

[µ̂(π±λ)u](x) =
∫

R

K±λ(x, y)u(y) dy, u ∈ L
2(R), x ∈ R,

with kernel function K±λ : R
2 → C given by

K±λ(x, y) :=
1√
λ

f̃2,3

(
y − x√

λ
,±

√
λ

(
y + x

2

)
,±λ

)
,

where

f̃2,3(s1, s̃2, s̃3) :=
∫

R2
ei(s2s2+s3s3)f(s1, s2, s3) ds2 ds3, (s1, s̃2, s̃3) ∈ R

3,

denotes a partial Euclidean Fourier transform of f (considering f as a
function on R

3).

Proof. Using the definition of the Schrödinger representation we obtain

[µ̂(π±λ)u](x) =
∫

R3
e±i(λs3+

√
λs2x+λs1s2/2)u(x +

√
λs1)f(s1, s2, s3) ds1 ds2 ds3

=
1√
λ

∫
R3

e±i(λs3+
√

λs2x+
√

λ(y−x)s2/2)u(y)f
(

y − x√
λ

, s2, s3

)
dy ds2 ds3

=
∫

R

K±λ(x, y)u(y) dy,

where

K±λ(x, y) =
1√
λ

∫
R2

e±i(λs3+
√

λ(x+y)s2/2)f

(
y − x√

λ
, s2, s3

)
ds2 ds3

=
1√
λ

f̃2,3

(
y − x√

λ
,±

√
λ

(
y + x

2

)
,±λ

)
.

Hence the assertion. �

The partial Euclidean Fourier transform f̃2,3 can be obtained by the inverse
Euclidean Fourier transform:

f̃2,3(s1, s̃2, s̃3) =
1
2π

∫
R

e−is1s1 f̃(s̃1, s̃2, s̃3) ds̃1, (s1, s̃2, s̃3) ∈ R
3, (2.4.1)

where f̃ denotes the (full) Euclidean Fourier transform of f :

f̃(s̃1, s̃2, s̃3) :=
∫

R3
ei(s1s1+s2s2+s3s3)f(s1, s2, s3) ds1 ds2 ds3
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for (s̃1, s̃2, s̃3) ∈ R
3. Moreover, µ̂(π±λ) is a compact operator. If the density

f of µ belongs to the Schwartz space then µ̂(π±λ) is a trace class (i.e.,
nuclear) operator.

In order to apply Proposition 2.4.1 we shall need the description of the set
of absolutely continuous Gauss measures on H. Using a general result due
to Siebert [54, Theorem 2] one can prove the following lemma as in Pap [45,
Lemma 3.3].

2.4.2 Lemma. A Gauss measure µ on H with parameters (a,B) is either
absolutely continuous or singular. More precisely, µ is absolutely continuous
if b1,1b2,2 − b2

1,2 > 0 and singular if b1,1b2,2 − b2
1,2 = 0.

By Siebert [54, Theorem 2], given a Gauss semigroup (µt)t�0 on H, either
the measures µt are absolutely continuous with respect to the Haar measures
on H for all t > 0, or the measures µt are singular with respect to the
Haar measures on H for all t > 0. In the first case we say that (µt)t�0

is an absolutely continuous semigroup on H, otherwise it is called singular.
The next lemma describes Gauss semigroups on H and the support of a Gauss
measure on H.

2.4.3 Lemma. Let (µt)t�0 be a Gauss semigroup on H with infinitesimal
generator Ñ given by (2.1.3). According to the structure of Ñ we can
distinguish five different types of Gauss semigroups:

(i) Ñ = Ỹ0 + 1
2 (Ỹ 2

1 + Ỹ 2
2 + Ỹ 2

3 ) with Y1, Y2 and Y3 linearly independent.
Then the semigroup is absolutely continuous and supp (µt) = H for all
t > 0. Moreover, rank (B) = 3, b1,1b2,2 − b2

1,2 	= 0.

(ii) Ñ = Ỹ0+ 1
2 (Ỹ 2

1 +Ỹ 2
2 ) with Y1 and Y2 linearly independent and [Y1, Y2] 	=

0. Then the semigroup is absolutely continuous and supp (µt) = H for
all t > 0. Moreover, rank (B) = 2, b1,1b2,2 − b2

1,2 	= 0.

(iii) Ñ = Ỹ0 + 1
2 (Ỹ 2

1 + Ỹ 2
2 ) with Y1 and Y2 linearly independent and

[Y1, Y2] = 0. Then the semigroup is singular, it is a Gauss semigroup on
R

3 as well, and it is supported by a ‘Euclidean coset’ of the same closed
normal subgroup, namely,

supp (µt) = exp(tY0 + R · Y1 + R · Y2)

for all t > 0. Moreover, rank (B) = 2, b1,1b2,2 − b2
1,2 = 0.
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(iv) Ñ = Ỹ0 + 1
2 Ỹ 2

1 . Then the semigroup is singular, it is a Gauss semigroup
on R

3 as well, and it is supported by a “Euclidean coset” of the same
closed normal subgroup, namely,

supp (µt) = exp(tY0 + R · Y1 + R · [Y0, Y1])

for all t > 0. Moreover, rank (B) = 1, b1,1b2,2 − b2
1,2 = 0.

(v) Ñ = Ỹ0. Then the semigroup is singular and consists of Dirac measures,
namely, µt = δexp(tY0) for all t � 0.

Proof. From general results due to Siebert [54, Theorems 2 and 4], it follows
that a Gauss measure µ on H is absolutely continuous if and only if G :=
L(Yi, [Yj , Yk] : 1 � i � d, 0 � j < k � d) = R

3, where L(·) denotes the linear
hull of the given vectors, and Yi ∈ H, 0 � i � d are described in (2.1.3).
Moreover, the support of µt is

supp (µt) =
∞⋃

n=1

(
M exp

( tY0

n

))n

for all t > 0,

where M is the analytic subgroup of H corresponding to the Lie subalgebra
generated by {Yi : 1 � i � d} and the bar denotes the closure in H. Clearly
[Yi, Yj ] = (σ1,iσ2,j − σ1,jσ2,i)X3 for 1 � i < j � d and [Y, Z] ∈ L(X3) for
all Y, Z ∈ H.

We prove only the cases (iii) and (iv), the other cases can be proved
similarly.

In case of (iii) we have G = L(Y1, Y2, [Y0, Y1], [Y0, Y2]). Since [Y1, Y2] = 0,
we have σ1,1σ2,2 − σ2

1,2 = 0, so Y1 and Y2 are linearly dependent in their
first two coordinates, thus their linear independence yields X3 ∈ L(Y1, Y2).
Moreover, [Y0, Y1], [Y0, Y2] ∈ L(X3) ⊂ L(Y1, Y2). So G = L(Y1, Y2) 	= R

3, i.e.,
the semigroup (µt)t�0 is singular.

To obtain the formula for the support of µt it is sufficient to prove that(
M exp

(
t

n
Y0

))n

= exp(tY0 + R · Y1 + R · Y2)

for all t > 0 and n ∈ N, where now M = exp(R·Y1+R·Y2). The multiplication
in H can be reconstructed by the help of the Campbell–Haussdorf formula

exp(X) exp(Y ) = exp
(
X + Y +

1
2
[X,Y ]

)
, X, Y ∈ H,
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(see Corwin–Greenleaf [15, Theorem 1.2.1]). Applying induction by n gives
the assertion. Indeed, for n = 1 we have

M exp (tY0) = exp(R · Y1 + R · Y2) exp(tY0) = exp(tY0 + R · Y1 + R · Y2),

since [Y0, Y1], [Y0, Y2] ∈ L(X3) ⊂ L(Y1, Y2). Suppose that(
M exp

( t

n − 1
Y0

))n−1

= exp(tY0 + R · Y1 + R · Y2)

holds for all t > 0. Using the Campbell–Haussdorf formula and the induction
hypothesis we get(
M exp

( t

n
Y0

))n

= exp
(n − 1

n
tY0 + R · Y1 + R · Y2

)
exp
( t

n
Y0 + R · Y1 + R · Y2

)
.

Since [Y0, Y1], [Y0, Y2] ∈ L(X3) ⊂ L(Y1, Y2), another application of the
Campbell–Haussdorf formula gives the assertion.

The case (iv) can be obtained similarly. Indeed, we have G =
L(Y1, [Y0, Y1]) 	= R

3, M = exp(R · Y1), hence

supp (µt) = exp (tY0 + R · Y1 + R · [Y1, Y0]) for all t > 0.

�

2.5 Euclidean Fourier transform of a Gauss
measure

Now we investigate the processes (W ∗
k (t))t�0 and (Wk,�(t))t�0 (defined in

Section 2.1). Let t > 0 be fixed. We prove that W ∗
k (t) and Wk,�(t) can be

constructed by the help of infinitely many independent identically distributed
real valued random variables with standard normal distribution. Because of the
self-similarity property of the Wiener process it is sufficient to prove the case
t = 2π. The rigorous proof of the following lemma is due to Endre Iglói.

2.5.1 Lemma. Let (W1(s), . . . , Wd(s))s∈[0,2π] be a standard Wiener process
in R

d on a probability space (Ω,A, P). Let us consider the orthonormal
basis fn(s) = (2π)−1/2eins, s ∈ [0, 2π], n ∈ Z in the complex Hilbert space
L2([0, 2π]). If (g(s))s∈[0,2π] is an adapted, measurable, complex valued process,
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independent of (W1(s), . . . , Wd(s))s∈[0,2π] such that E
(∫ 2π

0
|g(s)|2 ds

)
< ∞

then for all j = 1, . . . , d,∫ 2π

0

g(s) dWj(s) =
∑
n∈Z

〈g, fn〉
∫ 2π

0

fn(s) dWj(s) a. s., (2.5.1)

where 〈· , ·〉 denotes the inner product in L2([0, 2π]) and the convergence of
the series on the right-hand side of (2.5.1) is meant in L2(Ω,A, P).

Proof. Let 1 � j � d be arbitrary, but fixed. First we prove that the right-
hand side of (2.5.1) is convergent in L2(Ω,A, P). Using that the processes
(g(s))s∈[0,2π] and (W1(s), . . . , Wd(s))s∈[0,2π] are independent, for n,m ∈ Z,
n 	= m, we get

E

(
〈g, fn〉

∫ 2π

0

fn(s) dWj(s) 〈g, fm〉
∫ 2π

0

fm(s) dWj(s)
)

= E
(〈g, fn〉〈g, fm〉)E(∫ 2π

0

fn(s) dWj(s)
∫ 2π

0

fm(s) dWj(s)
)

= E
(〈g, fn〉〈g, fm〉) ∫ 2π

0

fn(s)fm(s) ds = 0.

Using again the independence of (g(s))s∈[0,2π] and (W1(s), . . . ,Wd(s))s∈[0,2π],
we have

E

∣∣∣∣〈g, fn〉
∫ 2π

0

fn(s) dWj(s)
∣∣∣∣2 = E

∣∣〈g, fn〉
∣∣2E∣∣∣∣ ∫ 2π

0

fn(s) dWj(s)
∣∣∣∣2

= E
∣∣〈g, fn〉

∣∣2 ∫ 2π

0

|fn(s)|2 ds = E
∣∣〈g, fn〉

∣∣2.
Since E

(∫ 2π

0
|g(s)|2 ds

)
< ∞, Parseval’s identity in L2([0, 2π]) gives us that

∑
n∈Z

∣∣〈g, fn〉
∣∣2 =

∫ 2π

0

|g(s)|2 ds a. s.

This implies that ∑
n∈Z

E
∣∣〈g, fn〉

∣∣2 = E

(∫ 2π

0

|g(s)|2 ds

)
< ∞.
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Hence the right-hand side of (2.5.1) is convergent in L2(Ω,A, P).
Now we show that

E

∣∣∣∣ ∫ 2π

0

g(s) dWj(s) −
∑
n∈Z

〈g, fn〉
∫ 2π

0

fn(s) dWj(s)
∣∣∣∣2 = 0,

which implies (2.5.1). We have

E

∣∣∣∣ ∫ 2π

0

g(s) dWj(s) −
∑
n∈Z

〈g, fn〉
∫ 2π

0

fn(s) dWj(s)
∣∣∣∣2

= E

∣∣∣∣ ∫ 2π

0

g(s) dWj(s)
∣∣∣∣2 + E

∣∣∣∣∑
n∈Z

〈g, fn〉
∫ 2π

0

fn(s) dWj(s)
∣∣∣∣2

− 2ReE

(∫ 2π

0

g(s) dWj(s)
∑
n∈Z

〈g, fn〉
∫ 2π

0

fn(s) dWj(s)
)

=: A1 + A2 − 2ReA3.

Then, using that the inner product in L2(Ω,A,P) is continuous, we get

A1 = E

(∫ 2π

0

|g(s)|2 ds

)
,

A2 =
∑
n∈Z

E

∣∣∣∣〈g, fn〉
∫ 2π

0

fn(s) dWj(s)
∣∣∣∣2 =

∑
n∈Z

E
∣∣〈g, fn〉

∣∣2 = E

(∫ 2π

0

|g(s)|2 ds

)
,

A3 =
∑
n∈Z

E

(∫ 2π

0

g(s) dWj(s) 〈g, fn〉
∫ 2π

0

fn(s) dWj(s)
)

.

Let us denote the σ-algebra generated by the process (g(s))s∈[0,2π] by F(g).
Then we obtain

A3 =
∑
n∈Z

E E

(∫ 2π

0

g(s) dWj(s) 〈g, fn〉
∫ 2π

0

fn(s) dWj(s)
∣∣∣F(g)

)

=
∑
n∈Z

E

(
〈g, fn〉E

(∫ 2π

0

g(s) dWj(s)
∫ 2π

0

fn(s) dWj(s)
∣∣∣F(g)

))

=
∑
n∈Z

E

(
〈g, fn〉

∫ 2π

0

g(s)fn(s) ds

)
=
∑
n∈Z

E
∣∣〈g, fn〉

∣∣2 = E

(∫ 2π

0

|g(s)|2 ds

)
.

Hence the assertion. �

The next statement is a generalization of Section 1.2 in Chaleyat-Maurel
[13].
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2.5.2 Lemma. Let (W1(s), . . . , Wd(s))s∈[0,2π] be a standard Wiener process
in R

d. Then there exist random variables a
(j)
n , b

(j)
n , n ∈ N, j = 1, . . . , d,

with standard normal distribution, independent of each other and of the random
variable (W1(2π), . . . , Wd(2π)) such that the following constructions hold

Wj,k(2π) =
∞∑

n=1

1
n

[
b(j)
n

(
a(k)

n − 1√
π

Wk(2π)
)

− b(k)
n

(
a(j)

n − 1√
π

Wj(2π)
)]

a. s.,

(2.5.2)

W ∗
� (2π) = −2

√
π

∞∑
n=1

b
(�)
n

n
a. s. (2.5.3)

for all 1 � j < k � d and 
 = 1, . . . , d, where the series on the right-hand
sides of (2.5.2) and (2.5.3) are convergent almost surely.

Proof. Retain the notations of Lemma 2.5.1 and let us denote

c(j)
n :=

∫ 2π

0

fn(s) dWj(s), n ∈ Z, j = 1, . . . , d.

Then c
(j)
n , n ∈ Z, n 	= 0, j = 1, . . . , d, are independent identically distributed

complex valued random variables with standard normal distribution, i.e., the
decompositions c

(j)
n = (a(j)

n + i b
(j)
n )/

√
2, n ∈ Z, n 	= 0, j = 1, . . . , d, hold

with independent identically distributed real valued random variables a
(j)
n , b

(j)
n ,

n ∈ Z, n 	= 0, j = 1, . . . , d, having standard normal distribution. Specifying
g as the indicator function �[0,t] of the interval [0, t] (t ∈ [0, 2π]) in Lemma
2.5.1, we have for all t ∈ [0, 2π]

W�(t) =
∑

n∈Z, n 	=0

c
(�)
−n

i

n

(
f−n(t) − f0(t)

)
+

c
(�)
0 t√
2π

a. s., 
 = 1, . . . , d. (2.5.4)

Moreover, there is a set Ω0 with P(Ω0) = 0 such that (2.5.4) holds for all
ω /∈ Ω0 and for almost every t ∈ [0, 2π] (see, e.g., Ash [2, p. 107, Problem
4]). Applying (2.5.1) for

∫ 2π

0
Wj(s) dWk(s) and

∫ 2π

0
Wk(s) dWj(s) and using

the construction (2.5.4) for Wj and Wk, Chaleyat-Maurel [13] showed that
(2.5.2) holds. Choosing g(s) = s�[0,t](s) (t ∈ [0, 2π]) in Lemma 2.5.1 it can
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be easily checked that∫ t

0

s dW�(s) =
∑

n∈Z, n 	=0

c
(�)
−n(i nt + 1)

n2
f−n(t)−

∑
n∈Z, n 	=0

c
(�)
−n

n2
f0(t)+ c

(�)
0

t2

2
√

2π
a. s.

By Itô’s formula we get W ∗
� (t) = 1

2 tW�(t)−
∫ t

0
s dW�(s). Using the construction

(2.5.4) of W�(t) and the definition of c
(�)
n a simple computation shows that

(2.5.3) holds. By Lemma 2.5.1 the series in the constructions (2.5.2), (2.5.3)
and (2.5.4) are convergent in L2(Ω,A,P). Since the summands in the series
in (2.5.3) and (2.5.4) are independent, Lévy’s theorem implies that they are
convergent almost surely as well. Finally we show that the series in (2.5.2) is
also convergent almost surely. For this, using that

∑∞
n=1 b

(�)
n /n is convergent

almost surely for all 
 = 1, . . . , d, it is enough to prove that the series
∞∑

n=1

1
n

(
b(j)
n a(k)

n − b(k)
n a(j)

n

)
(2.5.5)

is convergent almost surely. Here b
(j)
n a

(k)
n − b

(k)
n a

(j)
n , n ∈ N, are independent,

identically distributed real valued random variables with zero mean and finite
second moment. Hence Kolmogorov’s One-Series Theorem yields that the series
in (2.5.5) is convergent almost surely. �

Taking into account Proposition 2.4.1 and the representation of a Gauss
semigroup (µt)t�0 by the process (Z(t))t�0 (given in Section 2.1), in order
to prove Theorem 2.3.1 we need the joint (Euclidean) Fourier transform of the
9-dimensional random vector(

W1(t),W2(t),W3(t),W ∗
1 (t),W ∗

2 (t),W ∗
3 (t),W1,2(t),W1,3(t),W2,3(t)

)
. (2.5.6)

2.5.3 Proposition. The Fourier transform F̃t : R
9 → C of the random

vector (2.5.6) is

F̃t(η1, η2, η3, ζ1, ζ2, ζ3, ξ1,2, ξ1,3, ξ2,3)

=
1

cosh(t‖ξ̃‖/2)
exp

{
‖ξ̃‖2‖η̃‖2 + κ〈ξ̃, η̃〉2 − tκ(1 + κ)‖ζ‖2

2(1 + κ)‖ξ̃‖2

− t3

4‖ξ̃‖2

(
1
6
− 2κ

t2‖ξ̃‖2

)
〈ξ̃, ζ〉2

}
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for ξ̃ := (ξ2,3,−ξ1,3, ξ1,2)� ∈ R
3 with ξ̃ 	= 0, where ζ := (ζ1, ζ2, ζ3)� ∈ R

3

and

κ :=
t‖ξ̃‖

2
coth

(
t‖ξ̃‖

2

)
− 1, η̃ :=

√
tκ

‖ξ̃‖2
ξζ + i

√
tη,

with η := (η1, η2, η3)� ∈ R
3 and

ξ :=

⎡⎣ 0 ξ1,2 ξ1,3

−ξ1,2 0 ξ2,3

−ξ1,3 −ξ2,3 0

⎤⎦ .

(Here ‖ · ‖ and 〈· , ·〉 denote the Euclidean norm and scalar product,
respectively.)

To prove Proposition 2.5.3 we will use the constructions of the processes
(W ∗

k (t))t�0 and (Wk,�(t))�0 (see Lemma 2.5.2) and the following lemma.

2.5.4 Lemma. Let X be a k-dimensional real random vector with standard
normal distribution. Then we have

E exp
{〈η̃, X〉 − s〈BX,X〉} =

1√
det (I + 2sB)

exp
{

1
2
〈
η̃, (I + 2sB)−1η̃

〉}
,

for all η̃ ∈ C
k, nonnegative real numbers s and real symmetric positive

semidefinite matrices B. (Here I denotes the k × k identity matrix.)

Proof. Consider a decomposition B = UΛU�, where Λ is the k × k
diagonal matrix containing the eigenvalues of B in its diagonal and U is an
orthogonal matrix. Then the random vector Y := U�X has also a standard
normal distribution. This implies that

E exp
{〈η̃, X〉 − s〈BX, X〉}= E exp

{〈η̃, UY 〉 − s〈ΛY, Y 〉}
=

1√
(2π)k

∫
Rk

exp
{
〈η̃, Uy〉 − s〈Λy, y〉 − 1

2
〈y, y〉

}
dy,
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where y = (y1, . . . , yk)� ∈ R
k. Let λ1, . . . , λk denote the eigenvalues of the

matrix B. A simple computation shows that

〈η̃, Uy〉 − s〈Λy, y〉 − 1
2
〈y, y〉

= −
k∑

j=1

(
sλj +

1
2

)
y2

j +
k∑

j=1

(U�Re η̃)jyj + i
k∑

j=1

(U�Im η̃)jyj

= i
k∑

j=1

(U�Im η̃)jyj −
k∑

j=1

1 + 2sλj

2

(
yj − (U�Re η̃)j

1 + 2sλj

)2

+
k∑

j=1

(U�Re η̃)2j
2(1 + 2sλj)

.

Using the well-known formula for the Fourier transform of a standard normal
distribution∫

R

exp
{

ixt − (x − m)2

2σ2

}
dx =

√
2πσ exp

{
imt − 1

2
σ2t2
}

, (2.5.7)

for all t,m ∈ R and σ > 0, we obtain

E exp
{〈η̃, X〉 − s〈BX, X〉}

=
1√∏k

j=1(1 + 2sλj)
exp

⎧⎨⎩i
k∑

j=1

(U�Re η̃)j(U�Im η̃)j

1 + 2sλj
−

k∑
j=1

(U�Im η̃)2j
2(1 + 2sλj)

+
k∑

j=1

(U�Re η̃)2j
2(1 + 2sλj)

⎫⎬⎭ .

Hence the assertion. �

Proof of Proposition 2.5.3. Because of the self-similarity property
of the Wiener process, the random vectors

(
Wk(t), W ∗

� (t),Wp,q(t) :
1 � k, 
 � d, 1 � p < q � d

)
and

(
c−1/2Wk(ct), c−3/2W ∗

� (ct), c−1Wp,q(ct) :
1 � k, 
 � d, 1 � p < q � d

)
have the same distribution for all t � 0 and

c > 0. Hence

F̃t(η1, η2, η3, ζ1, ζ2, ζ3, ξ1,2, ξ1,3, ξ2,3)

= F̃2π

(√
t

2π
η1,

√
t

2π
η2,

√
t

2π
η3,

(
t

2π

)3/2

ζ1,

(
t

2π

)3/2

ζ2,

(
t

2π

)3/2

ζ3,

t

2π
ξ1,2,

t

2π
ξ1,3,

t

2π
ξ2,3

)
,
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so it is sufficient to determine F̃2π. By the definition of the Fourier transform
we get

F̃2π(η1, η2, η3, ζ1, ζ2, ζ3, ξ1,2, ξ1,3, ξ2,3) (2.5.8)

= E exp
{

i

( 3∑
j=1

ηjWj(2π) +
3∑

j=1

ζjW
∗
j (2π) +

∑
1�j<k�3

ξj,kWj,k(2π)
)}

.

For abbreviation let F̃2π denote F̃2π(η1, η2, η3, ζ1, ζ2, ζ3, ξ1,2, ξ1,3, ξ2,3). Define
the random vector χ := (χ1, χ2, χ3)� by

χ1 := −ξ1,2
1√
π

W2(2π) − ξ1,3
1√
π

W3(2π) − 2
√

πζ1,

χ2 := ξ1,2
1√
π

W1(2π) − ξ2,3
1√
π

W3(2π) − 2
√

πζ2,

χ3 := ξ1,3
1√
π

W1(2π) + ξ2,3
1√
π

W2(2π) − 2
√

πζ3.

Substituting the expressions (2.5.2), (2.5.3) for Wj,k(2π) and W ∗
� (2π)

into the formula (2.5.8), taking conditional expectation with respect to the
random variables {Wj(2π), a

(j)
n , 1 � j � 3, n � 1}, and using the identity

E(E(X|Y )) = EX (where X, Y random variables, E|X| < ∞), we obtain

F̃2π = E

[
exp
{

i
(
η1W1(2π) + η2W2(2π) + η3W3(2π)

)}
× E

(
exp
{

i
∞∑

n=1

1
n
〈ξ · an + χ, bn〉

} ∣∣∣∣Wj(2π), a(j)
n , 1 � j � 3, n � 1

)]
,

where an := (a(1)
n , a

(2)
n , a

(3)
n )� and bn := (b(1)

n , b
(2)
n , b

(3)
n )�. Taking into account

that b
(1)
n , b

(2)
n , b

(3)
n are independent of the condition above and of each other for

all n ∈ N, using the dominated convergence theorem and the explicit formula
for the Fourier transform of a standard normal distribution we get

F̃2π = E

[
exp
{

i
(
η1W1(2π) + η2W2(2π) + η3W3(2π)

)}
×

∞∏
n=1

exp
{
− 1

2n2
‖ξ · an + χ‖2

}]
.
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Since ξ is a skew symmetric matrix, there exists an orthogonal matrix M =
(mj,k)1�j,k�3 such that

M�ξM =

⎡⎣ 0 p 0
−p 0 0
0 0 0

⎤⎦ =: P.

The orthogonality of M implies M−1 = M�, hence ξM = MP . We have

MP =

⎡⎣−pm1,2 pm1,1 0
−pm2,2 pm2,1 0
−pm3,2 pm3,1 0

⎤⎦ = [−pm2, pm1, 0],

where mi, i = 1, 2, 3, denotes the column vectors of M , that is, M =
[m1,m2,m3]. Obviously, ξM = [ξm1, ξm2, ξm3], hence ξm1 = −pm2,
ξm2 = pm1, ξm3 = 0. Taking into account that M is orthogonal, we have
‖m3‖ = 1, hence

m3 = ± 1√
ξ2
1,2 + ξ2

1,3 + ξ2
2,3

(ξ2,3,−ξ1,3, ξ1,2)�.

Moreover, ξ2m1 = ξ(ξm1) = ξ(−pm2) = −p2m1. The only nonzero eigenvalue

of ξ2 is −(ξ2
1,2 + ξ2

1,3 + ξ2
2,3), hence p = ±

√
ξ2
1,2 + ξ2

1,3 + ξ2
2,3, and M can

be chosen such that m3 = ξ̃/‖ξ̃‖, p = ‖ξ̃‖, and thus

〈m1, u〉2 + 〈m2, u〉2 = ‖M�u‖2 − 〈m3, u〉2 = ‖u‖2 − 1

‖ξ̃‖2
〈ξ̃, u〉2, (2.5.9)

for all u ∈ R
3. We also get

−ξ2 = M

⎡⎣‖ξ̃‖2 0 0
0 ‖ξ̃‖2 0
0 0 0

⎤⎦M� =: MΛM�.

To continue the calculation of the Fourier transform of (2.5.6) we take condi-
tional expectation with respect to {W1(2π),W2(2π),W3(2π)}. A special case
of Lemma 2.5.4 is that

E exp
{
− s

n∑
j=1

Y 2
j

}
=

1√
det (I + 2sD)

× exp
{〈(

2s2D1/2(I + 2sD)−1D1/2 − sI
)
m,m

〉}
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for all nonnegative real numbers s, where Y = (Y1, . . . , Yk)� is a k-
dimensional random variable with normal distribution such that EY = m and
VarY = D. Applying this formula for Y = ξ · an + χ with s = (2n2)−1,
m = χ and D = ξ · ξ� = −ξ2 = MΛM� we get

F̃2π = E

[
exp
{

i
(
η1W1(2π) + η2W2(2π) + η3W3(2π)

)}
×

∞∏
n=1

1√
det (I + n−2Λ)

× exp
{

1
2

〈(
n−4

√
Λ(I + n−2Λ)−1

√
Λ − n−2I

)
M−1χ,M−1χ

〉}]
.

Clearly det (I + n−2Λ) = (1 + n−2‖ξ̃‖2)2. Using that

∞∏
k=1

k2π2

k2π2 + x2
=

x

sinhx
, x cothx − 1 = x2

∞∑
k=1

2
k2π2 + x2

, x ∈ R,

(see Gradshteyn–Ryzhik [24, formulas 1.431 and 1.421]), the identity (2.5.9) and
the fact that 〈ξ̃, χ〉2 = 4π〈ζ, ξ̃〉2 we obtain

F̃2π =
π‖ξ̃‖

sinh(π‖ξ̃‖)
exp
{
− π3

‖ξ̃‖2

(
1
3
− κ

π2‖ξ̃‖2

)
〈ζ, ξ̃〉2

}
× E exp

{
i
(
η1W1(2π) + η2W2(2π) + η3W3(2π)

)− κ

4‖ξ̃‖2
‖χ‖2

}
,

where κ = π‖ξ̃‖ coth(π‖ξ̃‖) − 1. A simple computation shows that

‖χ‖2 =
1
π

(
(ξ2

1,2 + ξ2
1,3)W

2
1 (2π) + (ξ2

1,2 + ξ2
2,3)W

2
2 (2π) + (ξ2

2,3 + ξ2
1,3)W

2
3 (2π)

)
+

2
π

(
ξ1,3ξ2,3W1(2π)W2(2π) − ξ1,2ξ2,3W1(2π)W3(2π)

+ ξ1,2ξ1,3W2(2π)W3(2π)
)
− 4(ξ1,2ζ2 + ξ1,3ζ3)W1(2π)

+ 4(ξ1,2ζ1 − ξ2,3ζ3)W2(2π) + 4(ξ1,3ζ1 + ξ2,3ζ2)W3(2π) + 4π‖ζ‖2.
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Using Lemma 2.5.4 with η̃ =
√

2πκ

‖ξ‖2 ξζ + i
√

2πη, B := −2ξ2, s = κ

4‖ξ‖2 and

taking into account that
√

det (I + 2sB) = 1 + κ we conclude

F̃2π =
π‖ξ̃‖

(1 + κ) sinh(π‖ξ̃‖)
exp
{
− π3

‖ξ̃‖2

(
1
3
− κ

π2‖ξ̃‖2

)
〈ζ, ξ̃〉2

}
× exp

{
− πκ

‖ξ̃‖2
‖ζ‖2 +

1
2

〈
η̃,
(
I − κ

‖ξ̃‖2
ξ2
)−1

η̃

〉}
.

Using (2.5.9) we get

〈
η̃,
(
I − κ

‖ξ̃‖2
ξ2
)−1

η̃

〉
=

1
1 + κ

‖η̃‖2 +
κ

1 + κ

〈ξ̃, η̃〉2
‖ξ̃‖2

.

Hence the assertion. �

Proof of Theorem 2.3.1. We prove only the case rank (B) = 3. The cases
rank (B) = 1 and rank (B) = 2 can be handled in a similar way. In case
rank (B) = 3 the measure µ is absolutely continuous and so Proposition 2.4.1
implies that the partial Euclidean Fourier transform f̃2,3 of the measure µ has
to be calculated in order to obtain the Fourier transform µ̂(π±λ). Let (µt)t�0

be a Gauss semigroup such that µ1 = µ and let ρ1 := σ1,1σ2,2 − σ1,2σ2,1,
ρ2 := σ1,1σ2,3 − σ1,3σ2,1, ρ3 := σ1,2σ2,3 − σ1,3σ2,2 by definition. In case
rank (B) = 3, the representation of (µt)t�0 by the process (Z(t))t�0 (see
Section 2.1) gives us

Z1(1) = a1 +
3∑

k=1

σ1,kWk(1), Z2(1) = a2 +
3∑

k=1

σ2,kWk(1),

Z3(1) = a3 +
3∑

k=1

σ3,kWk(1) +
3∑

k=1

(a2σ1,k − a1σ2,k)W ∗
k (1)

+ ρ1W1,2(1) + ρ2W1,3(1) + ρ3W2,3(1).
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This implies that the (full) Euclidean Fourier transform of the measure µ is

f̃(s̃1, s̃2, s̃3) = E exp
{

i
(
s̃1Z1(1) + s̃2Z2(1) + s̃3Z3(1)

)}
= exp

{
i(s̃1a1 + s̃2a2 + s̃3a3)

}
× E exp

{
i

( 3∑
k=1

(σ1,ks̃1 + σ2,ks̃2 + σ3,ks̃3)Wk(1)

+ s̃3ρ1W1,2(1) + s̃3ρ2W1,3(1) + s̃3ρ3W2,3(1)

+
3∑

k=1

(a2σ1,k − a1σ2,k)s̃3W
∗
k (1)
)}

.

Proposition 2.4.1 shows that we may suppose s̃3 	= 0. Using Proposition 2.5.3
and the facts that

d∑
k=1

(a2σ1,k − a1σ2,k)2 = b2,2a
2
1 − 2b1,2a1a2 + b1,1a

2
2, d = 1, 2, 3,

ρ1(a1σ2,3 − a2σ1,3) − ρ2(a1σ2,2 − a2σ1,2) + ρ3(a1σ2,1 − a2σ1,1) = 0,

δ2 = ρ2
1 + ρ2

2 + ρ2
3,

(2.5.10)

we get

f̃(s̃1, s̃2, s̃3) =
1

cosh(|s̃3|δ/2)
exp
{

i
(
s̃1a1 + s̃2a2 + s̃3a3

)
+

κ

2(1 + κ)
〈ξ̃, η̃〉2

δ2

− κ

2δ2

(
b2,2a

2
1 − 2b1,2a1a2 + b1,1a

2
2

)
+

1
2(1 + κ)

‖η̃‖2

}
,

where

κ :=
|s̃3|δ

2
coth

( |s̃3|δ
2

)
− 1, η̃ := − κ

δ2
(v1, v2, v3)� + iΣ�s̃

with

v1 := ρ1(a1σ2,2 − a2σ1,2) + ρ2(a1σ2,3 − a2σ1,3),
v2 := −ρ1(a1σ2,1 − a2σ1,1) + ρ3(a1σ2,3 − a2σ1,3),
v3 := −ρ2(a1σ2,1 − a2σ1,1) − ρ3(a1σ2,2 − a2σ1,2),
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and s̃ := (s̃1, s̃2, s̃3)�, ξ̃ := (ρ3,−ρ2, ρ1)�. It can be easily checked that

〈ξ̃, η̃〉2 = −s̃2
3det B,

‖η̃‖2 = −〈Bs̃, s̃〉 +
κ2

δ4
〈v, v〉 − 2i

κ

δ2

(
(s̃1a1 + s̃2a2)δ2 + s̃3(a1δ3 + a2δ1)

)
,

s̃�Bs̃ = b1,1

(
s̃1 +

b1,2s̃2 + b1,3s̃3

b1,1

)2

+
1

b1,1

[
s̃2

s̃3

]� [
δ2 δ1

δ1 δ4

] [
s̃2

s̃3

]
,

where δ3 := b1,3b2,2 − b1,2b2,3 and δ4 := b1,1b3,3 − b2
1,3. Using (2.4.1), the

identities above and (2.5.7), the partial Fourier transform f̃2,3 can be calculated
as follows

f̃2,3(s1, s̃2, s̃3) =

√
|s̃3|δ

2πb1,1 sinh(|s̃3|δ) exp
{
− 1

2(1 + κ)b1,1

[
s̃2

s̃3

]� [
δ2 δ1

δ1 δ4

] [
s̃2

s̃3

]
− κ

2(1 + κ)δ2
s̃2
3det B − κ

2(1 + κ)δ2
(b2,2a

2
1 − 2b1,2a1a2 + b1,1a

2
2)

− 1 + κ

2b1,1

(
a1

1 + κ
− s1

)2

− b1,2s̃2 + b1,3s̃3

b1,1

(
a1

1 + κ
− s1

)
+ i

(
s̃2a2 + s̃3a3 − κ

(1 + κ)δ2

(
s̃2a2δ

2 + s̃3(a1δ3 + a2δ1)
))}

.

Finally Proposition 2.4.1 implies that the Fourier transform µ̂(π±λ) is an
integral operator on L2(R),

[µ̂(π±λ)u](x) =
∫

R

K±λ(x, y)u(y) dy,

where K±λ has the form given in Theorem 2.3.1. �

2.6 Convolution of Gauss measures

The convolution of two probability measures µ′ and µ′′ on H is defined by

(µ′ ∗ µ′′)(A) :=
∫

H

µ′′(h−1A)µ′(dh),

for all Borel sets A in H.
First we give an explicit formula for the Fourier transform of a convolution

of two Gauss measures on H.
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2.6.1 Theorem. Let µ′ and µ′′ be Gauss measures on H with parameters
(a′, B′) and (a′′, B′′), respectively. Then we have

(µ′ ∗ µ′′)̂ (χα,β) = exp
{

i
(
(a′

1 + a′′
1)α + (a′

2 + a′′
2)β
)

− 1
2

(
(b′1,1 + b′′1,1)α

2+ 2(b′1,2 + b′′1,2)αβ + (b′2,2 + b′′2,2)β
2
)}

,

[
(µ′ ∗ µ′′)̂ (π±λ)u

]
(x) =

⎧⎪⎨⎪⎩
L±λ(x)u

(
x +

√
λ(a′

1 + a′′
1)
)

if b′1,1 = b′′1,1 = 0,∫
R

K±λ(x, y)u(y) dy otherwise,

where L±λ(x) is given by

exp
{
± i
(
λ
(
a′
3 + a′′

3 + (a′
1a

′
2 + a′′

1a′′
2)/2
)

+
√

λ(a′
2 + a′′

2)x + λa′
1a

′′
2

)
− λ

2
x2(b′2,2 + b′′2,2) −

λ3/2

2
x
(
2b′2,3 + 2b′′2,3 + a′

1b
′
2,2 + (2a′

1 + a′′
1)b′′2,2

)
− λ2

2

(
b′3,3 + b′′3,3 + a′

1b
′
2,3 + (2a′

1 + a′′
1)b′′2,3 +

(
(a′

1)
2b′2,2 + (a′′

1)2b′′2,2

)
/3

+ a′
1(a

′
1 + a′′

1)b′′2,2

)}
,

and K±λ(x, y) := C exp
{− 1

2z
�V z
}
, z := (x, y, 1)�, with

C :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C±λ(B′) if b′1,1 > 0 and b′′1,1 = 0,

C±λ(B′′) if b′1,1 = 0 and b′′1,1 > 0,

C±λ(B′)C±λ(B′′)
√

2π
d′2,2 + d′′1,1

if b′1,1 > 0 and b′′1,1 > 0,

(taking the square root with positive real part) where C±λ(B′), C±λ(B′′) are
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defined in Theorem 2.3.1 and

V :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D±λ(a′, B′)+

⎡⎢⎣ 0 0 −√
λa′′

1d′1,2

0 λb′′2,2 p2,3

−√
λa′′

1d′
1,2 p3,2 p3,3

⎤⎥⎦ if b′1,1 > 0 and b′′1,1 = 0,

⎡⎢⎣λb′2,2 0 q1,3

0 0
√

λa′
1d

′′
1,2

q3,1

√
λa′

1d
′′
1,2 q3,3

⎤⎥⎦+ D±λ(a′′, B′′) if b′1,1 = 0 and b′′1,1 > 0,

⎡⎢⎣d′
1,1 0 d′1,3

0 d′′2,2 d′′2,3

d′
3,1 d′′3,2 d′3,3 + d′′3,3

⎤⎥⎦− UU�
d′
2,2 + d′′1,1

if b′1,1 > 0 and b′′1,1 > 0,

where d′j,k := d±λ
j,k (a′, B′), d′′

j,k := d±λ
j,k (a′′, B′′) for 1 � j, k � 3 are defined

in Theorem 2.3.1 and

U := (d′
1,2, d

′′
2,1, d

′
3,2 + d′′

3,1)
�,

p2,3 := p3,2 := −
√

λa′′
1d′

2,2 + λ3/2(2b′′2,3 − a′′
1b′′2,2)/2 ∓ i

√
λa′′

2 ,

p3,3 := −
√

λa′′
1(d′2,3 + d′3,2) + λ(a′′

1)2d′2,2 + λ2
(
b′′3,3 − a′′

1b′′2,3 + (a′′
1)2b′′2,2/3

)
∓ iλ(2a′′

3 − a′′
1a′′

2),

q1,3 := q3,1 :=
√

λa′
1d

′′
1,1 + λ3/2(a′

1b
′
2,2 + 2b′2,3)/2 ∓ i

√
λa′

2,

q3,3 :=
√

λa′
1(d

′′
1,3 + d′′3,1) + λ(a′

1)
2d′′1,1 + λ2

(
b′3,3 + a′

1b
′
2,3 + (a′

1)
2b′2,2/3

)
∓ iλ(2a′

3 + a′
1a

′
2).

Proof. If b′1,1 > 0 and b′′1,1 > 0 then the assertion can be proved as in Pap
[45, Theorem 7.2]. If b′1,1 > 0 and b′′1,1 = 0 then by Theorem 2.3.1

[µ̂′(π±λ)u](x) =
∫

R

K ′
±λ(x, y)u(y) dy

with

K ′
±λ(x, y) := C±λ(B′) exp

{
−1

2
z�D±λ(a′, B′)z

}
, z = (x, y, 1)�,
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and

[µ̂′′(π±λ)u](y)

= exp
{
± i

√
λ

2
(√

λ(2a′′
3 + a′′

1a′′
2) + 2a′′

2y
)− λ2

6
(
3b′′3,3 + 3a′′

1b′′2,3 + (a′′
1)2b′′2,2

)
− λ3/2

2
(2b′′2,3 + a′′

1b′′2,2)y − λ

2
b′′2,2y

2

}
u(y +

√
λa′′

1).

Clearly we have[
(µ′ ∗ µ′′)̂ (π±λ)u

]
(x) = [µ̂′(π±λ)µ̂′′(π±λ)u](x) =

∫
R

K ′
±λ(x, y)[µ̂′′(π±λ)u](y) dy.

Using the formulas for µ̂′(π±λ) and µ̂′′(π±λ) an easy calculation yields that
K±λ has the form given in the theorem. The other cases b′1,1 = 0, b′′1,1 > 0
and b′1,1 = b′′1,1 = 0 can be handled in the same way. �

We need two lemmas concerning the parameters of a Gauss measure on H.

2.6.2 Lemma. Let us consider a Gauss semigroup (µt)t�0 such that µ1 is
a Gauss measure on H with parameters (a,B). Then we have

ai = EZi, i = 1, 2, 3, bi,j = Cov(Zi, Zj) if (i, j) 	= (3, 3),

and

b3,3 = VarZ3 − 1
4

(
VarZ1VarZ2 − Cov(Z1, Z2)2

)
− 1

12

(
VarZ2 (EZ1)2 − 2Cov(Z1, Z2) EZ1EZ2 + VarZ1 (EZ2)2

)
,

where the distribution of the random vector (Z1, Z2, Z3) with values in R
3 is

µ1.

Proof. Let Z(t) := (Z1(t), Z2(t), Z3(t)), t � 0 be given as in Section 2.1.
Taking the expectation of Z(1) yields that E(Zi(1)) = ai, i = 1, 2, 3. Using
again the definition of Z(1) and the fact that B = Σ · Σ� we get

Var(Z1(1)) =
d∑

k=1

d∑
�=1

σ1,kσ1,�E(Wk(1)W�(1)) =
d∑

k=1

σ2
1,k = b1,1.
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Similar arguments show Var(Z2(1)) = b2,2 and Cov(Z1(1), Z2(1)) = b1,2. We
also obtain

Cov(Z1(1), Z3(1))=E

[ d∑
i=1

σ1,iWi(1)
( d∑

k=1

σ3,kWk(1) +
d∑

k=1

(a2σ1,k − a1σ2,k)W ∗
k (1)
)

+
d∑

i=1

σ1,iWi(1)
∑

1�k<��d

(σ1,kσ2,� − σ1,�σ2,k)Wk,�(1)
]
,

which implies that

Cov(Z1(1), Z3(1)) =
d∑

k=1

σ1,kσ3,k +
d∑

i=1

d∑
k=1

σ1,i(a2σ1,k − a1σ2,k)E(Wi(1)W ∗
k (1))

+
d∑

i=1

∑
1�k<��d

σ1,i(σ1,kσ2,� − σ1,�σ2,k)E(Wi(1)Wk,�(1))

= b1,3,

since Wi(1), 1 � i � d are independent of each other and

E(Wi(1)W ∗
k (1)) = E(Wi(1)Wk,�(1)) = 0, 1 � i � d, 1 � k < 
 � d. (2.6.1)

Indeed,

E(Wi(1)W ∗
k (1)) =

1
2

lim
n→∞E

[
Wi(1)

n∑
j=1

(
Wk(s(n)

j−1)(s
(n)
j − s

(n)
j−1)

− s
(n)
j−1

(
Wk(s(n)

j ) − Wk(s(n)
j−1)
))]

,

E(Wi(1)Wk,�(1)) =
1
2

lim
n→∞E

[
Wi(1)

n∑
j=1

(
Wk(s(n)

j−1)
(
W�(s

(n)
j ) − W�(s

(n)
j−1)
)

− W�(s
(n)
j−1)
(
Wk(s(n)

j ) − Wk(s(n)
j−1)
))]

for all 1 � i � d, 1 � k < 
 � d, where {s(n)
j : j = 0, . . . , n} denotes a

partition of the interval [0, 1] such that max1�j�n(s(n)
j − s

(n)
j−1) tends to 0
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as n goes to infinity. We can obtain Cov(Z2(1), Z3(1)) = b2,3 in the same
way. Using again the form of Z(t), (2.6.1) and the facts that

Cov(Wi,j(1),Wk,�(1)) = 0 for all 1 � i < j � d, 1 � k < 
 � d, (i, j) 	= (k, 
),

Cov(W ∗
k (1),W ∗

� (1)) = 0 for all 1 � k, 
 � d, k 	= 
,

we get

Var(Z3(1)) =
d∑

k=1

σ2
3,k +

d∑
k=1

(a2σ1,k − a1σ2,k)2Var(W ∗
k (1))

+
∑

1�k<��d

(σ1,kσ2,� − σ1,�σ2,k)2Var(Wk,�(1)).

Lévy proved that the (Euclidean) Fourier transform of Wk,�(1), 1 � k < 
 � d
(i.e., the characteristic function of Wk,�(1)) is

E
(
eitWk,�(1)

)
=

1
cosh(t/2)

, 1 � k < 
 � d,

for all t ∈ R (this follows also from Proposition 2.5.3), so

Var(Wk,�(1)) = − d2

d t2

(
1

cosh(t/2)

) ∣∣∣∣
t=0

=
1
4
, 1 � k < 
 � d.

Clearly W ∗
k has a normal distribution with zero mean and with variance

Var(W ∗
k (1)) = 1

12 , 1 � k � d. Using (2.5.10) we have

Var(Z3(1)) = b3,3 +
1
4
(b1,1b2,2 − b2

1,2) +
1
12

(a2
1b2,2 − 2a1a2b1,2 + a2

2b1,1).

Hence the assertion. �

2.6.3 Lemma. Let µ′ and µ′′ be Gauss measures on H with parameters
(a′, B′) and (a′′, B′′), respectively. If the convolution µ′ ∗ µ′′ is a Gauss
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measure on H with parameters (a,B) then we have

a1 = a′
1 + a′′

1 , a2 = a′
2 + a′′

2 , a3 = a′
3 + a′′

3 +
1
2
(a′

1a
′′
2 − a′

2a
′′
1),

b1,1 = b′1,1 + b′′1,1, b1,2 = b′1,2 + b′′1,2, b2,2 = b′2,2 + b′′2,2,

b1,3 = b′1,3 + b′′1,3 +
1
2
(
a′′
2b′1,1 − a′′

1b′1,2 + a′
1b

′′
1,2 − a′

2b
′′
1,1

)
,

b2,3 = b′2,3 + b′′2,3 +
1
2
(
a′′
2b′1,2 − a′′

1b′2,2 + a′
1b

′′
2,2 − a′

2b
′′
1,2

)
,

b3,3 = b′3,3 + b′′3,3 + a′′
2b′1,3 − a′′

1b′2,3 + a′
1b

′′
2,3 − a′

2b
′′
1,3

+
1
6

(
− a′

1a
′′
1b′2,2 + (a′′

1)2b′2,2 + (a′
1)

2b′′2,2 − a′
1a

′′
2b′′2,2 + a′

1a
′′
2b′1,2 + a′′

1a′
2b

′
1,2

− 2a′′
1a′′

2b′1,2 − 2a′
1a

′
2b

′′
1,2 + a′

1a
′′
2b′′1,2 + a′′

1a′
2b

′′
1,2 − a′

2a
′′
2b′1,1 + (a′′

2)2b′1,1

+ (a′
2)

2b′′1,1 − a′
2a

′′
2b′′1,1

)
.

Proof. Let Z ′ = (Z ′
1, Z

′
2, Z

′
3)

� and Z ′′ = (Z ′′
1 , Z ′′

2 , Z ′′
3 )� be independent

random variables with values in R
3 such that the distribution of Z ′ is µ′

and the distribution of Z ′′ is µ′′, respectively. Then the convolution µ′ ∗ µ′′

is the distribution of the random variable(
Z ′

1 + Z ′′
1 , Z ′

2 + Z ′′
2 , Z ′

3 + Z ′′
3 +

1
2
(Z ′

1Z
′′
2 − Z ′′

1 Z ′
2)
)

=: (Z1, Z2, Z3).

Using Lemma 2.6.2 we get

a1 = EZ1 = EZ ′
1 + EZ ′′

1 = a′
1 + a′′

1 ,

a2 = EZ2 = EZ ′
2 + EZ ′′

2 = a′
2 + a′′

2 ,

a3 = EZ3 = EZ ′
3 + EZ ′′

3 +
1
2
(
EZ ′

1EZ ′′
2 − EZ ′′

1 EZ ′
2

)
= a′

3 + a′′
3 +

1
2
(a′

1a
′′
2 − a′

2a
′′
1),

since Z ′ and Z ′′ are independent. Similar arguments show that

b1,1 = VarZ1 = VarZ ′
1 + VarZ ′′

1 = b′1,1 + b′′1,1,

b2,2 = VarZ2 = VarZ ′
2 + VarZ ′′

2 = b′2,2 + b′′2,2,

b1,2 = Cov(Z1, Z2) = b′1,2 + b′′1,2.

We also have

b1,3 = Cov(Z1, Z3) = Cov(Z ′
1, Z

′
3) + Cov(Z ′′

1 , Z ′′
3 )

+
1
2

(
Cov(Z ′

1, Z
′
1Z

′′
2 ) − Cov(Z ′

1, Z
′
2Z

′′
1 ) + Cov(Z ′′

1 , Z ′
1Z

′′
2 ) − Cov(Z ′′

1 , Z ′′
1 Z ′

2)
)
.
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Using this and Lemma 2.6.2 the validity of the formula for b1,3 can be easily
checked. For example, we have

Cov(Z ′
1, Z

′
1Z

′′
2 ) = E

(
(Z ′

1)
2Z ′′

2

)−EZ ′
1E(Z ′

1Z
′′
2 )=
(
b′1,1+(a′

1)
2
)
a′′
2−(a′

1)
2a′′

2 = a′′
2b′1,1.

The validity of the formula for b2,3 can be proved in the same way. Lemma
2.6.2 implies that

VarZ3 = b3,3 +
1
4
(b1,1b2,2 − b2

1,2) +
1
12

(a2
1b2,2 − 2a1a2b1,2 + a2

2b1,1) = Cov(Z3, Z3)

= Cov(Z ′
3, Z

′
3) + Cov(Z ′′

3 , Z ′′
3 ) + Cov(Z ′

3, Z
′
1Z

′′
2 ) − Cov(Z ′

3, Z
′′
1 Z ′

2)

+ Cov(Z ′′
3 , Z ′

1Z
′′
2 ) − Cov(Z ′′

3 , Z ′′
1 Z ′

2) +
1
4

(
Cov(Z ′

1Z
′′
2 , Z ′

1Z
′′
2 )

− Cov(Z ′
1Z

′′
2 , Z ′′

1 Z ′
2) − Cov(Z ′′

1 Z ′
2, Z

′
1Z

′′
2 ) + Cov(Z ′′

1 Z ′
2, Z

′′
1 Z ′

2)
)
.

Using again Lemma 2.6.2 and substituting the formulas for b1,1, b1,2, b2,2, a1

and a2 into the formula above, an easy calculation shows the validity of the
formula for b3,3. �

Our aim is to give necessary and sufficient conditions for a convolution of
two Gauss measures to be a Gauss measure. Using the fact that the Fourier
transform is injective (i.e., if µ and ν are probability measures on H such
that µ̂(χα,β) = ν̂(χα,β) for all α, β ∈ R and µ̂(π±λ) = ν̂(π±λ) for all
λ > 0 then µ = ν), our task can be fulfilled in the following way. We
take the Fourier transform of the convolution of two Gauss measures µ′ and
µ′′ with parameters (a′, B′) and (a′′, B′′) at all one-dimensional and at
all Schrödinger representations and then we search for necessary and sufficient
conditions under which this Fourier transform has the form given in Theorem
2.3.1. First we sketch our approach to obtain necessary conditions. By Theorem
2.6.1, (µ′ ∗ µ′′)̂ (π±λ) is an integral operator for b′1,1 + b′′1,1 > 0, and it is a
product of certain shift and multiplication operators for b′1,1 + b′′1,1 = 0. If
the convolution µ′ ∗ µ′′ is a Gauss measure with parameters (a,B) then, by
Theorem 2.3.1, (µ′ ∗ µ′′)̂ (π±λ) is an integral operator for b1,1 > 0, and it is a
product of certain shift and multiplication operators for b1,1 = 0. By Lemma
2.6.3, we have b1,1 = b′1,1 + b′′1,1, hence b1,1 = 0 if and only if b′1,1 + b′′1,1 = 0.

Hence if b1,1 > 0, the integral operator (µ′ ∗ µ′′)̂ (π±λ) can be written with
the kernel function given in Theorem 2.3.1 and also with the kernel function
given in Theorem 2.6.1. In the next lemma we derive some consequences of this
observation.
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2.6.4 Lemma. Let µ′ and µ′′ be Gauss measures on H with parameters
(a′, B′) and (a′′, B′′), respectively. Suppose that µ′ ∗ µ′′ is a Gauss measure
on H with parameters a = (ai)1�i�3, B = (bj,k)1�j,k�3 such that b1,1 > 0.

Then d±λ
j,k = v±λ

j,k for all 1 � j, k � 3 with (j, k) 	= (3, 3) and for all λ > 0,
and

C±λ(B) exp
{
−1

2
d±λ
3,3

}
= C exp

{
−1

2
v±λ
3,3

}
, λ > 0,

where C±λ(B), d±λ
j,k := d±λ

j,k (a,B), 1 � j, k � 3 and C, V =: (v±λ
j,k )1�j,k�3

are defined in Theorems 2.3.1 and 2.6.1, respectively.

Proof. The Fourier transform (µ′ ∗ µ′′)̂ (π±λ) is a bounded linear operator on
L2(R), and since b1,1 > 0, Theorem 2.3.1 yields that it is an integral operator
on L2(R),[

(µ′ ∗ µ′′)̂ (π±λ)u
]
(x) =

∫
R

K±λ(x, y)u(y) dy, u ∈ L2(R), x ∈ R, (2.6.2)

where

K±λ(x, y) = C±λ(B) exp
{
−1

2
z�D±λ(a,B)z

}
, z = (x, y, 1)�.

Let us write d′j,k =: d±λ
j,k (a′, B′) and d′′

j,k =: d±λ
j,k (a′′, B′′) for 1 � j, k � 3 as

in Theorem 2.6.1. By Lemma 2.6.3, we have b1,1 = b′1,1 + b′′1,1, hence b1,1 > 0
implies that b′1,1 > 0 or b′′1,1 > 0. Using Theorem 2.6.1 we have[

(µ′ ∗ µ′′)̂ (π±λ)u
]
(x) =

∫
R

K̃±λ(x, y)u(y) dy, u ∈ L2(R), x ∈ R, (2.6.3)

where

K̃±λ(x, y) = C exp
{
−1

2
z�V z

}
, z = (x, y, 1)�.

Using (2.6.2) and (2.6.3), we have

0 =
∫

R

(
K±λ(x, y) − K̃±λ(x, y)

)
u(y) dy, u ∈ L2(R), x ∈ R.

We show that if∫
R

|K±λ(x, y)|2 dy < ∞,

∫
R

|K̃±λ(x, y)|2 dy < ∞, x ∈ R, (2.6.4)
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then K±λ(x, y) = K̃±λ(x, y), x, y ∈ R. Indeed, for all x ∈ R, the function
y ∈ R �→ K±λ(x, y) − K̃±λ(x, y) is in L2(R). Hence

0 =
∫

R

|K±λ(x, y) − K̃±λ(x, y)|2 dy, x ∈ R.

Then we get

∫
R

∫
R

|K±λ(x, y) − K̃±λ(x, y)|2 dx dy = 0,

which implies that K±λ(x, y) = K̃±λ(x, y) for almost every x, y ∈ R. Using
that K±λ and K̃±λ are continuous, we get K±λ(x, y) = K̃±λ(x, y), x, y ∈ R.

Now we check that (2.6.4) is satisfied. Using the forms of K±λ and K̃±λ, it
is enough to check that

∫
R

exp
{−z�Re (D±λ(a,B))z

}
dy < ∞, x ∈ R, (2.6.5)∫

R

exp
{−z�Re (V )z

}
dy < ∞, x ∈ R, (2.6.6)

where z = (x, y, 1)�. Here Re (D±λ(a,B)) and Re (V ) are real, symmetric ma-
trices. Let us consider an arbitrary real, symmetric matrix M = (mi,j)1�i,j�3

with m2,2 > 0. Then

z�Mz = m1,1x
2 + 2m1,2xy + m2,2y

2 + 2m1,3x + 2m2,3y + m3,3

=
(√

m2,2y +
1√
m2,2

(m1,2x + m2,3)
)2

− 1
m2,2

(m1,2x + m2,3)2

+ m1,1x
2 + 2m1,3x + m3,3.
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Hence∫
R

exp
{−z�Mz

}
dy = exp

{
1

m2,2
(m1,2x + m2,3)2 − m1,1x

2 − 2m1,3x − m3,3

}
×
∫

R

exp
{
−
(√

m2,2y +
1√
m2,2

(m1,2x + m2,3)
)2
}

dy

= exp
{

1
m2,2

(m1,2x + m2,3)2 − m1,1x
2 − 2m1,3x − m3,3

}
× 1√

2m2,2

∫
R

exp
{
− t2

2

}
dt

=
√

π

m2,2
exp

{
1

m2,2
(m1,2x + m2,3)2 − m1,1x

2 − 2m1,3x − m3,3

}
,

which yields that ∫
R

exp
{−z�Mz

}
dy < ∞, x ∈ R.

Hence in order to prove that (2.6.5) and (2.6.5) are valid we only have to check
that the (2, 2)-entries of the matrices Re (D±λ(a, B)) and Re (V ) are positive.
For example, if b′1,1 > 0 and b′′1,1 > 0, then

(
Re (V )

)
2,2

= Re (d′′2,2) − Re

(
(d′′2,1)

2

d′
2,2 + d′′

1,1

)
.

If b′1,1b
′
2,2 − (b′1,2)

2 = b′′1,1b
′′
2,2 − (b′′1,2)

2 = 0, then

(
Re (V )

)
2,2

=
1

λb′′1,1

− 1
λ2(b′′1,1)2

1
λb′1,1

+ 1
λb′′1,1(

1
λb′1,1

+ 1
λb′′1,1

)2

+
(

b′′1,2
b′′1,1

− b′1,2
b′1,1

)2 .

Hence
(
Re (V )

)
2,2

> 0 if and only if

λb′′1,1

⎡⎣( 1
λb′1,1

+
1

λb′′1,1

)2

+

(
b′′1,2

b′′1,1

− b′1,2

b′1,1

)2
⎤⎦ >

1
λb′1,1

+
1

λb′′1,1

.

A simple calculation shows that the latter inequality is equivalent to

b′′1,1

b′1,1

(
1

λb′1,1

+
1

λb′′1,1

)
+ λb′′1,1

(
b′′1,2

b′′1,1

− b′1,2

b′1,1

)2

> 0,
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which holds since b′1,1 > 0, b′′1,1 > 0 and λ > 0. The other cases can be
handled similarly. Hence (2.6.5) and (2.6.6) are satisfied, and then K±λ(x, y) =
K̃±λ(x, y), x, y ∈ R.

Using the forms of K±λ and K̃±λ, we get

C±λ(B) exp
{
−1

2
z�D±λ(a, B)z

}
= C exp

{
−1

2
z�V z

}
, z = (x, y, 1)�.

Putting z = (0, 0, 1)� gives

C±λ(B) exp
{
−1

2
d±λ
3,3

}
= C exp

{
−1

2
v±λ
3,3

}
. (2.6.7)

Substituting z = (1, 0, 1)� implies

C±λ(B) exp
{
−1

2
(
d±λ
1,1 + 2d±λ

1,3 + d±λ
3,3

)}
= C exp

{
−1

2
(
v±λ
1,1 + 2v±λ

1,3 + v±λ
3,3

)}
.

Using (2.6.7) we have

d±λ
1,1 + 2d±λ

1,3 = v±λ
1,1 + 2v±λ

1,3 . (2.6.8)

With z = (0, 1, 1)� a similar argument shows that

d±λ
2,2 + 2d±λ

2,3 = v±λ
2,2 + 2v±λ

2,3 . (2.6.9)

Putting z = (1, 1, 1)� and using (2.6.7) we obtain

d±λ
1,1 + 2d±λ

1,2 + 2d±λ
1,3 + d±λ

2,2 + 2d±λ
2,3

= v±λ
1,1 + 2v±λ

1,2 + 2v±λ
1,3 + v±λ

2,2 + 2v±λ
2,3 .

(2.6.10)

Using (2.6.8),(2.6.9) and (2.6.10), we have d±λ
1,2 = v±λ

1,2 . If z = (2, 0, 1)� then
using (2.6.7) we have

d±λ
1,1 + d±λ

1,3 = v±λ
1,1 + v±λ

1,3 .

Using (2.6.8) we have d±λ
1,3 = v±λ

1,3 . If z = (0, 2, 1)� then

d±λ
2,2 + d±λ

2,3 = v±λ
2,2 + v±λ

2,3 .

Using (2.6.9) we have d±λ
2,3 = v±λ

2,3 . �

Using Lemma 2.6.4 we derive necessary conditions for a convolution of two
Gauss measures to be a Gauss measure and then prove that these conditions
are also sufficient. The above train of thoughts will be used in the proof of
Proposition 2.6.6 and Theorem 2.6.7.
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2.6.5 Remark. By Lemma 2.4.3, it can be easily checked that a Gauss mea-
sure µ admits parameters (a,B) with bj,k = 0 for 1 � j, k � 3 with
(j, k) 	= (3, 3) and a1 = a2 = 0 if and only if the support of µ is contained
in the center of H.

Now we can derive a special case of Theorem 2.6.7 which will be used in the
proof of Theorem 2.6.7.

2.6.6 Proposition. If µ′′ is a Gauss measure on H with parameters (a′′, B′′)
such that the support of µ′′ is contained in the center of H then for all Gauss
measures µ′ on H with parameters (a′, B′), the convolutions µ′ ∗ µ′′

and µ′′ ∗ µ′ are Gauss measures with parameters (a′ + a′′, B′ + B′′), and
µ′ ∗ µ′′ = µ′′ ∗ µ′.

Proof. Let µ be a Gauss measure with parameters (a′ + a′′, B′ + B′′). By
the injectivity of the Fourier transform, in order to prove that µ′ ∗ µ′′ = µ is
valid, it is sufficient to show that (µ′ ∗ µ′′)̂ (χα,β) = µ̂(χα,β) for all α, β > 0
and (µ′ ∗ µ′′)̂ (π±λ) = µ̂(π±λ) for all λ > 0. Theorem 2.6.1 implies that
(µ′ ∗ µ′′)̂ (χα,β) = µ̂(χα,β) is valid for all one-dimensional representations χα,β ,
α, β ∈ R. Suppose that b′1,1 	= 0 and b′1,1b

′
2,2 − (b′1,2)

2 	= 0. By Theorem
2.6.1, to prove (µ′ ∗ µ′′)̂ (π±λ) = µ̂(π±λ) for all λ > 0 it is sufficient to show
that

D±λ(a′, B′) +

⎡⎣0 0 0
0 0 0
0 0 λ2b′′3,3 ∓ 2iλa′′

3

⎤⎦ = D±λ(a′ + a′′, B′ + B′′)

for all λ > 0. Since b′′j,k = 0 for 1 � j, k � 3 with (j, k) 	= (3, 3), we have
d±λ

j,k (a′ + a′′, B′ + B′′) = d±λ
j,k (a′, B′) for 1 � j, k � 3 with (j, k) 	= (3, 3). So

we have to check only that

d±λ
3,3(a′, B′) + λ2b′′3,3 ∓ 2iλa′′

3 = d±λ
3,3(a′ + a′′, B′ + B′′)

for all λ > 0. Theorem 2.3.1 implies this. The case b′1,1 	= 0, b′1,1b
′
2,2−(b′1,2)

2 =
0 can be proved similarly. Suppose that b′1,1 = b′′1,1 = 0. Using again Theorem
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2.3.1, we have[
µ̂′′(π±λ)u

]
(x) = exp

{
± iλa′′

3 − λ2

2
b′′3,3

}
u(x),[

µ̂′(π±λ)u
]
(x)

= exp
{
± i

√
λ

2
(√

λ(2a′
3 + a′

1a
′
2) + 2a′

2x
)− λ2

6
(
3b′3,3 + 3a′

1b
′
2,3 + (a′

1)
2b′2,2

)
− λ3/2

2
(
2b′2,3 + a′

1b
′
2,2

)
x − λ

2
b′2,2x

2

}
u(x +

√
λa′

1).

Theorem 2.3.1 implies that [µ̂(π±λ)u] (x) =
[
(µ′ ∗ µ′′)̂ (π±λ)u

]
(x) for all λ > 0,

u ∈ L2(R) and x ∈ R. Hence the assertion. �

Now we give necessary and sufficient conditions under which the convolution
of two Gauss measures is a Gauss measure.

2.6.7 Theorem. Let µ′ and µ′′ be Gauss measures on H with parameters
a′ = (a′

i)1�i�3, B′ = (b′j,k)1�j,k�3 and a′′ = (a′′
i )1�i�3, B′′ = (b′′j,k)1�j,k�3,

respectively. Then the convolution µ′ ∗ µ′′ is a Gauss measure on H if and
only if one of the following conditions holds:

(C̃1) b′1,1 > 0, δ′ > 0, b′′1,1 > 0, δ′′ > 0, and there exists � > 0 such that
b′′j,k = �b′j,k for 1 � j, k � 3 with (j, k) 	= (3, 3) and a′′

i = �a′
i for

i = 1, 2,

(C̃2) b′1,1 > 0, δ′ = 0, b′′1,1 > 0, δ′′ = 0, and there exists � > 0 such that
b′′j,k = �b′j,k for 1 � j, k � 2,

(C̃3) b′1,1 > 0, δ′ > 0, b′′j,k = 0 for 1 � j, k � 3 with (j, k) 	= (3, 3) and
a′′

i = 0 for i = 1, 2,

(C̃4) b′1,1 > 0, δ′ = 0, b′′j,k = 0 for 1 � j, k � 3 with (j, k) 	= (3, 3),

(C̃5) b′′1,1 > 0, δ′′ > 0, b′j,k = 0 for 1 � j, k � 3 with (j, k) 	= (3, 3) and
a′

i = 0 for i = 1, 2,

(C̃6) b′′1,1 > 0, δ′′ = 0, b′j,k = 0 for 1 � j, k � 3 with (j, k) 	= (3, 3),

(C̃7) b′1,1 = 0 and b′′1,1 = 0,
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where δ′ :=
√

b′1,1b
′
2,2 − (b′1,2)2 and δ′′ :=

√
b′′1,1b

′′
2,2 − (b′′1,2)2. In cases (C̃1),

(C̃3), (C̃5) the parameters of the convolution µ′ ∗ µ′′ are (a′ + a′′, B′ + B′′),
but in the other cases it does not hold necessarily (compare with Lemma 2.6.3).

Proof. First we show necessity, i.e., if µ′∗µ′′ is a Gauss measure then one of the
conditions (C̃1) − (C̃7) holds. Let us denote the parameters of the convolution
µ′ ∗ µ′′ by (a,B) and we write dj,k := d±λ

j,k (a,B), d′j,k := d±λ
j,k (a′, B′) and

d′′j,k := d±λ
j,k (a′′, B′′) for 1 � j, k � 3 as in Theorem 2.6.1. If b′1,1 > 0 and

b′′1,1 > 0, we can easily prove that

b1,2

b1,1
=

b′1,2

b′1,1

=
b′′1,2

b′′1,1

,
b2,2

b1,1
=

b′2,2

b′1,1

=
b′′2,2

b′′1,1

,

and d′2,2 + d′′
1,1 ∈ R as in Pap [45, Theorem 7.3]. This implies that there exists

� > 0 such that b′′j,k = �b′j,k for 1 � j, k � 2, i.e., (C̃2) holds.

When b′1,1 > 0, δ′ > 0 and b′′1,1 > 0, δ′′ > 0, we show that (C̃1) holds.
To derive this it is sufficient to show that b′′1,3 = �b′1,3, b′′2,3 = �b′2,3, a′′

1 = �a′
1

and a′′
2 = �a′

2. Using Theorem 2.6.1 we obtain

(i) (d′
2,2 + d′′

1,1)(Re d′1,3 − Re d1,3) = d′1,2(Re d′′1,3 + Re d′2,3),

(ii) (d′
2,2 + d′′

1,1)(Re d′′2,3 − Re d2,3) = d′′1,2(Re d′′1,3 + Re d′2,3),

(iii) (d′
2,2 + d′′

1,1)(Im d′1,3 − Im d1,3) = d′1,2(Im d′′1,3 + Im d′2,3),

(iv) (d′
2,2 + d′′

1,1)(Im d′2,3 − Im d2,3) = d′′1,2(Im d′′1,3 + Im d′2,3).

Let us denote δ′1 := b′1,1b
′
2,3 − b′1,2b

′
1,3, δ′′1 := b′′1,1b

′′
2,3 − b′′1,2b

′′
1,3, δ′2 := a′

1b
′
1,2 −

a′
2b

′
1,1, δ′′2 := a′′

1b′′1,2 − a′′
2b′′1,1. Summing up (iii) and (iv) we have

(d′
2,2 +d′′1,1)(Im d′1,3 + Im d′′

2,3− Im d1,3− Im d2,3) = (d′1,2 +d′′
1,2)(Im d′′1,3 + Im d′2,3).
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Using the definition of dj,k, d′j,k, d′′j,k (1 � j, k � 3) we get

(
coth(λδ′) + coth(λδ′′)

)(b′1,3

b′1,1

+
δ′2

λb′1,1δ
′ coth(λδ′/2)

− b′′1,3

b′′1,1

+
δ′′2

λb′′1,1δ
′′ coth(λδ′′/2)

− 2δ2

λb1,1δ coth(λδ/2)

)
= −
(

1
sinh(λδ′)

+
1

sinh(λδ′′)

)(
b′′1,3

b′′1,1

+
δ′′2

λb′′1,1δ
′′ coth(λδ′′/2)

− b′1,3

b′1,1

+
δ′2

λb′1,1δ
′ coth(λδ′/2)

)
.

An easy calculation shows that(
b′1,3

b′1,1

− b′′1,3

b′′1,1

)
λ sinh(λδ′/2) sinh(λδ′′/2)

=
(

1
δ′ + δ′′

(
a1

b1,2

b1,1
− a2

)
− 1

δ′
(
a′
1

b′1,2

b′1,1

− a′
2

))
sinh(λδ′/2) cosh(λδ′′/2)

+
(

1
δ′ + δ′′

(
a1

b1,2

b1,1
− a2

)
− 1

δ′′
(
a′′
1

b′′1,2

b′′1,1

− a′′
2

))
cosh(λδ′/2) sinh(λδ′′/2)

for all λ > 0. We show that the functions

λ sinh(λδ′/2) sinh(λδ′′/2), sinh(λδ′/2) cosh(λδ′′/2), cosh(λδ′/2) sinh(λδ′′/2),

(λ > 0) are linearly independent. We have

λ sinh(λδ′/2) sinh(λδ′′/2)

=
λ

4
(
eλ(δ′+δ′′)/2 − eλ(δ′′−δ′)/2 − eλ(δ′−δ′′)/2 + e−λ(δ′+δ′′)/2

)
,

sinh(λδ′/2) cosh(λδ′′/2)

=
1
4
(
eλ(δ′+δ′′)/2 + eλ(δ′−δ′′)/2 − eλ(δ′′−δ′)/2 − e−λ(δ′+δ′′)/2

)
,

cosh(λδ′/2) sinh(λδ′′/2)

=
1
4
(
eλ(δ′+δ′′)/2 − eλ(δ′−δ′′)/2 + eλ(δ′′−δ′)/2 − e−λ(δ′+δ′′)/2

)
.

The linear independence of these functions follows from the following fact: if
c1, . . . , cn are pairwise different complex numbers and Q1, . . . , Qn are complex
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polynomials such that
∑n

j=1 Qj(λ)ecjλ = 0 for all λ > 0 then Q1 = · · · =
Qn = 0. Hence we get

b′1,3

b′1,1

− b′′1,3

b′′1,1

= 0,

1
δ′ + δ′′

(
a1

b1,2

b1,1
− a2

)
=

1
δ′

(
a′
1

b′1,2

b′1,1

− a′
2

)
=

1
δ′′

(
a′′
1

b′′1,2

b′′1,1

− a′′
2

)
.

(2.6.11)

Subtracting the equation (i) from (ii) we get

(d′
2,2 +d′′1,1)(Re d′1,3−Re d′′

2,3−Re d1,3 +Re d2,3) = (d′1,2−d′′
1,2)(Re d′′1,3 +Re d′2,3).

Using again the definition of dj,k, d′j,k, d′′
j,k (1 � j, k � 3) we obtain

(
coth(λδ′) + coth(λδ′′)

)( a′
1√

λb′1,1

+
a′′
1√

λb′′1,1

− 2a1√
λb1,1

+

√
λδ′1

b′1,1δ
′ coth(λδ′/2)

−
√

λδ′′1
b′′1,1δ

′′ coth(λδ′′/2)

)
=
(

1
sinh(λδ′′)

− 1
sinh(λδ′)

)(
a′′
1√

λb′′1,1

− a′
1√

λb′1,1

+

√
λδ′1

b′1,1δ
′ coth(λδ′/2)

+

√
λδ′′1

b′′1,1δ
′′ coth(λδ′′/2)

)
.

A simple calculation shows that

λ
(
1 + tanh(λδ′/2) tanh(λδ′′/2)

)( δ′1
δ′b′1,1

− δ′′1
δ′′b′′1,1

)
=
(
coth(λδ′) + coth(λδ′′)

)(
2

a1

b1,1
− a′

1

b′1,1

− a′′
1

b′′1,1

)
+
(

1
sinh(λδ′)

− 1
sinh(λδ′′)

)(
a′
1

b′1,1

− a′′
1

b′′1,1

)
.

It can be easily checked that the functions λ
(
1 + tanh(λδ′/2) tanh(λδ′′/2)

)
,

coth(λδ′) + coth(λδ′′) and (sinh(λδ′))−1 − (sinh(λδ′′))−1 (λ > 0) are linearly
independent. Hence we have

a′
1

b′1,1

− a′′
1

b′′1,1

= 0, 2
a1

b1,1
− a′

1

b′1,1

− a′′
1

b′′1,1

= 0,
δ′1

δ′b′1,1

=
δ′′1

δ′′b′′1,1

. (2.6.12)
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Taking into account (2.6.11) and (2.6.12), we conclude that (C̃1) holds. Using
Lemma 2.6.3 it turns out that in this case a = a′ + a′′ and B = B′ + B′′.

If b′1,1 > 0, δ′ > 0 and b′′1,1 > 0, δ′′ = 0 we show that µ′ ∗µ′′ can not be
a Gauss measure. Our proof goes along the lines of the proof of Theorem 7.3 in
Pap [45]. Since the proof given in Pap [45] contains a mistake we write down
the details. Suppose that, on the contrary, µ′ ∗ µ′′ is a Gauss measure on H

with parameters (a,B). By Lemma 2.6.3, we have b1,1 = b′1,1 + b′′1,1, hence
b1,1 > 0. By Theorem 2.3.1, we have (µ′ ∗ µ′′)̂ (π±λ) is an integral operator.
Using Theorem 2.6.1 we obtain

d1,1 = d′
1,1 −

(d′1,2)
2

d′2,2 + d′′
1,1

, (2.6.13)

d2,2 = d′′
2,2 −

(d′′1,2)
2

d′2,2 + d′′
1,1

. (2.6.14)

We show that d′
2,2 + d′′1,1 ∈ R and b′1,2

b′1,1
= b′′1,2

b′′1,1
. (The derivations of these two

facts are not correct in the proof of Theorem 7.3 in Pap [45].) By Theorem
2.3.1, we have

Im (d′
2,2 + d′′

1,1) = ∓
(

b′1,2

b′1,1

− b′′1,2

b′′1,1

)
= −Im (d′1,1 + d′′2,2).

Using that Im (d1,1 + d2,2) = 0, by (2.6.13) and (2.6.14) we get

0 = ±
(

b′1,2

b′1,1

− b′′1,2

b′′1,1

)
− Im

(
(d′1,2)

2 + (d′′
1,2)

2

d′2,2 + d′′
1,1

)

= ±
(

b′1,2

b′1,1

− b′′1,2

b′′1,1

)
∓ (d′

1,2)
2 + (d′′1,2)

2

|d′
2,2 + d′′

1,1|2
(

b′1,2

b′1,1

− b′′1,2

b′′1,1

)
.

Hence (
|d′2,2 + d′′1,1|2 − (d′1,2)

2 − (d′′
1,2)

2
)(b′1,2

b′1,1

− b′′1,2

b′′1,1

)
= 0.
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Then

|d′2,2 + d′′1,1|2 − (d′1,2)
2 − (d′′

1,2)
2 =

∣∣∣∣∣δ′ coth(λδ′) ∓ ib′1,2

b′1,1

+
λ−1 ± ib′′1,2

b′′1,1

∣∣∣∣∣
2

− (δ′)2

(b′1,1)2 sinh2(λδ′)
− 1

λ2(b′′1,1)2

=
(δ′)2

(b′1,1)2
+

2δ′ coth(λδ′)
λb′1,1b

′′
1,1

+

(
b′1,2

b′1,1

− b′′1,2

b′′1,1

)2

> 0.

This yields b′1,2
b′1,1

= b′′1,2
b′′1,1

. Particularly, d′
2,2 + d′′

1,1 ∈ R. Rewrite (2.6.13) and
(2.6.14) in the form

(d′
1,1 − d1,1)(d′2,2 + d′′1,1) = (d′

1,2)
2,

(d′′
2,2 − d2,2)(d′2,2 + d′′1,1) = (d′′

1,2)
2.

It follows that

(d′
1,1 − d′′

2,2 − d1,1 + d2,2)(d′2,2 + d′′1,1) = (d′
1,2)

2 − (d′′1,2)
2.

Using that d′2,2 + d′′1,1 ∈ R and Re (d1,1 − d2,2) = 0, taking real parts we get

(Re (d′1,1) − Re (d′′2,2))(d
′
2,2 + d′′1,1) = (d′1,2)

2 − (d′′
1,2)

2.

Thus(
δ′ coth(λδ′)

b′1,1

− 1
λb′′1,1

)(
δ′ coth(λδ′)

b′1,1

+
1

λb′′1,1

)
=

(δ′)2

(b′1,1)2 sinh2(λδ′)
− 1

λ2(b′′1,1)2
.

From this we conclude

(δ′)2 coth2(λδ′)
(b′1,1)2

− 1
λ2(b′′1,1)2

=
(δ′)2

(b′1,1)2 sinh2(λδ′)
− 1

λ2(b′′1,1)2
,

and it follows that cosh(λδ′) = 1. Hence δ′ = 0, which leads to a contradiction.

If b′1,1 > 0, δ′ > 0, and b′′1,1 = 0 we show that (C̃3) holds. The symmetry
and positive semi-definiteness of the matrix B′′ imply b′′1,2 = b′′1,3 = 0. Lemma
2.6.3 yields that b1,1 = b′1,1 + b′′1,1 > 0. Hence Theorem 2.3.1 implies that
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(µ′ ∗ µ′′)̂ (π±λ) is an integral operator and Im (d1,1 + d2,2) = 0 holds. By
Theorems 2.3.1 and 2.6.1 we obtain Im (d1,1 + d2,2) = Im (d′1,1 + d′

2,2 + λb′′2,2) =
Im (λb′′2,2). Thus b′′2,2 = 0, which implies that b′′2,3 = 0 and δ = δ′ > 0.
Using again Theorem 2.6.1 we get

d1,3 = d′
1,3 −

√
λa′′

1d′1,2, (2.6.15)

d2,3 = d′
2,3 −

√
λa′′

1d′2,2 ∓ i
√

λa′′
2 . (2.6.16)

Taking the real part of the difference of equations (2.6.15) and (2.6.16) we have

2
(

a1

b1,1
− a′

1

b′1,1

)
= λδ′

a′′
1

b′1,1

(
1 + cosh(λδ′)

sinh(λδ′)

)
. (2.6.17)

Since (2.6.17) is valid for all λ > 0, we have a′′
1 = 0. Taking the imaginary

part of (2.6.16) and using the fact that a′′
1 = 0 we get

a′′
2

(
1 − 1

λδ′ coth(λδ′/2)

)
=

b1,3

b1,1
− b′1,3

b′1,1

= 0. (2.6.18)

Since (2.6.18) is valid for all λ > 0, we get a′′
2 = 0, so (C̃3) holds. If b′1,1 > 0,

δ′ = 0 and b′′1,1 = 0 a similar argument shows that (C̃4) holds.
The aim of the following discussion is to show the converse. Suppose that

(C̃1) holds. We prove that the convolution µ′ ∗ µ′′ is a Gauss measure
on H with parameters (a′ + a′′, B′ + B′′). By Theorem 2.6.1, the Fourier
transform (µ′ ∗ µ′′)̂ (χα,β) equals the Fourier transform of a Gauss measure with
parameters (a′+a′′, B′+B′′) at the representation χα,β for all α, β > 0. Since
b′1,1 + b′′1,1 > 0, the Fourier transform (µ′ ∗ µ′′)̂ (π±λ) is an integral operator
on L2(R) with kernel function K±λ given in Theorem 2.6.1 for all λ > 0. It
is enough to show that C = C±λ(B′ + B′′) and V = D±λ(a′ + a′′, B′ + B′′) =
(d±λ

j,k (a′ + a′′, B′ + B′′))1�j,k�3. We have

d′
2,2 + d′′

1,1 =
δ′ sinh

(
λ(1 + �)δ′

)
b′1,1 sinh(λδ′) sinh(λ�δ′)

,

hence using Theorem 2.6.1 we obtain

C =

√
δ′

2πb′1,1 sinh(λ(1 + �)δ′)
= C±λ(B′ + B′′).
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Let (µt)t�0 be a Gauss semigroup such that µ1 is a Gauss measure with
parameters (a′, B′). By the help of the semigroup property we have µ1 ∗µ
 =
µ1+
. Taking into account that a′

3 and b′3,3 appear only in d±λ
3,3(a′, B′)

(see Theorem 2.3.1) and the fact that µt is a Gauss measure with parameters
(ta′, tB′) for all t � 0, Theorem 2.3.1 and Theorem 2.6.1 give us

vj,k = d±λ
j,k (a′ + a′′, B′ + B′′).

for 1 � j, k � 3 with (j, k) 	= (3, 3). So we have to check only that v3,3 =
d±λ
3,3(a′ + a′′, B′ + B′′). By the help of Theorem 2.6.1 we get

v3,3 = d′3,3 + d′′3,3 −
1

d′
2,2 + d′′1,1

(d′
3,2 + d′′

3,1)
2. (2.6.19)

Calculating the real and imaginary part of (2.6.19) one can easily check that
v3,3 = d±λ

3,3(a′ + a′′, B′ + B′′) is valid.

Now suppose that (C̃2) holds. Using the parameters of µ′ and µ′′, define
a vector a = (ai)1�i�3 and a matrix B = (bi,j)1�i,j�3, as in Lemma 2.6.3.
We show that the convolution µ := µ′ ∗ µ′′ is a Gauss measure on H with
parameters (a,B). An easy calculation shows that the Fourier transforms of
µ′ ∗ µ′′ and µ at the one-dimensional representations coincide. Concerning
the Fourier transforms at the Schrödinger representations, as in case of (C̃1),
it is enough to show that

C±λ(B) = C±λ(B′)C±λ(B′′)

√
2π

d′2,2 + d′′1,1

and V = D±λ(a′ + a′′, B′ + B′′). Using Theorem 2.3.1 we have

1√
2πλb′1,1

1√
2πλb′′1,1

√√√√ 2π

1
λb′1,1

+ 1
λb′′1,1

± i
(

b′′1,2
b′′1,1

− b′1,2
b′1,1

) =
1√

2πλ(b′1,1 + b′′1,1)

=
1√

2πλb1,1

,

since b′′1,2/b′′1,1 = b′1,2/b′1,1 = �. Using similar arguments one can also easily
check that V = D±λ(a′ + a′′, B′ + B′′) holds. We note that in this case the
parameters of µ′ ∗ µ′′ is not the sum of the parameters of µ′ and µ′′.

Suppose that (C̃3) holds. Proposition 2.6.6 gives us that the convolution
µ′ ∗µ′′ is a Gauss measure on H with parameters (a′ +a′′, B′ +B′′). In cases
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(C̃4), (C̃5), (C̃6), (C̃7) we can argue as in cases (C̃2), (C̃3). Consequently, the
proof is complete. �

For the proof of Theorem 2.2.1 we need the following lemma about the
support of a Gauss measure on H.

2.6.8 Lemma. Let µ be a Gauss measure on H with parameters (a,B)
such that b1,1b2,2 − b2

1,2 = 0. Let Y0 ∈ H be defined as in Section 2.1. If
rank (B) = 2 then supp (µ) = exp

(
Y0 + R · U + R · X3

)
, where

U :=

{
b1,1X1 + b2,1X2 if b1,1 > 0,
b2,2X2 if b1,1 = 0 and b2,2 > 0.

If rank (B) = 1 then supp (µ) = exp
(
Y0 + R · U + R · [Y0, U ]

)
, where

U :=

⎧⎪⎨⎪⎩
b1,1X1 + b2,1X2 + b3,1X3 if b1,1 > 0,
b2,2X2 + b3,2X3 if b1,1 = 0 and b2,2 > 0,
b3,3X3 if b1,1 = b2,2 = 0 and b3,3 > 0.

If rank (B) = 0 then supp (µ) = exp(Y0).

Proof. We apply (iii) − (v) of Lemma 2.4.3. If rank (B) = 2 then one can
check that L(Y1, Y2) = L(U,X3). If rank (B) = 1 then L(Y1) = L(U). �

Proof of Theorem 2.2.1. First we prove that if one of the conditions (C1)
and (C2) holds then one of the conditions (C̃1) − (C̃7) in Theorem 2.6.7 is
valid, which implies that the convolution µ′ ∗ µ′′ is a Gauss measure on H.

Suppose that (C1) holds. Lemma 2.4.3 implies δ′ = δ′′ = 0.

If b′1,1 = b′′1,1 = 0 then (C̃7) holds.

If b′1,1 > 0, δ′ = 0 and b′′1,1 = 0, δ′′ = 0 we show that (C̃4) holds. It
is sufficient to show that b′′2,2 = 0. Suppose that, on the contrary, b′′2,2 	= 0.
When rank (B′) = rank (B′′) = 2, by the help of Lemma 2.6.8, we get

supp (µ′) = exp
(
Y ′

0 +R ·U ′+R ·X3

)
, supp (µ′′) = exp

(
Y ′′

0 +R ·U ′′+R ·X3

)
,

where U ′ = b′1,1X1 + b′2,1X2 and U ′′ = b′′2,2X2. Since in this case supp (µ′)
and supp (µ′′) are contained in “Euclidean cosets” of the same 2-dimensional
Abelian subgroup of H, we obtain that L(U ′, X3) = L(U ′′, X3). From this
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we conclude b′1,1 = 0, which leads to a contradiction. When rank (B′) = 1,
rank (B′′) = 2 and in other cases one can argue similarly, so (C̃4) holds.

If b′1,1 = 0, δ′ = 0 and b′′1,1 > 0, δ′′ = 0 the same argument shows that
(C̃6) holds.

If b′1,1 > 0, δ′ = 0 and b′′1,1 > 0, δ′′ = 0 we show that (C̃2) holds. When
rank (B′) = rank (B′′) = 2, Lemma 2.6.8 implies that

supp (µ′) = exp
(
Y ′

0 +R ·U ′+R ·X3

)
, supp (µ′′) = exp

(
Y ′′

0 +R ·U ′′+R ·X3

)
,

where U ′ = b′1,1X1 + b′2,1X2 and U ′′ = b′′1,1X1 + b′′2,1X2. Condition (C1)
yields that L(U ′, X3) = L(U ′′, X3), hence we have b′′2,1b

′
1,1 = b′2,1b

′′
1,1. Since

δ′ = δ′′ = 0 we get b′′2,2b
′
1,1 = b′2,2b

′′
1,1. Thus (C̃2) holds with � := b′′1,1/b′1,1.

When rank (B′) = rank (B′′) = 1, Lemma 2.6.8 implies that

supp (µ′) = exp
(
Y ′

0 + R · U ′ + R · [Y ′
0 , U ′]

)
,

supp (µ′′) = exp
(
Y ′′

0 + R · U ′′ + R · [Y ′′
0 , U ′′]

)
,

where U ′ = b′1,1X1 + b′2,1X2 + b′3,1X3 and U ′′ = b′′1,1X1 + b′′2,1X2 + b′′3,1X3.
Condition (C1) yields L(U ′, [Y ′

0 , U ′]) = L(U ′′, [Y ′′
0 , U ′′]), hence L(b′1,1X1 +

b′2,1X2) = L(b′′1,1X1 + b′′2,1X2). It can be easily checked that (C̃2) holds
with � := b′′1,1/b′1,1. When rank (B′) = 1, rank (B′′) = 2 or rank (B′) = 2,
rank (B′′) = 1 we also have (C̃2) holds.

Suppose that (C2) holds (i.e., µ′ = µt′ , µ′′ = µt′′ ∗ ν or µ′ = µt′ ∗ ν,
µ′′ = µt′′ with appropriate nonnegative real numbers t′, t′′ and a Gauss
measure ν with support contained in the center of H). Then we have

µ′ ∗ µ′′ = µt′ ∗ µt′′ ∗ ν = µt′+t′′ ∗ ν or µ′ ∗ µ′′ = µt′ ∗ ν ∗ µt′′ = µt′+t′′ ∗ ν.

Remark 2.6.5 and Proposition 2.6.6 yield that µ′ ∗ µ′′ is a Gauss measure on
H.

Conversely, suppose that µ′ ∗ µ′′ is a Gauss measure on H. Then by
Theorem 2.6.7, one of the conditions (C̃1) − (C̃7) holds. We show that then
one of the conditions (C1) and (C2) is valid.

Suppose that (C̃1) holds. If b′′3,3 − �b′3,3 � 0 then let (α′
t)t�0 be a Gauss

semigroup such that α′
1 = µ′ and let ν be a Gauss measure on H with

parameters (aν , Bν) such that

Bν :=

⎡⎣0 0 0
0 0 0
0 0 b′′3,3 − �b′3,3

⎤⎦ , aν :=

⎡⎣ 0
0

a′′
3 − �a′

3

⎤⎦ .
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Remark 2.6.5 and Proposition 2.6.6 imply that µ′′ = α′

 ∗ν, hence (C2) holds.

If b′′3,3 − �b′3,3 < 0 then let (α′′
t )t�0 be a Gauss semigroup such that α′′

1 = µ′′

and let ν be a Gauss measure on H with parameters (aν , Bν) such that

Bν :=

⎡⎣0 0 0
0 0 0
0 0 b′3,3 − �−1b′′3,3

⎤⎦ , aν :=

⎡⎣ 0
0

a′
3 − �−1a′

3

⎤⎦ .

Remark 2.6.5 and Proposition 2.6.6 imply that µ′ = α′′
1/
 ∗ ν, hence (C2)

holds.

Suppose that (C̃2) holds. Lemma 2.6.8 implies that

supp (µ′) ⊂ exp
(
Y ′

0 +R ·U ′+R ·X3

)
, supp (µ′′) ⊂ exp

(
Y ′′

0 +R ·U ′′+R ·X3

)
,

where U ′ = b′1,1X1 + b′2,1X2 and U ′′ = b′′1,1X1 + b′′2,1X2. Condition (C̃2)
gives us that L(U ′) = L(U ′′), hence (C1) holds.

Suppose that (C̃3) holds. Let (α′
t)t�0 be a Gauss semigroup such that

α′
1 = µ′ and let ν be a Gauss measure with parameters (aν , Bν) such that

Bν :=

⎡⎣0 0 0
0 0 0
0 0 b′′3,3

⎤⎦ , aν :=

⎡⎣ 0
0
a′′
3

⎤⎦ .

Then we have µ′′ = ν = α′
0 ∗ ν, so (C2) holds.

Suppose that (C̃4) holds. By the help of Lemma 2.6.8, we have

supp (µ′) ⊂ exp
(
Y ′

0 + R · U ′ + R · X3

)
, supp (µ′′) ⊂ exp

(
Y ′′

0 + R · U ′′),
where U ′ = b′1,1X1 + b′2,1X2 and U ′′ = b′′3,3X3. Hence the support of µ′ is
contained in exp

(
Y ′

0 + R ·U ′ + R ·X3

)
and the support of µ′′ is contained in

exp
(
Y ′′

0 + R ·U ′ + R ·X3

)
, so (C1) holds. Similar arguments show that when

(C̃5) holds then (C2) is valid, and when (C̃6) holds then (C1) is valid.

Suppose that (C̃7) holds. Using Lemma 2.6.8, we have

supp (µ′) ⊂ exp
(
Y ′

0 +R ·U ′+R ·X3

)
, supp (µ′′) ⊂ exp

(
Y ′′

0 +R ·U ′′+R ·X3

)
,

where U ′ = b′2,2X2 and U ′′ = b′′2,2X2, so (C1) holds. �
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2.6.9 Remark. In case of (C1) in Theorem 2.2.1, µ′ and µ′′ are Gauss
measures also in the “Euclidean sense” (i.e., considering them as measures on
R

3), but the parameters of the convolution µ′ ∗ µ′′ are not necessarily the
sum of the parameters of µ′ and µ′′. In case of (C2) in Theorem 2.2.1, µ′

and µ′′ are not necessarily Gauss measures in the ”Euclidean sense”, but the
parameters of the convolution µ′ ∗µ′′ are the sum of the parameters of µ′ and
µ′′.

2.6.10 Remark. It is natural to ask whether we can prove our results for non-
symmetric Gauss measures using only the results for symmetric Gauss measures.
First we recall that a measure ν on H is called symmetric if ν = ν�, where
ν�(B) := ν(B−1) for all Borel subsets B of H. The measure ν� is called
the adjoint of ν. We check that a Gauss measure µ on H with parameters
(a,B) is symmetric if and only if a = 0. First we suppose that µ is a
symmetric Gauss measure on H with parameters (a, B). Then there exists
a unique Gauss semigroup (µt)t�0 such that µ1 = µ and the canonical
representation of the infinitesimal generator of (µt)t�0 is (a, B, 0) (for the
canonical representation, see Heyer [30, Theorem 4.3.1]). Then the canonical
representation of the infinitesimal generator of the adjoint semigroup (µ�

t )t�0

is (−a,B, 0) (see Siebert [53, Section 3]). Moreover, µ�
1 = µ� = µ. By Lemma

6.2.6 in Heyer [30], (µ�
t )t�0 is a Gauss semigroup. Using that a Gauss measure

on H can be embedded only in a uniquely determined Gauss semigroup, we get
µ�

t = µt for all t � 0. Hence the canonical representations of the infinitesimal
generators of (µt)t�0 and (µ�

t )t�0 coincide, which implies a = 0.

Conversely, let µ be a Gauss measure on H with parameters (0, B). Then
there exists a unique Gauss semigroup (µt)t�0 such that µ1 = µ and the
canonical representation of the infinitesimal generator of (µt)t�0 is (0, B, 0).
Then the infinitesimal generator of the adjoint semigroup (µ�

t )t�0 admits
canonical representation (0, B, 0). By Theorem 4.2.5 in Heyer [30], we get
µ�

t = µt for all t � 0, which implies µ�
1 = µ1 = µ. Since µ�

1 = µ�, we get
µ = µ�, i.e., µ is symmetric.

The answer to our original question concerning symmetric and non-
symmetric Gauss measures on H is negative. The reason for this is that
in case of H the convolution of a symmetric Gauss measure and a Dirac mea-
sure is in general not a Gauss measure. For example, if a = (1, 0, 0) ∈ H and
(µt)t�0 is a Gauss semigroup with infinitesimal generator X̃2

1 + X̃2
2 , then

using Theorem 2.2.1 and Lemma 2.4.3, one can easily check that µ1 ∗ δa is not
a Gauss measure on H.
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2.6.11 Remark. We note that if the convolution of two Gauss measures on H

is again a Gauss measure on H, then the corresponding infinitesimal generators
not necessarily commute, nor even if the infinitesimal generator corresponding
to the convolution is the sum of the original infinitesimal generators. Now we
give an illuminating counterexample. Let µ′ and µ′′ be Gauss measures on
H such that the corresponding Gauss semigroups have infinitesimal generators

Ñ ′ =
1
2
(X̃1 + X̃2)2 and Ñ ′′ =

1
2
(X̃1 + X̃2)2 + X̃1X̃3, respectively.

Using Theorem 2.6.7 and Lemma 2.6.3, µ′ ∗ µ′′ is a symmetric Gauss measure
on H such that the corresponding Gauss semigroup has infinitesimal generator
Ñ ′ + Ñ ′′. But Ñ ′ and Ñ ′′ do not commute. Indeed, Ñ ′Ñ ′′ − Ñ ′′Ñ ′ =
−(X̃1 + X̃2)X̃2

3 	= 0.
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Chapter 3

Gauss measures on the
affine group

In this chapter it is shown that a Gauss measure on the affine group (i.e., the
group of affine mappings on R) can be embedded only in a uniquely determined
Gauss semigroup (see Theorem 3.3.1). The starting point of the proof is the
fact that a Gauss Lévy process in the affine group satisfies a certain stochastic
differential equation (SDE). Theorem 3.2.1 contains the solution of this SDE.
Moreover, we give a complete description of supports of Gauss measures on the
affine group using Siebert’s support formula (see Theorem 3.4.1).

The results of this chapter appeared in our paper [5].

3.1 Motivation

A probability measure µ on a locally compact group G is called continu-
ously embeddable if there exists a continuous convolution semigroup (µt)t�0

of probability measures on G (i.e., µs ∗ µt = µs+t for all s, t � 0, and
µt

w−→ µ0 = δe as t ↓ 0) satisfying µ1 = µ. (Here δe denotes the Dirac
measure concentrated on the unit element e of G.)

For a general locally compact group G one does not know whether the em-
bedding convolution semigroup of a continuously embeddable probability mea-
sure on G is unique. If (µt)t�0 and (νt)t�0 are convolution semigroups of
probability measures on (Rd, +) then it is well-known that µ1 = ν1 implies

59
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µt = νt for all t � 0. The same statement holds for locally compact Abelian
groups without non-trivial compact subgroups (cf. Heyer [30, Theorem 3.5.15]).
But for example in case of the one-dimensional torus group {eix : −π � x < π}
(which is compact), the Dirac measure δe−π is continuously embeddable into
the continuous convolution semigroups (δe−tπ )t�0 and (δe−3tπ )t�0, which do
not coincide (their infinitesimal generators are different). The question of unic-
ity of embedding into stable and semi-stable semigroups on simply connected
nilpotent Lie groups has been studied by Drisch and Gallardo [18], Nobel [43]
and see also a detailed discussion by Hazod and Siebert [28, Section 2.6]. Neuen-
schwander [41] studied Poisson semigroups on simply connected nilpotent Lie
groups.

By a Gauss measure on a locally compact group G we mean a probability
measure µ on G for which there exists a Gauss semigroup (µt)t�0 (i.e., a
continuous convolution semigroup (µt)t�0 for which limt↓0 t−1µt(G \ U) = 0
for all Borel neighbourhoods U of e) such that µ = µ1.

3.1.1 Remark. We note that the definition of a Gauss semigroup slightly dif-
fers from the Definition 6.2.1 in Heyer [30], since in our definition, given a Gauss
semigroup (µt)t�0, the measure µt can be a Dirac measure for any t > 0.
More precisely, one can prove the following assertion. Suppose that G is second
countable, (µt)t�0 is a continuous convolution semigroup on G and there
exists some t0 > 0 such that µt0 is a Dirac measure on G. Then there exists
a continuous one-parameter subsemigroup (xt)t�0 of G such that µt = δxt

for all t � 0.

Pap [44] proved that a Gauss measure on a simply connected nilpotent Lie
group has a unique embedding semigroup among Gauss semigroups. We prove
the same result for the 2-dimensional affine group, i.e., the group of affine map-
pings on R, which is a Lie group but not nilpotent (see Theorem 3.3.1). Our
method, which is related to the idea of Pap [44], consists of recursively calculat-
ing the first and second moments. In order to prove the uniqueness of embedding
we consider a Gauss Lévy process (ξ(t))t�0 in the affine group related to a
Gauss semigroup, and we show that (ξ(t))t�0 satisfies a certain stochastic
differential equation (SDE). Theorem 3.2.1 contains the solution of this SDE.
The question about the existence of a non-Gauss embedding semigroup of a
Gauss measure remains still open. In the special case of simply connected step
2-nilpotent Lie groups Neuenschwander [42] showed that a Gauss measure does
not admit a non-Gauss embedding semigroup.

We will also investigate the support of µt for t > 0 where (µt)t�0 forms a
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Gauss semigroup on the affine group. Siebert [54, Theorem 2] showed that given
a Gauss semigroup (µt)t�0 on a connected Lie group G, either the measures
µt are absolutely continuous with respect to a left or right (and then necessarily
to any left or right) Haar measure on G for all t > 0, or the measures µt are
singular with respect to a left or right (and then necessarily to any left or right)
Haar measure on G for all t > 0. In the first case we say that (µt)t�0 is
an absolutely continuous semigroup on G, otherwise it is called singular. For
any absolutely continuous Gauss semigroup (µt)t�0 on a connected Abelian
Lie group G, we have supp (µt) = G for all t > 0, where supp (µ) denotes
the support of the measure µ. McCrudden [37] showed that for any absolutely
continuous Gauss semigroup (µt)t�0 on any connected nilpotent Lie group G,
we have supp (µt) = G for all t > 0. But in the solvable case the situation
becomes more complicated. Siebert [54] showed that on the affine group there
exists an absolutely continuous Gauss semigroup (µt)t�0 with supp (µt) 	= G
for every t > 0. We will give a complete description of supports for Gauss
semigroups on the affine group using Siebert’s support formula (see Theorem
3.4.1). See further investigations on other Lie groups by McCrudden [36], [37],
[38], Kelly-Lyth and McCrudden [35].

3.2 Gauss Lévy processes

Let G be a second countable locally compact T0-topological group. A stochas-
tic process (ξ(t))t�0 (on a probability space (Ω,A,P)) with values in G has
stationary independent left-increments if for all 0 � t1 � t2 � · · · � tn, n ∈ N,
the random elements ξ(t1), ξ(t1)−1ξ(t2), . . . , ξ(tn−1)−1ξ(tn) are independent
and the distribution of ξ(s)−1ξ(t) depends only on t−s for all 0 � s � t. Now
we recall the notion of stochastic continuity of a stochastic process (ξ(t))t�0

with values in G. By Hewitt–Ross [29, Theorem 8.3], G admits a left-invariant
metric ρ compatible with its topology. We say that (ξ(t))t�0 is stochastically
continuous if for all t0 � 0 and for all tn � 0, n ∈ N, with limn→∞ tn = t0
we have

lim
n→∞P

(
ρ(ξ(tn), ξ(t0)) > ε

)
= 0, ∀ ε > 0.

If (ξ(t))t�0 has stationary independent left-increments then the left-invariant
property of ρ implies that (ξ(t))t�0 is stochastically continuous if and only
if for all tn � 0, n ∈ N, with limn→∞ tn = 0 we have

lim
n→∞P

(
ρ(ξ(tn), e) > ε

)
= 0, ∀ ε > 0.
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By Vakhania–Tarieladze–Chobanyan [59, p. 91], this latter condition is equiva-
lent to the fact that the sequence ξ(tn), n ∈ N, is convergent in distribution to
the Dirac measure δe. Hence the definition of stochastic continuity of a process
with values in G having stationary independent left-increments is independent
of the choice of left-invariant metrics on G (compatible with the topology of
G). By a Lévy process (ξ(t))t�0 (on a probability space (Ω,A,P)) with values
in G we mean a stochastically continuous process with stationary independent
left-increments such that ξ(0) = e and regular in the sense that for almost
every ω ∈ Ω the path t �→ ξ(t)(ω) is right continuous on [0,∞) and has
left-hand limits on (0,∞).

To a Lévy process (ξ(t))t�0 with values in G one can correspond a unique
continuous convolution semigroup (µt)t�0 such that the distribution of ξ(t) is
µt for all t � 0. Conversely, for a continuous convolution semigroup (µt)t�0

there exist a probability space (Ω,A,P) and a Lévy process (ξ(t))t�0 on
(Ω,A,P) with values in G such that the distribution of ξ(t) is µt for all
t � 0 (see Heyer [30, p. 334–335]). Moreover, the distribution of ξ(s)−1ξ(t)
is µt−s for all 0 � s � t.

By a Gauss Lévy process we mean a Lévy process (ξ(t))t�0 for which the
corresponding continuous convolution semigroup (µt)t�0 is a Gauss semigroup,
i.e.,

0 = lim
t↓0

1
t
µt(G \ U) = lim

t↓0
1
t
P(ξ(t) 	∈ U)

for all Borel neighbourhoods U of e. Corollary 2 of Theorem 2 in Siebert
[55] implies that for a Gauss Lévy process (ξ(t))t�0 the path t �→ ξ(t)(ω) is
continuous on [0,∞) for almost every ω ∈ Ω. Moreover, given a continuous
convolution semigroup, if each of its associated Lévy processes has continuous
paths with probability one then the convolution semigroup in question is a Gauss
semigroup. Hence a Gauss Lévy process with values in G can also be called a
Brownian motion in G.

By the infinitesimal generator of a Lévy process (ξ(t))t�0 we mean the
infinitesimal generator of the continuous convolution semigroup (µt)t�0 cor-
responding to it, i.e.,

(Ñf)(x) := lim
t↓0

1
t

∫
G

(f(xy) − f(x)) µt(dy) = lim
t↓0

1
t
E(f(xξ(t)) − f(x)), x ∈ G,

for suitable functions f : G → R. (The infinitesimal generator is always defined
for infinitely differentiable functions f : G → R with compact support.)

Roynette [47] gave a recursive formula for constructing Gauss Lévy processes
in an arbitrary nilpotent Lie group by the help of a corresponding Gauss Lévy
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process in the corresponding Lie algebra, that is, by some independent Wiener
processes in R. The formula involves Itô integrals and reflects the group law.
In Feinsilver and Schott [21], [22] one can find an operator approach (applicable
for other Lie groups and based on limit theorems) which can be used to obtain
similar explicit formulas. Applebaum and Kunita [1] studied Lévy processes
(ξ(t))t�0 with values in a connected Lie group G. They showed that for all
bounded twice continuously differentiable functions f : G → R having limit
at infinity, the process (f(ξ(t)))t�0 satisfies a stochastic differential equation
connected to the infinitesimal generator of the process (ξ(t))t�0.

In case of the affine group it turns out that a Gauss Lévy process (ξ(t))t�0

can be constructed by the help of one standard Wiener process, or two indepen-
dent standard Wiener processes. The formula involves again Itô integrals and
reflects the group law as in the case of nilpotent Lie groups (see, e.g., Roynette
[47]).

Concerning Gauss Lévy processes and Gauss measures on the affine group F
(the group of affine mappings on R) we can restrict ourselves to the group G of
direction preserving affine mappings on R. Indeed, the connected component
of the identity e of F coincides with G, hence, for a Gauss semigroup
(µt)t�0 of probability measures on F , the support of µt is contained in
G for all t � 0 (see Heyer [30, Theorem 6.2.3]). Hence the restriction of a
Gauss measure on F onto G is a Gauss measure on G. Similarly, a Gauss
Lévy process with values in F can be considered as a Gauss Lévy process with
values in G.

The 2-dimensional affine group F can be realized as the matrix group

F =
{(

a b
0 1

)
: a 	= 0, b ∈ R

}
.

Here the notion ”a matrix group” means a closed subgroup of the group GL2(R)
of all invertible, 2 × 2 real matrices. Endowing GL2(R) with the topology
induced on it by the natural topology of R

4, it is a Lie group. By Baker [3,
Theorem 7.24] each matrix group is a Lie subgroup of GL2(R). Hence F is
a Lie group and it is not connected, not compact and not nilpotent.

The group G of direction preserving affine mappings on R can be realized
as the matrix group

G =
{(

a b
0 1

)
: a > 0, b ∈ R

}
.

Then G is a connected solvable Lie group which is not nilpotent.
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The Lie algebra G of G can be realized as the matrix algebra

G =
{(

α β
0 0

)
: α, β ∈ R

}
.

Moreover, the Lie algebra of F coincides with G. Consider the basis {e1, e2}
of G defined by

e1 :=
(

1 0
0 0

)
, e2 :=

(
0 1
0 0

)
.

Then we have the commutation relation [e1, e2] = e1e2 − e2e1 = e2.
Lévy processes with values in a Lie group can be given by their infinites-

imal generators containing left-invariant differential operators (see Heyer [30,
Theorems 4.2.4 and 4.2.5]). If f : F → R is continuously differentiable then,
for every X ∈ G, we can introduce the left-invariant differential operator X̃
defined by

X̃f(g) := lim
t→0

f(g exp(tX)) − f(g)
t

, g ∈ F.

Here exp denotes the exponential mapping from G into F. Note that the
mapping X ∈ G �→ X̃ is injective and linear (see, e.g., Corwin–Greenleaf [15,
p. 110]). It is known that a Lévy process (ξ(t))t�0 in F is a Gauss Lévy
process if and only if its infinitesimal generator admits the form

Ñ =
2∑

i=1

aiẽi +
1
2

2∑
i=1

2∑
j=1

bi,j ẽiẽj , (3.2.1)

where a1, a2 ∈ R and B = (bi,j)1�i,j�2 is a real symmetric positive semidef-
inite matrix. This easily follows from Theorem 4.2.4 and Lemma 6.2.6 in Heyer
[30] and from the fact that given a Gauss Lévy process (ξ(t))t�0 in F such
that the distribution of ξ(t0) is a Dirac measure on F for some t0 > 0 then
there exist a1, a2 ∈ R such that the distribution of ξ(t) is δexp(ta1e1+ta2e2)

for all t � 0.
The infinitesimal generator Ñ can be written in the form

Ñ = Ỹ +
1
2

r∑
k=1

X̃2
k , (3.2.2)

where

Y =
2∑

i=1

aiei, Xj =
2∑

i=1

σi,jei, 1 � j � r � 2,
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where Σ = (σi,j) is a 2 × r matrix such that B = Σ · Σ� and rankΣ =
rankB = r.

3.2.1 Theorem. Let (ξ(t))t�0 be a Gauss Lévy process with values in the
affine group F with infinitesimal generator (3.2.1). Then

ξ(t) =

⎛⎝eZ1(t)

∫ t

0

eZ1(s) d(Z2(s) + b1,2s/2)

0 1

⎞⎠ , t � 0,

where

Zi(t) = ait +
r∑

j=1

σi,jWj(t), i = 1, 2,

and (W1(t))t�0 and (W2(t))t�0 are independent standard Wiener processes
in R.

Proof. If bi,j = 0 for all 1 � i, j � 2 then one can check that the process

x(t) := exp(ta1e1 + ta2e2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
ea1t a2

ea1t−1
a1

0 1

)
if a1 	= 0,(

1 a2t

0 1

)
if a1 = 0,

t � 0,

is a Gauss Lévy process in F with infinitesimal generator Ñ =
∑2

i=1 aiẽi.
If bi,j 	= 0 for some 1 � i, j � 2 then, applying Theorem 3.1 in Applebaum

and Kunita [1], (ξ(t))t�0 can be represented as a solution of the SDE

ξ(t) = I +
2∑

i=1

∫ t

0

aiξ(s)ei ds +
1
2

2∑
i,j=1

∫ t

0

bi,jξ(s)eiej ds +
2∑

i=1

∫ t

0

ξ(s)ei dBi(s),

where I is the 2 × 2 identity matrix, and B(t) = (B1(t), B2(t)) is a Gauss
Lévy process in R

2 with zero mean and covariances Cov(Bi(t), Bj(t)) = tbi,j ,
1 � i, j � 2.

Writing ξ(t) in the form

ξ(t) =
(

ξ1(t) ξ2(t)
0 1

)
,
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and using e2
1 = e1, e2

2 = 0, e1e2 = e2, e2e1 = 0 we obtain the SDE

dξ1(t) =
(

a1 +
b1,1

2

)
ξ1(t) dt + ξ1(t) dB1(t),

dξ2(t) =
(

a2 +
b1,2

2

)
ξ1(t) dt + ξ1(t) dB2(t).

(3.2.3)

Clearly B1(t) =
∑r

j=1 σ1,jWj(t) and B2(t) =
∑r

j=1 σ2,jWj(t), where
(W1(t))t�0 and (W2(t))t�0 are independent standard Wiener processes in
R. By a simple application of Itô’s formula we obtain

ξ1(t) = e(a1+b1,1/2)t+ r
j=1 σ1,jWj(t)− r

j=1 σ2
1,jt/2 = eZ1(t).

since B = Σ · Σ� implies
∑r

j=1 σ2
1,j = b1,1. Moreover,

ξ2(t) =
∫ t

0

ξ1(s) d

((
a2+

b1,2

2

)
s+

r∑
j=1

σ2,jWj(s)
)

=
∫ t

0

eZ1(s) d(Z2(s)+b1,2s/2).

Hence the assertion. �

3.2.2 Remark. The process (Z1(t), Z2(t))t�0 is a Gauss Lévy process in R
2

with infinitesimal generator

2∑
i=1

ai∂i +
1
2

2∑
i,j=1

bi,j∂i∂j ,

i.e., replacing in (3.2.1) the differential operators ẽ1 and ẽ2 by ∂1 and ∂2,
respectively.

3.3 Uniqueness of embedding

3.3.1 Theorem. Let (µt)t�0 and (νt)t�0 be Gauss semigroups on the
affine group F . If µ1 = ν1 then we have µt = νt for all t � 0. In other
words, a Gauss measure on the affine group can be embedded only in a uniquely
determined Gauss semigroup.

Proof. It is sufficient to show that by the help of the measure µ1 we can
construct the whole Gauss semigroup (µt)t�0. A convolution semigroup is
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uniquely determined by its infinitesimal generator, hence it is sufficient to con-
struct the infinitesimal generator of (µt)t�0. Consider a Gauss Lévy process
(ξ(t))t�0 which corresponds to (µt)t�0. We will show that the distribution of
ξ(1) uniquely determines the parameters a1, a2, b1,1, b1,2 and b2,2 of the in-
finitesimal generator (3.2.1). It turns out that the knowledge of the expectation
vector and covariance matrix of ξ(1) uniquely defines these parameters.

First we calculate the expectation of ξ(t). Taking the expectation of the
integrated forms of the stochastic differential equations (3.2.3) we obtain

Eξ1(t) = 1 +
(

a1 +
b1,1

2

)∫ t

0

Eξ1(s) ds,

Eξ2(t) =
(

a2 +
b1,2

2

)∫ t

0

Eξ1(s) ds.

Indeed, we check that

E

(∫ t

0

ξ1(s) dB1(s)
)

= 0, E

(∫ t

0

ξ1(s) dB2(s)
)

= 0, t � 0.

For this it is enough to show that (see, e.g., Karatzas–Shreve [34, Definition
3.2.9])

E

(∫ t

0

ξ2
1(s) ds

)
< ∞, t � 0. (3.3.1)

If ξ1(t) = eW (t), t � 0, where (W (t))t�0 is a standard Wiener process in R,
then

E

(∫ t

0

e2W (s) ds

)
=
∫ t

0

E(e2W (s)) ds =
∫ t

0

exp
{

4s

2

}
ds =

1
2
(e2t − 1) < ∞.

The general case can be handled similarly.
It follows that

Eξ1(t) = e(a1+b1,1/2)t, (3.3.2)

Eξ2(t) =
(

a2 +
b1,2

2

)∫ t

0

e(a1+b1,1/2)s ds. (3.3.3)

Using Itô’s formula we have the following stochastic differential equations

dξ2
1(t) = 2ξ1(t) dξ1(t) + d[ξ1, ξ1]t,

dξ2
2(t) = 2ξ2(t) dξ2(t) + d[ξ2, ξ2]t,

d(ξ1(t)ξ2(t)) = ξ2(t) dξ1(t) + ξ1(t) dξ2(t) + d[ξ1, ξ2]t,
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where [ . , . ]t denotes the cross quadratic variation of continuous semimartin-
gales.
Taking into account (3.2.3) and the facts that Bi(t) =

∑r
j=1 σi,jWj(t), i = 1, 2

and B = ΣΣ� we obtain

dξ2
1(t) = 2ξ1(t) dξ1(t) + b1,1ξ

2
1(t) dt,

dξ2
2(t) = 2ξ2(t) dξ2(t) + b2,2ξ

2
1(t) dt,

d(ξ1(t)ξ2(t)) = ξ2(t) dξ1(t) + ξ1(t) dξ2(t) + b1,2ξ
2
1(t) dt.

Taking the expectation of the integrated forms of these equations we get

Eξ2
1(t) = 1 + 2 (a1 + b1,1)

∫ t

0

Eξ2
1(s) ds,

Eξ2
2(t) = b2,2

∫ t

0

Eξ2
1(s) ds + (2a2 + b1,2)

∫ t

0

E(ξ1(s)ξ2(s)) ds,

E(ξ1(t)ξ2(t)) =
(

a2 +
3
2
b1,2

)∫ t

0

Eξ2
1(s) ds

+
(

a1 +
b1,1

2

)∫ t

0

E(ξ1(s)ξ2(s)) ds.

(3.3.4)

Indeed, we check that for all t � 0

E

(∫ t

0

ξ2
1(s) dB1(s)

)
= E

(∫ t

0

ξ2
1(s) dB2(s)

)
= 0,

E

(∫ t

0

ξ1(s)ξ2(s) dB1(s)
)

= E

(∫ t

0

ξ1(s)ξ2(s) dB2(s)
)

= 0.

For this it is enough to show that for all t � 0,

E

(∫ t

0

ξ4
1(s) ds

)
< ∞, (3.3.5)

E

(∫ t

0

ξ2
1(s)ξ2

2(s) ds

)
< ∞. (3.3.6)

The proof of (3.3.5) is similar to the proof of (3.3.1). If

ξ1(t) = eW1(t), t � 0,

ξ2(t) =
∫ t

0

eW1(s) dW2(s), t � 0,
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where W1 and W2 are independent standard Wiener processes in R, then,
by Karatzas–Shreve [34, Proposition 3.2.10],

E(ξ2
1(s)ξ2

2(s)) = E

(
e2W1(s)

(∫ s

0

eW1(u) dW2(u)
)2
)

= E

(∫ s

0

eW1(s)+W1(u) dW2(u)
)2

=
∫ s

0

E(e2(W1(s)+W1(u))) du.

Hence

E

(∫ t

0

ξ2
1(s)ξ2

2(s) ds

)
=
∫ t

0

∫ s

0

E(e2(W1(s)+W1(u))) du ds < ∞, (3.3.7)

since the function (s, u) ∈ [0, t]× [0, t] �→ E(e2(W1(s)+W1(u))) is continuous. For
the general case it is enough to check that

E

(∫ t

0

e2W1(s)

(∫ s

0

eW1(u) d(W2(u) + u)
)2

ds

)
< ∞.

Indeed, for all s ∈ [0, t](∫ s

0

eW1(u) d(W2(u) + u)
)2

� 2
(∫ s

0

eW1(u) dW2(u)
)2

+ 2
(∫ s

0

eW1(u) du

)2

,

and hence using (3.3.7) it is enough to check that

E

(∫ t

0

e2W1(s)

(∫ s

0

eW1(u) du

)2

ds

)
=
∫ t

0

E

(∫ s

0

eW1(s)+W1(u) du

)2

ds < ∞.

For this we show that the function

s ∈ [0, t] �→ E

(∫ s

0

eW1(s)+W1(u) du

)2

(3.3.8)

is bounded. Indeed, for all 0 � s � t,

E

(∫ s

0

eW1(s)+W1(u) du

)2

=
∫ s

0

∫ s

0

E
(
e2W1(s)+W1(u)+W1(v)

)
du dv.

Since the function (u, v) ∈ [0, s]×[0, s] �→ E
(
e2W1(s)+W1(u)+W1(v)

)
is continuous

and hence bounded for all s ∈ [0, t], the function in (3.3.8) is bounded. Hence
(3.3.6) is valid.
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It can be easily checked that the unique solutions of the equations (3.3.4)
are the following

Eξ2
1(t) = e2(a1+b1,1)t , (3.3.9)

E(ξ1(t)ξ2(t)) =
(

a2 +
3
2
b1,2

)
e(a1+b1,1/2)t

∫ t

0

e(a1+3b1,1/2)s ds, (3.3.10)

Eξ2
2(t) = (2a2 + b1,2)

(
a2 +

3
2
b1,2

)∫ t

0

e(a1+b1,1/2)s

(∫ s

0

e(a1+3b1,1/2)u du

)
ds

+ b2,2

∫ t

0

e2(a1+b1,1)s ds. (3.3.11)

Using (3.3.2) and (3.3.9) with t = 1 we have{
a1 + b1,1

2 = log Eξ1(1),
2(a1 + b1,1) = log Eξ2

1(1).

This system of linear equations has a unique solution for a1 and b1,1. Substi-
tuting a1 and b1,1 into (3.3.3) and (3.3.10) with t = 1 we obtain a system of
linear equations for a2 and b1,2 which has again a unique solution. Equation
(3.3.11) yields that b2,2 is unique, too. So the infinitesimal generator of the
Gauss semigroup (µt)t�0 is uniquely determined by µ1. �

3.4 Support of a Gauss measure

Let (µt)t�0 be a Gauss semigroup on the affine group F with infinitesimal
generator Ñ . Siebert [54] showed that according to the structure of Ñ we
can distinguish five different types of Gauss semigroups:

(i) Ñ = Ỹ + 1
2 (X̃2

1 + X̃2
2 ) with X1 and X2 linearly independent. Then

the semigroup is absolutely continuous, it has a strictly positive analytic
density and supp (µt) = G for all t > 0. Moreover, rank (B) = 2.

(ii) Ñ = Ỹ + 1
2X̃2

1 with Y and X1 linearly independent and [X1, e2] 	= 0.
Then the semigroup is absolutely continuous. Moreover, rank (B) = 1.

(iii) Ñ = Ỹ + 1
2X̃2

1 with Y and X1 linearly independent and [X1, e2] = 0.
Then the semigroup is singular. Moreover, rank (B) = 1.
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(iv) Ñ = Ỹ + 1
2X̃2

1 with Y and X1 linearly dependent. Then the semigroup
is singular and is supported by the proper closed subgroup exp (R · X1).
Moreover, rank (B) = 1.

(v) Ñ = Ỹ . Then the semigroup is singular and consists of Dirac measures,
namely, µt = δexp(tY ) for all t � 0.

Our aim is to determine the supports of Gauss semigroups of type (ii) and
(iii). In special cases (when Ñ = ẽ2 + ẽ2

1 and Ñ = ẽ1 + ẽ2
2 ) Siebert [54] has

already described them.
Let M denote the Lie subalgebra generated by {Xi : 1 � i � r}. We will

use Siebert’s support formula

supp (µt) =
∞⋃

n=1

(
M exp

tY

n

)n

for all t > 0,

where M is the analytic subgroup of G corresponding to M (see Siebert
[54]).

3.4.1 Theorem. Let (µt)t�0 be a Gauss semigroup on the affine group F

with infinitesimal generator Ñ .

(a) If Ñ is of type (ii) then for all t > 0, the measure µt is supported by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{(
a b

0 1

)
: a > 0, b � b2,1

b1,1
(a − 1)

}
if a2b1,1 − a1b2,1 > 0,

{(
a b

0 1

)
: a > 0, b � b2,1

b1,1
(a − 1)

}
if a2b1,1 − a1b2,1 < 0.

(b) If Ñ is of type (iii) then the measure µt is supported by
exp(ta1e1) exp(R · e2) for all t > 0.

Proof. In both cases we have r = 1 and Ñ = Ỹ + 1
2X̃2

1 , where Y = a1e1+a2e2

and X1 = σ1,1e1 + σ2,1e2.
(a). Now σ1,1e2 = [X1, e2] 	= 0, and Y and X1 are linearly independent,

hence a1σ2,1 − a2σ1,1 	= 0, which implies a1b2,1 − a2b1,1 	= 0.
First consider the case a1 = 0. By induction,(

α β
0 0

)k

=
(

αk αk−1β
0 0

)
, k = 1, 2, . . . ,
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hence

exp
{(

α β
0 0

)}
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝eα β · eα − 1
α

0 1

⎞⎠ , for α 	= 0,

(
1 β

0 1

)
, for α = 0.

Using this formula it can be easily checked by induction that the elements of
the set

(
M exp tY

n

)n have the form S = (si,j)1�i,j�2, where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s1,1 = e(α1+···+αn)σ1,1 ,

s1,2 = t
na2e

(α1+···+αn)σ1,1 + σ2,1
σ1,1

(
e(α1+···+αn)σ1,1 − 1

)
+ t

na2

(
eα1σ1,1 + · · · + e(α1+···+αn−1)σ1,1

)
,

s2,1 = 0,

s2,2 = 1,

and α1, . . . , αn ∈ R, n ∈ N can be arbitrary. The term eα1σ1,1 + · · · +
e(α1+···+αn−1)σ1,1 attends every positive number. Hence s1,2 � t

na2s1,1 +
σ2,1
σ1,1

(s1,1 − 1) if a2 > 0, and s1,2 � t
na2s1,1 + σ2,1

σ1,1
(s1,1 − 1) if a2 < 0.

Using Siebert’s supports formula and the facts that σ2,1
σ1,1

= b2,1
b1,1

and b1,1 > 0
we obtain the assertion.

If a1 	= 0 then again by induction we obtain that the elements of the set(
M exp tY

n

)n have the form S = (si,j)1�i,j�2, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1,1 = e(α1+···+αn)σ1,1+ta1 ,

s1,2 =
(
a2

1−e−ta1/n

a1
+ σ2,1

σ1,1
e−ta1/n

)
e(α1+···+αn)σ1,1+ta1 − σ2,1

σ1,1

+ eta1/n−1
a1

(
a2 − σ2,1

σ1,1
a1

)(
eα1σ1,1 + · · · + e(α1+···+αn−1)σ1,1+(n−2)ta1/n

)
,

s2,1 = 0,

s2,2 = 1,

and α1, . . . , αn ∈ R, n ∈ N can be arbitrary. The term eα1σ1,1 + · · · +
e(α1+···+αn−1)σ1,1+(n−2)ta1/n attends every positive number. Using the fact
that eta1/n−1

a1
> 0 we have

s1,2 �
(

a2
1 − e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n

)
s1,1 − σ2,1

σ1,1
if a2b1,1 − a1b2,1 > 0,
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s1,2 �
(

a2
1 − e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n

)
s1,1 − σ2,1

σ1,1
if a2b1,1 − a1b2,1 < 0.

Since

a2
1 − e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n >

σ2,1

σ1,1
if a2b1,1 − a1b2,1 > 0,

a2
1 − e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n <

σ2,1

σ1,1
if a2b1,1 − a1b2,1 < 0,

and

lim
n→∞

eta1/n − 1
a1

= 0,

we get the assertion.
(b). Now σ1,1e2 = [X1, e2] = 0. Moreover, Y and X1 are linearly

independent, hence a1σ2,1 − a2σ1,1 	= 0, which implies a1 	= 0. The elements
of the set

(
M exp tY

n

)n have the form(
eta1 a2

a1
(eta1 − 1) + σ2,1

(
α1 + α2e

ta1/n + · · · + (α1 + · · · + αn)e(n−1)a1t/n
)

0 1

)
,

where α1, . . . , αn ∈ R. Using Siebert’s support formula we get

supp (µt) =
{(

eta1 β
0 1

)
: β ∈ R

}
for all t > 0,

that is supp (µt) = exp(ta1e1 + R · e2) = exp(ta1e1) exp(R · e2) for all t > 0. �

3.4.2 Remark. In case (ii) the semigroup (µt)t�0 is absolutely continuous
and supp (µt) is the same closed subsemigroup of G for all t > 0. In case
(iii) the semigroup (µt)t�0 is singular and supp (µt) is a proper coset of the
same closed normal subgroup exp(R · e2) for all t > 0.

We recall that a measure ν on the affine group F is called symmetric if
ν = ν�, where ν�(B) := ν(B−1) for all Borel subsets B of F. A process
(ξ(t))t�0 with values in F is called symmetric if the distribution of ξ(t) is
symmetric for all t � 0. Similarly as in Remark 2.6.10 one can check that a
Gauss Lévy process in F with infinitesimal generator (3.2.1) is symmetric if
and only if a1 = a2 = 0.
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3.4.3 Remark. Let (ξ(t))t�0 be the Gauss Lévy process in the affine group
F with infinitesimal generator Ñ of type (iii), i.e., Ñ = a1ẽ1 +a2ẽ2 + 1

2σ2
2,1ẽ

2
2,

where a1 	= 0 and σ2,1 	= 0. By Theorem 3.4.1, the distribution of ξ(t) is
singular for all t > 0. Since a1 	= 0, the distribution of ξ(t) is not symmetric
for any t > 0. But

ξ(t) = η

(
e2a1t − 1

2a1

)
x(t), t � 0,

where

x(t) = exp(ta1e1 + ta2e2) =
(

ea1t a2
ea1t−1

a1

0 1

)
,

and (η(t))t�0 is a symmetric Gauss Lévy process with infinitesimal generator
1
2σ2

2,1ẽ
2
2. Indeed, by Theorem 3.2.1

ξ(t) =
(

ea1t
∫ t

0
ea1s d(a2s + σ2,1W (s))

0 1

)
, η(t) =

(
1 σ2,1W̃ (t)
0 1

)
, t � 0,

where (W (t))t�0 and (W̃ (t))t�0 are standard Wiener processes in R. Clearly

η

(
e2a1t − 1

2a1

)
x(t) =

(
ea1t a2

ea1t−1
a1

+ σ2,1W̃
(

e2a1t−1
2a1

)
0 1

)
, t � 0.

Both processes(∫ t

0

ea1s d(a2s + σ2,1W (s))
)

t�0

,

(
a2

ea1t − 1
a1

+ σ2,1W̃

(
e2a1t − 1

2a1

))
t�0

are processes with independent increments in R starting from 0 and their
increments on the interval [s, t] ⊂ [0,∞) have a normal distribution with mean
a2

ea1t−ea1s

a1
and variance σ2

2,1
e2a1t−e2a1s

2a1
, hence the assertion. The process

(η(t))t�0 can be considered as the symmetric counterpart of process (ξ(t))t�0.
In fact, (x(t))t�0 is a deterministic Lévy process on the affine group F , which
can be considered as the shift part of the process (ξ(t))t�0. We note that
using Trotter’s formula of Hazod [27], Siebert [54] showed that the distribution
of ξ(t) and η

(
e2a1t−1

2a1

)
x(t) coincide for all t � 0 in the special case a1 = 1,

a2 = 0 and σ2,1 = 2.
Moreover, it can be checked that if the infinitesimal generator of a Gauss

Lévy process (ξ(t))t�0 is of type different from (iii) then the decomposition
ξ(t) = η

(
c(t)
)
x(t), t � 0, does not hold with any function c : [0,∞) → [0,∞).



Chapter 4

Limit theorems on LCA2
groups

First we recall the most important notions and known results in the theory
of probability measures on locally compact Abelian groups. Then we prove
(central) limit theorems for row sums of a rowwise independent infinitesimal
array of random elements with values in a locally compact Abelian group. We
give a proof of Gaiser’s theorem on convergence of triangular arrays [23, Satz
1.3.6], since it does not have an easy access and it is not complete (see Theorem
4.3.1). This theorem gives sufficient conditions for convergence of the row sums
of a rowwise independent infinitesimal array of random elements with values in
an LCA2 group, but the limit measure can not have a nondegenerate idempotent
factor, i.e., a nondegenerate Haar measure on some compact subgroup as its
factor.

As new results we prove necessary and sufficient conditions for convergence
of the row sums of symmetric arrays and Bernoulli arrays, where the limit
measure can also be a nondegenerate normalized Haar measure on a compact
subgroup (see Theorem 4.4.2 and Theorem 4.5.1). Then we investigate special
LCA2 groups: the torus group (see Section 4.6), the group of p-adic integers
(see Section 4.7) and the p-adic solenoid (see Section 4.8).

Besides proving limit theorems, we give a construction of an arbitrary weakly
infinitely divisible probability measure on the torus group and the group of p-
adic integers (see Theorems 4.6.4 and 4.7.4). On the p-adic solenoid we give a
construction of weakly infinitely divisible probability measures without nonde-

75
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generate idempotent factors (see Theorem 4.8.4). In our constructions we only
use real valued random variables. We note that, as a special case of our results,
we have a new construction of the normalized Haar measure on the group of
p-adic integers and the p-adic solenoid.

The results of this chapter are contained in our submitted papers [7] and [8].

4.1 Motivation

Let G be a second countable locally compact Abelian T0-topological group
(LCA2 group). The group operation in G will be denoted by +. Let B(G)
denote the σ-algebra of Borel sets in G. Let M1(G) denote the set of
probability measures on B(G). For µ, ν ∈ M1(G), the convolution µ ∗ ν is
the unique measure in M1(G) defined by

(µ ∗ ν)(A) :=
∫

G

µ(Ax−1) ν(dx), A ∈ B(G).

Then M1(G) is an Abelian topological semigroup with the product (µ, ν) ∈
M1(G) ×M1(G) �→ µ ∗ ν and the topology induced by weak convergence.

The main question of limit problems on G can be formulated as follows. Let
{Xn,k : n ∈ N, k = 1, . . . , Kn} be a triangular array of rowwise independent
random elements with values in G satisfying the infinitesimality condition

lim
n→∞ max

1�k�Kn

P(Xn,k ∈ G \ U) = 0

for all Borel neighbourhoods U of the identity e of G. One searches for
conditions on the array so that the convergence in distribution

Kn∑
k=1

Xn,k
D−→ µ as n → ∞

to a probability measure µ on G holds. For a sequence {Xn : n ∈ N} of
random elements in G and for a probability measure µ on G, the notation
Xn

D−→ µ means weak convergence PXn

w−→ µ of the distributions PXn of
Xn, n ∈ N towards µ. Moreover, for a random element X in G, the
notation X

D= µ means that the distribution PX of X is µ.
Let L(G) denote the set of all possible limits of row sums of rowwise

independent infinitesimal triangular arrays in G. The following problems
arise:
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(P1) How to parametrize the set L(G), i.e., to give a bijection between L(G)
and an appropriate parameter set P(G);

(P2) How to associate suitable quantities qn to the rows {Xn,k : 1 � k � Kn},
n ∈ N so that

Kn∑
k=1

Xn,k
D−→ µ ⇐⇒ qn → q,

where q ∈ P(G) corresponds to the limiting distribution µ, and the
convergence qn → q is meant in an appropriate sense.

The problem (P1) has been solved by Parthasarathy (see Chapter IV, Corollary
7.1 in [46] and Remark 4.2.7 in Section 4.2). Gaiser [23] gave a partial solution
to the problem (P2). His theorem (see Section 4.3) gives only some sufficient
conditions for the convergence

∑Kn

k=1 Xn,k
D−→ µ, which does not include the

case where µ has a nondegenerate idempotent factor, i.e., a nondegenerate Haar
measure on a compact subgroup of G as its factor. For a survey of results on
limit theorems on a general locally compact Abelian group, see Bingham [10].

We prove necessary and sufficient conditions for some limit theorems to hold
on general locally compact Abelian groups. Our results complete the results
of Gaiser [23]. In our theorems the limit measure can also be a nondegenerate
normalized Haar measure on a compact subgroup of G.

We also specify our results considering some classical topological groups
such as the torus group, the group of p-adic integers and the p-adic solenoid.
Here we apply Gaiser’s theorem as well. For completeness, we present a proof
of this theorem, since Gaiser’s dissertation does not have an easy access and
Gaiser’s proof is not complete. Concerning limit problems on totally discon-
nected Abelian groups, like the group of p-adic integers, we mention Telöken
[57].

Besides proving limit theorems, we give a construction of an arbitrary weakly
infinitely divisible probability measure on the torus group and the group of p-
adic integers. On the p-adic solenoid we give a construction of weakly infinitely
divisible probability measures without nondegenerate idempotent factors. In
our constructions we only use real valued random variables. Let us consider a
probability measure µ on G and an infinitesimal rowwise independent array
{Xn,k : n ∈ N, k = 1, . . . ,Kn} of random elements with values in G. If the
row sums

∑Kn

k=1 Xn,k of this array converge in distribution to µ then µ is
necessarily weakly infinitely divisible (see, e.g., Parthasarathy [46, Chapter IV,
Theorem 5.2]). Moreover, Parthasarathy [46, Chapter IV, Corollary 7.1] gives a
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representation of an arbitrary weakly infinitely divisible probability measure on
G in terms of a Haar measure, a Dirac measure, a symmetric Gauss measure
and a generalized Poisson measure on G (for the definitions, see Section 4.2).

In this chapter we consider special cases: the torus group, the group of p-adic
integers and the p-adic solenoid. For each of the three groups, first we find a
measurable homomorphism ϕ from an appropriate Abelian topological group
(which is a certain product of some subgroups of R) onto the group in question.
Then we consider an arbitrary weakly infinitely divisible probability measure µ
on the group in question (without a nondegenerate idempotent factor in case of
the p-adic solenoid) and we find real valued random variables Z0, Z1, . . . such
that the distribution of ϕ(Z0, Z1, . . .) is µ. Since ϕ is a homomorphism, the
building blocks of µ (Haar measure, Dirac measure, symmetric Gauss measure
and generalized Poisson measure) can be handled separately.

We note that, as a special case of our results, we have a new construction
of the normalized Haar measure on the group of p-adic integers and the p-adic
solenoid. Another kind of description of the normalized Haar measure on the
group of p-adic integers can also be found in Hewitt and Ross [29, p. 220]. One
can find a construction of the normalized Haar measure on the p-adic solenoid
in Chistyakov [14, Section 3]. It is based on Hausdorff measures and rather
sophisticated, while our simpler construction (see Theorem 4.8.4) is based on a
probabilistic method and reflects the structure of the p-adic solenoid.

4.2 Parametrization of weakly infinitely divisi-
ble measures

Let Z+ and R+ denote the set of nonnegative integers ant the set of nonneg-
ative real numbers, respectively. The expression “a measure µ on G” means
a measure µ on the σ-algebra of Borel subsets of G, i.e., on B(G). The
Dirac measure at a point x ∈ G will be denoted by δx.

4.2.1 Definition. A probability measure µ on G is called infinitely di-
visible if for all n ∈ N there exists a probability measure µn on G such
that µ = µ∗n

n , where µ∗n
n denotes the n-times convolution.

4.2.2 Definition. A probability measure µ on G is called weakly infinitely
divisible if for all n ∈ N there exist a probability measure µn on G and
an element xn ∈ G such that µ = µ∗n

n ∗ δxn . The collection of all weakly
infinitely divisible measures on G will be denoted by Iw(G).
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According to Parthasarathy [46, Chapter IV, Theorem 5.2], L(G) ⊂ Iw(G).
Now we recall the building blocks of weakly infinitely divisible measures. The
main tool for their description is the Fourier transform. A function χ : G → C

is said to be a character of G if it is bounded, continuous, not identically zero
and χ(x + y) = χ(x)χ(y) for all x, y ∈ G. Note that |χ(g)| = 1 for all
characters χ of G and for all g ∈ G. The group of all characters of G is
called the character group of G and is denoted by Ĝ. The character group
Ĝ of G is also a second countable locally compact Abelian T0-topological
group (see Theorems 23.15 and 24.14 in Hewitt–Ross [29]). For every bounded
measure µ on G, let µ̂ : Ĝ → C be defined by

µ̂(χ) :=
∫

G

χ dµ, χ ∈ Ĝ.

This function µ̂ is called the Fourier transform of µ. Note that for each
character χ ∈ Ĝ, the mapping x ∈ G �→ Tχ(x), where Tχ(x)(z) := χ(x)z,
z ∈ C, x ∈ G, is a one-dimensional unitary representation of G in the group
of unitary operators of C. Hence the definition of the Fourier transform of a
measure on a locally compact Abelian group is in accordance with the definition
of the Fourier transform of a measure on a general locally compact group. The
basic properties of the Fourier transformation can be found, e.g., in Heyer [30,
Theorem 1.3.8, Theorem 1.4.2], in Hewitt and Ross [29, Theorem 23.10] and
in Parthasarathy [46, Chapter IV, Theorem 3.3]. We only mention that the
Fourier transformation is injective.

If H is a compact subgroup of G then ωH will denote the Haar measure on
H (considered as a measure on G ) normalized by the requirement ωH(H) =
1. The normalized Haar measures of compact subgroups of G are the only
idempotents in the semigroup of probability measures on G (see, e.g., Wendel
[60, Theorem 1]). It can be checked that for all χ ∈ Ĝ,

ω̂H(χ) =

{
1 if χ(x) = 1 for all x ∈ H,
0 otherwise,

(4.2.1)

i.e., ω̂H = �H⊥ , where

H⊥ :=
{
χ ∈ Ĝ : χ(x) = 1 for all x ∈ H

}
is the annihilator of H. Clearly ωH ∈ Iw(G), since ωH ∗ωH = ωH . Sazonov
and Tutubalin [51] proved that ωH ∈ L(G).
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Obviously δx ∈ Iw(G) for all x ∈ G, and one can easily check that
δx ∈ L(G) for all x ∈ Garc, where Garc denotes the arc-component of the
identity e. By the arc-component Garc of e we mean

Garc :=
⋃{

ϕ(R) : ϕ ∈ Hom(R, G)
}

,

where Hom(R, G) denotes the set of all continuous homomorphisms from the
additive group R into G.

A quadratic form on Ĝ is a nonnegative continuous function ψ : Ĝ → R+

such that

ψ(χ1χ2) + ψ(χ1χ
−1
2 ) = 2(ψ(χ1) + ψ(χ2)) for all χ1, χ2 ∈ Ĝ.

The set of all quadratic forms on Ĝ will be denoted by q+(Ĝ).
For any quadratic form ψ ∈ q+(Ĝ), there exists a unique probability

measure γψ on G determined by

γ̂ψ(χ) = e−ψ(χ)/2 for all χ ∈ Ĝ,

see, e.g., Theorem 5.2.8 in Heyer [30]. We check that γψ is a symmetric Gauss
measure on G (in the sense of the definition of a Gauss measure on a (not
necessarily Abelian) locally compact group given in Section 3.1 in Chapter 3).
Theorem 3.7 in Heyer–Pap [31] implies that if ν is a probability measure on
G such that there exists a quadratic form ψν ∈ q+(Ĝ) and a continuously
embeddable element mν ∈ G with

ν̂(χ) = χ(mν)e−ψν(χ)/2 for all χ ∈ Ĝ,

then ν is a Gauss measure on G. Using that the identity e of G is continu-
ously embeddable into the continuous one-parameter subsemigroup (xt)t�0 in
G, where xt = e for all t � 0, and χ(e) = 1 for all χ ∈ Ĝ, we obtain that
γψ is a Gauss measure on G. To prove the symmetry of γψ, by definition,
we have to check that γ�

ψ = γψ, where γ�
ψ(B) := γψ(B−1) for all B ∈ B(G).

This follows from

γ̂�
ψ(χ) = γ̂ψ(χ) = γ̂ψ(χ) for all χ ∈ Ĝ,

where z denotes the conjugate of an element z ∈ C. Obviously γψ ∈ L(G),
since γψ = γ∗n

ψ/n for all n ∈ N and γψ/n
w−→ δe as n → ∞. (Recall that

w−→ denotes weak convergence of bounded measures on G.)
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For a bounded measure η on G, the compound Poisson measure e(η) is
the probability measure on G defined by

e(η) := e−η(G)
(
δe + η +

η ∗ η

2!
+

η ∗ η ∗ η

3!
+ · · ·

)
.

The Fourier transform of a compound Poisson measure e(η) is

(e(η))̂(χ) = exp
{∫

G

(χ(x) − 1) η(dx)
}

, χ ∈ Ĝ. (4.2.2)

Clearly e(η) ∈ L(G), since e(η) =
(
e(η/n)

)∗n for all n ∈ N and e(η/n) w−→ δe

as n → ∞. In order to introduce generalized Poisson measures, we recall the
notions of a local inner product and a Lévy measure. Let Ne denote the
collection of all Borel neighbourhoods of e.

4.2.3 Definition. A continuous function g : G × Ĝ → R is called a local
inner product for G if

(i) for every compact subset C of Ĝ, there exists U ∈ Ne such that

χ(x) = eig(x,χ) for all x ∈ U , χ ∈ C,

(ii) for all x ∈ G and χ, χ1, χ2 ∈ Ĝ,

g(x, χ1χ2) = g(x, χ1) + g(x, χ2), g(−x, χ) = −g(x, χ),

(iii) for every compact subset C of Ĝ,

sup
x∈G

sup
χ∈C

|g(x, χ)| < ∞, lim
x→e

sup
χ∈C

|g(x, χ)| = 0.

Parthasarathy [46, Chapter IV, Lemma 5.3] proved the existence of a local
inner product for an arbitrary second countable locally compact Abelian T0-
topological group.

4.2.4 Definition. An extended real valued measure η on G is said to
be a Lévy measure if η({e}) = 0, η(G \ U) < ∞ for all U ∈ Ne, and∫

G
(1−Re χ(x)) η(dx) < ∞ for all χ ∈ Ĝ. The set of all Lévy measures on G

will be denoted by L(G).
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It can be checked that every Lévy measure on G is σ-finite. We note that
for all χ ∈ Ĝ there exists U ∈ Ne such that

1
4
g(x, χ)2 � 1 − Re χ(x) � 1

2
g(x, χ)2, x ∈ U, (4.2.3)

(see, e.g., Heyer [30, p. 344]), thus the requirement
∫

G
(1−Reχ(x)) η(dx) < ∞

can be replaced by
∫

G
g(x, χ)2 η(dx) < ∞ for some (and then necessarily for

any) local inner product g.
For a Lévy measure η ∈ L(G) and for a local inner product g for G, the

generalized Poisson measure πη, g is the probability measure on G defined by

π̂η, g(χ) = exp
{∫

G

(
χ(x) − 1 − ig(x, χ)

)
η(dx)

}
for all χ ∈ Ĝ

(see, e.g., Parthasarathy [46, Chapter IV, Theorem 7.1]). Obviously πη, g ∈
L(G), since πη, g = π∗n

η/n, g for all n ∈ N and πη/n, g
w−→ δe as n → ∞.

4.2.5 Definition. For a bounded measure η on G and for a local inner
product g for G, the local mean of η with respect to g is the uniquely
defined element mg(η) ∈ G given by

χ(mg(η)) = exp
{

i

∫
G

g(x, χ) η(dx)
}

for all χ ∈ Ĝ.

The existence and uniqueness of a local mean is guaranteed by Pontryagin’s
duality theorem. If η coincides with the distribution PX of a random element
X in G, we will use the notation mg(X) instead of mg(PX). Remark that
χ(mg(X)) = ei E g(X,χ) for all χ ∈ Ĝ.

Note that for a bounded measure η on G with η({e}) = 0 we have
η ∈ L(G) and e(η) = πη, g ∗ δmg(η).

Let P(G) be the set of all quadruplets (H, a, ψ, η), where H is a
compact subgroup of G, a ∈ G, ψ ∈ q+(Ĝ) and η ∈ L(G). Parthasarathy
[46, Chapter IV, Corollary 7.1] proved the following parametrization for weakly
infinitely divisible measures on G.

4.2.6 Theorem. (Parthasarathy) Let g be a fixed local inner product for
G. If µ ∈ Iw(G) then there exists a quadruplet (H, a, ψ, η) ∈ P(G) such that

µ = ωH ∗ δa ∗ γψ ∗ πη, g. (4.2.4)

Conversely, if (H, a, ψ, η) ∈ P(G) then ωH ∗ δa ∗ γψ ∗ πη, g ∈ Iw(G).
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4.2.7 Remark. In general, this parametrization is not one-to-one (see
Parthasarathy [46, p.112, Remark 3]), but the compact subgroup H is uniquely
determined in (4.2.4) by µ (more precisely, H is the annihilator of the open
subgroup {χ ∈ Ĝ : µ̂(χ) 	= 0}). If H = {e} then the quadratic form ψ
in (4.2.4) is also uniquely determined by µ. In order to obtain one-to-one
parametrization one can take equivalence classes of quadruplets related to the
equivalence relation ≈ defined by

(H, a1, ψ1, η1) ≈ (H, a2, ψ2, η2) ⇐⇒ ωH∗δa1∗γψ1∗πη1, g = ωH∗δa2∗γψ2∗πη2, g.

4.3 Gaiser’s limit theorem

Let C(G), C0(G) and Cu
0 (G) denote the spaces of real valued bounded

continuous functions on G, the set of all functions in C(G) vanishing in
some U ∈ Ne, and the set of all uniformly continuous functions in C0(G),
respectively. Gaiser [23, Satz 1.3.6] proved the following limit theorem.

4.3.1 Theorem. (Gaiser) Let g be a fixed local inner product for G. Let
{Xn,k : n ∈ N, k = 1, . . . , Kn} be a rowwise independent infinitesimal array of
random elements in G. Suppose that there exists a quadruplet ({e}, a, ψ, η) ∈
P(G) such that

(i)
Kn∑
k=1

mg(Xn,k) → a as n → ∞,

(ii)
Kn∑
k=1

Var g(Xn,k, χ) → ψ(χ)+
∫

G

g(x, χ)2 η(dx) as n → ∞ for all χ ∈ Ĝ,

(iii)
Kn∑
k=1

E f(Xn,k) →
∫

G

f dη as n → ∞ for all f ∈ C0(G).

Then
Kn∑
k=1

Xn,k
D−→ δa ∗ γψ ∗ πη, g as n → ∞. (4.3.1)

4.3.2 Remark. If either a 	= e or ψ 	= 0 or η 	= 0 then the infinitesimality
of {Xn,k : n ∈ N, k = 1, . . . , Kn} and (4.3.1) imply Kn → ∞.
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4.3.3 Remark. Condition (i) is equivalent to

(i′) exp

{
i

Kn∑
k=1

E g(Xn,k, χ)

}
→ χ(a) as n → ∞ for all χ ∈ Ĝ.

Concerning condition (iii) we mention the following version of the well-known
portmanteau theorem.

4.3.4 Theorem. Let {ηn : n ∈ Z+} be a sequence of extended real valued
measures on G such that ηn(G\U) < ∞ for all U ∈ Ne and for all n ∈ Z+.
Then the following assertions are equivalent:

(a)
∫

G

f dηn →
∫

G

f dη0 as n → ∞ for all f ∈ C0(G),

(b)
∫

G

f dηn →
∫

G

f dη0 as n → ∞ for all f ∈ Cu
0 (G),

(c) ηn(G \ U) → η0(G \ U) as n → ∞ for all U ∈ Ne with η0(∂U) = 0,

(d)
∫

G\U

f dηn →
∫

G\U

f dη0 as n → ∞ for all f ∈ C(G), U ∈ Ne with

η0(∂U) = 0,

(e) ηn|G\U
w−→ η0|G\U as n → ∞ for all U ∈ Ne with η0(∂U) = 0.

(Here and in the sequel η|B denotes the restriction of a measure η onto a
Borel subset B of G, considered as a measure on G.)

For the proof of Theorem 4.3.4, see Theorem 5.2.1 and Remark 5.2.2 in
Chapter 5. Theorem 4.3.4 is a consequence of Theorem 5.2.1 in Chapter 5.

4.3.5 Remark. Due to Theorem 4.3.4, condition (iii) of Theorem 4.3.1 is equiv-
alent to

(iii′)
Kn∑
k=1

P(Xn,k ∈ G \ U) → η(G \ U) as n → ∞ for all U ∈ Ne with

η(∂U) = 0.

In order to prove Theorem 4.3.1, first we recall a theorem about convergence
of weakly infinitely divisible measures without idempotent factors (see Gaiser
[23, Satz 1.2.1]).
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4.3.6 Theorem. For each n ∈ Z+, let µn ∈ Iw(G) be such that (4.2.4)
holds for µn with a quadruplet ({e}, an, ψn, ηn). If there exists a local inner
product g for G such that

(i) an → a0 as n → ∞,

(ii) ψn(χ) +
∫

G
g(x, χ)2 ηn(dx) → ψ0(χ) +

∫
G

g(x, χ)2 η0(dx) as n → ∞ for

all χ ∈ Ĝ,

(iii)
∫

G
f dηn → ∫

G
f dη0 as n → ∞ for all f ∈ C0(G),

then µn
w−→ µ0 as n → ∞.

Proof. It suffices to show µ̂n(χ) → µ̂0(χ) as n → ∞ for all χ ∈ Ĝ. Let

h(x, χ) := χ(x) − 1 − ig(x, χ) +
1
2
g(x, χ)2

for all x ∈ G and all χ ∈ Ĝ. Then

µ̂n(χ) = χ(an) exp
{
−1

2

(
ψn(χ) +

∫
G

g(x, χ)2 ηn(dx)
)

+
∫

G

h(x, χ) ηn(dx)
}

for all n ∈ Z+ and all χ ∈ Ĝ. Taking into account assumptions (i) and (ii),
it is enough to show that∫

G

h(x, χ) ηn(dx) →
∫

G

h(x, χ) η0(dx) as n → ∞ for all χ ∈ Ĝ. (4.3.2)

For each χ ∈ Ĝ, there exists U ∈ Ne such that χ(x) = eig(x,χ) for all x ∈ U .
Using the inequality∣∣∣∣eiy − 1 − iy +

y2

2

∣∣∣∣ � |y|3
6

for all y ∈ R, (4.3.3)

we obtain |h(x, χ)| � |g(x, χ)|3/6 for all x ∈ U . Consequently, for all V ∈ Ne

with V ⊂ U ,∣∣∣∣∫
G

h(x, χ) ηn(dx) −
∫

G

h(x, χ) η0(dx)
∣∣∣∣ � I(1)

n (V ) + I(2)
n (V ),
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where

I(1)
n (V ) :=

1
6

∫
V

|g(x, χ)|3 (ηn + η0)(dx),

I(2)
n (V ) :=

∣∣∣∣∣
∫

G\V

h(x, χ) ηn(dx) −
∫

G\V

h(x, χ) η0(dx)

∣∣∣∣∣ .
We have

I(1)
n (V ) � 1

6
sup
x∈V

|g(x, χ)|
∫

V

g(x, χ)2 (ηn + η0)(dx).

By assumption (ii),

sup
n∈Z+

∫
V

g(x, χ)2 ηn(dx) � sup
n∈Z+

(
ψn(χ) +

∫
G

g(x, χ)2 ηn(dx)
)

< ∞.

Theorem 8.3 in Hewitt and Ross [29] yields existence of a metric d on G
compatible with the topology of G. The function t �→ η0({x ∈ G : d(x, e) � t})
from (0,∞) into R is non-increasing, hence the set

{
t ∈ (0,∞) : η0({x ∈ G :

d(x, e) = t}) > 0
}

of its discontinuities is countable. Consequently, for arbitrary
ε > 0, there exists t > 0 such that V1 := {x ∈ G : d(x, e) < t} ∈ Ne, V1 ⊂ U ,
η0(∂V1) = 0 and

sup
y∈V1

|g(x, χ)| <
3ε

2 sup
n∈Z+

∫
V

g(x, χ)2 ηn(dx)
,

thus I
(1)
n (V1) < ε/2. By assumption (iii) and Theorem 4.3.4, I

(2)
n (V1) < ε/2

for all sufficiently large n, hence we obtain∣∣∣∣∫
G

h(x, χ) ηn(dx) −
∫

G

h(x, χ) η0(dx)
∣∣∣∣ < ε

for all sufficiently large n, which implies (4.3.2). �

The notion of a special local inner product is also needed.

4.3.7 Definition. A local inner product g for G is called special if it is
uniformly continuous in its first variable, i.e., if for all χ ∈ Ĝ and for all ε > 0
there exists U ∈ Ne such that |g(x, χ) − g(y, χ)| < ε for all x, y ∈ G with
x − y ∈ U .
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Gaiser [23, Satz 1.1.4] proved the existence of a special local inner product for
an arbitrary second countable locally compact Abelian T0-topological group.
The proof goes along the lines of the proof of the existence of a local inner
product in Heyer [30, Theorem 5.1.10].

Proof of Theorem 4.3.1. First we show that it is enough to prove the state-
ment for a special local inner product, namely, to prove that if the statement is
true for some local inner product g, then it is true for any local inner product g̃.
Suppose that assumptions (i)–(iii) hold for g̃ with a quadruplet ({e}, a, ψ, η).
We show that they hold for g with the quadruplet ({e}, a + mg, g(η), ψ, η),
where the element mg, g(η) ∈ G is uniquely determined by

χ(mg, g(η)) = exp
{

i

∫
G

(g(x, χ) − g̃(x, χ)) η(dx)
}

for all χ ∈ Ĝ.

(Note that g(·, χ) − g̃(·, χ) ∈ C0(G) can be checked easily.) Hence we want to
prove

(i′)
Kn∑
k=1

mg(Xn,k) → a + mg, g(η) as n → ∞,

(ii′)
Kn∑
k=1

Var g(Xn,k, χ) → ψ(χ)+
∫

G

g(x, χ)2 η(dx) as n → ∞ for all χ ∈ Ĝ,

(iii′)
Kn∑
k=1

E f(Xn,k) →
∫

G

f dη as n → ∞ for all f ∈ C0(G).

Clearly (iii′) holds, since it is identical with assumption (iii).
By assumption (i), in order to prove (i′) we have to show

χ

(
Kn∑
k=1

mg(Xn,k) −
Kn∑
k=1

mg(Xn,k)

)
→ χ(mg, g(η)) for all χ ∈ Ĝ.
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We have

χ

(
Kn∑
k=1

mg(Xn,k) −
Kn∑
k=1

mg(Xn,k)

)
=

Kn∏
k=1

χ(mg(Xn,k))
χ(mg(Xn,k))

=
Kn∏
k=1

eiE g(Xn,k,χ)

eiE g(Xn,k,χ)
= exp

{
i

Kn∑
k=1

E
(
g(Xn,k, χ) − g̃(Xn,k, χ)

)}

→ exp
{

i

∫
G

(g(x, χ) − g̃(x, χ)) η(dx)
}

,

where we applied assumption (iii) with the function g(·, χ) − g̃(·, χ) ∈ C0(G).
By assumption (ii), in order to prove (ii′) we have to show

Kn∑
k=1

Var g(Xn,k, χ)−
Kn∑
k=1

Var g̃(Xn,k, χ) →
∫

G

(
g(x, χ)2− g̃(x, χ)2

)
η(dx) (4.3.4)

for all χ ∈ Ĝ, where g(·, χ)2 − g̃(·, χ)2 ∈ C0(G) can be checked easily. We
have

Kn∑
k=1

Var g(Xn,k, χ) −
Kn∑
k=1

Var g̃(Xn,k, χ) = An − Bn,

where

An :=
Kn∑
k=1

E
(
g(Xn,k, χ)2 − g̃(Xn,k, χ)2

)
,

Bn :=
Kn∑
k=1

[
(E g(Xn,k, χ))2 − (E g̃(Xn,k, χ))2

]
.

Applying assumption (iii) with the function g(·, χ)2 − g̃(·, χ)2 ∈ C0(G), we
obtain

An →
∫

G

(
g(x, χ)2 − g̃(x, χ)2

)
η(dx). (4.3.5)

Moreover,

Bn =
Kn∑
k=1

E
(
g(Xn,k, χ) − g̃(Xn,k, χ)

)
E
(
g(Xn,k, χ) + g̃(Xn,k, χ)

)
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implies

|Bn| � max
1�k�Kn

E
(|g(Xn,k, χ)| + |g̃(Xn,k, χ)|) Kn∑

k=1

E |g(Xn,k, χ) − g̃(Xn,k, χ)|.

Using assumption (iii) with the function |g(·, χ) − g̃(·, χ)| ∈ C0(G), we get

Kn∑
k=1

E |g(Xn,k, χ) − g̃(Xn,k, χ)| →
∫

G

|g(x, χ) − g̃(x, χ)| η(dx). (4.3.6)

Infinitesimality of {Xn,k : n ∈ N, k = 1, . . . , Kn} implies

max
1�k�Kn

E |g(Xn,k, χ)| → 0 for all χ ∈ Ĝ. (4.3.7)

Indeed,

max
1�k�Kn

E |g(Xn,k, χ)| � sup
x∈U

|g(x, χ)| + sup
x∈G

|g(x, χ)| · max
1�k�Kn

P(Xn,k ∈ G \ U)

for all U ∈ Ne and for all χ ∈ Ĝ, and (iii) of Definition 4.2.3 implies
supx∈U |g(x, χ)| → 0 as U ↓ {e}. Clearly (4.3.6) and (4.3.7) imply Bn → 0,
hence, by (4.3.5), we obtain (4.3.4).

We conclude that assumptions (i)–(iii) hold for the local inner product g
with the quadruplet ({e}, a + mg, g(η), ψ, η). Since we supposed that the
statement is true for g, we get

Kn∑
k=1

Xn,k
D−→ δa+mg, g(η) ∗ γψ ∗ πη, g.

Hence

Eχ

(
Kn∑
k=1

Xn,k

)
→χ(a + mg, g(η)) exp

{
−1

2
ψ(χ)+

∫
G

(
χ(x) − 1 − ig(x, χ)

)
η(dx)

}

= χ(a) exp
{
−1

2
ψ(χ) +

∫
G

(
χ(x) − 1 − ig̃(x, χ)

)
η(dx)

}
for all χ ∈ Ĝ, which implies

Kn∑
k=1

Xn,k
D−→ δa ∗ γψ ∗ πη, g.
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Thus we may suppose that g is a special local inner product. Let Yn,k :=
Xn,k − mg(Xn,k) for all n ∈ N, k = 1, . . . , Kn. We show that {Yn,k : n ∈
N, k = 1, . . . , Kn} is an infinitesimal array of rowwise independent random
elements in G, and

(i′′)
Kn∑
k=1

mg(Yn,k) → e as n → ∞,

(ii′′)
Kn∑
k=1

E
(
g(Yn,k, χ)2

)→ ψ(χ)+
∫

G

g(x, χ)2 η(dx) as n → ∞ for all χ ∈ Ĝ,

(iii′′)
Kn∑
k=1

E f(Yn,k) →
∫

G

f dη as n → ∞ for all f ∈ C0(G).

Infinitesimality of {Yn,k : n ∈ N, k = 1, . . . , Kn} is equivalent to

max
1�k�Kn

|E χ(Yn,k) − 1| → 0 for all χ ∈ Ĝ. (4.3.8)

We have

|Eχ(Yn,k) − 1| =
∣∣∣∣ E χ(Xn,k)
χ(mg(Xn,k))

− 1
∣∣∣∣ = ∣∣∣∣ E χ(Xn,k)

eiE g(Xn,k,χ)
− 1
∣∣∣∣

=
∣∣E χ(Xn,k) − eiE g(Xn,k,χ)

∣∣� |E χ(Xn,k) − 1|+∣∣eiE g(Xn,k,χ) − 1
∣∣.

Infinitesimality of {Xn,k : n ∈ N, k = 1, . . . , Kn} implies

max
1�k�Kn

|E χ(Xn,k) − 1| → 0 for all χ ∈ Ĝ. (4.3.9)

Infinitesimality of {Xn,k : n ∈ N, k = 1, . . . , Kn} implies (4.3.7) as well, hence
using the inequality |eiy − 1| � |y| for all y ∈ R, we get

max
1�k�Kn

∣∣eiE g(Xn,k,χ) − 1
∣∣→ 0 for all χ ∈ Ĝ,

and we obtain (4.3.8).
For (i′′), it is enough to show

Kn∑
k=1

E g(Yn,k, χ) → 0 for all χ ∈ Ĝ.
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Let χ ∈ Ĝ be fixed. Infinitesimality of {Xn,k : n ∈ N, k = 1, . . . ,Kn} implies
that for all V ∈ Ne and for all sufficiently large n we have mg(Xn,k) ∈ V
for k = 1, . . . , Kn. Consequently, using (4.3.7) as well, we conclude that for
all sufficiently large n we have

g(mg(Xn,k), χ) = E g(Xn,k, χ) for k = 1, . . . ,Kn. (4.3.10)

Infinitesimality of {Xn,k : n ∈ N, k = 1, . . . ,Kn} and properties of the local
inner product g imply also the existence of U ∈ Ne such that η(∂U) = 0
and for all x ∈ U, k = 1, . . . , Kn,

g(x − mg(Xn,k), χ) − g(x, χ) = −g(mg(Xn,k), χ) (4.3.11)

for all sufficiently large n (see Parthasarathy [46, page 91]). Consequently, for
all sufficiently large n, we obtain∣∣∣∣∣

Kn∑
k=1

E g(Yn,k, χ)

∣∣∣∣∣=
∣∣∣∣∣

Kn∑
k=1

E
(
g(Yn,k, χ)−g(Xn,k, χ) + g(mg(Xn,k), χ)

)
�G\U (Xn,k)

∣∣∣∣∣
�
(

max
1�k�Kn

sup
x∈G

|g(x − mg(Xn,k), χ) − g(x, χ)|
) Kn∑

k=1

P(Xn,k ∈ G \ U)

+ max
1�k�Kn

|g(mg(Xn,k), χ)|
Kn∑
k=1

P(Xn,k ∈ G \ U) → 0.

Indeed,

max
1�k�Kn

sup
x∈G

|g(x − mg(Xn,k), χ) − g(x, χ)| → 0 as n → ∞, (4.3.12)

since g is uniformly continuous in its first variable and for all V ∈ Ne and for
all sufficiently large n we have mg(Xn,k) ∈ V for k = 1, . . . , Kn. Moreover,
(4.3.7) and (4.3.10) imply

max
1�k�Kn

|g(mg(Xn,k), χ)| → 0 as n → ∞, (4.3.13)

and assumption (iii) implies

sup
n∈N

Kn∑
k=1

P(Xn,k ∈ G \ U) < ∞. (4.3.14)
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To prove (ii′′), we have to show

Kn∑
k=1

(
E
(
g(Yn,k, χ)2

)− Var g(Xn,k, χ)
)
→ 0 for all χ ∈ Ĝ.

Consider again a neighbourhood U ∈ Ne such that η(∂U) = 0 and (4.3.11)
holds for all sufficiently large n. We have

E
(
g(Yn,k, χ)2

)− Var g(Xn,k, χ) = Cn,k + Dn,k,

where

Cn,k := E
(
g(Yn,k, χ)2 − g(Xn,k, χ)2

)
�U (Xn,k) +

(
E g(Xn,k, χ)

)2
,

Dn,k := E
(
g(Yn,k, χ)2 − g(Xn,k, χ)2

)
�G\U (Xn,k).

For all sufficiently large n we have (4.3.10), hence

Cn,k = E
((

g(Xn,k, χ) − g(mg(Xn,k), χ)
)2 − g(Xn,k, χ)2

)
�U (Xn,k)

+
(
E g(Xn,k, χ)

)2
= g(mg(Xn,k), χ)2 P(Xn,k ∈ U)−2g(mg(Xn,k), χ)E

(
g(Xn,k, χ)�U (Xn,k)

)
+
(
E g(Xn,k, χ)

)2
= 2E g(Xn,k, χ)E

(
g(Xn,k, χ)�G\U (Xn,k)

)−(E g(Xn,k, χ)
)2 P(Xn,k∈ G \ U).

Consequently, again by (4.3.10),

|Cn,k| � P(Xn,k ∈ G \ U)
(

2|E g(Xn,k, χ)| sup
x∈G

|g(x, χ)| + |E g(Xn,k, χ)|2
)

.

(4.3.15)
Moreover,

Dn,k = E
(
g(Yn,k, χ) − g(Xn,k, χ)

)(
g(Yn,k, χ) + g(Xn,k, χ)

)
�G\U (Xn,k),

thus

|Dn,k| � 2P(Xn,k ∈ G \ U) sup
x∈G

|g(x, χ)|

× max
1�k�Kn

sup
x∈G

∣∣g(x − mg(Xn,k), χ) − g(x, χ)
∣∣. (4.3.16)
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Now (4.3.15) and (4.3.16), using (4.3.12), (4.3.13) and (4.3.14), imply (ii′′).
To prove (iii′′), it is enough to show

Kn∑
k=1

E f(Yn,k) −
Kn∑
k=1

E f(Xn,k) → 0 (4.3.17)

for all f ∈ Cu
0 (G) (see Theorem 4.3.4). Choose V ∈ Ne such that f(x) = 0

for all x ∈ V . Then choose U ∈ Ne such that U −U ⊂ V , where U −U :=
{x − y : x, y ∈ U}. Infinitesimality of {Xn,k : n ∈ N, k = 1, . . . , Kn} implies
that for all sufficiently large n we have mg(Xn,k) ∈ U for k = 1, . . . , Kn,
hence

f(Yn,k) − f(Xn,k) =
(
f(Yn,k) − f(Xn,k)

)
�G\U (Xn,k).

Consequently,∣∣∣∣∣
Kn∑
k=1

E f(Yn,k)−
Kn∑
k=1

E f(Xn,k)

∣∣∣∣∣� sup
x∈G

∣∣f(x−mg(Xn,k))−f(x)
∣∣ Kn∑

k=1

P(Xn,k ∈ G\U),

and uniform continuity of f and (4.3.14) imply (4.3.17).
Now consider the shifted compound Poisson measures

νn := e

( Kn∑
k=1

PYn,k

)
∗ δ Kn

k=1 mg(Xn,k), n ∈ N.

Clearly νn ∈ Iw(G) such that (4.2.4) holds for νn with the quadruplet(
{e},

Kn∑
k=1

mg(Xn,k) +
Kn∑
k=1

mg(Yn,k), 0,

Kn∑
k=1

PYn,k

)
.

By Theorem 4.3.6, using (i) and (i′′)–(iii′′), we obtain

νn
w−→ δa ∗ γψ ∗ πη, g.

Applying a theorem on the accompanying Poisson array due to Parthasarathy
[46, Chapter IV, Theorem 5.1], we conclude the statement. �

4.4 Limit theorems for symmetric arrays

A random element X in G is called symmetric if X
D= −X. By a symmetric

array we mean an array of symmetric random elements in G.
The following theorem is an easy consequence of Theorem 4.3.1.
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4.4.1 Theorem. (CLT for symmetric array) Let g be a fixed local inner
product for G. Let {Xn,k : n ∈ N, k = 1, . . . , Kn} be a rowwise independent

array of random elements in G such that Xn,k
D= −Xn,k for all n ∈ N,

k = 1, . . . , Kn. Suppose that there exists a quadratic form ψ on Ĝ such that

(i)
Kn∑
k=1

Var g(Xn,k, χ) → ψ(χ) as n → ∞ for all χ ∈ Ĝ,

(ii)
Kn∑
k=1

P(Xn,k ∈ G \ U) → 0 as n → ∞ for all U ∈ Ne.

Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal and

Kn∑
k=1

Xn,k
D−→ γψ as n → ∞.

The next theorem gives necessary and sufficient conditions in case of a row-
wise independent and identically distributed (i.i.d.) symmetric array. It turns
out that in this special case conditions of Theorem 4.4.1 are not only sufficient
but necessary as well. If G is compact then the limit measure can be the
normalized Haar measure on G.

4.4.2 Theorem. (Limit theorem for rowwise i.i.d. symmetric array)
Let {Xn,k : n ∈ N, k = 1, . . . ,Kn} be an infinitesimal, rowwise i.i.d. array

of random elements in G such that Kn → ∞ and Xn,k
D= −Xn,k for all

n ∈ N, k = 1, . . . , Kn.
If g is a local inner product for G and ψ is a quadratic form on Ĝ,

then the following statements are equivalent:

(i)
Kn∑
k=1

Xn,k
D−→ γψ as n → ∞,

(ii) Kn

(
1 − ReE χ(Xn,1)

)→ ψ(χ)
2 as n → ∞ for all χ ∈ Ĝ,

(iii) Kn Var g(Xn,1, χ) → ψ(χ) as n → ∞ for all χ ∈ Ĝ

and Kn P(Xn,1 ∈ G \ U) → 0 as n → ∞ for all U ∈ Ne.
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If G is compact then

Kn∑
k=1

Xn,k
D−→ ωG ⇐⇒ Kn

(
1 − ReE χ(Xn,1)

)→ ∞ for all χ ∈ Ĝ \ {�G}.

For the proof of Theorem 4.4.2, we need the following simple observation.

4.4.3 Lemma. Let {αn : n ∈ N} be a sequence of real numbers such that
αn � − n for all sufficiently large n, and let α ∈ R ∪ {−∞,∞}. Then(

1 +
αn

n

)n

→ eα ⇐⇒ αn → α,

where e−∞ := 0 and e∞ := ∞.

Proof. If αn → α ∈ R then αn/n → 0, hence L’Hospital’s rule gives

log
[(

1 +
αn

n

)n]
= αn · log (1 + αn/n)

αn/n
→ α.

Now suppose that αn → −∞. By the assumptions, we can choose n0 ∈ N

such that αn � − n for all n � n0, hence 1 + αn/n � 0 for all n � n0,
implying lim inf

n→∞ (1 + αn/n)n � 0. For each M ∈ R there exists nM ∈ N

such that αn � M for all n � nM . Then (1 + αn/n)n � (1 + M/n)n for all
n � max(n0, nM ), which implies

lim sup
n→∞

(
1 +

αn

n

)n

� lim sup
n→∞

(
1 +

M

n

)n

= eM .

Since M is arbitrary, we obtain lim sup
n→∞

(1+αn/n)n � 0, and finally lim
n→∞(1+

αn/n)n = 0. The case of αn → ∞ can be handled similarly.
If (1+αn/n)n → eα and αn 	→ α then there exist subsequences (n′) and

(n′′) and α′, α′′ ∈ R ∪ {−∞,∞} with α′ 	= α′′ such that αn′ → α′ and
αn′′ → α′′. Then (1 + αn′/n′)n′ → eα′

and (1 + αn′′/n′′)n′′ → eα′′
lead to a

contradiction. �

Proof of Theorem 4.4.2. (i) ⇐⇒ (ii). Statement (i) is equivalent to

Eχ

( Kn∑
k=1

Xn,k

)
→ γ̂ψ(χ) for all χ ∈ Ĝ. (4.4.1)
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We have γ̂ψ(χ) = e−ψ(χ)/2. Clearly Xn,k
D= −Xn,k implies E χ(Xn,k) =

ReE χ(Xn,k), hence

E χ

( Kn∑
k=1

Xn,k

)
=
(
ReE χ(Xn,1)

)Kn =

(
1 +

Kn

(
Re E χ(Xn,1) − 1

)
Kn

)Kn

.

(4.4.2)
Infinitesimality of {Xn,k : n ∈ N, k = 1, . . . , Kn} implies E χ(Xn,1) → 1 (see
(4.3.8)), thus ReE χ(Xn,1)−1 � −1 for all sufficiently large n ∈ N. Hence by
Kn → ∞ and by Lemma 4.4.3 we conclude that (4.4.1) and (ii) are equivalent.

(ii) =⇒ (iii). We have already proved that (ii) implies (i), hence, by Theorem
5.4.2 in Heyer [30], (ii) implies Kn P(Xn,1 ∈ G\U) → 0 for all U ∈ Ne. Clearly

Xn,k
D= −Xn,k implies E g(Xn,k, χ) = 0, thus Var g(Xn,1, χ) = E

(
g(Xn,1, χ)2

)
.

Consequently, it is enough to show

Kn

(
ReE χ(Xn,1) − 1 +

1
2
E
(
g(Xn,1, χ)2

))→ 0 for all χ ∈ Ĝ. (4.4.3)

For χ ∈ Ĝ, choose U ∈ Ne such that χ(x) = eig(x,χ) and (4.2.3) hold for all
x ∈ U . Then

Kn

(
ReE χ(Xn,1) − 1 +

1
2
E
(
g(Xn,1, χ)2

))
= An + Bn,

where

An := Kn ReE

(
eig(Xn,1,χ) − 1 − ig(Xn,1, χ) +

1
2
g(Xn,1, χ)2

)
�U (Xn,1),

Bn := Kn ReE

(
χ(Xn,1) − 1 +

1
2
g(Xn,1, χ)2

)
�G\U (Xn,1).

By (4.3.3) and (4.2.3) we get

|An| � 1
6
Kn E

(|g(Xn,1, χ)|3 �U (Xn,1)
)� 4

(
Kn(1 − Re E χ(Xn,1))

)3/2

3K
1/2
n

,

hence Kn → ∞ and assumption (ii) yield An → 0. Moreover,

|Bn| �
(

2 +
1
2

sup
x∈G

g(x, χ)2
)

Kn P(Xn,1 ∈ G \ U) → 0,
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thus we obtain (4.4.3).
(iii) =⇒ (i) follows from Theorem 4.4.1.
If G is compact then every Haar measure on G is finite (see, e.g., Hewitt–

Ross [29, Theorem 15.9]). Hence the normalized Haar measure ωG on G is
a probability measure and the Fourier transform ω̂G is defined. Convergence∑Kn

k=1 Xn,k
D−→ ωG is equivalent to

E χ

( Kn∑
k=1

Xn,k

)
→ ω̂G(χ) for all χ ∈ Ĝ. (4.4.4)

Using (4.4.2), (4.2.1) and Lemma 4.4.3, one can easily show that (4.4.4) holds
if and only if Kn

(
1 − ReE χ(Xn,1)

)→ ∞ for all χ ∈ Ĝ \ {�G}. �

A random element X in G is called Rademacher if P (X = e) = 1 or there
exists an element x ∈ G, x 	= e such that P (X = x) = P (X = −x) = 1/2.
By a Rademacher array we mean an array of Rademacher random elements in
G. The next statement is a special case of Theorem 4.4.2.

4.4.4 Theorem. (Limit theorem for rowwise i.i.d. Rademacher array)
Let xn ∈ G, n ∈ N such that xn → e. Let {Xn,k : n ∈ N, k = 1, . . . , Kn}

be a rowwise i.i.d. array of random elements in G such that Kn → ∞ and

P(Xn,k = xn) = P(Xn,k = −xn) =
1
2
.

Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal.
If ψ is a quadratic form on Ĝ then

Kn∑
k=1

Xn,k
D−→ γψ ⇐⇒ Kn

(
1 − Re χ(xn)

)→ ψ(χ)
2

for all χ ∈ Ĝ.

If G is compact then

Kn∑
k=1

Xn,k
D−→ ωG ⇐⇒ Kn

(
1 − Re χ(xn)

)→ ∞ for all χ ∈ Ĝ \ {�G}.

Note that in Theorem 4.4.4 the expression 1−Re χ(xn) can be replaced in
both places by 1

2g(xn, χ)2, where g is an arbitrary local inner product for G
(see the proof of (4.4.3) and the inequalities in (4.2.3)).
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4.5 Limit theorem for Bernoulli arrays

A random element X in G is called Bernoulli if there exists an element x ∈ G,
x 	= e such that P (X = x) = p, P (X = e) = 1 − p with some p ∈ [0, 1]. By
a Bernoulli array we mean an array of Bernoulli random elements in G. In the
following limit theorem the limit measure can be the normalized Haar measure
on the smallest closed subgroup of G containing a single element provided that
this subgroup is compact.

4.5.1 Theorem. (Limit theorem for rowwise i.i.d. Bernoulli array)
Let x ∈ G such that x 	= e. Let {Xn,k : n ∈ N, k = 1, . . . , Kn} be a rowwise
i.i.d. array of random elements in G such that Kn → ∞,

P(Xn,k = x) = pn, P(Xn,k = e) = 1 − pn,

and pn → 0. Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal.
If λ is a nonnegative real number then

Kn∑
k=1

Xn,k
D−→ e(λδx) ⇐⇒ Kn pn → λ.

If the smallest closed subgroup H of G containing x is compact then

Kn∑
k=1

Xn,k
D−→ ωH ⇐⇒ Kn pn → ∞.

Proof. First we suppose Kn pn → λ and show convergence
∑Kn

k=1 Xn,k
D−→

e(λδx). We need to prove

E χ

( Kn∑
k=1

Xn,k

)
→ (e(λδx))̂(χ) for all χ ∈ Ĝ. (4.5.1)

We have (e(λδx))̂(χ) = eλ(χ(x)−1) and

Eχ

( Kn∑
k=1

Xn,k

)
= (pnχ(x) + 1 − pn)Kn =

(
1 +

Kn pn(χ(x) − 1)
Kn

)Kn

. (4.5.2)

If {zn : n ∈ N} is a sequence of complex numbers such that zn → z ∈ C then(
1 + zn

n

)n → ez. Consequently, Kn pn → λ and Kn → ∞ imply (4.5.1).
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Next we suppose Kn pn → ∞ and show that
∑Kn

k=1 Xn,k
D−→ ωH . (Since

H is compact we can consider the normalized Haar measure ωH on G.) We
need to prove

Eχ

( Kn∑
k=1

Xn,k

)
→ ω̂H(χ) for all χ ∈ Ĝ.

Since H is the smallest closed subgroup of G containing x, Remarks 23.24
(a) in Hewitt–Ross [29] implies {x}⊥ = H⊥, and thus by (4.2.1) we are left to
check

E χ

( Kn∑
k=1

Xn,k

)
→
{

1 if χ ∈ {x}⊥,
0 otherwise.

(4.5.3)

If χ ∈ {x}⊥ then χ(x) = 1, hence

E χ

( Kn∑
k=1

Xn,k

)
= (pnχ(x) + 1 − pn)Kn = 1,

and we obtain (4.5.3). To handle the case χ 	∈ {x}⊥, consider the equality∣∣∣∣∣E χ

( Kn∑
k=1

Xn,k

)∣∣∣∣∣ = |pnχ(x) + 1 − pn|Kn

=
((

1 + pn(Re χ(x) − 1)
)2 + p2

n

(
Im χ(x)

)2)Kn/2

=

⎛⎝1 +
Kn pn

(
2(Re χ(x) − 1) + pn|1 − χ(x)|2

)
Kn

⎞⎠Kn/2

.

Clearly χ 	∈ {x}⊥ implies χ(x) 	= 1, and by |χ(x)| = 1 we get Re χ(x)−1 < 0.
Hence, by Lemma 4.4.3, we conclude that Kn pn → ∞, Kn → ∞ and pn → 0
imply (4.5.3).

Now we suppose
∑Kn

k=1 Xn,k
D−→ e(λδx) and derive Kn pn → λ. If

Kn pn 	→ λ then either there exists a subsequence (n′) such that Kn′ pn′ → ∞,
or there exist subsequences (n′′) and (n′′′) and two distinct nonnegative
real numbers λ′′ and λ′′′ such that Kn′′ pn′′ → λ′′ and Kn′′′ pn′′′ →
λ′′′. In the first case we would obtain

∑Kn′
k=1 Xn′,k

D−→ ωH , which con-

tradicts to
∑Kn

k=1 Xn,k
D−→ e(λδx). In the second case we would obtain
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∑Kn′′
k=1 Xn′′,k

D−→ e(λ′′δx) and
∑Kn′′′

k=1 Xn′′′,k
D−→ e(λ′′′δx) which again contra-

dicts to
∑Kn

k=1 Xn,k
D−→ e(λδx).

Finally we suppose
∑Kn

k=1 Xn,k
D−→ ωH and prove Kn pn → ∞. If

Kn pn 	→ ∞ then there exists a subsequence (n′) and a nonnegative real
number λ′ such that Kn′ pn′ → λ′. Then we would obtain

∑Kn′
k=1 Xn′,k

D−→
e(λ′δx), which contradicts to

∑Kn

k=1 Xn,k
D−→ ωH . �

4.6 Limit theorems on the torus

The set T := {eix : −π � x < π} equipped with the usual multiplication of
complex numbers and with the relative topology as a subset of complex numbers
is a second countable compact Abelian T0-topological group. In fact, T is a
Lie group and it is called the one-dimensional torus group. Its character group
is T̂ = {χ� : 
 ∈ Z}, where

χ�(y) := y�, y ∈ T, 
 ∈ Z.

Hence T̂ is topologically isomorphic with the additive group of integers Z.
The set of all quadratic forms on T̂ is q+

(
T̂
)

= {ψb : b ∈ R+}, where

ψb(χ�) := b
2, 
 ∈ Z, b ∈ R+.

Let us define the functions arg : T → [−π, π[ and h : R → R by

arg(eix) := x, −π � x < π,

h(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < −π or x � π,
−x − π if −π � x < −π/2,
x if −π/2 � x < π/2,
−x + π if π/2 � x < π.

The function gT : T × T̂ → R, defined by

gT(y, χ�) := 
h(arg y), y ∈ T, 
 ∈ Z,

is a local inner product for T. An extended real valued measure η on T is
a Lévy measure if and only if η({e}) = 0 and

∫
T
(arg y)2 η(dy) < ∞.

Theorem 4.3.1 has the following consequence on the torus.
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4.6.1 Theorem. (Gauss–Poisson limit theorem) Let {Xn,k : n ∈ N, k =
1, . . . ,Kn} be a rowwise independent array of random elements in T. Suppose
that there exists a quadruplet ({e}, a, ψb, η) ∈ P(T) such that

(i) max
1�k�Kn

P(| arg(Xn,k)| > ε) → 0 as n → ∞ for all ε > 0,

(ii) exp

{
i

Kn∑
k=1

E h(arg(Xn,k))

}
→ a as n → ∞,

(iii)
Kn∑
k=1

Varh(arg(Xn,k)) → b +
∫

T

(
h(arg y)

)2
η(dy) as n → ∞,

(iv)
Kn∑
k=1

E f(Xn,k) →
∫

T

f dη as n → ∞ for all f ∈ C0(T).

Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal and

Kn∑
k=1

Xn,k
D−→ δa ∗ γψb

∗ πη, gT
as n → ∞.

The next theorem shows that if the limit measure in Theorem 4.6.1 has
no generalized Poisson factor πη, gT

then the truncation function h can be
omitted.

4.6.2 Theorem. (CLT) Let {Xn,k : n ∈ N, k = 1, . . . , Kn} be a rowwise
independent array of random elements in T. Suppose that there exist an
element a ∈ T and a nonnegative real number b such that

(i) exp

{
i

Kn∑
k=1

E arg(Xn,k)

}
→ a as n → ∞,

(ii)
Kn∑
k=1

Var arg(Xn,k) → b as n → ∞,

(iii)
Kn∑
k=1

P(| arg(Xn,k)| > ε) → 0 as n → ∞ for all ε > 0.
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Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal and

Kn∑
k=1

Xn,k
D−→ δa ∗ γψb

as n → ∞.

Proof. In view of Theorem 4.6.1 and Remark 4.3.5, it is enough to check

(i′) exp

{
i

Kn∑
k=1

E h(arg(Xn,k))

}
→ a as n → ∞,

(ii′)
Kn∑
k=1

Varh(arg(Xn,k)) → b as n → ∞,

(iii′)
Kn∑
k=1

P(| arg(Xn,k)| > ε) → 0 as n → ∞ for all ε > 0.

Clearly (iii′) and assumption (iii) are identical. In order to prove (i′) it is
sufficient to show

Kn∑
k=1

E h(arg(Xn,k)) −
Kn∑
k=1

E arg(Xn,k) → 0,

since |eiy1 − eiy2 | = |ei(y1−y2) − 1| � |y1 − y2| for all y1, y2 ∈ R. We have
|h(y) − y| � π�[−π,−π/2]∪[π/2,π](y) for all y ∈ [−π, π], hence

∣∣∣∣∣
Kn∑
k=1

E h(arg(Xn,k)) −
Kn∑
k=1

E arg(Xn,k)

∣∣∣∣∣ � π

Kn∑
k=1

P(| arg(Xn,k)| � π/2) → 0

by condition (iii). In order to check (ii′) it is enough to prove

Kn∑
k=1

Varh(arg(Xn,k)) −
Kn∑
k=1

Var arg(Xn,k) → 0.
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We have∣∣∣∣∣
Kn∑
k=1

Varh(arg(Xn,k)) −
Kn∑
k=1

Var arg(Xn,k)

∣∣∣∣∣
�

Kn∑
k=1

E
∣∣∣(h(arg(Xn,k))

)2 − (arg(Xn,k))2
∣∣∣

+
Kn∑
k=1

∣∣∣(E h(arg(Xn,k))
)2 − (E arg(Xn,k))2

∣∣∣
� 2π2

Kn∑
k=1

P(| arg(Xn,k)| � π/2) → 0,

as desired. �

Theorem 4.4.4 has the following consequence on the torus.

4.6.3 Theorem. (Limit theorem for rowwise i.i.d. Rademacher array)
Let xn ∈ T, n ∈ N such that xn → e. Let {Xn,k : n ∈ N, k = 1, . . . , Kn}

be a rowwise i.i.d. array of random elements in T such that Kn → ∞ and

P(Xn,k = xn) = P(Xn,k = −xn) =
1
2
.

Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal.
If b is a nonnegative real number then

Kn∑
k=1

Xn,k
D−→ γψb

⇐⇒ Kn(arg xn)2 → b.

Moreover,

Kn∑
k=1

Xn,k
D−→ ωT ⇐⇒ Kn(arg xn)2 → ∞.

In the rest of this section we consider the question of giving a construction
of an arbitrary weakly infinitely divisible measure on T using only real valued
random variables. We show that for a weakly infinitely divisible measure µ on
T there exist independent real valued random variables U and Z such that U
is uniformly distributed on a suitable subset of R, Z has an infinitely divisible
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distribution on R, and ei(U+Z) D= µ. We note that R is a locally compact
Abelian T0-topological group, its character group is R̂ = {χy : y ∈ R}, where
χy(x) := eiyx. The function gR : R × R̂ → R, defined by gR(x, χy) := yh(x),
is a local inner product for R.

For the parametrization of an arbitrary weakly infinitely divisible measure on
T we need to know all the compact subgroups of T. The compact subgroups
of T are

Hr := {e2πij/r : j = 0, 1, . . . , r − 1}, r ∈ N,

and T itself.

4.6.4 Theorem. If (H, a, ψb, η) ∈ P(T) then

ei(U+arg a+X+Y ) D= ωH ∗ δa ∗ γψb
∗ πη, gT

,

where U , X and Y are independent real valued random variables such that
U is uniformly distributed on [0, 2π] if H = T, U is uniformly distributed
on {2πj/r : j = 0, 1, . . . , r − 1} if H = Hr for some r ∈ N, X has a
normal distribution on R with zero mean and variance b, and the distribution
of Y is the generalized Poisson measure πarg◦η, gR

on R, where the measure
arg◦η on R is defined by (arg◦η)(B) := η

({x ∈ T : arg(x) ∈ B}) for all
Borel subsets B of R.

Proof. Let U be a real valued random variable which is uniformly distributed
on [0, 2π]. Then for all χ� ∈ T̂, 
 ∈ Z, 
 	= 0,

E χ�(eiU ) = E ei�U =
1
2π

∫ 2π

0

ei�x dx = 0.

Hence E χ�(eiU ) = ω̂T(χ�) for all χ� ∈ T̂, 
 ∈ Z, and we obtain eiU D= ωT.
Now let U be a real valued random variable which is uniformly distributed

on {2πj/r : j = 0, 1, . . . , r−1} with some r ∈ N. Then for all χ� ∈ T̂, 
 ∈ Z,

E χ�(eiU ) = E ei�U =
1
r

r−1∑
j=0

e2πi�j/r =

{
1 if r|
,
0 otherwise.

Hence E χ�(eiU ) = ω̂Hr (χ�) for all χ� ∈ T̂, 
 ∈ Z, and we obtain eiU D= ωHr .
For a ∈ T, we have a = ei arg a, hence ei arg a D= δa.
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For b ∈ R+, the Fourier transform of the symmetric Gauss measure γψb

has the form
γ̂ψb

(χ�) = e−b�2/2, χ� ∈ T̂, 
 ∈ Z.

For all χ� ∈ T̂, 
 ∈ Z,

E χ�(eiX) = E ei�X = e−b�2/2.

Hence E χ�(eiX) = γψb
(χ�) for all χ� ∈ T̂, 
 ∈ Z, and we obtain eiX D= γψb

.
For a Lévy measure η ∈ L(T), the Fourier transform of the generalized

Poisson measure πη, gT
has the form

π̂η, gT
(χ�) = exp

{∫
T

(
y� − 1 − i
h(arg y)

)
η(dy)

}
, χ� ∈ T̂, 
 ∈ Z.

An extended real valued measure η̃ on R is a Lévy measure if and only if
η̃({0}) = 0 and

∫
R

min{1, x2} η̃(dx) < ∞. Consequently, arg◦η is a Lévy
measure on R, and for all χ� ∈ T̂, 
 ∈ Z,

E χ�(eiY ) = E ei�Y = exp
{∫

R

(
ei�x − 1 − i
h(x)

)
(arg◦η)(dx)

}

= exp
{∫

T

(
y� − 1 − i
h(arg y)

)
η(dy)

}
.

Hence E χ�(eiY ) = π̂η, gT
(χ�) for all χ� ∈ T̂, 
 ∈ Z, and we obtain eiY D= πη, gT

.
Finally, independence of U , X and Y implies

E χ(ei(U+arg a+X+Y )) = E χ(eiU ) · χ(ei arg a) · E χ(eiX) · E χ(eiY )

= ω̂H(χ) δ̂a(χ) γ̂ψb
(χ) π̂η, gT

(χ) = (ωH ∗ δa ∗ γψb
∗ πη, gT

)̂(χ)

for all χ ∈ T̂, hence we obtain the statement. �

4.7 Limit theorems on the group of p-adic inte-
gers

Let p be a prime. The group of p-adic integers is

∆p :=
{
(x0, x1, . . . ) : xj ∈ {0, 1, . . . , p − 1} for all j ∈ Z+

}
,
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where the sum z := x + y ∈ ∆p for x, y ∈ ∆p is uniquely determined by the
relationships

d∑
j=0

zjp
j ≡

d∑
j=0

(xj + yj)pj mod pd+1 for all d ∈ Z+.

Equivalently, the operation + in ∆p can be given in the following way.
For x, y ∈ ∆p, let their sum z be defined as follows. Write x0 +y0 = t0p+z0,
where z0 ∈ {0, . . . , p−1} and t0 is an integer. Suppose that z0, z1, . . . , zk and
t0, t1, . . . , tk have been defined. Then write xk+1 + yk+1 + tk = tk+1p + zk+1,
where zk+1 ∈ {0, . . . , p− 1} and tk+1 is an integer. This defines by induction
a sequence z = (zn)n�0 in ∆p. We define the sum x + y to be z. To
complete the definition of addition in ∆p, we define 0 + x = x + 0 = x for all
x ∈ ∆p, where 0 is the identically zero sequence in ∆p. (Definition 10.2 in
Hewitt–Ross [29] contains this introduction of the group operation in ∆p.)

For each r ∈ Z+, let

Λr := {x ∈ ∆p : xj = 0 for all j � r − 1}.
The family of sets {x+Λr : x ∈ ∆p, r ∈ Z+} is an open subbasis for a topology
on ∆p under which ∆p is a second countable compact Abelian T0-topological
group (see Theorems 4.5 and 10.5 in Hewitt–Ross [29]). Note that ∆p is not
a Lie group.

We show that ∆p is totally disconnected. By definition, we have to check
that every component of ∆p consists of one point. Let C0 be the component
of the identity 0 in ∆p. By Theorem 7.2 in Hewitt–Ross [29], for all x ∈ ∆p,
x + C0 is the component of x. So it is enough to prove that C0 = {0}. By
Theorem 7.8 in Hewitt–Ross [29], C0 is the intersection of all open subgroups
of ∆p. Since Λr is an open subgroup of ∆p for all r ∈ Z+, we have

C0 ⊂
∞⋂

r=0

Λr = {0}.

Since 0 ∈ C0, we have C0 = {0}.
The character group of ∆p is ∆̂p = {χd,� : d ∈ Z+, 
 = 0, 1, . . . , pd+1 − 1},

where

χd,�(x) := e2πi�(x0+px1+···+pdxd)/pd+1
, x ∈ ∆p, d ∈ Z+, 
 = 0, 1, . . . , pd+1−1,

see, e.g., Hewitt–Ross [29, p. 403].
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Since the group ∆p is totally disconnected, the only quadratic form on ∆̂p

is ψ = 0, and the function g∆p
: ∆p × ∆̂p → R, g∆p

= 0 is a local inner
product for ∆p (see Parthasarathy [46, p. 109, Remark 1]).

An extended real valued measure η on ∆p is a Lévy measure if and only
if η({e}) = 0 and η(∆p \ Λr) < ∞ for all r ∈ Z+.

Theorem 4.3.1 has the following consequence on the group ∆p of p-adic
integers.

4.7.1 Theorem. (Poisson limit theorem) Let {Xn,k : n ∈ N, k =
1, . . . ,Kn} be a rowwise independent array of random elements in ∆p. Sup-
pose that there exists a Lévy measure η ∈ L(∆p) such that

(i) max
1�k�Kn

P
((

(Xn,k)0, . . . , (Xn,k)d

) 	= 0
)
→ 0 as n → ∞ for all d ∈ Z+,

(ii)
Kn∑
k=1

P
(
(Xn,k)0 = 
0, . . . , (Xn,k)d = 
d

)
→ η({x ∈ ∆p : x0 = 
0, . . . , xd = 
d}) as n → ∞ for all d ∈ Z+,

0, . . . , 
d ∈ {0, . . . , p − 1} with (
0, . . . , 
d) 	= 0.

Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal and

Kn∑
k=1

Xn,k
D−→ πη, g∆p

as n → ∞.

For the proof of Theorem 4.7.1, we use the following lemma.

4.7.2 Lemma. Let {ηn : n ∈ Z+} be extended real valued measures on ∆p

such that ηn(∆p \Λr) < ∞ for all n, r ∈ Z+. Then the following statements
are equivalent:

(a) ηn(x + Λr) → η0(x + Λr) as n → ∞ for all r ∈ N, x ∈ ∆p \ Λr,

(b)
∫

∆p

f dηn →
∫

∆p

f dη0 as n → ∞ for all f ∈ C0(∆p).

Proof. By Theorem 4.3.4, (b) is equivalent to

(b′) ηn|∆p\U
w−→ η0|∆p\U as n → ∞ for all U ∈ Ne with η0(∂U) = 0.
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It can be checked that if ηn|∆p\U
w−→ η0|∆p\U holds for some U ∈ Ne with

η0(∂U) = 0 then ηn|∆p\V
w−→ η0|∆p\V holds for all V ∈ Ne with V ⊃ U

and η0(∂V ) = 0. Hence, using that {Λr : r ∈ N} is an open neighbourhood
basis of e and ∂Λr = ∅ for all r ∈ Z+, (b′) is equivalent to

(b′′) ηn|∆p\Λr

w−→ η0|∆p\Λr
as n → ∞ for all r ∈ N.

For distinct elements x, y ∈ ∆p, let �(x, y) be the number 2−m, where m
is the least nonnegative integer for which xm 	= ym. For all x ∈ ∆p, let
�(x, x) := 0. Then � is an invariant metric on ∆p compatible with the
topology of ∆p (see Theorem 10.5 in Hewitt and Ross [29]). Let d(x, y) :=∑∞

k=0 2−k
�{xk 	=yk} for all x, y ∈ ∆p. Then d is a metric on ∆p equivalent

to �, since �(x, y) � d(x, y) � 2�(x, y) for all x, y ∈ ∆p. Hence the original
topology of ∆p and the topology on ∆p induced by the metric d coincide.
Then weak convergence of bounded measures on the locally compact group ∆p

can be considered as weak convergence of bounded measures on the metric space
∆p equipped with the metric d.

We show that the set

M := {�x+Λc : c ∈ N, x ∈ ∆p}
is convergence determining for the weak convergence of probability measures on
∆p. For this one can check that Proposition 4.6 in Ethier and Kurtz [20] is
applicable with the following choices: S := ∆p equipped with the metric d,
Sk is the set {0, 1, . . . , p− 1} for all k ∈ N, dk is the discrete metric on Sk,
k ∈ N, and

Mk := {fck
: ck ∈ Sk}, k ∈ N,

where

fck
(x) :=

{
1 if x = ck,
0 if x 	= ck,

x ∈ Sk, k ∈ N.

For checking we note that for each c ∈ N and x ∈ ∆p, the function �x+Λc
is

bounded and continuous, since the set x + Λc is open and closed. Moreover,
for each k ∈ N, Sk with the metric dk is a complete separable metric space.

It is easy to check that M is a convergence determining set for the weak con-
vergence of bounded measures on ∆p as well. Consequently, (b′′) is equivalent
to

(b′′′)
∫

∆p

�x+Λc
ηn|∆p\Λr

(dx) →
∫

∆p

�x+Λc
η0|∆p\Λr

(dx) as n → ∞ for all

x ∈ ∆p and for all c, r ∈ N.
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Clearly, this is equivalent to

(b′′′′) ηn

(
(x + Λc) ∩ (∆p \ Λr)

)→ η0

(
(x + Λc) ∩ (∆p \ Λr)

)
as n → ∞ for all

x ∈ ∆p and for all c, r ∈ N.

We have

(x + Λc) ∩ (∆p \ Λr) =

⎧⎪⎨⎪⎩
Λc \ Λr if r � c and x ∈ Λc,
∅ if r < c and x ∈ Λr,
x + Λc otherwise.

If r � c then Λc \ Λr can be written as a union of pr−c − 1 disjoint sets of
the form y+Λr with y ∈ Λc \Λr. Consequently, (b′′′′) and (a) are equivalent.
�

Proof of Theorem 4.7.1. The local mean of any random element with values
in ∆p is e (with respect to the local inner product g∆p = 0 ). Moreover, for
each U ∈ Ne, there exists r ∈ Z+ such that Λr ⊂ U . Hence, in view of
Theorem 4.3.1, it is enough to check that

(i′) max
1�k�Kn

P(Xn,k ∈ ∆p \ Λr) → 0 as n → ∞ for all r ∈ Z+,

(ii′)
Kn∑
k=1

E f(Xn,k) →
∫

∆p

f dη as n → ∞ for all f ∈ C0(∆p).

Clearly {x ∈ ∆p : (x0, x1, . . . , xd) 	= 0} = ∆p \ Λd+1, hence (i′) and (i) are
identical. Applying Lemma 4.7.2 for ηn :=

∑Kn

k=1 PXn,k
and η0 := η, we

conclude that (ii′′) and (ii) are equivalent. �

4.7.3 Remark. Theorem 4.4.4 has the following consequence on ∆p. If xn ∈
∆p, n ∈ N such that xn → e, and {Xn,k : n ∈ N, k = 1, . . . , Kn} is a rowwise
i.i.d. array of random elements in ∆p such that Kn → ∞ and P(Xn,k =
xn) = P(Xn,k = −xn) = 1

2 , then the array {Xn,k : n ∈ N, k = 1, . . . ,Kn} is

infinitesimal and
∑Kn

k=1 Xn,k
D−→ δe.

In the rest of this section we consider the question of giving a construction
of an arbitrary weakly infinitely divisible measure on ∆p using only real valued
random variables. We show that for a weakly infinitely divisible measure µ on
∆p there exist integer valued random variables U0, U1, . . . and Z0, Z1, . . . such
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that U0, U1, . . . are independent of each other and of the sequence Z0, Z1, . . . ,
moreover, U0, U1, . . . are uniformly distributed on a suitable subset of Z,
(Z0, . . . , Zn) has a weakly infinitely divisible distribution on Z

n+1 for all
n ∈ Z+, and ϕ(U0 +Z0, U1 +Z1, . . . )

D= µ, where the mapping ϕ : Z
∞ → ∆p,

uniquely defined by the relationships

d∑
j=0

yjp
j ≡

d∑
j=0

ϕ(y)jp
j mod pd+1 for all d ∈ Z+, (4.7.1)

is a measurable homomorphism from the Abelian topological group Z
∞ (fur-

nished with the product topology) onto ∆p. (Note that Z
∞ is not locally

compact.) Measurability of ϕ follows from

ϕ−1(x + Λr) = {y ∈ Z
∞ : (y0, y1, . . . , yr−1) ∈ Fx,r}

for all x ∈ ∆p, r ∈ Z+, where Fx,r is a suitable finite subset of Z
r.

For the parametrization of an arbitrary weakly infinitely divisible measure
on ∆p we need to know all the compact subgroups of ∆p. For all r ∈ Z+,
Λr is a compact subgroup of ∆p and Example 10.16 (a) in Hewitt–Ross [29]
shows that there is no compact subgroup of ∆p which differs from Λr, r � 0.

4.7.4 Theorem. If (Λr, a, 0, η) ∈ P(∆p) then

ϕ(U0 + a0 + Y0, U1 + a1 + Y1, . . . )
D= ωΛr

∗ δa ∗ πη, g∆p
,

where U0, U1, . . . and Y0, Y1, . . . are integer valued random variables such
that U0, U1, . . . are independent of each other and of the sequence Y0, Y1, . . . ,
moreover, U0 = · · · = Ur−1 = 0 and Ur, Ur+1, . . . are uniformly distributed on
{0, 1, . . . , p−1}, and the distribution of (Y0, . . . , Yn) is the compound Poisson
measure e(ηn+1) on Z

n+1 for all n ∈ Z+, where the measure ηn+1 on Z
n+1

is defined by ηn+1({0}) := 0 and ηn+1(
) := η({x ∈ ∆p : (x0, x1, . . . , xn) = 
})
for all 
 ∈ Z

n+1 \ {0}.

Proof. Since U0, U1, . . . and Y0, Y1, . . . are integer valued random variables
and the mapping ϕ : Z

∞ → ∆p is measurable, we obtain that ϕ(U0 + a0 +
Y0, U1 + a1 + Y1, . . . ) is a random element with values in ∆p.
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First we show ϕ(U) D= ωΛr , where U := (U0, U1, . . . ). By (4.7.1) we obtain

Eχd,�(ϕ(U)) = E e2πi�(ϕ(U)0+pϕ(U)1+···+pdϕ(U)d)/pd+1

= E e2πi�(U0+pU1+···+pdUd)/pd+1
(4.7.2)

=

⎧⎪⎪⎨⎪⎪⎩
1

pd−r+1

p−1∑
jr=0

. . .

p−1∑
jd=0

e2πi�(prjr+···+pdjd)/pd+1
= 0 if d � r and pd+1−r 	 |
,

1 otherwise

for all d ∈ Z+ and 
 = 0, 1, . . . , pd+1 − 1. Hence Eχd,�(ϕ(U)) = ω̂Λr (χd,�)

for all d ∈ Z+ and 
 = 0, 1, . . . , pd+1 − 1, and we obtain ϕ(U) D= ωΛr .

For a ∈ ∆p, we have a = ϕ(a0, a1, . . . ), hence ϕ(a0, a1, . . . )
D= δa.

For a Lévy measure η ∈ L(∆p), the Fourier transform of the generalized
Poisson measure πη, g∆p

has the form

π̂η, g∆p
(χd,�) = exp

{∫
∆p

(
e2πi�(x0+px1+···+pdxd)/pd+1 − 1

)
η(dx)

}

for all d ∈ Z+ and 
 = 0, 1, . . . , pd+1−1. Then ηn+1(Zn+1) = η(∆p\Λn+1) <
∞, hence ηn+1 is a bounded measure on Z

n+1, and the compound Poisson
measure e(ηn+1) on Z

n+1 is defined. The character group of Z
n+1 is

(Zn+1)̂= {χz0,z1,...,zn : z0, z1, . . . , zn ∈ T}, where χz0,z1,...,zn(
0, 
1, . . . , 
n) :=
z�0
0 z�1

1 · · · z�n
n for all (
0, 
1, . . . , 
n) ∈ Z

n+1.
We show that the family of measures {e(ηn+1) : n ∈ Z+} satisfies the

consistency property: e(ηn+2)(B × Z) = e(ηn+1)(B) for all subsets B of
Z

n+1 and for all n ∈ Z+. For this it is enough to check that

(e(ηn+1))̂(χz0,z1,...,zn) = µ̂(χz0,z1,...,zn) (4.7.3)

for all z0, z1, . . . , zn ∈ T, where µ is the probability measure on Z
n+1 defined

by µ(B) := e(ηn+2)(B × Z), B ⊂ Z
n+1. Then

(e(ηn+1))̂ (χz0,z1,...,zn)=exp
{∫

Zn+1
(z�0

0 z�1
1 · · · z�n

n − 1) ηn+1(d
0, d
1, . . . , d
n)
}

,
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and

µ̂(χz0,z1,...,zn
) =
∫

Zn+1
χz0,z1,...,zn

(
0, 
1, . . . , 
n)µ(d
0, d
1, . . . , d
n)

=
∑

�∈Zn+1

z�0
0 z�1

1 · · · z�n
n µ({
}) =

∑
�∈Zn+1

z�0
0 z�1

1 · · · z�n
n e(ηn+2)({
} × Z)

=
∑

k∈Zn+2

zk0
0 zk1

1 · · · zkn
n e(ηn+2)({k}) = (e(ηn+2))̂(χz0,z1,...,zn,1).

Since

(e(ηn+2))̂(χz0,z1,...,zn,1)

= exp
{∫

Zn+2
(z�0

0 z�1
1 · · · z�n

n − 1) ηn+2(d
0, d
1, . . . , d
n, d
n+1)
}

,

to prove (4.7.3) it is enough to check that∫
Zn+2

(z�0
0 z�1

1 · · · z�n
n − 1) ηn+2(d
0, d
1, . . . , d
n, d
n+1)

=
∫

Zn+1
(z�0

0 z�1
1 · · · z�n

n − 1) ηn+1(d
0, d
1, . . . , d
n).

We show that both sides of the above equation are equal to∫
∆p

(zx0
0 zx1

1 · · · zxn
n − 1) η(dx).

This integral is finite, since∫
∆p

|zx0
0 zx1

1 · · · zxn
n − 1| η(dx) =

∫
∆p\Λn+1

|zx0
0 zx1

1 · · · zxn
n − 1| η(dx)

� 2η(∆p \ Λn+1) < ∞.

Using the notation Λn+1(
) := {x ∈ ∆p : (x0, x1, . . . , xn) = 
} for all 
 ∈ Z
n+1,

we get∫
∆p

(zx0
0 zx1

1 · · · zxn
n − 1) η(dx) =

∑
�∈Zn+1

∫
Λn+1(�)

(zx0
0 zx1

1 · · · zxn
n − 1) η(dx)

=
∑

�∈Zn+1

(z�0
0 z�1

1 · · · z�n
n − 1)ηn+1({
})

=
∫

Zn+1
(z�0

0 z�1
1 · · · z�n

n − 1) ηn+1(d
0, d
1, . . . , d
n).
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A similar computation shows that∫
∆p

(zx0
0 zx1

1 · · · zxn
n − 1) η(dx)

=
∫

Zn+2
(z�0

0 z�1
1 · · · z�n

n − 1) ηn+2(d
0, d
1, . . . , d
n, d
n+1).

Hence (4.7.3) is satisfied.
By Kolmogorov’s Consistency Theorem (see, e.g., Shiryaev [52, p.163, The-

orem 3]), there exists a sequence Y0, Y1, . . . of integer valued random variables
such that the distribution of (Y0, . . . , Yn) is the compound Poisson measure
e(ηn+1) on Z

n+1 for all n ∈ Z+. For all d ∈ Z+ and 
 = 0, 1, . . . , pd+1 − 1
we have

E χd,�(ϕ(Y0, Y1, . . . )) = E e2πi�(Y0+pY1+···+pdYd)/pd+1

= exp
{∫

Zd+1

(
e2πi�(�0+p�1+···+pd�d)/pd+1 − 1

)
ηd+1(d
0, d
1, . . . , d
d)

}

= exp

{∫
∆p

(
e2πi�(x0+px1+···+pdxd)/pd+1 − 1

)
η(dx)

}
.

Hence E χd,�(ϕ(Y0, Y1, . . . )) = π̂η, g∆p
(χd,�) for all d ∈ Z+ and 
 =

0, 1, . . . , pd+1 − 1, and we obtain ϕ(Y0, Y1, . . . )
D= πη, g∆p

.
Since the sequences U0, U1, . . . and Y0, Y1, . . . are independent and the

mapping ϕ : Z
∞ → ∆p is a homomorphism, we have

E χ(ϕ(U0 + a0 + Y0, U1 + a1 + Y1, . . . ))
= E χ(ϕ(U0, U1, . . . )) · χ(ϕ(a0, a1, . . . )) · E χ(ϕ(Y0, Y1, . . . ))

= ω̂Λr (χ) δ̂a(χ) π̂η, g∆p
(χ) = (ωΛr ∗ δa ∗ πη, g∆p

)̂(χ)

for all χ ∈ ∆̂p, and we obtain the statement. �

4.8 Limit theorems on the p-adic solenoid

Let p be a prime. The p-adic solenoid is a subgroup of T
∞, namely,

Sp :=
{
(y0, y1, . . . ) ∈ T

∞ : yj = yp
j+1 for all j ∈ Z+

}
,
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furnished with the relative topology as a subset of the locally compact T0-
topological group T

∞. Then Sp is a second countable compact connected
Abelian T0-topological group. For an equivalent introduction of the p-adic
solenoid, see Hewitt–Ross [29, Definition 10.12]. Note that Sp is not a Lie
group. By Theorems 23.21 and 24.11 in Hewitt–Ross [29], the character group
of Sp is Ŝp = {χd,� : d ∈ Z+, 
 ∈ Z}, where

χd,�(y) := y�
d, y ∈ Sp, d ∈ Z+, 
 ∈ Z.

The set of all quadratic forms on Ŝp is q+

(
Ŝp

)
= {ψb : b ∈ R+}, where

ψb(χd,�) :=
b
2

p2d
, d ∈ Z+, 
 ∈ Z, b ∈ R+,

see, e.g., Heyer–Pap [31, Section 5.4]. The function gSp
: Sp × Ŝp → R,

gSp
(y, χd,�) :=


h(arg y0)
pd

, y ∈ Sp, d ∈ Z+, 
 ∈ Z,

is a local inner product for Sp. An extended real valued measure η on Sp is
a Lévy measure if and only if η({e}) = 0 and

∫
Sp

(arg y0)2 η(dy) < ∞.
Theorem 4.3.1 has the following consequence on the p-adic solenoid Sp.

4.8.1 Theorem. (Gauss–Poisson limit theorem) Let {Xn,k : n ∈ N, k =
1, . . . , Kn} be a rowwise independent array of random elements in Sp. Suppose
that there exists a quadruplet ({e}, a, ψb, η) ∈ P(Sp) such that

(i) max
1�k�Kn

P(∃ j � d : | arg((Xn,k)j)| > ε) → 0 as n → ∞ for all d ∈ Z+

and for all ε > 0,

(ii) exp

{
i

pd

Kn∑
k=1

E h(arg((Xn,k)0))

}
→ ad as n → ∞ for all d ∈ Z+,

(iii)
Kn∑
k=1

Varh(arg((Xn,k)0)) → b +
∫

Sp

h(arg(y0))2 η(dy) as n → ∞,

(iv)
Kn∑
k=1

E f(Xn,k) →
∫

Sp

f dη as n → ∞ for all f ∈ C0(Sp).
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Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal and

Kn∑
k=1

Xn,k
D−→ δa ∗ γψb

∗ πη, gSp
as n → ∞.

The next theorem shows that if the limit measure in Theorem 4.8.1 has
no generalized Poisson factor πη, gSp

then the truncation function h can be
omitted. The proof of this fact can be carried out as in case of Theorem 4.6.2.

4.8.2 Theorem. (CLT) Let {Xn,k : n ∈ N, k = 1, . . . , Kn} be a rowwise
independent array of random elements in Sp. Suppose that there exist an
element a ∈ Sp and a nonnegative real number b such that

(i) exp

{
i

pd

Kn∑
k=1

E arg((Xn,k)0)

}
→ ad as n → ∞ for all d ∈ Z+,

(ii)
Kn∑
k=1

Var arg((Xn,k)0) → b as n → ∞,

(iii)
Kn∑
k=1

P(∃ j � d : | arg((Xn,k)j)| > ε) → 0 as n → ∞ for all d ∈ Z+

and for all ε > 0.

Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal and

Kn∑
k=1

Xn,k
D−→ δa ∗ γψb

.

Theorem 4.4.4 has the following consequence on Sp.

4.8.3 Theorem. (Limit theorem for rowwise i.i.d. Rademacher array)
Let x(n) ∈ Sp, n ∈ N such that x(n) → e. Let {Xn,k : n ∈ N, k = 1, . . . , Kn}
be a rowwise i.i.d. array of random elements in Sp such that Kn → ∞ and

P(Xn,k = x(n)) = P(Xn,k = −x(n)) =
1
2
.

Then the array {Xn,k : n ∈ N, k = 1, . . . , Kn} is infinitesimal.
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If b is a nonnegative real number then

Kn∑
k=1

Xn,k
D−→ γψb

⇐⇒ Kn

(
arg(x(n)

0 )
)2 → b.

Moreover,

Kn∑
k=1

Xn,k
D−→ ωSp ⇐⇒ Kn

(
arg(x(n)

0 )
)2 → ∞.

In the rest of this section we consider the question of giving a construction of
a weakly infinitely divisible measure on Sp without a nondegenerate idempotent
factor using only real valued random variables. We show that for a weakly
infinitely divisible measure µ on Sp without an idempotent factor there
exist real valued random variables Z0, Z1, . . . such that (Z0, . . . , Zn) has
a weakly infinitely divisible distribution on R × Z

n for all n ∈ Z+, and
ϕ(Z0, Z1, . . . )

D= µ, where the mapping ϕ : R × Z
∞ → Sp, defined by

ϕ(y0, y1, y2, . . . )

:=
(
eiy0 , ei(y0+2πy1)/p, ei(y0+2πy1+2πy2p)/p2

, ei(y0+2πy1+2πy2p+2πy3p2)/p3
, . . .
)

for (y0, y1, y2, . . . ) ∈ R×Z
∞, is a measurable homomorphism from the Abelian

topological group R×Z
∞ (furnished with the product topology) onto Sp. Note

that R×Z
∞ is not locally compact, but R×Z

n is a second countable locally
compact Abelian T0-topological group for all n ∈ Z+. The character group of
R×Z

n is (R×Z
n)̂ = {χy,z : y ∈ R, z ∈ T

n}, where χy,z(x, 
) := eiyxz�1
1 · · · z�n

n

for all x, y ∈ R, z = (z1, . . . , zn) ∈ T
n and 
 = (
1, . . . , 
n) ∈ Z

n. The function
gR×Zn

(
(x, 
), χy,z

)
:= yh(x) is a local inner product for R × Z

n.
We also find independent real valued random variables U0, U1, . . . such

that U0, U1, . . . are uniformly distributed on suitable subsets of R and
ϕ(U0, U1, . . . )

D= ωSp
.

4.8.4 Theorem. If ({e}, a, ψb, η) ∈ P(Sp) then

ϕ(τ(a)0 + X0 + Y0, τ(a)1 + Y1, τ(a)2 + Y2, . . . )

=
(
a0e

i(X0+Y0), a1e
i(X0+Y0+2πY1)/p, a2e

i(X0+Y0+2πY1+2πY2p)/p2
, . . .
)

D= δa ∗ γψb
∗ πη, gSp

,
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where the mapping τ : Sp → R × Z
∞ is defined by

τ(x) :=
(

arg x0,
p arg x1 − arg x0

2π
,

p arg x2 − arg x1

2π
, . . .

)
for x = (x0, x1, . . . ) ∈ Sp, X0, Y0 are real valued random variables and
Y1, Y2, . . . are integer valued random variables such that X0 is independent of
the sequence Y0, Y1, . . . , the variable X0 has a normal distribution with zero
mean and variance b, and the distribution of (Y0, . . . , Yn) is the generalized
Poisson measure πηn+1, gR×Zn on R×Z

n for all n ∈ Z+, where the measure
ηn+1 on R × Z

n is defined by ηn+1({0}) := 0 and

ηn+1(B × {
}) := η
({

x ∈ Sp : τ(x)0 ∈ B, (τ(x)1, . . . , τ(x)n) = 

})

for all Borel subsets B of R and for all 
 ∈ Z
n with 0 	∈ B × {
}.

Moreover,

ϕ(U0, U1, . . . )
D= ωSp ,

where U0, U1, . . . are independent real valued random variables such that U0

is uniformly distributed on [0, 2π] and U1, U2, . . . are uniformly distributed
on {0, 1, . . . , p − 1}.

Proof. Since X0, Y0 and U0, U1, . . . are real valued random variables and
Y1, Y2, . . . are integer valued random variables and the mapping ϕ : R×Z

∞ →
Sp is measurable, we obtain that ϕ(τ(a)0 +X0 +Y0, τ(a)1 +Y1, τ(a)2 +Y2, . . . )
and ϕ(U0, U1, . . . ) are random elements with values in Sp.

For a ∈ Sp, we have a = ϕ(τ(a)), hence ϕ(τ(a)) D= δa.
For b ∈ R+, the Fourier transform of the Gauss measure γψb

has the form

γ̂ψb
(χd,�) = exp

{
− b
2

2p2d

}
, d ∈ Z+, 
 ∈ Z.

For all d ∈ Z+ and 
 ∈ Z,

E χd,�(ϕ(X0, 0, 0, . . . )) = E ei�X0/pd

= exp
{
− b
2

2p2d

}
.

Hence E χd,�(ϕ(X0, 0, 0, . . . )) = γ̂ψb
(χd,�) for all d ∈ Z+ and 
 ∈ Z, and we

obtain ϕ(X0, 0, 0, . . . ) D= γψb
.
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For a Lévy measure η ∈ L(Sp), the Fourier transform of the generalized
Poisson measure πη, gSp

has the form

π̂η, gSp
(χd,�) = exp

{∫
Sp

(
y�

d − 1 − i
h(arg y0)/pd
)
η(dy)

}

for all d ∈ Z+ and 
 ∈ Z. An extended real valued measure η̃ on R×Z
n is a

Lévy measure if and only if η̃({0}) = 0, η̃({(x, 
) ∈ R×Z
n : |x| � ε or 
 	= 0}) <

∞ for all ε > 0, and
∫

R×Zn h(x)2 η̃(dx, d
) < ∞. We have

ηn+1({(x, 
) ∈ R × Z
n : |x| � ε or 
 	= 0})

= η({y ∈ Sp : | arg y0| � ε or (τ(y)1, . . . , τ(y)n) 	= 0}) = η(Sp \ Nε,n) < ∞

for all ε ∈ (0, π), where

Nε,n := {y ∈ Sp : | arg y0| < ε, | arg y1| < ε/p, . . . , | arg yn| < ε/pn}.

Moreover,
∫

R×Zn h(x)2 ηn+1(dx, d
) =
∫

Sp
h(arg y0)2 η(dy) < ∞, since η is a

Lévy measure on Sp. Hence, ηn+1 is a Lévy measure on R×Z
n. The family of

measures {πηn+1, gR×Zn : n ∈ Z+} is consistent, since πηn+2, g
R×Zn+1 ({x}×Z) =

πηn+1, gR×Zn ({x}) for all x ∈ R × Z
n+1 and n ∈ Z+. Indeed, this is a

consequence of

(πηn+2, g
R×Zn+1 )̂(χy,z1,...,zn,1) = (πηn+1, gR×Zn )̂(χy,z1,...,zn)

for all y ∈ R, z1, . . . , zn ∈ T, which follows from∫
R×Zn+1

(
eiyxz�1

1 · · · z�n
n − 1 − iyh(x)

)
ηn+2(dx, d
1, . . . , d
n, d
n+1)

=
∫

R×Zn

(
eiyxz�1

1 · · · z�n
n − 1 − iyh(x)

)
ηn+1(dx, d
1, . . . , d
n)

for all y ∈ R, z1, . . . , zn ∈ T, where both sides are equal to

I :=
∫

Sp

(
eiy arg x0z

(p arg x1−arg x0)/(2π)
1 · · · z(p arg xn−arg xn−1)/(2π)

n

− 1 − iyh(arg x0)
)

η(dx).
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This integral is finite. Indeed, for all x ∈ Nε,n and 0 < ε < π/2 we have
p arg xk = arg xk−1 for each k = 1, . . . , n, hence

|I| � (2 + π|y|) η(Sp \ Nε,n) +
∫

Nε,n

|eiy arg x0 − 1 − iy arg x0| η(dx)

� (2 + π|y|) η(Sp \ Nε,n) +
1
2

∫
Nε,n

(arg x0)2 η(dx) < ∞,

since η is a Lévy measure on Sp. By Kolmogorov’s Consistency Theorem
(see, e.g., Shiryaev [52, p.163, Theorem 3]), there exist a real valued random
variable Y0 and a sequence Y1, Y2, . . . of integer valued random variables
such that the distribution of (Y0, . . . , Yn) is the generalized Poisson measure
πηn+1, gR×Zn for all n ∈ Z+. For all d ∈ Z+ and 
 ∈ Z,

Eχd,�(ϕ(Y0, Y1, . . . )) = E ei�(Y0+2πY1+···+2πYdpd−1)/pd

= exp
{∫

R×Zd

(
ei�(x+2π�1+···+2π�dpd−1)/pd− 1 − i
h(x)/pd

)
ηd+1(dx, d
1, . . . , d
d)

}

= exp

{∫
Sp

(
y�

d − 1 − i
h(arg y0)/pd
)
η(dy)

}
.

Hence E χd,�(ϕ(Y0, Y1, . . . )) = π̂η, gSp
(χd,�) for all d ∈ Z+ and 
 ∈ Z, and

we obtain ϕ(Y0, Y1, . . . )
D= πη, gSp

.
Since the sequence Y0, Y1, . . . and the random variable X0 are independent

and the mapping ϕ : R × Z
∞ → Sp is a homomorphism, we get

E χ(ϕ(τ(a)0 + X0 + Y0, τ(a)1 + Y1, τ(a)2 + Y2, . . . ))
= χ(ϕ(τ(a)0, τ(a)1, . . . )) · Eχ(ϕ(X0, 0, 0, . . . )) · E χ(ϕ(Y0, Y1, . . . ))

= δ̂a(χ) γ̂ψb
(χ) π̂η, gSp

(χ) = (δa ∗ γψb
∗ πη, gSp

)̂(χ)

for all χ ∈ Ŝp, and we obtain the first statement.
For all d ∈ Z+ and 
 ∈ Z \ {0},

E χd,�(ϕ(U0, U1, . . . )) = E ei�(U0+2πU1+···+2πUdpd−1)/pd

=
1

2πpd

∫ 2π

0

ei�x/pd

dx

p−1∑
j0=0

. . .

p−1∑
jd−1=0

e2πi�(j0+j1p+···+jd−1pd−1)/pd

.
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Using (4.7.2), we get E χd,�(ϕ(U0, U1, . . . )) = 0 for all d ∈ Z+ and 
 ∈ Z\{0}.
Hence Eχd,�(ϕ(U0, U1, . . . )) = ω̂Sp(χd,�) for all d ∈ Z+ and 
 ∈ Z, and we

obtain ϕ(U0, U1, . . . )
D= ωSp . �



Chapter 5

Portmanteau theorem for
unbounded measures

In this chapter we prove an analogue of the portmanteau theorem on weak
convergence of probability measures allowing measures which are finite on the
complement of any Borel neighbourhood of a fixed element of an underlying
metric space. We use this result in proving Gaiser’s limit theorem (Theorem
4.3.1). We present this separately, because it can be formulated in a more
general setting than it is needed in proving Gaiser’s theorem.

The results of this chapter are contained in our submitted paper [9].

5.1 Motivation

Weak convergence of probability measures on a metric space has a very impor-
tant role in probability theory. The well-known portmanteau theorem due to A.
D. Alexandroff (see, e.g., Dudley [19, Theorem 11.1.1]) provides useful condi-
tions equivalent to weak convergence of probability measures; any of them could
serve as the definition of weak convergence. Proposition 1.2.13 in the book of
Meerschaert and Scheffler [39] gives an analogue of the portmanteau theorem
for bounded measures on R

d. Moreover, Proposition 1.2.19 in Meerschaert and
Scheffler [39] gives an analogue for special unbounded measures on R

d, more
precisely, for extended real valued measures which are finite on the complement
of any Borel neighbourhood of 0 ∈ R

d.
By giving counterexamples we show that some parts of Propositions 1.2.13

121
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and 1.2.19 in Meerschaert and Scheffler [39] are not true, namely, the equivalence
of (c) and (d) in their propositions is not valid (see Remark 5.2.3 and
Remark 5.2.4). We reformulate Proposition 1.2.19 in Meerschaert and Scheffler
[39] in a more detailed form adding new equivalent assertions to it (see Theorem
5.2.1). Moreover, we note that Theorem 5.2.1 generalizes the equivalence of (a)
and (b) in Theorem 11.3.3 of Dudley [19] in two aspects. On the one hand,
the equivalence is extended allowing not necessarily finite measures which are
finite on the complement of any Borel neighbourhood of a fixed element of an
underlying metric space. On the other hand, we do not assume the separability
of the underlying metric space to prove the equivalence. But we mention that
this latter fact is hiddenly contained in Problem 3, p. 312 in Dudley [19].
For completeness we give a detailed proof of Theorem 5.2.1. Our proof goes
along the lines of the proof of the original portmanteau theorem (Dudley [19,
Theorem 11.1.1]) and differs from the proof of Proposition 1.2.19 in Meerschaert
and Scheffler [39].

To shed some light on the sense of the analogue of the portmanteau theorem,
let us consider the question of weak convergence of infinitely divisible probability
measures µn, n ∈ N towards an infinitely divisible probability measure µ0

in case of the real line R. Theorem 2.9, p. 355 in Jacod–Shiryayev [33] gives
equivalent conditions for weak convergence µn

w−→ µ0. Among these conditions
we have ∫

R

f dηn →
∫

R

f dη0 for all f ∈ C2(R), (5.1.1)

where ηn, n ∈ Z+ are nonnegative, extended real valued measures on R

with ηn({0}) = 0 and
∫

R
(x2 ∧ 1) ηn(dx) < ∞, (i.e., Lévy measures on

R) corresponding to µn, and C2(R) is the set of all real valued bounded
continuous functions f on R vanishing on some Borel neighbourhood of 0
and having a limit at infinity. The analogue of the portmanteau theorem is
about the equivalent reformulations of (5.1.1) when it holds for all real valued
bounded continuous functions on R vanishing on some Borel neighbourhood
of 0.

5.2 An analogue of the portmanteau theorem

Let Z+ denote the set of nonnegative integers. Let (X, d) be a metric space
and x0 be a fixed element of X. Let B(X) denote the σ-algebra of Borel
subsets of X. A Borel neighbourhood U of x0 is an element of B(X) for
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which there exists an open subset Ũ of X such that x0 ∈ Ũ ⊂ U. Let
Nx0 denote the set of all Borel neighbourhoods of x0, and the set of bounded
measures on X is denoted by Mb(X). The expression ”a measure µ on X”
means a measure µ on the σ-algebra B(X).

Let C(X), Cx0(X) and BLx0(X) denote the spaces of all real valued
bounded continuous functions on X, the set of all elements of C(X) vanishing
on some Borel neighbourhood of x0, and the set of all real valued bounded
Lipschitz functions vanishing on some Borel neighbourhood of x0, respectively.

For a measure η on X and for a Borel subset B ∈ B(X), let η|B denote
the restriction of η onto B, i.e., η|B(A) := η(B ∩ A) for all A ∈ B(X).

Let µn, n ∈ Z+ be bounded measures on X. We say that µn
w−→ µ

if µn(A) → µ(A) for all A ∈ B(X) with µ(∂A) = 0. This is called weak
convergence of bounded measures on X.

The well-known portmanteau theorem (see, e.g., Dudley [19, Theorem
11.1.1]) gives equivalent reformulations of weak convergence of probability mea-
sures.

Now we formulate and prove an analogue of the portmanteau theorem for
unbounded measures.

5.2.1 Theorem. Let (X, d) be a metric space and x0 be a fixed element of
X. Let ηn, n ∈ Z+, be measures on X such that ηn(X \ U) < ∞ for all
U ∈ Nx0 and for all n ∈ Z+. Then the following assertions are equivalent:

(i)
∫

X\U
f dηn → ∫

X\U
f dη0 for all f ∈ C(X) and for all U ∈ Nx0 with

η0(∂U) = 0,

(ii) ηn|X\U
w−→ η0|X\U for all U ∈ Nx0 with η0(∂U) = 0,

(iii) ηn(X \ U) → η0(X \ U) for all U ∈ Nx0 with η0(∂U) = 0,

(iv)
∫

X
f dηn → ∫

X
f dη0 for all f ∈ Cx0(X),

(v)
∫

X
f dηn → ∫

X
f dη0 for all f ∈ BLx0(X),

(vi) the following inequalities hold:

(a) lim supn→∞ ηn(X\U) � η0(X\U) for all open neighbourhoods U of x0,

(b) lim infn→∞ ηn(X\V ) � η0(X\V ) for all closed neighbourhoods V of x0.

Proof. First we show the equivalence of (i),(ii) and (iii).
(i)⇒(ii): Suppose that (i) holds. Let U be an element of Nx0 with
η0(∂U) = 0. Note that ηn|X\U ∈ Mb(X), n ∈ Z+. By the equivalence of
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(a) and (b) in Proposition 1.2.13 in Meerschaert and Scheffler [39], to prove
ηn|X\U

w−→ η0|X\U it is enough to check∫
X

f dηn|X\U →
∫

X

f dη0|X\U for all f ∈ C(X).

For this it is enough to show that for all real valued bounded measurable func-
tions h on X, for all A ∈ B(X) and for all n ∈ Z+ we have∫

X

h dηn|A =
∫

A

h dηn. (5.2.1)

Using Beppo-Levi’s theorem, a standard measure-theoretic argument shows that
(5.2.1) is valid.
(ii)⇒(iii): Suppose that (ii) holds. Let U be an element of Nx0 with
η0(∂U) = 0. By (ii), we have ηn|X\U

w−→ η0|X\U . Since η0|X\U (∂X) =
η0|X\U (∅) = 0, we get ηn(X \U) = ηn|X\U (X) → η0|X\U (X) = η0(X \U), as
desired.
(iii)⇒(ii): Suppose that (iii) holds. Let U be an element of Nx0 with
η0(∂U) = 0 and let B ∈ B(X) be such that η0|X\U (∂B) = 0. We have to
show that ηn|X\U (B) → η0|X\U (B).

Since ηn|X\U (B) = ηn(B ∩ (X \ U)), n ∈ Z+ and

B ∩ (X \ U) = X \ [X \ (B ∩ (X \ U))],

by (iii), it is enough to check that η0

(
∂
(
X \ (B ∩ (X \ U))

))
= 0. First we

show that

∂
(
B ∩ (X \ U)

) ⊂ (∂B ∩ (X \ U)
) ∪ ∂U, (5.2.2)

for all subsets B, U of X. Let x be an element of ∂
(
B ∩ (X \ U)

)
and

(yn)n�1, (zn)n�1 be two sequences such that limn→∞ yn = limn→∞ zn = x
and yn ∈ B ∩ (X \U), zn ∈ X \ (B ∩ (X \U)), n ∈ N. Then for all n ∈ N we
have one or two of the following possibilities:

• yn ∈ B, yn ∈ X \ U and zn ∈ X \ B,

• yn ∈ B, yn ∈ X \ U and zn ∈ U.

Then we get x ∈ (∂B ∩ ((X \U)∪∂U)
)∪ (∂U ∩ (B ∪∂B)

)∪ (∂B ∩∂U
)
. Since

∂B ∩ ((X \U)∪∂U) ⊂ (∂B ∩ (X \U))∪∂U, we have x ∈ (∂B ∩ (X \U)
)∪∂U,

as desired.



5.2. AN ANALOGUE OF THE PORTMANTEAU THEOREM 125

Using (5.2.2) we get η0

(
∂
(
X\(B∩(X\U))

))� η0

(
∂B∩(X\U)

)
+η0(∂U) =

0. Indeed, by the assumptions η0

(
∂B ∩ (X \U)

)
= 0 and η0(∂U) = 0. Hence

η0

(
∂
(
X \ (B ∩ (X \ U))

))
= 0.

(ii)⇒(i): Using again the equivalence of (a) and (b) in Proposition 1.2.13 in
Meerschaert and Scheffler [39] and (5.2.1) we obtain (i).
(iii)⇒(iv): Suppose that (iii) holds. Let f be an element of Cx0(X). Then
there exists A ∈ Nx0 such that f(x) = 0 for all x ∈ A and η0(∂A) = 0.
Indeed, using that the function t �→ η0

({x ∈ X : d(x, x0) � t}) from (0,∞)
into R is monotone decreasing, we get the set

{
t ∈ (0,∞) : η0({x ∈ X :

d(x, x0) = t}) > 0
}

of its discontinuities is at most countable. Consequently,
for all Ũ ∈ Nx0 there exists some t > 0 such that U := {x ∈ X : d(x, x0) <

t} ∈ Nx0 , U ⊂ Ũ and η0(∂U) = 0. (Note that at this step we use that an
element Ũ of Nx0 contains an open subset of X containing x0.) This
implies the existence of A. We show that the set

D :=
{

t ∈ R : η0

({x ∈ X : f(x) = t}) > 0
}

is at most countable. The function F : R → [0, η0(X \ A)], defined by

F (t) := η0

({x ∈ X \ A : f(x) < t}), t ∈ R,

is monotone increasing and left-continuous, so it has at most countable many
discontinuity points. (Note that η0(X \ A) < ∞, by the assumption on η0.)
And t0 ∈ R is a discontinuity point of F if and only if F (t0 + 0) > F (t0),
i.e., η0

({x ∈ X \ A : f(x) = t0}
)

> 0. If t0 	= 0, then

{x ∈ X : f(x) = t0} = {x ∈ X \ A : f(x) = t0},

which implies that t0 	= 0 is a discontinuity point of F if and only if η0({x ∈
X : f(x) = t0}) > 0. Hence if t ∈ D then t = 0 or t is a discontinuity point
of F, which yields that D is at most countable. Since f is bounded and D
is at most countable, there exists a real number M > 0 such that −M,M /∈ D
and |f(x)| < M for x ∈ X. Let ε > 0 be arbitrary, but fixed. Choose real
numbers ti, i = 0, . . . , k such that −M = t0 < t1 < · · · < tk = M, ti /∈ D,
i = 0, . . . , k and max0�i�k−1(ti+1 − ti) < ε. The countability of D implies
the existence of ti, i = 0, . . . , k. Let

Bi :=f−1
(
[ti, ti+1)

)∩(X\A)=
{

x ∈ X\A : ti � f(x) < ti+1

}
, i = 0, . . . , k−1.
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Then Bi, i = 0, . . . , k−1, are pairwise disjoint Borel sets and X\A =
⋃k−1

i=0 Bi.
Since f is continuous, the boundary ∂(f−1(H)) of the set f−1(H) is a subset
of the set f−1(∂H) for all subsets H of R. Using (5.2.2) this implies that

∂(X \ Bi) = ∂Bi ⊂ f−1({ti}) ∪ f−1({ti+1}) ∪ ∂A, i = 0, . . . , k − 1.

Since ti /∈ D, i = 0, . . . , k, η0(∂A) = 0, and

η0(∂(X \Bi)) � η0

({x ∈ X : f(x) = ti}
)
+η0

({x ∈ X : f(x) = ti+1}
)
+η0(∂A),

we get η0(∂(X \ Bi)) = 0, i = 0, . . . , k − 1. Since A ⊂ X \ Bi, we have
X \ Bi ∈ Nx0 for all i = 0, . . . , k − 1. Hence condition (iii) implies that
ηn(Bi) → η0(Bi) as n → ∞, i = 0, . . . , k − 1. Then∣∣∣ ∫

X

f dηn −
∫

X

f dη0

∣∣∣ = ∣∣∣ ∫
X\A

f dηn −
∫

X\A

f dη0

∣∣∣
�
∣∣∣ ∫

X\A

f dηn −
k−1∑
i=0

tiηn(Bi)
∣∣∣+ ∣∣∣ k−1∑

i=0

ti
(
ηn(Bi) − η0(Bi)

)∣∣∣
+
∣∣∣ k−1∑

i=0

tiη0(Bi) −
∫

X\A

f dη0

∣∣∣
�

k−1∑
i=0

∫
Bi

|f(x) − ti| ηn(dx) +
∣∣∣ k−1∑

i=0

ti
(
ηn(Bi) − η0(Bi)

)∣∣∣
+

k−1∑
i=0

∫
Bi

|f(x) − ti| η0(dx)

� 2 max
0�i�k−1

(ti+1 − ti) +
∣∣∣ k−1∑

i=0

ti
(
ηn(Bi) − η0(Bi)

)∣∣∣.
Hence

lim sup
n→∞

∣∣∣ ∫
X

f dηn −
∫

X

f dη0

∣∣∣� 2 max
0�i�k−1

(ti+1 − ti) < 2ε.

Since ε > 0 is arbitrary, (iv) holds.
(iv)⇒(v): It is trivial, since BLx0(X) ⊂ Cx0(X).
(v)⇒(vi): Suppose that (v) holds. First let U be an open neighbourhood
of x0. Let ε > 0 be arbitrary, but fixed. We show that there exists a closed
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neighbourhood Uε of x0 such that Uε ⊂ U and η0(U \ Uε) < ε, and
a function f ∈ BLx0(X) such that f(x) = 0 for x ∈ Uε, f(x) = 1 for
x ∈ X \ U and 0 � f(x) � 1 for x ∈ X.

For all B ∈ B(X) and for all λ > 0 we use the notation Bλ :=
{

x ∈ X :

d(x, B) < λ
}

, where d(x,B) := inf{d(x, z) : z ∈ B}. Since U is open, we

get U =
⋃∞

n=1 Fn, where Fn := X \ (X \ U)1/n, n ∈ N. Then Fn ⊂ Fn+1,
n ∈ N, Fn is a closed subset of X for all n ∈ N and

⋂∞
n=1(X \Fn) = X \U.

We also have η0(X \ FN ) < ∞ for some sufficiently large N ∈ N and
X \Fn ⊃ X \Fn+1 for all n ∈ N, and hence the continuity of the measure η0

implies that limn→∞ η0(X \ Fn) = η0(X \ U). Since η0(X \ U) < ∞, there
exists some n0 ∈ N such that η0(X \ Fn0) − η0(X \ U) < ε. Set Uε := Fn0 .
Since

η0(X \ Fn0) − η0(X \ U) = η0

(
(X \ Fn0) \ (X \ U)

)
= η0(U \ Fn0),

we have Uε is a closed neighborhood of x0, Uε ⊂ U and η0(U \ Uε) < ε.
We show that the function f : X → R, defined by f(x) :=

min(1, n0d(x,Uε)), x ∈ X, is an element of BLx0(X), f(x) = 0 for x ∈ Uε,
f(x) = 1 for x ∈ X \ U and 0 � f(x) � 1 for x ∈ X.
Note that if x ∈ Uε then d(x,Uε) = 0, hence f(x) = 0. And if x ∈ X\U then
d(x, Uε) � d(X \U,Uε) � 1/n0, hence f(x) = 1. The fact that 0 � f(x) � 1,
x ∈ X is obvious. To prove that f is Lipschitz, we check that

|f(x) − f(y)| � n0d(x, y) for all x, y ∈ X.

If x, y ∈ X with d(x, y) � 1/n0 then |f(x) − f(y)| � 1 � n0d(x, y). If
x, y ∈ X with d(x, y) < 1/n0 then we have to consider the following four cases
apart from changing the role of x and y :

• x ∈ X \ U, y ∈ U \ Uε,

• x ∈ Uε, y ∈ U \ Uε,

• x, y ∈ U \ Uε,

• x, y ∈ Uε or x, y ∈ X \ U.

If x ∈ X \ U, y ∈ U \ Uε and f(y) = n0d(y, Uε) then d(y, Uε) � 1/n0 and
we get |f(x) − f(y)| = 1 − n0d(y, Uε) � n0d(x, y). Indeed,

1/n0 � d(X \ U,Uε) � d(x,Uε) � d(x, y) + d(y, Uε).
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If x ∈ X \ U, y ∈ U \ Uε and f(y) = 1 then |f(x) − f(y)| = 0 � n0d(x, y).
If x ∈ Uε, y ∈ U \ Uε and f(y) = 1 then d(y, Uε) � 1/n0 and we
get |f(x) − f(y)| = 1 � n0d(x, y). Indeed, d(x, y) � d(Uε, y) � 1/n0. If
x ∈ Uε, y ∈ U \ Uε and f(y) = n0d(y, Uε) then d(y, Uε) � 1/n0 and we get
|f(x) − f(y)| = n0d(y, Uε) � n0d(x, y).
If x, y ∈ U \ Uε and f(x) = 1, f(y) = n0d(y, Uε) then d(x,Uε) � 1/n0,
d(y, Uε) � 1/n0 and we get |f(x)−f(y)| = 1−n0d(y, Uε) � n0d(x, y). Indeed,
1/n0 � d(x,Uε) � d(x, y) + d(y, Uε). The case x, y ∈ U \ Uε and f(y) = 1,
f(x) = n0d(x,Uε) can be handled similarly. If x, y ∈ U \ Uε and f(x) =
n0d(x, Uε), f(y) = n0d(y, Uε) then

|f(x) − f(y)| = n0|d(x,Uε) − d(y, Uε)| � n0d(x, y).

Indeed, since Uε is closed, we have |d(x,Uε) − d(y, Uε)| � d(x, y). If x, y ∈
U \ Uε and f(x) = f(y) = 1 then |f(x) − f(y)| = 0 � n0d(x, y).
If x, y ∈ Uε or x, y ∈ X \ U then |f(x) − f(y)| = 0 � n0d(x, y). Hence
f ∈ BLx0(X).
Then we get∫

X

f dη0 =
∫

X\Uε

f dη0 � η0(X \ Uε) = η0(X \ U) + η0(U \ Uε) < η0(X \ U) + ε,∫
X

f dηn �
∫

X\U

f dηn = ηn(X \ U).

Hence by condition (v) we have

lim sup
n→∞

ηn(X \ U) � lim sup
n→∞

∫
X

f dηn = lim
n→∞

∫
X

f dηn =
∫

X

f dη0

< η0(X \ U) + ε.

Since ε > 0 is arbitrary, we get (a).
Now let V be a closed neighbourhood of x0. Let ε > 0 be arbitrary, but
fixed. We show that there exists an open neighbourhood Vε of x0 such that
V ⊂ Vε and η0(Vε \V ) < ε and a function f ∈ BLx0(X) such that f(x) = 0
for x ∈ V, f(x) = 1 for x ∈ X \ Vε and 0 � f(x) � 1 for x ∈ X.

Since V is closed, we get V =
⋂∞

n=1 Vn, where Vn := V 1/n, n ∈ N.
Then Vn+1 ⊂ Vn, n ∈ N, Vn is an open subset of X for all n ∈ N and⋃∞

n=1 X \ Vn = X \ V. Since X \ Vn+1 ⊃ X \ Vn, n ∈ N, the continuity of the
measure η0 implies that limn→∞ η0(X\Vn) = η0(X\V ). Since η0(X\V ) < ∞,
there exists some n0 ∈ N such that η0(X\V )−η0(X\Vn0) < ε. Set Vε := Vn0 .
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Since η0(X \ V ) − η0(X \ Vn0) = η0

(
(X \ V ) \ (X \ Vn0)

)
= η0(Vn0 \ V ), we

have Vε is an open neighbourhood of x0, V ⊂ Vε and η0(Vε \ V ) < ε.
As earlier one can check that the function f : X → R, defined by f(x) :=

min(1, n0d(x, V )), x ∈ X, is an element of BLx0(X), f(x) = 0 for x ∈ V,
f(x) = 1 for x ∈ X \ Vε and 0 � f(x) � 1 for x ∈ X. Then we get∫

X

f dη0 =
∫

X\V

f dη0 = η0(X \ Vε) +
∫

Vε\V

f dη0

� η0(X \ V ) − η0(Vε \ V ) > η0(X \ V ) − ε,

and
∫

X
f dηn =

∫
X\V

f dηn � ηn(X \ V ). Hence by condition (v) we have

lim inf
n→∞ ηn(X \ V ) � lim inf

n→∞

∫
X

f dηn = lim
n→∞

∫
X

f dηn =
∫

X

f dη0

> η0(X \ V ) − ε.

Since ε > 0 is arbitrary, we obtain (b). Hence we proved that (a) and (b)
are valid.

(vi)⇒ (iii): Suppose that (vi) holds. Let A be an element of Nx0 with
η0(∂A) = 0. Then for the interior A◦ and the closure A of A we have
η0((X \ A◦) \ (X \ A)) = η0(A \ A◦) = 0. Then A◦ is an open and A is a
closed neighbourhood of x0. Indeed, the fact that A is in Nx0 yields that
A◦ is nonempty and contains x0. Hence we get

η0(X \ A◦) � lim sup
n→∞

ηn(X \ A◦) � lim sup
n→∞

ηn(X \ A) � lim inf
n→∞ ηn(X \ A)

� lim inf
n→∞ ηn(X \ A) � η0(X \ A).

Since η0(X \A◦) = η0(X \A) = η0(X \A), we have the limit limn→∞ ηn(X \A)
exists and limn→∞ ηn(X \ A) = η0(X \ A). �

5.2.2 Remark. The assertion (v) in Theorem 5.2.1 can be replaced by∫
X

f dηn →
∫

X

f dη0 for all f ∈ Cu
x0

(X),

where Cu
x0

(X) denotes the set of all uniformly continuous functions in Cx0(X).
Indeed, Cu

x0
(X) ⊂ Cx0(X) and BLx0(X) ⊂ Cu

x0
(X).
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5.2.3 Remark. By giving a counterexample we show that the equivalence of
(a) and (b) in condition (vi) of Theorem 5.2.1 is not valid. For all n ∈ N

let ηn be the Dirac measure δ2 on R concentrated on 2 and let η0 be
the Dirac measure δ0 on R concentrated on 0. Then η0(R \ V ) = 0 for
all closed neighbourhoods V of 0, hence (b) in condition (vi) of Theorem
5.2.1 is satisfied. But (a) in condition (vi) of Theorem 5.2.1 is not satisfied.
Indeed, U := (−1, 1) is an open neighbourhood of 0, and

ηn(R \ U) = ηn

(
(−∞,−1] ∪ [1,∞)

)
= 1, n ∈ N,

hence lim supn→∞ ηn(R \ U) = 1. But η0(R \ U) = 0, which yields that
(a) in condition (vi) of Theorem 5.2.1 is not satisfied. This counterexample
also implies that the equivalence of (c) and (d) in Proposition 1.2.19 in
Meerschaert and Scheffler [39] is not valid.

5.2.4 Remark. By giving a counterexample we show that the equivalence of
(c) and (d) in Proposition 1.2.13 in Meerschaert and Scheffler [39] is not valid.
For all n ∈ N let µn be the measure 2δ1/n on R and µ be the Dirac
measure δ0 on R. We check that µ(A) � lim infn→∞ µn(A) for all open
subsets A of R, but there exists some closed subset F of R such that
lim supn→∞ µn(F ) > µ(F ). If A is an open subset of R such that 0 ∈ A
then µ(A) = 1 and µn(A) = 2 for all sufficiently large n, which implies that
µ(A) � lim infn→∞ µn(A). If A is an open subset of R such that 0 /∈ A
then µ(A) = 0, hence µ(A) � lim infn→∞ µn(A) is valid. Let F be the
closed interval [−1, 1]. Then µ(F ) = 1 and µn(F ) = 2, n ∈ N, which yields
that lim supn→∞ µn(F ) = 2. Hence lim supn→∞ µn(F ) > µ(F ).



Summary

This dissertation deals with some questions of probability theory on special lo-
cally compact groups. We consider two more or less independent topics in four
chapters. First we investigate questions concerning Gauss measures on special
noncommutative Lie groups, such as on the Heisenberg group and on the affine
group (Chapter 2 and Chapter 3). In Chapter 2 one of our main interests is
to describe the distribution of the convolution of two Gauss measures on the
3-dimensional Heisenberg group. In Chapter 3 we show that a Gauss mea-
sure on the affine group can be embedded only in a uniquely determined Gauss
semigroup. Then we deal with proving (central) limit theorems for infinitesimal
triangular arrays of random elements with values in a locally compact Abelian
group, such as in the torus, in the group of p-adic integers and in the p-adic
solenoid (Chapter 4). We also consider the problem of representation of weakly
infinitely divisible probability measures on these groups (Chapter 4). Finally,
we prove an analogue of the portmanteau theorem on weak convergence of prob-
ability measures (Chapter 5). Chapter 5 can be considered as an auxiliary result
for Chapter 4. The reason for presenting it separately is that its main result
can be formulated in a more general setting than it is needed in Chapter 4.

In Chapter 2 we consider the 3-dimensional Heisenberg group H which can
be obtained by furnishing R

3 with its natural topology and with the product

(g1, g2, g3)(h1, h2, h3) =
(
g1 + h1, g2 + h2, g3 + h3 +

1
2
(g1h2 − g2h1)

)
.

Then H is a nilpotent Lie group. The Schrödinger representations {π±λ : λ >
0} of H are representations in the group of unitary operators of the complex
Hilbert space L2(R) given by

[π±λ(g)u](x) := e±i(λg3+
√

λg2x+λg1g2/2)u(x +
√

λg1)

131
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for g = (g1, g2, g3) ∈ H, u ∈ L2(R) and x ∈ R. The value of the Fourier
transform of a probability measure µ on H at the Schrödinger representation
π±λ is the bounded linear operator µ̂(π±λ) : L2(R) → L2(R) given by

µ̂(π±λ)u :=
∫

H

π±λ(g)uµ(dg), u ∈ L2(R).

A family (µt)t�0 of probability measures on H is said to be a continuous
convolution semigroup if we have µs ∗ µt = µs+t for all s, t � 0, and µt

w−→
µ0 = δe as t ↓ 0, where δe denotes the Dirac measure concentrated on
the unit element e = (0, 0, 0) of H. (Here the notation w−→ means weak
convergence.) A convolution semigroup (µt)t�0 is called a Gauss semigroup if
limt↓0 t−1µt(H \ U) = 0 for all Borel neighbourhoods U of e. A probability
measure µ on H is called continuously embeddable if there exists a continuous
convolution semigroup (µt)t�0 of probability measures on H such that µ1 = µ.
A probability measure on H is called a Gauss measure if it is continuously
embeddable into a Gauss semigroup.

In Chapter 2 an explicit formula is derived for the Fourier transform of
a Gauss measure on the 3-dimensional Heisenberg group at the Schrödinger
representation. Using this explicit formula, we give necessary and sufficient
conditions for the convolution of two Gauss measures to be a Gauss measure. It
turns out that a convolution of Gauss measures on H is almost never a Gauss
measure. We also give the Fourier transform of the convolution of two Gauss
measures on the Heisenberg group including the case when the convolution is
not a Gauss measure. The structure of Chapter 2 is similar to Pap [45]. Our
main theorems are generalizations of the corresponding results for symmetric
Gauss measures on H due to Pap [45].

The results of Chapter 2 are contained in our accepted paper [6].
In Chapter 3 we consider the 2-dimensional affine group F which can be

realized as the matrix group

F :=
{(

a b
0 1

)
: a 	= 0, b ∈ R

}
.

Then F is a Lie group which is not nilpotent. It is shown that a Gauss
measure on the affine group can be embedded only in a uniquely determined
Gauss semigroup. The starting point of the proof is the fact that a Gauss Lévy
process in the affine group satisfies a certain stochastic differential equation
(SDE). We also give the solution of this SDE. Moreover, we give a complete



SUMMARY 133

description of supports of Gauss measures on the affine group using Siebert’s
support formula.

The results of Chapter 3 appeared in our paper [5].
In Chapter 4 we deal with proving (central) limit theorems on second count-

able locally compact Abelian groups (LCA2 groups). We also consider the ques-
tion of giving a construction of weakly infinitely divisible probability measures
on special LCA2 groups using only real valued random variables. We prove limit
theorems for row sums of a rowwise independent infinitesimal array of random
elements with values in an LCA2 group. We give a proof of Gaiser’s theorem
on convergence of triangular arrays [23, Satz 1.3.6], since it does not have an
easy access and it is not complete. This theorem gives sufficient conditions for
convergence of the row sums of a rowwise independent infinitesimal array of
random elements with values in an LCA2 group, but the limit measure can not
have a nondegenerate idempotent factor, i.e., a nondegenerate Haar measure on
some compact subgroup as its factor.

As new results we prove necessary and sufficient conditions for convergence of
the row sums of symmetric arrays and Bernoulli arrays, where the limit measure
can also be a nondegenerate Haar measure on a compact subgroup. Then we
investigate special LCA2 groups: the torus group, the group of p-adic integers
and the p-adic solenoid.

The set T := {eix : −π � x < π} equipped with the usual multiplication of
complex numbers and with the relative topology as a subset of complex numbers
is a compact Abelian group. This is called the one-dimensional torus group.

Let p be a prime. The group of p-adic integers is

∆p :=
{
(x0, x1, . . . ) : xj ∈ {0, 1, . . . , p − 1} for all j ∈ Z+

}
,

where the sum z := x + y ∈ ∆p for x, y ∈ ∆p is uniquely determined by the
relationships

d∑
j=0

zjp
j ≡

d∑
j=0

(xj + yj)pj mod pd+1 for all d ∈ Z+.

(Here Z+ denotes the set of nonnegative integers.) For each r ∈ Z+, let

Λr := {x ∈ ∆p : xj = 0 for all j � r − 1}.

The family of sets {x+Λr : x ∈ ∆p, r ∈ Z+} is an open subbasis for a topology
on ∆p under which ∆p is a compact, totally disconnected Abelian group.
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The p-adic solenoid is a subgroup of T
∞, namely,

Sp :=
{
(y0, y1, . . . ) ∈ T

∞ : yj = yp
j+1 for all j ∈ Z+

}
,

furnished with the relative topology as a subset of the locally compact group
T
∞. Then Sp is a compact connected Abelian group.

On the above mentioned LCA2 groups, we derive limit theorems applying
Gaiser’s theorem and our general results for symmetric and Bernoulli arrays.

Besides proving limit theorems, we give a construction of an arbitrary weakly
infinitely divisible probability measure on the torus group and the group of p-
adic integers. On the p-adic solenoid we give a construction of weakly infinitely
divisible probability measures without nondegenerate idempotent factors. In
our constructions we only use real valued random variables. For each of the
three groups, first we find a measurable homomorphism ϕ from an appropriate
Abelian topological group (which is a certain product of some subgroups of R)
onto the group in question. Then we consider an arbitrary weakly infinitely
divisible probability measure µ on the group in question (without a nondegen-
erate idempotent factor in case of the p-adic solenoid) and we find real valued
random variables Z0, Z1, . . . such that the distribution of ϕ(Z0, Z1, . . .) is
µ. We note that, as a special case of our results, we have a new construction
of the normalized Haar measure on the group of p-adic integers and the p-adic
solenoid.

The results of Chapter 4 are contained in our submitted papers [7] and [8].
In Chapter 5 we prove an analogue of the portmanteau theorem on weak con-

vergence of probability measures allowing measures which are finite on the com-
plement of any Borel neighbourhood of a fixed element of an underlying metric
space. Our theorem is a reformulation of Proposition 1.2.19 in Meerschaert–
Scheffler [39] in a more detailed form adding new equivalent assertions to it.
Our proof differs from the proof of Meerschaert and Scheffler, and we use our
result in proving Gaiser’s limit theorem [23, Satz 1.3.6]. We present our theorem
separately in a new chapter, since it can be formulated in a more general setting
than it is needed in proving Gaiser’s limit theorem.

We remark that, by giving counterexamples, we show that some parts of
Propositions 1.2.13 and 1.2.19 in Meerschaert–Scheffler [39] are not true, namely,
the equivalence of (c) and (d) in their propositions is not valid.

The results of Chapter 5 are contained in our submitted paper [9].



Összefoglaló (Hungarian
summary)

Disszertációm a valósźınűségszámı́tás azon területéhez kapcsolódik, mely
lokálisan kompakt csoportokon értelmezett valósźınűségi mértékek tulaj-
donságait vizsgálja. Két, többé-kevésbé független témával foglalkozunk a
disszertáció négy fejezetében. Először speciális nemkommutat́ıv Lie-csopor-
tokon, a Heisenberg-csoporton és az affin-csoporton értelmezett Gauss-mér-
tékekkel kapcsolatos kérdéseket tárgyalunk (2. és 3. fejezet). A 2. fejezet-
ben egyik fő célunk, hogy megadjuk két, a 3-dimenziós Heisenberg-csoporton
értelmezett Gauss-mérték konvolúciójának eloszlását. A 3. fejezetben meg-
mutatjuk, hogy egy affin-csoporton értelmezett Gauss-mérték egyértelműen
ágyazható be egy Gauss konvolúciós félcsoportba. Ezt követően lokálisan kom-
pakt Abel-csoportbeli értékű véletlen elemekből álló infinitezimális háromszög-
rendszerekre vonatkozóan bizonýıtunk (centrális) határeloszlás-tételeket (4. fe-
jezet). Speciális esetekként a tórusz, a p-adikus egészek és a p-adikus szolenoid
esetét tárgyaljuk. Foglalkozunk ezeken a csoportokon értelmezett gyengén
korlátlanul osztható valósźınűségi mértékek reprezentációjának kérdésével is (4.
fejezet). Az utolsó fejezetben a valósźınűségi mértékek gyenge konvergenciájára
vonatkozó portmanteau-tétel egy analógját bizonýıtjuk be (5. fejezet). Az 5.
fejezet a 4. fejezet kiegésźıtéseként, segédleteként tekinthető, s főként azért sze-
repeltetjük külön, mert a fejezet fő eredménye sokkal általánosabban is igaz,
mint amire a 4. fejezetben szükségünk van.

A 2. fejezetben a 3-dimenziós Heisenberg-csoporttal foglalkozunk. Ellátva
R

3-at a szokásos topológiával és a

(g1, g2, g3)(h1, h2, h3) =
(
g1 + h1, g2 + h2, g3 + h3 +

1
2
(g1h2 − g2h1)

)
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szorzással a 3-dimenziós Heisenberg-csoportot kapjuk, melyet H-val jelölünk.
Ismert, hogy H egy nilpotens Lie-csoport. A {π±λ : λ > 0} Schrödinger-repre-
zentációk H reprezentációi a L2(R) komplex Hilbert-tér unitér operátorainak
csoportjában, melyek értelmezése

[π±λ(g)u](x) := e±i(λg3+
√

λg2x+λg1g2/2)u(x +
√

λg1),

g = (g1, g2, g3) ∈ H, u ∈ L2(R) és x ∈ R esetén. Egy H-n adott µ
valósźınűségi mérték Fourier-transzformáltja a π±λ Schrödinger-reprezentá-
cióban a µ̂(π±λ) : L2(R) → L2(R),

µ̂(π±λ)u :=
∫

H

π±λ(g)uµ(dg), u ∈ L2(R),

korlátos lineáris operátor. A H Heisenberg-csoporton értelmezett valósźınűségi
mértékek (µt)t�0 családját folytonos konvolúciós félcsoportnak nevezzük, ha
µs ∗µt = µs+t minden s, t � 0 esetén és µt

w−→ µ0 = δe amint t ↓ 0, ahol δe

az e = (0, 0, 0) ∈ H pontra koncentrálódó Dirac-mértéket, w−→ pedig a gyenge
konvergenciát jelöli. Valósźınűségi mértékek (µt)t�0 konvolúciós félcsoportját
Gauss-félcsoportnak nevezzük, ha limt↓0 t−1µt(H\U) = 0 az e pont összes U
Borel-környezetére. Azt mondjuk, hogy egy H-n adott µ valósźınűségi mérték
folytonosan beágyazható, ha létezik olyan H-n adott valósźınűségi mértékekből
álló (µt)t�0 folytonos konvolúciós félcsoport, hogy µ1 = µ. Egy H-n adott
valósźınűségi mértéket Gauss-mértéknek nevezzük, ha folytonosan beágyazható
egy Gauss-félcsoportba.

A 2. fejezetben explicit képletet adunk a H Heisenberg-csoporton
értelmezett Gauss-mértékek Fourier-transzformáltjára a Schrödinger-repre-
zentációban. Ezen explicit képletet felhasználva szükséges és elegendő
feltételeket származtatunk arra vonatkozóan, hogy mikor lesz két, a Heisenberg-
csoporton értelmezett Gauss-mérték konvolúciója újra Gauss-mérték. Kiderül,
hogy Heisenberg-csoporton értelmezett Gauss-mértékek konvolúciója szinte so-
hasem Gauss-mérték. Megadjuk Gauss-mértékek konvolúciójának Fourier-
transzformáltját abban az esetben is, mikor a konvolúció nem Gauss-mér-
ték. A 2. fejezet feléṕıtése hasonló a Pap [45] cikkhez. Tételeink a Pap
[45] cikkben szereplő szimmetrikus Gauss-mértékekre vonatkozó megfelelő ered-
mények általánośıtásai.

A 2. fejezet eredményei elfogadott [6] cikkünkben jelennek meg.
A 3. fejezetben a 2-dimenziós affin-csoportot tekintjük, melyen az alábbi
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mátrix-csoportot értjük

F :=
{(

a b
0 1

)
: a 	= 0, b ∈ R

}
.

Ismert, hogy F egy Lie-csoport, mely nem nilpotens. Megmutatjuk,
hogy egy affin-csoporton értelmezett Gauss-mérték egyértelműen ágyazható
be egy Gauss-félcsoportba. Ezen tény bizonýıtásának kiindulópontja, hogy
egy affin-csoportbeli értékű Gauss–Lévy-folyamat kieléǵıt egy sztochasztikus
differenciálegyenletet. Ezen differenciálegyenlet megoldása is szerepel a 3. fe-
jezetben. Továbbá az affin-csoporton értelmezett Gauss-mértékek tartójának
teljes léırását is megadjuk, Siebert tartó-formuláját felhasználva.

A 3. fejezet eredményei [5] cikkünkben jelentek meg.
A 4. fejezetben (centrális) határeloszlás-tételek bizonýıtásával foglalkozunk

második megszámlálható lokálisan kompakt Abel-csoportok (LCA2-csoportok)
esetében. Foglalkozunk speciális LCA2-csoportokon értelmezett gyengén
korlátlanul osztható valósźınűségi mértékek konstrukciójának megadásával is
csak valós értékű valósźınűségi változókat felhasználva. Lokálisan kom-
pakt Abel-csoportbeli értékű véletlen elemekből álló soronként független,
infinitezimális háromszögrendszerek esetén bizonýıtunk határeloszlás-tétele-
ket. Szerepeltetjük Gaiser háromszögrendszerek konvergenciájára vonatkozó
tételének [23, Satz 1.3.6] bizonýıtását, mivel a bizonýıtás nehezen hozzáférhető
és nem teljes. Gaiser tétele elégséges feltételeket fogalmaz meg arra
vonatkozóan, hogy egy lokálisan kompakt Abel-csoportbeli értékű véletlen ele-
mekből álló soronként független, infinitezimális háromszögrendszer sorösszegei
eloszlásban konvergáljanak. Azonban a szóbanforgó elégséges feltételek tel-
jesülése esetén a határeloszlásnak nem lehet nemdegenerált idempotens faktora,
azaz valamely kompakt részcsoport nemdegenerált Haar-mértéke nem fordulhat
elő faktoraként.

Új eredményként szükséges és elegendő feltételeket bizonýıtunk szimmetri-
kus-, illetve ún. Bernoulli-háromszögrendszerek sorösszegeinek eloszlásban való
konvergenciájára vonatkozóan. Esetünkben a határeloszlás lehet valamilyen
kompakt részcsoport nemdegenerált normalizált Haar-mértéke is. Ezt követően
speciális LCA2-csoportokat vizsgálunk: a tóruszt, a p-adikus egészek csoportját
és a p-adikus szolenoidot.

A T := {eix : −π � x < π} halmaz, felruházva a komplex számok szokásos
szorzásával és a komplex számok halmazától örökölt topológiával, egy kompakt
Abel-csoport, az ún. 1-dimenziós tórusz csoport.
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Legyen p egy pŕımszám. A p-adikus számok csoportja a

∆p :=
{
(x0, x1, . . . ) : xj ∈ {0, 1, . . . , p − 1} ∀ j ∈ Z+

}
halmaz, ahol tetszőleges x, y ∈ ∆p esetén a z := x + y ∈ ∆p összeg az alábbi
kongruenciák által egyértelműen meghatározott:

d∑
j=0

zjp
j ≡

d∑
j=0

(xj + yj)pj mod pd+1, ∀ d ∈ Z+.

(Itt Z+ a nemnegat́ıv egész számok halmazát jelöli.) Minden r ∈ Z+ esetén
legyen

Λr := {x ∈ ∆p : xj = 0 ∀ j � r − 1}.
Az {x + Λr : x ∈ ∆p, r ∈ Z+} alakú halmazok nýılt szubbázisát alkotják
egy topológiának ∆p-n. A fenti művelettel és topológiával ∆p egy kompakt,
teljesen széteső Abel-csoport.

A p-adikus szolenoid a következő részcsoportja T
∞-nek:

Sp :=
{
(y0, y1, . . . ) ∈ T

∞ : yj = yp
j+1, ∀ j ∈ Z+

}
,

felruházva a T
∞ lokálisan kompakt csoporttól örökölt topológiával. Ekkor Sp

egy kompakt Abel-csoport.
A 4. fejezetben vizsgáljuk azt a kérdést, hogy milyen következményei van-

nak Gaiser tételének és az általunk bizonýıtott szimmetrikus-, illetve Bernoulli-
háromszögrendszerekre vonatkozó határeloszlás-tételeknek az előbb emĺıtett
LCA2-csoportokon.

Határeloszlás-tételek bizonýıtásán ḱıvül foglalkozunk még a 4. fejezetben
az előbb emĺıtett LCA2-csoportokon értelmezett gyengén korlátlanul osztható
valósźınűségi mértékek olyan konstrukciójának megadásával is, mely csak valós
értékű valósźınűségi változókat használ. Mindhárom csoport esetén először
egy ϕ mérhető homomorfizmust keresünk, mely egy alkalmas Abel-csoportot
(ami R bizonyos részcsoportjainak szorzata) képez a szóbanforgó topológikus
csoportra. Ezután tekintve egy tetszőleges µ gyengén korlátlanul osztható
valósźınűségi mértéket a szóbanforgó topológikus csoporton (nemdegenerált
idempotens faktor nélkülit a p-adikus szolenoid esetén), olyan valós értékű
Z0, Z1, . . . valósźınűségi változókat keresünk, hogy ϕ(Z0, Z1, . . .) eloszlása
µ legyen. Megjegyezzük, hogy eredményeink speciális eseteként új előálĺıtását
kapjuk a p-adikus egészek csoportján, illetve a p-adikus szolenoidon értelmezett
normalizált Haar-mértéknek.
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A 4. fejezet eredményeit a közlésre benyújtott [7] és [8] cikkeink tartal-
mazzák.

Az 5. fejezetben a valósźınűségi mértékek gyenge konvergenciájára vonatkozó
portmanteau-tétel egy analógját bizonýıtjuk be, megengedve olyan mértéke-
ket is, melyek végesek egy alapul vett metrikus tér valamely rögźıtett pontja
tetszőleges Borel-környezetének komplementerén. Tételünk a Meerschaert és
Scheffler [39] könyv 1.2.19 Álĺıtásának újrafogalmazása és kiegésźıtése, az erede-
titől eltérő bizonýıtással. Eredményünket Gaiser tételének [23, Satz 1.3.6] bizo-
nýıtásánál használjuk, s főként azért szerepeltetjük külön fejezetben, mert ered-
ményünk sokkal általánosabban is igaz, mint amire a Gaiser-tétel bizonýıtásánál
szükségünk van.

Megjegyezzük, hogy a fejezetben ellenpéldát adva megmutatjuk, hogy a
Meerschaert és Scheffler [39] könyv 1.2.19 Álĺıtásában és 1.2.13 Álĺıtásában sze-
replő (c) és (d) részek ekvivalenciája nem teljesül.

Az 5. fejezet eredményeit a közlésre benyújtott [9] cikkünk tartalmazza.
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[57] K. Telöken, Grenzwertsätze für wahrscheinlichkeitsmasse auf total un-
zusammenhängenden gruppen. Ph.D. Thesis, Universität Dortmund, 1995.
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nagyon fontosat akarok mondani.”

J.D. Salinger: Zabhegyező 1
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a matematika tudományágban.
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A b́ırálóbizottság:

elnök: Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tagok: Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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