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Chapter 1

Introduction

1.1 Motivation and historical background

Five years ago I chose probability theory on locally compact groups as the
topic of my Ph.D. thesis, since I was always interested in probability theory
and functional analysis, especially the theoretical part of them. I thought that
working on this field I would learn many new things from mathematics, not just
from probability theory. Now I think it was a good choice.

The idea of studying probability measures on spheres in Euclidean space R?
rather than on the Euclidean space itself as old as the beginnings of probabil-
ity theory. In 1734 Daniel Bernoulli looked at the orbital planes of the planets
known at his time as random points on the surface of a sphere and asserted their
uniform distribution. In 1940 It6 and Kawada in their paper [32] established
the fundamentals of a probability theory on general compact groups. Bochner,
in his basic works [11] and [12], studied for the first time probability mesures
on locally compact Abelian groups. Then in 1963 Grenander, in his book [25],
summarized all the available knowledge at his time about probability measures
on locally compact groups. In 1965 Hannan, in his book [26], dealt with the re-
lationship between the theory of probability measures on groups and the theory
of group representations. In 1967 Parthasarathy, in his book [46], summarized
and improved the general theory of probability measures on second countable
locally compact Abelian groups (LCA2 groups). The content of this paragraph
comes from the book of Heyer [30].

In 1977 Heyer’s very famous book entitled Probability measures on locally
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compact groups [30] appeared. The goal of his book is to give a fairly complete
treatment of the central limit problem for probability measures on a locally com-
pact group. In analogy to the classical theory his discussion is centered around
infinitely divisible probability measures on a locally compact group and their
relationship to convergence of infinitesimal triangular arrays. In 1988 Diaconis,
in his book [17], showed how the mathematical theory of group representations
can be used to solve very concrete problems in probability and statistics. It
is mainly concerned with noncommutative finite groups. In 1988 Ruzsa and
Székely, in their book [48], considered a number of problems in probability the-
ory from an algebraic viewpoint by studying the semigroup of distributions on a
locally compact group, endowed with the operation of convolution and the weak
topology. In 2000 Woess, in his book [61], dealt with random walks on infinite
graphs and groups. In 2001 Hazod and Siebert, in their detailed and compre-
hensive monograph [28], treated stability properties of probability measures on
locally compact groups.

Besides the above mentioned authors we have to refer to other active re-
searchers who are working on this field and with whom we have real contacts:
D. Applebaum, A. Bendikov, M. Bingham, Ph. Feinsilver, M. McCrudden, D.
Neuenschwander, R. Schott and M. Voit.

The present dissertation is based on two more or less independent topics
and we deal with probability theory on special topological groups. First we
investigate questions concerning Gauss measures on special noncommutative Lie
groups, such as on the Heisenberg group and on the affine group. We describe
the distribution of the convolution of two Gauss measures on the 3-dimensional
Heisenberg group. We show that a Gauss measure on the affine group can be
embedded only in a uniquely determined Gauss semigroup. Then we deal with
proving (central) limit theorems for infinitesimal triangular arrays of random
elements with values in special LCA2 groups, such as in the torus group, in
the group of p-adic integers and in the p-adic solenoid. We also consider the
problem of representation of weakly infinitely divisible probability measures on
these groups. In the next section we give a detailed presentation overview of
our results.

1.2 Presentation overview and our results
The present work consists of two main topics, these topics lead into three more

or less independent directions. Namely, we deal with calculating the Fourier
transform of a Gauss measure on the Heisenberg group, proving uniqueness of
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embedding of a Gauss measure on the affine group into a Gauss semigroup and
proving limit theorems on LCA2 groups.

More precisely, this dissertation consists of the following parts. The intro-
duction (first chapter) contains our motivation, the historical background, the
presentation overview and our main results.

In the second and third chapters we deal with some analytic properties of
Gauss measures on two special Lie groups, on the 3-dimensional Heisenberg
group and on the affine group.

In the second chapter we consider the case of the 3-dimensional Heisenberg
group. We derive an explicit formula for the Fourier transform of a Gauss
measure on this group at the Schrodinger representation (see Theorem 2.3.1).
Using this explicit formula necessary and sufficient conditions are given for the
convolution of two Gauss measures to be a Gauss measure (see Theorem 2.2.1).
It turns out that a convolution of Gauss measures on the Heisenberg group
is almost never a Gauss measure. We also give the Fourier transform of the
convolution of two Gauss measures on the Heisenberg group including the case
when the convolution is not a Gauss measure (see Theorem 2.6.1).

The third chapter is devoted to Gauss measures on the affine group. We
show that a Gauss measure on this group can be embedded only in a uniquely
determined Gauss semigroup (see Theorem 3.3.1). The proof is based on the
fact that a Gauss Lévy process in the affine group satisfies a certain stochastic
differential equation (SDE). Theorem 3.2.1 contains the solution of this SDE.
Moreover, we give a complete description of supports of Gauss measures on the
affine group using Siebert’s support formula (see Theorem 3.4.1).

The fourth chapter deals with proving (central) limit theorems on locally
compact Abelian groups. We also consider the question of giving a construction
of an arbitrary weakly infinitely divisible measure on special LCA2 groups using
only real valued random variables. First we collect all the necessary information
about measures on LCA2 groups and about their properties. Then we prove
limit theorems for row sums of a rowwise independent infinitesimal array of
random elements with values in an LCA2 group. We give a proof of Gaiser’s
theorem on convergence of triangular arrays [23, Satz 1.3.6], since it does not
have an easy access and it is not complete (see Theorem 4.3.1). This theorem
gives sufficient conditions for convergence of the row sums of a rowwise inde-
pendent infinitesimal array of random elements with values in an LCA2 group,
but the limit measure can not have a nondegenerate idempotent factor, i.e., a
nondegenerate Haar measure on some compact subgroup as its factor.
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As new results we prove necessary and sufficient conditions for convergence of
the row sums of symmetric arrays and Bernoulli arrays, where the limit measure
can also be a nondegenerate normalized Haar measure on a compact subgroup
(see Theorems 4.4.2 and 4.5.1). Then we investigate special LCA2 groups: the
torus group (see Section 4.6), the group of p-adic integers (see Section 4.7) and
the p-adic solenoid (see Section 4.8).

Besides proving limit theorems, we give a construction of an arbitrary weakly
infinitely divisible probability measure on the torus group and the group of p-
adic integers (see Theorems 4.6.4 and 4.7.4). On the p-adic solenoid we give a
construction of weakly infinitely divisible probability measures without nonde-
generate idempotent factors (see Theorem 4.8.4). In our constructions we only
use real valued random variables. We note that, as a special case of our results,
we have a new construction of the normalized Haar measure on the group of
p-adic integers and the p-adic solenoid.

In the fifth chapter we prove an analogue of the portmanteau theorem on
weak convergence of probability measures allowing measures which are finite on
the complement of any Borel neighbourhood of a fixed element of an underlying
metric space. We use this result in proving Gaiser’s limit theorem (Theorem
4.3.1). We present this separately, because it can be formulated in a more
general setting than it is needed in proving Gaiser’s limit theorem.

In terms of notations, we try to avoid using non-standard terminology. The
basic notations are given at the beginning of each chapter. In all chapters N,
Z, R and C denotes the set of positive integers, the set of integers, the set
of real numbers and the set of complex numbers, respectively. The expression
”a measure on a topological space” means a measure on the g-algebra of Borel
subsets of the topological space in question. By a Borel neighbourhood U of
an element x of a topological space G we mean a Borel subset of G for
which there exists an open subset U of G such that z € U C U. The weak
convergence of bounded measures on a topological space is denoted by ——.

1.3 Credits

All the proofs of this dissertation are joint work with my supervisor, Gyula Pap.

The proofs of the chapter Gauss measures on the Heisenberg group are based
on
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M. BArczy and G. Pap, Fourier transform of a Gaussian measure on the
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The proofs of the chapter Gauss measures on the affine group are based on

M. BARrczy and G. PAP, Gaussian measures on the affine group: uniqueness
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The proofs of the chapter Limit theorems on LCA2 groups are based on
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Chapter 2

(zauss measures on the
Heisenberg group

Fourier transform of a probability measure on a locally compact group plays an
important role in several problems concerning convolution and weak convergence
of probability measures. In case of a locally compact Abelian group, an explicit
formula is available for the Fourier transform of an arbitrary infinitely divisible
probability measure (see Parthasarathy [46]). The case of non-Abelian groups is
much more complicated. For Lie groups, Tomé [58] proposed a method how to
calculate Fourier transforms based on Feynman’s path integrals and discussed
the physical motivation, but explicit expressions have been derived only in very
special cases.

In this chapter we examine some properties of Gauss measures on the 3-
dimensional Heisenberg group. An explicit formula is derived for the Fourier
transform of a Gauss measure on the 3-dimensional Heisenberg group at the
Schrodinger representation (see Theorem 2.3.1). Using this explicit formula,
we give necessary and sufficient conditions for the convolution of two Gauss
measures to be a Gauss measure (see Theorem 2.2.1). It turns out that a
convolution of Gauss measures on the Heisenberg group is almost never a Gauss
measure. We also give the Fourier transform of the convolution of two Gauss
measures on the Heisenberg group including the case when the convolution is
not a Gauss measure (see Theorem 2.6.1).

The structure of the present chapter is similar to Pap [45]. Theorems 2.2.1
and 2.3.1 of the present chapter are generalizations of the corresponding results
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for symmetric Gauss measures on the Heisenberg group due to Pap [45]. We
summarize briefly the new ingredients. Comparing Lemma 6.1 in Pap [45] and
Proposition 2.5.3 of the present chapter, one can realize that now we have to
calculate a much more complicated (Euclidean) Fourier transform (see (2.5.6)).
For this reason we generalized a result due to Chaleyat-Maurel [13] (see Lemma
2.5.2). We note that using Lemma 2.6.3 one can easily derive Theorem 1.1 in
Pap [45] from Theorem 2.2.1 of the present chapter.
The results of this chapter are contained in our accepted paper [6].

2.1 Preliminaries

In what follows H will denote the 3-dimensional Heisenberg group which can
be obtained by furnishing R? with its natural topology and with the product

1
(91,92,93)(h1, ho, h3) = (91 + hi,92 + ha, g3 + hs + §(g1h2 - 92h1))'

Then H is a connected nilpotent Lie group. The Schrédinger representations
{mex : A >0} of H are representations in the group of unitary operators of
the complex Hilbert space L?(R) given by

[rea(g)u](z) = eFiOos VA28 +29192/2) (1 4 \/Ngy) (2.1.1)

for g = (g1,92,93) € H, u € L?*(R) and x € R (see Taylor [56, p. 46,
Theorem 2.1]). The value of the Fourier transform of a probability measure u
on H at the Schrédinger representation my) is the bounded linear operator
fi(mer) : L2(R) — L2(R) given by

fitraui= [ ma@uads).  we IR)

interpreted as a Bochner integral.
The Lie algebra H of H can be realized as the vector space R?® furnished
with multiplication

[(P1,P2,P3); (91,92, 93)] = (0,0,p1q2 — P2q1)-

To an element X € H one can correspond a left-invariant differential operator
on H, namely, for continuously differentiable functions f:H — R we put

Xf(g) = tim < (Flgep(tX) ~ [(9)), g€,
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where the exponential mapping exp : H — H is now the identity mapping.
We note that the mapping X € H — X is injective and linear (see, e.g.,
Corwin—Greenleaf [15, p. 110]).

A family (u¢);>¢ of probability measures on H is said to be a continuous

convolution semigroup if we have fig * iy = prg4s for all s,t >0, and p; —s
o =0e as t | 0, where J. denotes the Dirac measure concentrated on the
unit element e = (0,0,0) of H. Its infinitesimal generator is defined by

~ 1
(Nf)g):=lm > | (f(gh) = f(9))me(dh), g €H,
for suitable functions f :H — R. (The infinitesimal generator is always defined
for infinitely differentiable functions f : H — R with compact support.) A
convolution semigroup (i:);>¢ is called a Gauss semigroup if

.1
ltll%l;Mt(H\U)—O

for all Borel neighbourhoods U of e. We note that the definition of a Gauss
semigroup slightly differs from the Definition 6.2.1 in Heyer [30], since in our
definition, given a Gauss semigroup (f¢);>¢, the measure p; can be a Dirac
measure for any ¢ > 0 (see Remark 3.1.1 in Chapter 3).

Let {Xi,X5, X3} denote the natural basis in H (that is, X; = (1,0,0),
X2 =1(0,1,0) and X3 =(0,0,1)). It is known that a convolution semigroup
(tt)i>0 1s a Gauss semigroup if and only if its infinitesimal generator has the

form
3 3

3
N:ZakaJrlZij,kaik, (2.1.2)
k=1

j=1k=1

(\}

where a = (a1,a2,a3) € R® and B = (bjx)1< ks 1S a real, symmetric,
positive semidefinite matrix. This easily follows from Theorem 4.2.4 and Lemma
6.2.6 in Heyer [30] and from the fact that given a Gauss semigroup (it);>0
such that p4, is a Dirac measure on H for some ¢y > 0, there exist
a1, az, a3 € R such that p; = Jexp(ta Xy +tas Xattasxs) for all 20, A
probability measure p on H is called a Gauss measure if there exists a Gauss
semigroup (p¢);>o such that p = p;. A Gauss measure on H can be
embedded only in a uniquely determined Gauss semigroup (see Baldi [4], Pap
[44]). (Neuenschwander [40] showed that a Gauss measure on H can not be
embedded in a non-Gauss convolution semigroup. We note that in Chapter
3 we show that a Gauss measure on the affine group can be embedded only
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in a uniquely determined Gauss semigroup, see Theorem 3.3.1.) Thus for a
vector a = (a1,az,a3) € R® and a real, symmetric, positive semidefinite
matrix B = (bjx)1<jr<s We can speak about the Gauss measure p with
parameters (a, B) which is by definition p := p1, where (u¢);>¢ is the
Gauss semigroup with infinitesimal generator N given by (21.2). If v isa
Gauss measure with parameters (a,B) and (vs),>o is the Gauss semigroup
with infinitesimal generator N given by (2.1.2) then v, is a Gauss measure
with parameters (ta,tB) for all t >0, since pus := vy, s>0 defines a
Gauss semigroup with infinitesimal generator tN. Hence v, = w1, so it will
be sufficient to calculate the Fourier transform of p;.

Let us consider a Gauss semigroup (f¢);>o with parameters (a, B) on H.

Its infinitesimal generator N can also be written in the form

d
N=Yo+5> Y7 (2.1.3)
j=1

N | =

where 0 < d <3 and
3 3
Yo = Zaka, Yj = Zak’ij’ 1 g J < d,
k=1 k=1

where ¥ = (01;) isa 3 xd matrix with rank (X) =rank (B) = d. Moreover,
B =%-%T. (We just diagonalise the quadratic form appearing in (2.1.2)
and use that the mapping X € H — X is injective and linear.) Then the
measure gy can be described as the distribution of the random vector Z(t) =
(Z1(t), Zo(t), Z3(t)) with values in R3, where

d d

Zit) =art+ Y o gWi(t),  Zo(t) =ast+ Y _ o2, Wi(t),
k=1 k=1

d t
Z3(t) = agt + ZO‘&ka(t) + %/ (Zl(S) dZQ(S) - ZQ(S) le(S))
k=1 0

d
= ast + Zas,ka(t) + Z (01,6020 — 01,002,1) Wi o(t)
k=1 1<k<t<d

d
+ ) (az01k — a102,5) Wi (1),
k=1
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where (Wi(t),...,Wa(t));>o is a standard Wiener process in R? and

([ e /:W ),
(/ Wi (s) dWi(s /Wz ) dWi( ))

(See, e.g., Roynette [47].) The process (Wi, 2( )
stochastic area swept by the process (Wg(s), We(s

Wi (t)

w\»—t w\»—t

Wit

t>0 18 the so-called Lévy’s
))SG[O,t] on Rz.

2.2 Main results

Let (u¢);>0 be a Gauss semigroup of probability measures on H. By a
result of Siebert [53, Proposition 3.1, Lemma 3.1], (ﬂt (7ri>\))t>o is a strongly

continuous semigroup of contractions on L?(R) with infinitesimal generator
N(ney) = ard 4+ oz + azD + ayz® + as(xD + Dx) + agD?,

where ai,...,a are certain complex numbers (depending on (p¢),>o, see
Remark 2.3.2), I denotes the identity operator on L?(R), z is the multi-
plication by the variable z, and Du(z) = «/(x). One of our purposes is to
determine the action of the operators

[ir(may) = N (mex), t=0,

on L?*(R). (Here the notation (e'?),>, means a semigroup of operators with
infinitesimal generator A.) When N(m1,) has the special form (D? — 2?2),
the celebrated Mehler’s formula gives us

1 22 + y?) cosht — 2xy
V2nsinht Jr P 2sinht u(y) dy

forall ¢t >0, ue€ L*(R) and z € R, (see, e.g., Taylor [56], Davies [16]). Our
Theorem 2.3.1 in Section 2.3 can be regarded as a generalization of Mehler’s
formula.

et(D27w2)/2u(x) _

It turns out that fz(7myy) = e!N(mx) ¢ >0 are again integral operators

on L*(R) if «ag is a positive real number. One of the main results of this
chapter is an explicit formula for the kernel function of these integral operators
(see Theorem 2.3.1). We apply a probabilistic method using that the Fourier
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transform fi(m4y) of an absolutely continuous probability measure p on H
can be derived from the Euclidean Fourier transform of p considering p as a
measure on R? (see Proposition 2.4.1).

The second part of this chapter deals with convolutions of Gauss measures on
H. The convolution of two Gauss measures on a locally compact Abelian group
is again a Gauss measure (it can be proved by the help of Fourier transforms;
see Parthasarathy [46]). We prove that a convolution of Gauss measures on H
is almost never a Gauss measure. More exactly, we obtain the following result
(using our explicit formula for the Fourier transforms).

2.2.1 Theorem. Let p' and p” be Gauss measures on H. Then the
convolution ' * p” is a Gauss measure on H if and only if one of the
following conditions holds:

(C1) there exist elements Yy, Yy, Y1, Y2 in the Lie algebra of H such that
[Y1,Ys] =0, and the supports of u' and p”’ are contained in exp{Yy +
R Y1 +R Y5} and exp{Yy+R-Y1+R-Y5}, respectively. (Equivalently,
there exists an Abelian subgroup G of H  such that supp(u’) and
supp (1) are contained in “Eucledian cosets” of G.)

(C2) there exist a Gauss semigroup (p¢)y;>o and t',t" >0 and a Gauss
measure v such that supp (v) is contained in the center of H and
either ' = py, p' = pprxv or p = pp xv, p’ = ppr  holds.
(Equivalently, ' and p"” are sitting on the same Gauss semigroup
modulo a Gauss measure with support contained in the center of H.)

By the support supp (u) of a measure p on H we mean the complement
of the union of all open subsets U of H on which g vanishes in the sense
that for all continuous real valued functions f on H with compact support
contained in U we have [ f du=0.

We note that in case of (C1), g/ and p” are Gauss measures also in the
“Euclidean sense” (i.e., considering them as measures on R?). Moreover, Theo-
rem 2.6.1 contains an explicit formula for the Fourier transform of a convolution
of arbitrary Gauss measures on H.

2.3 Fourier transform of a Gauss measure

The Schrodinger representations are infinite dimensional, irreducible, unitary
representations, and each irreducible, unitary representation is unitarily equiva-
lent with one of the Schrodinger representations or with g for some a, 8 € R,
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where X.,g is a one-dimensional representation given by

Xouﬁ(g) = ei(agl+592)a g = (glngag?)) € H7

(see Taylor [56, p. 49, Theorem 2.5]). The value of the Fourier transform of a
probability measure ;1 on H at the representation xq s is

AXap) = / Xa,6(9) u(dg) = / e!®01092) 1(dg) = fi(a, 5,0),
H H
where [i:R? — C denotes the Euclidean Fourier transform of pu,
fila,8,7) = [ elen o ),
H
Let us consider a Gauss semigroup (i¢);>o with parameters (a,B) on
H. The Fourier transform of u := @1 at the one-dimensional representations

can be calculated easily, since the description of (u:),>¢ given in Section 2.1
implies that

u(xag)—Eexp{(aa1+ﬁa2 <a201ka JrﬁZUszk )}

k=1

for «,8 € R. The random variable

(Z o1 Wi(1 ZO’Q KWi(1 )

has a normal distribution with zero mean and covariance matrix
011 ... 014 _big b1
b b ’
021 ... 024 2,1 2,2

since ¥XT = B. Consequently,

01,1 021

01,d 024

(Xa,8) = eXp{ i(ovay + Pag) — *(bl 102+ 2by 203 + by o3 )}

One of the main results of the present chapter is an explicit formula for
the Fourier transform of a Gauss measure on the Heisenberg group H at the
Schrodinger representations.
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2.3.1 Theorem. Let p be a Gauss measure on H with parameters (a,B).
Then

. /Kix(l‘,y)U(y)dy if b1y >0,
[(mea)ul(z) = /R
Lax(x)u(z +vVAay) if biq =0,

for ue L3(R), z € R, where

1
Kix(#,y) = Cia(B) exp {_2ZTDi/\(a7B)Z} ; z:= (z,y,1)7,
where, with § := \/m: 51 = b1,1b273*b1,2b173, 52 = a1b1,27a2b1717
1
T if =0,
\/m
CiA(B) :=
1)
——— if >0
orbyysinh(e) ’
_ (gEA ) )
and Dyx(a,B) = (dj}(a,B))i< k< are symmetric matrices defined for
b171>0 and § =0 by
)\—1 :l:iblg 1 )\—1 :F?:blg
4 (@, B) = =2 gENa,B) = ———,  df)(a,B) = A2
bl,l )\bl,l bl,l
+i\b A0 4D Y
dli,g(aaB) = 4 013 + \/> 2 d;g\(a,B) = _al tAb13 4+ \/> 2

1 ) ? )
\/Xbl’l 2b1,1 \/Xbl’l le,l
(a1 + i>\b1’3)2 + A25%

b1 12b1 1

di3(a, B) == + \2b3 3 T 2i\as,

and for § >0 by

dfi\(% B) = 0 coth(Ad) £ Zbl’g’ d;%(m B) = 0 coth(Ad) F lb1’27
’ b171 ’ bl,l
) a1 £iAb Y R== 1)
di)x G/,B = diA G7B — 1 1,3 1 2 :
172( ) b1,1 Slnh()\d) 173( ) \/XbLl \/Xbl)l(SCOth()\(S/Q)
ail + i)\b173 )\(51 + ’L'(SQ

di)\ G,B = )
23(0:5) VAbis  VAbyp 18 coth(A5/2)
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a1 + Z./\b173)2 _ ()\(51 + iég)z
bl,l )\bl,lé3

&) (a, B) = ( ()\6— 2tanh()\6/2)) +A2bs 5 F 2iMas,

and

ivA A2 )
Li)\(l’) = exp + T (\/X(2CL3 + alag) + 2(1233) - F(?)bg’g + 30311)273 + albgvg)

A\3/2 A
- 7(25234-@152 2)T — 252,2902}-

We prove this theorem in Section 2.5.

2.3.2 Remark. Consider a Gauss semigroup (f¢);>o with infinitesimal gen-
erator N given in (2.1.2). Siebert [53, Proposition 3.1, Lemma 3.1] proved that
(fie(m2)) +>¢ is astrongly continuous semigroup of contractions on L?(R) with
infinitesimal generator

3 3
1
N(mer) Zaka LESY +§Zzb],kX Tax) Xk (m1r),
j=1k=1
where
X(men)u = thn(l) tH (mea(exp(tX))u — u)

for all differentiable vectors u € L?*(R). Here the infinitesimal generator
N(mxy) of (ﬁt(wi)\))t>0 is the linear operator defined by

e (mea)u —u

; for w e D(N(myy)),

N(myy)u:= ltllrél
where

D(N(m4y)) := {u € L(R) : lim M exists in L2(R)}.
(Then N(myy) is always defined for all differentiable vectors u € L*(R).) We
note that the infinitesimal generator N of a Gauss semigroup (#t)i>0 can
also be considered as the infinitesimal generator of a suitable one-parameter
semigroup of bounded linear operators. Namely, for all ¢ >0 and for all
bounded continuous functions f:H — R vanishing at infinity, let

(T f)(g /fgh,ut(dh) g € H.
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Then (7),,);>0 is a one-parameter semigroup of bounded linear operators on

the Banach space of all bounded continuous functions f:H — R vanishing at

infinity equipped with the supremum norm. Moreover, the infinitesimal gener-

ator of (T,);>o coincides with the infinitesimal generator N of (4¢);>¢-
We get

[(X1(rex)ul(z) = V' (z) = VADu(x),

[Xo(mae)u)(z) = +ivAzu(w),
[(Xs(mex)u)(z) = tidu(z)

for all = € R. Consequently,
N(m1y) = anl + a0z + azD + ag2® + as(xD + Dx) + agD?,
where

1
a1 = —5/\2b3,3:|:i/\a3, Qo = —)\3/2b273:|:i>\1/2(12, Q3 = /\1/2a1:|:i)\3/2b173,
1 1 1
= _—Z\b =+-X\b = -Ab1 1.
Oy 5 2,25 Qs 2 1,25 Qg 5 1,1

2.4 Absolute continuity and singularity of a
Gauss measure

A probability measure g on H is said to be absolutely continuous or singular
if it is absolutely continuous or singular with respect to a (and then necessarily
to any) Haar measure on H. It is known that the class of left Haar measures
on H is the same as the class of right Haar measures on H and hence we can
use the expression ”a Haar measure on H”. It is also known that a measure
v on H is a Haar measure if and only if v is the Lebesgue measure on
R3 multiplied by some positive constant (see Corwin-Greenleaf [15, Theorem
1.2.10] and Hewitt-Ross [29, Remarks 15.8]). The following proposition is the
same as Proposition 2.1 in Pap [45]. But the proof given here is simpler, we do
not use Weyl calculus.

2.4.1 Proposition. If p is an absolutely continuous probability measure on
H with density f then the Fourier transform [i(myy) is an integral operator
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on L3*(R),
[(men)u /K:I:)\ (x,y)u(y) dy, ue]LQ(RL z € R,

with kernel function K.y :R? — C given by

Kix(z,y) = \%J?z,s (y\}f,iﬁ (y ; x) ,ix) 7

where
f2,3(s1, 52, 53) 22/ ei(s2s2ts353) £(5) 55 53) dso dss, (s1,39,53) € R,
RZ

denotes a partial Euclidean Fourier transform of [ (considering f as a
function on R3).

Proof. Using the definition of the Schrodinger representation we obtain

[B(mren)ul(x) = / eﬂ(’\s3+ﬁs2m+’\3152/2)u(x + VAs1)f(s1, 52, 53) dsy dsa dss
]R3

:ti()\53+f52x+f(y z)s2/2) y—x du dso d
f R3 ( )f< \/X 7$2a33> Yy dasp dsy
/ Kix(z,y)u(y) dy,

where

Ki)\(.’b y) j:i()\33+\/X(a:+y)32/2)f <y - $’82’ 83) ds, dss

VA
- (e (45 ).

Hence the assertion. _ O
The partial Euclidean Fourier transform f; 3 can be obtained by the inverse
Euclidean Fourier transform:

1 ; T e ey g~ ~
7/6_“181f(81,82783)d817 (s1,32,33) €R?,  (2.4.1)
2w R

fRa

J?2,3(81,§27§3) =
where f denotes the (full) Euclidean Fourier transform of f:

f(ghgz’gg) — / ei(S181-i-szsz-i-sgsg)f(Sl7 59, 83) dsq dss dss
R3
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for (31,32,33) € R3. Moreover, Ji(m+y) is a compact operator. If the density
f of u belongs to the Schwartz space then [i(7w1y) is a trace class (i.e.,
nuclear) operator.

In order to apply Proposition 2.4.1 we shall need the description of the set
of absolutely continuous Gauss measures on H. Using a general result due
to Siebert [54, Theorem 2] one can prove the following lemma as in Pap [45,
Lemma 3.3].

2.4.2 Lemma. A Gauss measure p on H with parameters (a, B) is either
absolutely continuous or singular. More precisely, p 1is absolutely continuous
’Lf b1’1b2’2 — b%,Q >0 and singular ’Lf b1’1b272 — biz =0.

By Siebert [54, Theorem 2], given a Gauss semigroup (fi¢);>o on H, either
the measures pu; are absolutely continuous with respect to the Haar measures
on H for all ¢ > 0, or the measures pu; are singular with respect to the
Haar measures on H for all ¢ > 0. In the first case we say that (u¢);>
is an absolutely continuous semigroup on H, otherwise it is called singular.
The next lemma describes Gauss semigroups on H and the support of a Gauss
measure on H.

2.4.3 Lemma. Let (ut);>o be a Gauss semigroup on H with infinitesimal

generator N given by (2.1.3). According to the structure of N we can
distinguish five different types of Gauss semigroups:

(i) N=Yy+ %(5712 +YZ+Y2) with Yy, Yo and Ys linearly independent.
Then the semigroup is absolutely continuous and supp (u;) = H for all
t>0. Moreover, rank(B) =3, by1bys— b7, #0.

i) N = SN/O—i—l Y2+Y2) with Y1 and Yy linearly independent and [Y1,Ys
PACS RS
0. Then the semigroup is absolutely continuous and supp (p;) = H for
all t>0. Moreover, rank(B) =2, by 1bys—bi, #0.

(i) N = Yy + %(?12 +Y2) with Yy and Yy linearly independent and
[Y1,Y3] = 0. Then the semigroup is singular, it is a Gauss semigroup on
R? as well, and it is supported by a ‘Euclidean coset’ of the same closed
normal subgroup, namely,

supp (p1¢) = exp(tYp + R - Y1 + R - Y5)

for all t>0. Moreover, rank(B) =2, b1 1bys—biy=0.
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(iv) N = }70 + %5712. Then the semigroup is singular, it is a Gauss semigroup
on R3 as well, and it is supported by a “Euclidean coset” of the same
closed normal subgroup, namely,

supp (u1t) = exp(tYo + R - Y1 + R - [Yo, Y1])
forall t>0. Moreover, rank (B) =1, by1bys—bi,=0.

(v) N =Y,. Then the semigroup is singular and consists of Dirac measures,
namely, iy = dexp(tvy) for all t 2= 0.

Proof. From general results due to Siebert [54, Theorems 2 and 4], it follows
that a Gauss measure p on H is absolutely continuous if and only if G :=
L(Y;,[Y;, Y] : 1<i<d, 0<j<k<d)=R3 where L£(-) denotes the linear
hull of the given vectors, and Y; € H, 0 < i< d are described in (2.1.3).
Moreover, the support of p; is

Y n
supp (11:) U <Mexp< )) for all  ¢>0,

where M is the analytic subgroup of H corresponding to the Lie subalgebra
generated by {Y;:1< i< d} and the bar denotes the closure in H. Clearly
[Y;,ij] = (0'171‘0'2’3‘ - 0‘17j0'2)i)X3 for 1<i< J <d and [K Z] S ﬂ(Xg) for
all Y, Z e H.

We prove only the cases (iii) and (iv), the other cases can be proved
similarly.

In case of (iii) we have G = L(Y1, Y3, [Yo, Y1],[Y0, Y2]). Since [Y1,Y3] =0,
we have 01,1022 — a%Q =0, so Y7 and Y5 are linearly dependent in their
first two coordinates, thus their linear independence yields X3 € L(Y1,Y3).
Moreover, [Yp,Y:],[Yo,Ys] € £(X3) C L(Y1,Y2). So G = L(Y1,Y2) #R3, ie.,
the semigroup (p¢);>o is singular.

To obtain the formula for the support of p; it is sufficient to prove that

t n
<Mexp (YO>) =exp(tYo+R-Y1 + R - Y5)
n

forall t >0 and n € N, where now M = exp(R-Y1+R-Y3). The multiplication
in H can be reconstructed by the help of the Campbell-Haussdorf formula

exp(X) exp(Y) = exp (X +Y+- [X Y]) X, Y eH,
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(see Corwin—Greenleaf [15, Theorem 1.2.1]). Applying induction by n gives
the assertion. Indeed, for n =1 we have

Mexp (tYp) = exp(R- Y1 + R - Y2) exp(tYy) = exp(tYo + R - Y1 + R - Y3),

since [Yp, Y1], [Yo, Y2] € £(X3) C L£(Y7,Y2). Suppose that

t n—1
V) =exp(tYo+R-Yi+R-Y))

n —

(M exp (

holds for all ¢t > 0. Using the Campbell-Haussdorf formula and the induction
hypothesis we get

n —1
(Mexp (%Yo)) = exp (1Y) +R-Yi +R - Y) exp (%YO+R~Y1—HR-Y2).

Since [Yp, Y1), [Y0,Y2] € L(X3) C L(Y1,Y2), another application of the
Campbell-Haussdorf formula gives the assertion.

The case (iv) can be obtained similarly. Indeed, we have G =
L(Y1,[Yo,Y1]) #R3, M =exp(R-Y;), hence

supp (1) = exp (1Yo + R- Y1 + R - [¥7,Y5]) for all ¢ > 0.

2.5 Euclidean Fourier transform of a Gauss
measure

Now we investigate the processes (Wj(t));>o and (Wi (t));>0 (defined in
Section 2.1). Let ¢t > 0 be fixed. We prove that W} (t) and Wy ¢(t) can be
constructed by the help of infinitely many independent identically distributed
real valued random variables with standard normal distribution. Because of the
self-similarity property of the Wiener process it is sufficient to prove the case
t = 2m. The rigorous proof of the following lemma is due to Endre Igloi.

2.5.1 Lemma. Let (Wi(s),...,Wq(s))sep,2x] be a standard Wiener process
in R? on a probability space (2, A,P). Let us consider the orthonormal
basis fn(s) = (2m)"1/%e™,  s€[0,2n], n€Z in the complex Hilbert space
L2([0,27]). If (9(s))se[o,2n) is an adapted, measurable, complex valued process,
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independent of (Wi(s),...,Wa(s))se[o,2r) Such that E (fo% |g(s)|2ds) < o0
then for all 7 =1,...,d,

2w 2w
| s =St h [ f@dwie) s, (25.1)

ne”Z

where (-,-) denotes the inner product in L?([0,27]) and the convergence of
the series on the right-hand side of (2.5.1) is meant in L?*(Q, A, P).

Proof. Let 1< j < d be arbitrary, but fixed. First we prove that the right-
hand side of (2.5.1) is convergent in L?*(Q2, A, P). Using that the processes
(9(s))sepo,2n) and (Wi(s),...,Wa(s))se[o,2r) are independent, for n,m € Z,
n#m, we get

27 27
EQ%n>O n@mww@@45>otm@mww@)
=E«%nx%ﬁ0ﬁ(07m@mww@0”ﬁ4$ﬁ%@0
—E((g. ) F)) | Fu(8) T () ds = 0.

0
Using again the independence of (g(s))seo,2«] and (Wi(s),..., Wa(s))se[0,2x];
we have

2 2

— E|(g, )| 'E

27

4@ﬂ»0 Fuls) AW (s) O”n@wwu@

’ 2

9 2T )
=wam|A Fa(s)[2ds = E|(g. f.)

Since E (IQW lg(s)|? ds) < 0o, Parseval’s identity in L?([0,27]) gives us that

0
Z|<gvf7l>|2:AW|g(S)|2dS a.s.

neEZ

This implies that

E:H@JMF=E<A%M@2®><KL

neZ
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Hence the right-hand side of (2.5.1) is convergent in L?(Q2, A, P).
Now we show that
27 2
JARCLOED SRRy R ABEUAD
0 nez

2

E =0,

which implies (2.5.1). We have

2
E

/0 g(s) dW; (s) - nezgfn / Fuls)dW; (s)
/ " gy dw(s)|

2 2
- 2ReE(/0 g(s)dW;(s) > (g, fu) i mdwj(s)> =: A, + Ay — 2Re As.

neZ

2

—E +ED

2m
D Agfa) | fuls) dWy(s)
neEZ /

Then, using that the inner product in L?(€, A, P) is continuous, we get

4 =E (/ s(o)as).

2
Ar= Y Ellaf) [ uls)awi

= S Elg f)f = (/:ﬂlg(sn?ds),

nez ne?
%E(/ s)dW;(s) (g, fn) 0% fn(s)dwj(s)).

Let us denote the o-algebra generated by the process (g(s))sepo,2x] by F(g)-
Then we obtain

ZEE(/ $) dW;(s) (g, F) /%f,, dW()‘J—‘())

=S e(wae( %g(s) awys) [ FEw )| 7))
(e [ aonees) =%E\<g,fn>12=E(/o% 9(5)7 s ).
Hence the assertion. O

The next statement is a generalization of Section 1.2 in Chaleyat-Maurel
[13].
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2.5.2 Lemma. Let (Wi(s),...,Wa(s))sep,2x] be a standard Wiener process
in RY.  Then there exist random variables agf), bg), neNj=1....d,
with standard normal distribution, independent of each other and of the random

variable (W1(2m),...,Wa(2m)) such that the following constructions hold

(2.5.2)
bk (am ﬂ_Wj(Q?T))] a.s.,
0 b(e)
Wi@2m) = -2y % a.s. (2.5.3)
n=1

forall 1<j<k<d and ¢ =1,...,d, where the series on the right-hand
sides of (2.5.2) and (2.5.3) are convergent almost surely.

Proof. Retain the notations of Lemma 2.5.1 and let us denote

27
ngj) = fn(s)dWJ(8)7 n €z, j:l,...,d.
0

Then cﬁﬂ'% ne€Z,n#0,j=1,...,d, areindependent identically distributed
complex valued random variables with standard normal distribution, i.e., the
decompositions ) = (aﬁf) +ibg))/\@, né€Z n#0,j=1...,d hold
with independent identically distributed real valued random variables a%j ), b$f ),
n€Z n+#0,j=1,...,d, having standard normal distribution. Specifying
g as the indicator function 1, of the interval [0,¢] (t € [0,27]) in Lemma
2.5.1, we have for all t € [0,2n]

«

. )
Wi(t) = &0 L (fnt) — fot) + L s,
' nGZ,Zn;éO ( ’ ) \/ﬂ

(=1,...,d. (2.5.4)

_nn

Moreover, there is a set 2o with P(€) = 0 such that (2.5.4) holds for all
w ¢ Qo and for almost every t € [0,27] (see, e.g., Ash [2, p. 107, Problem

4]). Applying (2.5.1) for 027r W;(s)dWi(s) and f027r Wi (s)dW;(s) and using

the construction (2.5.4) for W; and Wj, Chaleyat-Maurel [13] showed that
(2.5.2) holds. Choosing g(s) = sl 4(s) (t € [0,27]) in Lemma 2.5.1 it can
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be easily checked that

¢ 9 (int+1 A t2
/ sdWpe(s) = Z %f,n(t) - Z — fo(t) + O as.
0

0
n n
neZ, n#0 nezZ, n#0 2v2m

By Ito’s formula we get W, () = 2tW(t) ffot sdWp(s). Using the construction
(2.5.4) of Wy(t) and the definition of i) a simple computation shows that
(2.5.3) holds. By Lemma 2.5.1 the series in the constructions (2.5.2), (2.5.3)
and (2.5.4) are convergent in L*(Q, A,P). Since the summands in the series
in (2.5.3) and (2.5.4) are independent, Lévy’s theorem implies that they are
convergent almost surely as well. Finally we show that the series in (2.5.2) is
also convergent almost surely. For this, using that >, b /n s convergent
almost surely for all ¢ =1,...,d, it is enough to prove that the series

[eS)
n=1

is convergent almost surely. Here b;j )a%k) — b%k)a%j ), n € N, are independent,
identically distributed real valued random variables with zero mean and finite
second moment. Hence Kolmogorov’s One-Series Theorem yields that the series
in (2.5.5) is convergent almost surely. a

(b — b)) (2.5.5)

3=

Taking into account Proposition 2.4.1 and the representation of a Gauss
semigroup (it);>o by the process (Z(t));>o (given in Section 2.1), in order
to prove Theorem 2.3.1 we need the joint (Euclidean) Fourier transform of the
9-dimensional random vector

(W (t), Wa(t), W (t), Wy (£), W5 (1), Wy (£), Waa(t), Wi s(t), Was(t). (2.5.6)

2.5.3 Proposition. The Fourier transform F, 1R = C of the random
vector (2.5.6) is

Fy(m,m2,m3,C1,C2,C35€1,2, 61,3, €2,3)
1 ) exp{ €27 + (€7 — tr(1 + m) 12

cosh(t||€]/2 2(1+ r)|1€]12

t3 1 2K ~
——— 2 - | €0
4/ (6 752|£|2> &9 }
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for E:: (52,3,75173,5172)T e R® with 57& 0, where ¢ := ((1,(2,¢3)" € R?
and

UL, (0 s,
R <2> gt

with n:= (7]1,772,7’]3)T eR?® and

0 12 €13
E:=]-&i2 0 &3
13 —&3 0

(Here || - || and (-,-) denote the Euclidean norm and scalar product,
respectively. )

To prove Proposition 2.5.3 we will use the constructions of the processes
(Wi(t)i>0 and (Wye(t))>o (see Lemma 2.5.2) and the following lemma.

2.5.4 Lemma. Let X be a k-dimensional real random vector with standard
normal distribution. Then we have

Eexp {(17,X) — s(BX,X)} = m exp {;G;, (I+ 253)‘1ﬁ>} ,

for all 7 € C*, nonnegative real numbers s and real symmetric positive
semidefinite matrices B. (Here I denotes the k x k identity matriz.)

Proof. Consider a decomposition B = UAU', where A is the k x k
diagonal matrix containing the eigenvalues of B in its diagonal and U is an
orthogonal matrix. Then the random vector Y := UTX has also a standard
normal distribution. This implies that

Eexp {(7,X) — s(BX,X)}=Eexp{(,UY) — s(AY,Y)}

= \/(;T)k /]Rkexp {@“, Uy) — s(Ay,y) — ;<y,y>} dy,
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where y = (y1,...,yx)' € R¥. Let Aj,...,\x denote the eigenvalues of the
matrix B. A simple computation shows that

%(y, Y)

k k k
1 .
=2 (S% + 2) v+ _(UTRen);y; +iY (U Imi);y;
j=1 j=1 j=1

<77> Uy> - S<Ay7 y> -

k 2 k T
1+ 2s); (UTRen); (UTRe)?
2: j <yj— j 2: Ry

k
— T s —
_Z;(U Im )33 2 1+ 25\ 2(1 + 25);)

j=1
Using the well-known formula for the Fourier transform of a standard normal
distribution

_ 2 1
/ exp {ixt — (x;n)} dz = V270 exp {imt — 02t2} , (2.5.7)

for all t,m € R and o >0, we obtain
Eexp {{7, X) - s(BX, X))}

k k T 2
1 TR | U'lmn)?
: oo S D e
H?=1(1+2$)\j) j=1 t2s = 2(1+2s4y)
UTRe 2
+z ;
1+25)\
Hence the assertion. O

Proof of Proposition 2.5.3. Because of the self-similarity property
of the Wiener process, the random vectors (Wi (t), W;(t), Wy q(t)

Lk t<d 1<p<qg< d) and (c‘l/QWk(ctL0_3/2W£*(ct),c_le7q(ct) :
1<k l4<d, 1<p<qg< d) have the same distribution for all ¢+ >0 and
c> 0. Hence

F (M,m2,M3,C15 G2, €3, 61,2,61,3,€2,3)

3/2 n 3/2 " 3/2
<\/;7717 \/>/’727 \/>773a (271’) Cl» (271_) <27 (27T> 437

t t t
551,27 ﬂfm, 27r§2’3> ;
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so it is sufficient to determine ]?'gﬁ. By the definition of the Fourier transform
we get

ﬁZﬂ'(nthvnSuC17C27437£1,2a£1,37£2¢3) (2'58)
3 3

— oo {i( Luwien + L owien + X guliuen)}.
j=1 j=1 1<j<k<3

For abbreviation let ﬁzﬂ denote ﬁgﬂ— (771, 2,13, Cla CQ, C3, 5172, 61,3, 5273). Define
the random vector x := (x1,X2,X3)' by

1 1

X1 = —51,2ﬁW2(2W) - 51,3FW3(27T) — 2y/7(q,
X2 = 51,2%‘/1/1(277) - 52,3%14/3(277) — 27,
1

X3 = 61,3ﬁW1(2W) +§2,3%W2(27T) —2y/7.

Substituting the expressions (2.5.2), (2.5.3) for W;x(2r) and W/(27)
into the formula (2.5.8), taking conditional expectation with respect to the

random variables {W;(27), aSZ), 1<j<3,n=1}, and using the identity
E(E(X]Y)) =EX (where X,Y random variables, E|X| < c0), we obtain
ﬁgﬂ. =E l:eXp {i(n1W1(27T) + 772W2(27T) + 773W3(27T))}
<o {i 3 1e 0+ x| ‘ Wy(2m). o) 1 <<= 1))
n
n=1

where a,, := (ag), a%z), a£f’))T and b, := (b%”, bg), bg))T. Taking into account
that b5}>, bgf), bﬁf’) are independent of the condition above and of each other for
all n € N, using the dominated convergence theorem and the explicit formula
for the Fourier transform of a standard normal distribution we get

ﬁgﬂ- =E |f%Xp {i(’Ith(Qﬂ') =+ 772W2(27T) + 773W3(27T))}

o0
«[Lew{ - pale-on +xll2}]-
n=1 n
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Since ¢ is a skew symmetric matrix, there exists an orthogonal matrix M =
(mjk)1<;k<s such that

0 p O
M€M= |-p 0 0| = P.
0 0 0

The orthogonality of M implies M~' = MT, hence ¢M = MP. We have

—pmi2 pmiy O
MP = |—pmgs pmoi1 0| =[—pmg,pmy,0],
—pm3z2 pmg1 0

where m;, ¢ = 1,2,3, denotes the column vectors of M, that is, M =
[mj, mo, m3]. Obviously, &M = [€m;,{ms, &ms], hence &{m; = —pmsy,
&my = pmy, &mg = 0. Taking into account that M is orthogonal, we have
|lms|| =1, hence

1
m3 = =+ - - 5 (&23,—&13,&12) "
NS RESERASE
Moreover, £2m; = £(ém;) = £(—pmy) = —p?m;. The only nonzero eigenvalue

of € is —(§o+E13+&53), hence p=+,/67,+& 3+ 655, and M can
be chosen such that ms = &/||€], p=||€], and thus

1 ~
(my,u)® + (mg, u)? = [ M Tu? — (mg, u)? = [Ju? - e €uw? (259
for all u € R3. We also get
g0 o
—&Z=M| 0 [P oM = MAMT.
0 0 0

To continue the calculation of the Fourier transform of (2.5.6) we take condi-
tional expectation with respect to {W;(27), Wa(27), W5(27)}. A special case
of Lemma 2.5.4 is that

- 1
Eexp{ —s Y?}—
p{ ; ! det (I + 2sD)

X exp {<(232D1/2(I + 25D)_1D1/2 — 5])m,m>}
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for all nonnegative real numbers s, where Y = (Y7,...,Y3)" is a k-
dimensional random variable with normal distribution such that EY =m and
VarY = D. Applying this formula for Y = ¢-a, +x with s = (2n?)71,
m=x and D=¢ 6T = -2 =MAMT we get

For =E {exp {i(n1W1(27r) i Wa(2r) + ngwg(zw))}

<11 m
X exp {;<(n_4\/7\(1 +n72A)"WVA — n_zl)M_lx,M_lx>H .

Clearly det (I +n=2A) = (1+n~2||¢||?)2. Using that

k2m? x 9 2
U —que oo 1220 e @R

(see Gradshteyn—Ryzhik [24, formulas 1.431 and 1.421]), the identity (2.5.9) and
the fact that (&, x)? = 47(¢,£)? we obtain

o {-Z (1— )Cf }
S S T e ) a

x Eexp {i(W1W1(27T) + neWa(27m) + 773W3(27T)) 4”5”2 ||X|2}

where k = 7||¢|| coth(w||€]|) — 1. A simple computation shows that

2 = 2 (2 + )W) + (€ + BoIWECT) + (s + &)W (2m))
+ %(gl,ggg,wl(zw)wg(zw) — €1 260 5W1 (27) W3 (27)

+ 51,251,3W2(27T)W3(27T)) —4(&1,2C + &1,3¢3) Wi (27)
+ 4(€1,9G — E2,3C3)Wa(27) + 4(&1,3¢1 + E2,3(2) W3 (2m) + 47||¢)12.
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Using Lemma 2.5.4 with 7 = @;f@ +iV2mn, B = —22, s = 4H§H2

taking into account that +/det(I +2sB) =1+ k we conclude

_ af { 7 (1 i ) ~2}
Fﬂ-— = X - = 5 =~ Cag
= wysinb (el P @R 3 T e ) O

TR 1 K -1
x —~||<||2+<~, R ~>}
ep{ GE {7 ( HE )

Using (2.5.9) we get

7 (1 - —=—¢ _1~>: L g+ {607
<"( HE ) ) =l [EPNEE

Hence the assertion. O

Proof of Theorem 2.3.1. We prove only the case rank (B) =3. The cases
rank (B) = 1 and rank(B) = 2 can be handled in a similar way. In case
rank (B) = 3 the measure g is absolutely continuous and so Proposition 2.4.1
implies that the partial Euclidean Fourier transform fg’g of the measure p has
to be calculated in order to obtain the Fourier transform fi(m+x). Let (u¢);>0
be a Gauss semigroup such that p; = p and let p; 1= 01,1022 — 01,2021,
p2 = 01,1023 — 01,3021, pP3 ‘= 01,2023 — 01,3022 by definition. In case
rank (B) = 3, the representation of (u¢);>o by the process (Z(t));>, (see
Section 2.1) gives us

3 3
Zi(1) =ar+ Y orxWi(l),  Zo(1)=a2+ Y 02k Wi(1),

k=1 k=1
3 3
Z3(1) = a3z + Z%,ka(l) + Z(azm,k —ayog5) Wi (1)
k=1 k=1

+ p1 Wi 2(1) + p2W1 3(1) 4+ psWs 5(1).
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This implies that the (full) Euclidean Fourier transform of the measure p is

f(31,%2,53) = Eexp {i(§1zl(1) +5225(1) + §3Z3(1))}
= exp {i(§1a1 + Sea9 + §3a3)}
3
x Eexp {Z ( Z(Ul,kgl + Ug’kgg + 0'37k§3)Wk(1)
k=1

+ 531 W1 2(1) 4 S3p2W1 3(1) + S303Wa 3(1)

- i(am,k - al”Z‘»k)g‘”’W;(l)) }

k=1

Proposition 2.4.1 shows that we may suppose s3 # 0. Using Proposition 2.5.3
and the facts that

d
2 2 2

E (@201 — a102,%)° = ba2a] — 2b1 2a1a2 + by 105, d=1,2,3,

e

—

(2.5.10)
pr(a1023 — a2013) = p2(a102,2 — a201,2) + p3(a102,1 — azo1,1) = 0,
6% = pi + p3 + 13,
we get
(615250 = e (G101 + Faaz + 5 &0
f50:59) = i = {( FRe B g
K
- @(bl?a% — 2by 20102 + bmag)
1 ~2
+ sl
where

33]8 33/0 _ -
K= ‘8?2’| coth (|SZ| ) -1, = —%(’Uh’vgﬂig)—r +i¥'3
with

V] = pl(a10'272 — a20172) + ,02(a1<72,3 - a/20-1,3)7

vy := —p1(a102,1 — a201,1) + p3(a102,3 — az01,3),

—Pz(a102,1 - a201,1) - PS(G102,2 - a201,2),

V3 .
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and 3:= (51,89,53)", &:= (p3,—p2,p1)". It can be easily checked that

(€,m)% = —53det B,

_ _ K2 Ko _ -
17> = —(BS5,3) + 67@% v) — 21@((31611 + 52a2)6” + 53(a103 + (1261))3

o _ bioS+bisss\e 1 [5][82 &[5
T 1,282 1,353 2 1 2
Bi=b 21,292 7 01,393 —|% 3
TEE <81 - b1 > - b1 LJ [51 54] [53} ’

where (53 = b173b2,2 — b172b273 and 54 = b171b3,3 — b%?). Using (241), the

identities above and (2.5.7), the partial Fourier transform ﬁ,g can be calculated
as follows

fa.3(s1,30,53) = 5319 ex _;’gz—ré? Ou 152
252 ) A [ oty L sinh([53)0) © 0\ 201+ m)biy [8s) [0 84 [Ss

___F ___r
SRR s y

1+k a; 2 b1,252 + b1,353 ay
— — =851 — — 51
2b171 1+Ii 6171 1+I€

(§2a2(52 + §3(a163 + CL251))> }

(bgg@% — 2b1’2a1a2 =+ bmag)

A~ ~ R
+ 1(82012 + ssaz — m

Finally Proposition 2.4.1 implies that the Fourier transform f(m4y) is an
integral operator on L?(R),

A(mar)ul(z) = / Ko (a,y)uly) dy,

where K.y, has the form given in Theorem 2.3.1. O

2.6 Convolution of Gauss measures

The convolution of two probability measures p’ and g’ on H is defined by

(1) (A) = [ () ),
H
for all Borel sets A in H.
First we give an explicit formula for the Fourier transform of a convolution
of two Gauss measures on H.
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2.6.1 Theorem. Let p' and p'’ be Gauss measures on H with parameters

(a/,B’") and (a",B"), respectively. Then we have
(51T ) = o { () + o+ (05 + a))
1
3 ((bll,l + blll,l)azJF Q(b/1,2 + b,1/,2)045 + (b,2,2 + b/Q/,Q)ﬂZ)}a
Li)\(l’)u(l’ + \[\(a’1 + a’l’)) if b’L1 = b’1’71 =0,

[(/j 1) (7Ti/\)u] (r) = /RKiA(%Z/)U(?/) dy otherwise,

where Lyy(x) is given by

N

exp { + i()\(aé + aff + (ahah + alay)/2) + VA(ah + af)x + )\ala2)

)\ 2 / // A3/2 / /! /BN ! 1 /!
57 (by o +b55) — T$(2b2,3 + 2by 5 + @by 5 + (20 +af) 2,2)
)\2
- 7( 3.3+ bl3/,3 + allb/2,3 + (24} + af) /2/,3 + ((0/1)2 5o+ (0’,1/)21)/2/,2)/3

+a(eh - afgs) b

and Kiy(z,y):=Cexp {—%ZTVZ}, z:= (z,y,1)7, with

Cun(B) it ¥, >0 and B, =0,
CiA(BN) if b/l,l =0 and blll,l > 0,

Cj:A(B,)O:I:)\(BN)m if bll,l >0 and b,1/,1 >0,
22 T 411

(taking the square root with positive real part) where Cyx(B'), CLA(B") are

C =
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defined in Theorem 2.3.1 and

0 0 —VAdld),
Dyy(a',B")+ 0 Aby o D2,3 if b1 1 >0 and by ; =0,
\fa dq 2 P32 P3,3
_)\blz’z 0 q1,3
V.= 0 0 Vad,dy V9| + Dxa(a”, B") if by 1 =0 and b} ; >0,

| 93,1 ﬁa,ldlf,z q3,3

L0 d -

0 /2/72 dg73 — W Zf bll’l >0 and bll/’l >0
d! d d' d" 2,2 1,1

[d31 @32 d33td3;

where d’; . = df,?(a’,B'), djy, = d;%li‘(a",B") for 1< 45,k<3 are defined
in Theorem 2.5.1 and
U:= (d/1,2a d/Q/,la df?.,z + dg,l)—ra
P23 ‘= P32 ‘= *\Fallldlz 2T )\3/2(2b'2’3 - a/1/b/2/,2)/2 + i\[\ag,
P33 = —VAd{ (d} 5.2) + Ala] )? 5o+ )‘2( 53— @by 5+ (a7)? /2/,2/3)
FiN(2a — a’l’ag)
q1,3 ‘= (¢3,1 = \/>a1d’1’,1 + )\3/2(a’1b’272 + 2b/2,3)/2 + i\f)\alz,
43,3 = \5\@/1 (dlll,:a + dg,l) + )‘(a/l)zd/ll,l +A? (b:/a,g + allblz,g + (all)2b/2,2/3)
FiN(2a5 + a)ay).

Proof. If b7, >0 and bf; >0 then the assertion can be proved as in Pap
[45, Theorem 7.2]. If b ; > O and b7; =0 then by Theorem 2.3.1

[/I (mea)u /KiA z, y)u(y) dy
with

1
K;:)\(LE, y) = Cﬂ:A(B,) exp {2ZTDi)\(a/’ B/)Z} ) z = (I’ Y, l)Ta
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and

o~

(1" (mex)ul(y)

iV A A2
:exp{ + %(\f@ 5 +alay) +2a2y) (3b33 + 3a// VY 5 + (a))? ’2'2)

6

A3/2 /! VAN )\ // 2 1
- T(Z 93t ajby o)y — 552,2y }u(y +Va}).

Clearly we have
[ "V (e )u] (@) = [0 ()i (an)u / Ky (@, 9) 17 (72)ul (y) dy.

Using the formulas for ﬁ’ (mxa) and p’ (’ﬂ'i A) an easy calculation yields that
K+ has the form given in the theorem. The other cases b} ; = 0,b7; > 0
and b} ; =bf; =0 can be handled in the same way. O

We need two lemmas concerning the parameters of a Gauss measure on H.

2.6.2 Lemma. Let us consider a Gauss semigroup (ji¢);>q such that py is
a Gauss measure on H with parameters (a,B). Then we have

a; = EZZ, 1= 1,2,3, bi,j = COV(ZZ',ZJ') Zf (Z,]) 7& (3,3),
and
1 2
bys = VarZs — 4 (Var21Vang — Cov(Z1, Zs) )

1
- (VarZ2 (EZ1)? — 2Cov(Zy, Zo) EZ\EZs + VarZ, (EZQ)2)7

where the distribution of the random vector (Zy,Za,Z3) with values in R? s
M1

Proof. Let Z(t) := (Z1(t), Za2(t), Z5(t)), t =0 be given as in Section 2.1.
Taking the expectation of Z(1) yields that E(Z;(1)) =a;, ¢ =1,2,3. Using
again the definition of Z(1) and the fact that B=X-%T we get

d d
2 : 2 : 2
g1 ka'lgE Wk Ul,k:bl,l'

k=1¢=1 k=1

Mg

Var(Z1(1
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Similar arguments show Var(Z3(1)) =bso and Cov(Zi(1), Z2(1)) = b1 2. We
also obtain

d

d
Cov(Z1(1) {Z o1, W; )<Z 03.5Wi(1) +Z(a201,k — CL10’2,k)W]:(]_)>
k=1

k=1

+ Zal,iWi(l) Z (01,6020 — UI,ZUQ,k)Wk,E(l)]7
=1

1<k<t<d
which implies that

Cov(Zl Z 01,603,k T+ Z ZUl i\a201,k — @102 k)E(W (DWI:(D)

=1 k=1

+ Z Z 01,i(01,k02.¢ — 01,002 &) E(W; (1) Wi ¢(1))
=1 1<k<t<d

= b1,3a
since W;(1), 1 <4 < d are independent of each other and
EW;(L)WiE(1) =EW;(1)We(1)) =0, 1<i<d, 1<k<(<d. (26.1)

Indeed,

n—oo

EOV (W) = 5 Jim €[ W) Y (Wl - )
= ) - W) |
BV ()Wa(1)) = g Jim E[Wi(1) Y- (Wlsl) (W)~ W)

W (R~ W) )]

forall 1<i<d, 1<k < {<d, where {s() j=0,...,n} denotes a
(s

partition of the interval [0,1] such that max;; gl ) tends to 0

(n)
<nl\S; Jj—1
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as n goes to infinity. We can obtain Cov(Z2(1), Z5(1)) = b2 3 in the same
way. Using again the form of Z(¢), (2.6.1) and the facts that

Cov(W; ; (1), Wie(1)) =0 foralll1<i<j<d, 1<k<l<d, (i,5) # (k,{),
Cov(Wi(1),W;(1))=0 foralll <k (< d, k#L,

we get

d d
Var(Z5(1)) ZU kT Z a0 ) — a109.1)*Var(Wy (1))

1 k=1

k=
+ Z (0'17k0'27g 70’1,50'2,]6)2Var(Wk7g(1)).
1<k<t<d

Lévy proved that the (Euclidean) Fourier transform of Wy ,(1), 1<k <{<d
(i.e., the characteristic function of Wy ¢(1)) is

. 1
E(eitWre)) — = 1<k<t<d
(e ) cosh(t/2)’ SESOSE

for all t € R (this follows also from Proposition 2.5.3), so

d? 1
Var(Wie(1)) = T4 <cosh(t/2)>

Clearly W; has a normal distribution with zero mean and with variance
Var(Wy(1)) = &, 1<k <d. Using (2.5.10) we have

127

t=0

1
Var(Z3(1)) = b3z + —

1
4(b1,1b2,2 - big) + E(a?bzz — 2ayasby 2 + a3by1).

Hence the assertion. O

2.6.3 Lemma. Let y' and p' be Gauss measures on H with parameters
(a/,B") and (a”,B"), respectively. If the convolution p' x p" is a Gauss
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measure on H with parameters (a,B) then we have

/ 1 ! 1 I 1 " "
a; = aj + af, as = ay + agy, a3:a3+a3+§(a1a2—a2a1),
/ /! / // / /!
bia=by; +by;, bi2 = by o+ by, ba2 = by o + by,
1
N /! VAN VAN /BN /BN
big=0y3+by3+ 5(‘12 11— ayby o +ajby o —ay 171),

1
N /! VAN /AN /BN /BN
bo3 =055+ by 3+ 5(“2 1,2 = Q1050 + 0705 9 — @y 1,2)a

_ /! "/ AN AN /AN
bgz = b33+ b33 +agby 3 —ajby s+ ajby 3 —azbyg

1
/AN IAN) 11\21./ IAVAN/ /NN /AN "I/
+ 5 ( —ayayby o + (ay) by o + (a])7Vy 5 — ajagbly 5 + ajasby o + ajasdy o

I/BWIAN) /AN /AN IaN: /NN /AN 1"M\271./
— 2ayayb] 5 — 2aja5by 5 + ajasyby 5 + afashy 5 — azasby ; + (ay)7by 4

1\21.11 NN/
+ (az)"by 1 — ‘12‘12b1,1)~

Proof. Let Z' = (Z],Z5,Z4)" and Z" = (Z{,ZY,Z%)7 be independent
random variables with values in R3 such that the distribution of Z’ is p’
and the distribution of Z” is ', respectively. Then the convolution p’ * p”
is the distribution of the random variable

(Z{ Y2z 2 2+ 2+ %(Z{Zé’ - Z{’Zg)) = (71, Zo, Z3).
Using Lemma 2.6.2 we get
ay =EZ) =EZ]{ +EZY = a} + df,
as = EZy = EZ, + EZY = d} + d!,
0y = B2y = EZ} + 2§ + L (EZ(EZ) ~ EZ{EZ}) = o) + o + L (a}a} — aba),
since Z' and Z” are independent. Similar arguments show that
by = VarZ, = VarZ; +VarZ{ = b ; + b7 ;,
ba,p = VarZy = VarZy + VarZy = by 5 + by 5,
br2 = Cov(Z1, Zy) = by 5 + b7 .
We also have

by 3 = Cov(Z1, Z3) = Cov(Z1y, Z%) + Cov(ZY, ZY)

1
+35 (Cov(zg, 7,7y — Cov(Zy, Zy ZV') + Cov(Z), Z, Z}) — Cov(ZY, Z{’Zg)).
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Using this and Lemma 2.6.2 the validity of the formula for b; 3 can be easily
checked. For example, we have

Cov(Z1, 21 2) = B((21)*2) —EZ1E(Z1 Z5) = (b1 1 +(a1)?) a5 —(a}) a5 = agi ;.

The validity of the formula for by 3 can be proved in the same way. Lemma
2.6.2 implies that
1 2 1 5 2
VarZ3 = b3,3 + Z(b1}1b2’2 — b1,2) + E(albg’g — 2a1a2b1,2 + azbu) = COV(Zg7 Z3)
— Cov(Zh, Z4) + Cov( 24, Z4) + Cov(Zh, Z24) — Cov(Z4, 20 7)

1
+ Cov( 2y, 2124) — Cou(Z4, 24 24) + 7 (Cov( 2124, 2, 23)
— Cov(Z{ 24, 7}/ 74) — Cow(Z{/ 75, Z,74) + Cou( 2} 74, 2 73)).

Using again Lemma 2.6.2 and substituting the formulas for b; 1, b1 2, b22, a3
and ao into the formula above, an easy calculation shows the validity of the
formula for b3 3. O

Our aim is to give necessary and sufficient conditions for a convolution of
two Gauss measures to be a Gauss measure. Using the fact that the Fourier
transform is injective (i.e., if p and v are probability measures on H such
that [(xa,3) = V(Xa,p) for all «o,0 € R and [(7rsy) = U(myy) for all
A > 0 then p = v), our task can be fulfilled in the following way. We
take the Fourier transform of the convolution of two Gauss measures p’ and
w” with parameters (a’,B’) and (a”,B”) at all one-dimensional and at
all Schrodinger representations and then we search for necessary and sufficient
conditions under which this Fourier transform has the form given in Theorem
2.3.1. First we sAketCh our approach to obtain necessary conditions. By Theorem
2.6.1, (pu'*p")(m+x) is an integral operator for b} ; +b7; > 0, and it is a
product of certain shift and multiplication operators for b}, +by; = 0. If
the convolution u'* p” is a Gauss measure with parameters (a, B) then, by
Theorem 2.3.1, (u' * ,u,”j\(ﬂi)\) is an integral operator for by ; >0, anditis a
product of certain shift and multiplication operators for b;; = 0. By Lemma
2.6.3, we have by, =0y, +0bf, hence by ;=0 if and only if ), +b7; =0.
Hence if by 1 > 0, the integral operator (u' * /,6//5\<7Ti)\) can be written with
the kernel function given in Theorem 2.3.1 and also with the kernel function
given in Theorem 2.6.1. In the next lemma we derive some consequences of this
observation.
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2.6.4 Lemma. Let p/ and p” be Gauss measures on H with parameters
(a/,B’") and (a”,B"), respectively. Suppose that u'*p" is a Gauss measure
on H with parameters a = (a;)1<;<3, B = (bjr)1<jr<s such that by > 0.
Then dp =v;p forall 1< j,k <3 with (j,k)# (3,3) and for all >0,
and

1 1
C1x(B)exp {—2d3i7§} = (Cexp {—211;5‘} , A>0,

where Cyx(B), d;tli‘ = dji’,?(a,B), 1<4,k<3 and C,V = (Ufzj)lgj,kgs
are defined in Theorems 2.3.1 and 2.6.1, respectively.

Proof. The Fourier transform (p' * p” j\(ﬂ'i ») is a bounded linear operator on
L?(R), and since by; > 0, Theorem 2.3.1 yields that it is an integral operator
on L3(R),

[T a] () = [ Kr@aputn) v we P®), o€ R, (262)
where
Kix(z,y) = Cyx(B)exp {—;ZTDi)\(a, B)z} , z=(x,y, 1)T.

Let us write d’;, =: d;t),’c\(a’,B’) and df, =: df,?(a”,B”) for 1<4,k<3 as
in Theorem 2.6.1. By Lemma 2.6.3, we have by, =0} ; +0bY;, hence b1 >0
implies that ) ; >0 or by; > 0. Using Theorem 2.6.1 we have

~

[ 5 T msau] (2) = / Rax(w,yuly) dy, uwel*R), z€R, (263)

where

I?iA(m,y) = Cexp {—;ZTVZ} . z=(x,y,1)".
Using (2.6.2) and (2.6.3), we have
0= /R (Kix(z,y) — Kix(z,y))uly) dy, uwe L*(R), xR
We show that if

/ K x(z, ) dy < oo, / Barw,y)Pdy <o, z€R  (264)
R R
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then Kiy(z,y) = IN(iA(x,y), z,y € R. Indeed, for all = € R, the function
yER— Kiy(x,y) — Kix(x,y) isin L*(R). Hence

0= [ s - Rarlep)P dy. ce®
R
Then we get

/ / Kix(,y) — Rax (2, )? dady =0,
RJR

which implies that Ky (z,y) = I?iA(x,y) for almost every x,y € R. Using
that Ky, and Ky, are continuous, we get Kiy(z,y) = I?ﬂ\(x,y), z,y € R.
Now we check that (2.6.4) is satisfied. Using the forms of K.y and Kiy, it
is enough to check that

/ exp {—ZTRe (Dia(a,B))z} dy < oo, z€R, (2.6.5)
R

/ exp {—ZTRe (V)z} dy < oo, z€R, (2.6.6)
R

where z = (z,y,1)". Here Re(D+y(a, B)) and Re (V) are real, symmetric ma-
trices. Let us consider an arbitrary real, symmetric matrix M = (m; ;)1<; j<3
with mg2 > 0. Then

z Mz = m171x2 + 2my oy + m2,2y2 + 2my 37 + 2mg 3y + m3 3

1 1
= <\/m2,2y =+ Niori

2
(maox + m273)> — ——(mioz+ m273)2
+ m171x2 + 2m1’3x + ms.zs.

ma 2
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Hence

1
/ exp {—z' Mz} dy = exp {m(ml,ﬂ +maz)? —miia? - 2my s — ms,:%}
R 2,2

1 2
X/RQXP{—<~/m272y+ m(m1,2x+m2,3)) }dy

_ L 2 2 _
= exp (m1,22 +ma3)” —m112° — 2my 3z — M3 3
ma 2
1 2
el Y
\/m R 2
1

_ 7T 2 2_9
= exp § —— (M 2@ + Mo 3)° —my12° — 2my 3 — M3z o,

ma 2 ma 2

which yields that
/exp{—zTMz} dy < oo, zxe€R.
R

Hence in order to prove that (2.6.5) and (2.6.5) are valid we only have to check
that the (2,2)-entries of the matrices Re (D (a, B)) and Re (V) are positive.
For example, if 5 ; >0 and b7; >0, then

(Re(V)),, =Re(dy,) — Re M :
22 22 dyp+di,

If ) by — (b))% = b b5 — (b 5)* =0, then

~p— + s
(Re (V))22 = 1// 32 1// 2 Abl’lQ Abl,j/ / 2"
’ )‘bl,l A (bl,l) ( 14 1 ) + (b/l/,z _ b/1,2)
AbY 4 AbY 4 by by 1

Hence (Re(V)),, >0 if and only if

2 2
Y70 I (S S Iy S T ) O S
b Abyq o ADY bi, Vs Abp o ADY .

A simple calculation shows that the latter inequality is equivalent to

2
1/ 1 1 /! b/

1,1 7 1,2 1,2

: A = — > 0,
b1 (Ab/m - AbY T2 b, bia
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which holds since b7, >0, bf; >0 and A > 0. The other cases can be
handled similarly. Hence (2.6.5) and (2.6.6) are satisfied, and then Ky (z,y) =
K:I:)\(may)u T,y € R. _

Using the forms of Ky, and K4, we get

1 1
Cix(B)exp {—QZTDi,\(a, B)z} = Cexp {—QZTVZ} . z=(z,y,1)".
Putting z = (0,0,1)T gives

1 1
C+A(B) exp{—2d§f§} = Cexp{—Qvig‘} . (2.6.7)
Substituting z = (1,0,1)" implies

1 1
Cur(B) exp {_2 (a5} + 2023 + d;fg)} —Cexp {_2 (v} + 2083 + v;fg)} |

Using (2.6.7) we have
A} +2d73 = v} + 2013, (2.6.8)
With z = (0,1,1)7 a similar argument shows that
3y +2d35 = vy) + 2033 (2.6.9)
Putting z = (1,1,1)" and using (2.6.7) we obtain
di} + 2d) + 2dv5 + dy) + 2d3 3
= v} + 208 + 2073 + v3) + 2053,

(2.6.10)

Using (2.6.8),(2.6.9) and (2.6.10), we have diy =vi3. If z=(2,0,1)7 then
using (2.6.7) we have

dlii‘ + dlig = vf? + vf?)
Using (2.6.8) we have dlig‘ = vlig\ If z=(0,2,1)T then

0+ dE) = v} 1 ).

Using (2.6.9) we have ing‘ = v2i§‘ O

Using Lemma 2.6.4 we derive necessary conditions for a convolution of two
Gauss measures to be a Gauss measure and then prove that these conditions
are also sufficient. The above train of thoughts will be used in the proof of
Proposition 2.6.6 and Theorem 2.6.7.
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2.6.5 Remark. By Lemma 2.4.3, it can be easily checked that a Gauss mea-
sure p admits parameters (a,B) with b;, = 0 for 1< j,k<3 with
(J,k) # (3,3) and a1 = az =0 if and only if the support of p is contained
in the center of H.

Now we can derive a special case of Theorem 2.6.7 which will be used in the
proof of Theorem 2.6.7.

2.6.6 Proposition. If p’ is a Gauss measure on H with parameters (a’, B")
such that the support of 1" 1is contained in the center of H then for all Gauss

measures ' on H  with parameters (a’,B’), the convolutions p' x p”

and p" x p'  are Gauss measures with parameters (a' + o”,B' + B"), and
MI*M// :M//*M/'

Proof. Let p be a Gauss measure with parameters (a’ +a”, B’ + B”). By
the injectivity of the Fourier transform, in order to prove that p * u” = p is
valid, it is sufficient to show that (u’ * u”)A(Xa_ﬂ) = [i(Xa,p) foral «, >0
and (y *,u//j\(ﬂi)\) = p(mxy) for all A > 0. Theorem 2.6.1 implies that
(W' = /‘//S\(Xa,ﬁ) = [i(Xa,3) is valid for all one-dimensional representations X3,
o, 3 € R. Suppose that b, # 0 and b} ,b5, — (b 5)* # 0. By Theorem

2.6.1, to prove (p' * /,LN)A(’/Ti)\) = fi(mxy) forall A >0 it is sufficient to show
that

0 0 0
Di)\(a/,B/) +10 0 0 :Di)\(a’—i—a",B/—l—B/')
0 0 A2, F 2iAal

for all A >0. Since b, =0 for 1 <j,k<3 with (j,k) # (3,3), we have
dip(d +a”,B'+ B") = d(d/, B') for 1<j,k<3 with (j,k)# (3,3). So
we have to check only that

dié(a’, B4+ \? 3.3 F 2idaz = d;{;(a’ +d”’,B"+ B")

for all A > 0. Theorem 2.3.1 implies this. The case b ; # 0, by ;b 5 —(b] 5)* =
0 can be proved similarly. Suppose that b’l’ 1= b’1/,1 = (0. Using again Theorem
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2.3.1, we have

. 2
[,u”(wiA)u} (x) = exp{ +ilajy — )\ngyg}u(x),

[ (man)u] ()

/L\/X ! YA ! A2 / /AN 1\271./
expqy * T(\E\(?aa + ajah) + 2ahx) — F(?’bss + 3aiby 5 + (a) 2,2)

A3/2 / /AN A / 2 !
— 7(2[)2’3 + a’l 2’2>.’L‘ — 5[)2’21‘ }u(.%‘ + \/Xal).

2
Theorem 2.3.1 implies that [a(myx)u] (z) = {(,u’ * u”)A(WiA)u} (x) forall A >0,
u € L*(R) and z € R. Hence the assertion. O

Now we give necessary and sufficient conditions under which the convolution
of two Gauss measures is a Gauss measure.

2.6.7 Theorem. Let p/ and '’ be Gauss measures on H with parameters
! ! ! / " __ " "o /!

a = (%‘)1<i<3: B = (bj,k)1<j,l_c<3 and a = (ai)1<i<3; B" = (bj,k)1<3:,k<37
respectively. Then the convolution p' * pu” is a Gauss measure on H if and

only if one of the following conditions holds:

(61) bia >0, &' >0, by >0, 6" >0, and there exists o0 >0 such that
Wiy = oby for 1< j,k<3 with (j,k)# (3,3) and a = oaj for

1=1,2,

(62) bia >0, &' =0, bf; >0, 6" =0, and there exists o0 >0 such that
b./j/’k = Qb;',k; fOT’ 1 < ]ak < 27

(C3) by >0, & >0, b/, =0 for 1<j,k<3 with (j,k)# (3,3) and
a! =0 for i=1,2,

(C4) by, >0, & =0, b/, =0 for 1<4,k<3 with (j,k)+#(3,3),

(C5) by >0, 6" >0, b, =0 for 1<j, k<3 with (j.k)# (3,3) and
a, =0 for i=1,2,

(C6) by, >0, 6" =0, b, =0 for 1<j,k<3 with (j,k)# (3,3),

(C7) by, =0 and b, =0,
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where 8 1= /by 105 5 — (b] 5)? and 6" := /b by 5 — (b))%, In cases (C1),

(6’3), (55) the parameters of the convolution p' xp” are (o' +a”,B' + B"),
but in the other cases it does not hold necessarily (compare with Lemma 2.6.3).

Proof. First we show necessity, i.e., if p/+p” is a Gauss measure then one of the
conditions (C1) — (C7) holds. Let us denote the parameters of the convolution
: +X +A
p o p” by (a,B) and we write dji = d;}(a,B), d;, = dj;(a’,B) and
d;{k = df?(a”,B”) for 1<j,k<3 asin Theorem 2.6.1. If b7, >0 and
11 >0, we can easily prove that

/ /! / //
b1,2 b1,2 b1,2 ba o b2,2 . b2,2

Y om0 Y o0
bl,l b1,1 b1,1 bl,l b1,1 b1,1

and dj,+d{; € R asin Pap [45, Theorem 7.3]. This implies that there exists

0> 0 such that b}, =ob}, for 1<j,k<2, ie, (C2) holds.

When b, >0, ¢ >0 and bf; >0, 6” >0, we show that ((~]1) holds.
To derive this it is sufficient to show that bY 3 = ob] 5, b5 3 = 0by 5, af = ea)
and af = pa}. Using Theorem 2.6.1 we obtain

(i) (dho +di;)(Red; 3 — Redy3) = d) 5(Red] 3 + Reds 3),
(ii) (dyo +df1)(Redy 3 — Reds3) = df 5(Red] 5 + Reds 3),
(iif) (dyo +dy1)(Imd| 5 —Imdy3) =di(Imdf 5 +1md, ),

(iv) (dyp +di1)(Imdy 5 —Imdy3) = dip(Imdy 5 +Imdy ).

(AR N / / / (/B N/ /1 /! /1 (AR i N |
Let us denote 0y := b 1b5 3 — U] 5] 5, 61 := by b5 5 — bY 5bY 5, 05 1= ajb} 5 —
apby g, 0y :=afby, —ayby . Summing up (iii) and (iv) we have

(d/2,2 + dlll,l)(lm dl1,3 +Im dl2l,3 —Imd;3—Imdy3) = (d/l,Z +d/1/,2)(|m dlll,g +Im dl2,3)'
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Using the definition of d;, d};, dj, (1 <j,k<3) we get

b/ i (5’ b”: 5//
th(\s' th(x6"))[( =2 2 -2 2
((coth(Ad") + coth( ))(b’m TN L0 coth(\/2) B, AW 107 coth(Aa7/2)

- 20,
)\b1,15 COth(A5/2)

(ot bis 5y b
= " \sinb(W0) " simh(367) )\ B, T Y67 coth(A7/2) B,

+ %
Aby 16" coth(Ad'/2) )

An easy calculation shows that

b/ b//
( LE- ,1/’3))\sinh()\5’/2)sinh(Aé”/Z)
b1,1 b1,1

1 b 1 b )
_ (M (alﬁ - az) -5 (agﬁ - a'2)> sinh()\&' /2) cosh(A\6” /2)

1 b1,2 1 1" bll/,2 " / . "
+ (5+5 (alm - az) - = (a1 W a2) cosh(A' /2) sinh (A" /2)

for all A > 0. We show that the functions
Asinh(Ad’/2) sinh(A\§”/2),  sinh(\§'/2) cosh(A6”/2), cosh(Ad’/2) sinh(A§”/2),
(A > 0) are linearly independent. We have

Asinh(Ad’ /2) sinh(A6” /2)

_ é(e,\((s’+6”)/2 _ eA(é”—(S’)/Q _ eA(é’—é”)/Q + e—A(é’+6”)/2)7

4
sinh(A\d’/2) cosh(A\d” /2)

_ l(e,\(é’+5”)/2 LI/ A /2 A H2),

4
cosh(Ad’/2) sinh(A\d” /2)

_1 (XEH5/2 _ A =")/2 A =8)/2 oA 45)/2)

The linear independence of these functions follows from the following fact: if
c1,...,c, are pairwise different complex numbers and Qq,...,Q, arecomplex
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polynomials such that Y77, Qj(\)e%* =0 forall A >0 then Q=+ =
@, =0. Hence we get

/ /!
bis Y13
/ i
bia by,

1 a b1z | = l a 11,2 _a | = i a//bll/72 _q"
F+0" oy 7)) e\, ) e\, )

Subtracting the equation (i) from (ii) we get

(d/2,2 + dl1/¢1)(Re dl1,3 —Re dl2l,3 —Red; 3+Redy3) = (d/l,Z - dll/,z)(Re dl1l,3 +Re dl25)

:0,

Using again the definition of d;y, d’ ., d7, (1< j,k < 3) we obtain

/
2
(coth(AF") + cath(35")) (\/;;’ \/(j; \F)xc;ol
1,1 1,1

N VA, - VY
by 16" coth(Ad'/2) by 10" coth(A6”/2)

B 1 B 1 o o VA,
~ \sinh(Ad”)  sinh(A') ) \ Vb, fb’ll by 10" coth(Ad’/2)
\f(;//
T 5 coth )\6”/2)>

A simple calculation shows that

!/ 1
A(1 + tanh(Ad’/2) tanh(A6” /2)) (5,(2, 5/2,, )

= (coth(Ad") + coth(Ad")) ( T u)
bl,l b1 1 bl 1
1

1 a; af
+ .
sinh(A0')  sinh(A0”) b’L1 b/f 1

It can be easily checked that the functions A(1 + tanh(\d’/2) tanh(A\6"/2)),
coth(Ad") + coth(Ad”) and (sinh(\d'))~! — (sinh(A6”))~1 (A > 0) are linearly
independent. Hence we have

/ 1 ! 1 ! 1!
L C/l/l =0, 2a71 - % - 7’% =Y /6} = //61// : (2'6'12)
bia bia by Wy by, 0B,

/
bia
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Taking into account (2.6.11) and (2.6.12), we conclude that (C1) holds. Using
Lemma 2.6.3 it turns out that in this case a =a’' +a” and B = B’ + B".

If by, >0, >0 and b, >0, 0" =0 weshow that u'#pu” can not be
a Gauss measure. Our proof goes along the lines of the proof of Theorem 7.3 in
Pap [45]. Since the proof given in Pap [45] contains a mistake we write down
the details. Suppose that, on the contrary, u' * u” is a Gauss measure on H
with parameters (a, B). By Lemma 2.6.3, we have b1 = b}, + b7, hence

~

b11 > 0. By Theorem 2.3.1, we have (u' * u”)(7mey) is an integral operator.
Using Theorem 2.6.1 we obtain

(i 5)*

dig=d), — 22 (2.6.13)
Vg,
(df 5)?
doop = dlly — —22 (2.6.14)
2 dl2,2+d/1/,1
bis _ bis

We show that dy, +df; € R and 2 = 72, (The derivations of these two
’ ) 1,1 1,1

facts are not correct in the proof of Theorem 7.3 in Pap [45].) By Theorem
2.3.1, we have

/!

/ b
mmﬁ+ﬂﬂ:¢<Lﬁ-”>:—mmh+%ﬂ

bin b
Using that Im(dy 1 + dz22) =0, by (2.6.13) and (2.6.14) we get
0= 4 1.2 _ 1o m (d) 9)* + (df 5)?
b W byt

/ /! ! 2 1! 2 / 7/

_ (D 1,2 HF( 12)° +(d7 ) 1,2 1,2

- Y ’ 12 Y .
bia o by, |dy 5+ dY 4] bia by,

Hence

/ /!

1,2 1,2
(Idp + i1 = (dh ) = (@o)?) (2 = 2 | = 0.

b1,1 b1,1
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Then

5 coth(AY') Fibly ALty |
bll’l bll/,l
(0)° 1

(by.1)2sinh?(A8")  A2(b,)?

2
§")? 2§’ coth(A¢’ 1 i
_ (&) coth( )+< 1.2 1,2> S0

|dy 5 + d/1/,1|2 —( ,1,2)2 —( /1/,2)2 =

(B2 A0, Vo by

This yields :}’2 = 2},’2. Particularly, db, + d{; € R. Rewrite (2.6.13) and
1,1 1,1 ) )

(2.6.14) in the form

(dyy —dia)(dyo +dy ) = (d/1,2)23
(dyg —da2)(dy s +di 1) = ( /1/,2)2~
It follows that
(dll,l - dl2/,2 —di1 4 daa)(dyy + dlll,l) = (d/1,2)2 - (d/1I,2)2~

Using that dy, +df; € R and Re(di 1 —da2) =0, taking real parts we get

(Re(d} ;) — Re(dy))(dy o +di 1) = ( /1,2)2 —( /1/,2)2-

Thus
' coth(N') 1 8’ coth(\d") 1 B (6")2 B 1
b1, AbY 4 by, AL ) ()2 sinh® (A7) A%(671)%
From this we conclude
(6")2coth®(A6) 1 (6)2 1
(b1,1)° N2 (b g)?sinh? (A7) A2(B )%

and it follows that cosh(A\é’) = 1. Hence ¢’ = 0, which leads to a contradiction.

If o), >0, & >0, and b}, =0 we show that (C3) holds. The symmetry
and positive semi-definiteness of the matrix B” imply b}, = b7 3 = 0. Lemma
2.6.3 yields that b3 = by, +b7; > 0. Hence Theorem 2.3.1 implies that
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(i *u”)A(ﬂ'i)\) is an integral operator and Im(dy; + d22) = 0 holds. By
Theorems 2.3.1 and 2.6.1 we obtain Im (dy 1 +d22) = Im (dj ; +d5 5+ Ab35) =
Im (XD 5).  Thus b5, = 0, which implies that b5, =0 and 0 = ¢ > 0.
Using again Theorem 2.6.1 we get

dizg=dj 53— Va{ 129 (2.6.15)

dos = dy 5 — VAa{d , F iV Aaj. (2.6.16)

Taking the real part of the difference of equations (2.6.15) and (2.6.16) we have

ay ay , af [ 1+ cosh(A\&')
2 =22 = — 7. 2.6.1
<b111 b/1’1> A0 bll’l 51nh()\5’) ( 6 7)

Since (2.6.17) is valid for all A > 0, we have af = 0. Taking the imaginary
part of (2.6.16) and using the fact that af =0 we get

1 biz bl
M- —— = ) = 222 0 ) 2.6.18
a2( A coth()\6’/2)> bip Ui, ( )

Since (2.6.18) is valid for all A > 0, we get a§ =0, so (C3) holds. If by, >0,
6" =0 and by; =0 asimilar argument shows that (C4) holds.

_ The aim of the following discussion is to show the converse. Suppose that
(C1) holds. We prove that the convolution u' * p” is a Gauss measure
on H with parameters (a’ + a”’, B’ + B"”). By Theorem 2.6.1, the Fourier
transform (u’ * p” )A(Xa’ 3) equals the Fourier transform of a Gauss measure with
parameters (a’'+a”, B'+B") at the representatic/)\n Xa,p forall o, 8> 0. Since

by + b1 >0, the Fourier transform (u' *u") (7)) is an integral operator
on L*(R) with kernel function K4, given in Theorem 2.6.1 for all A > 0. It
is enough to show that C = Cy\(B'+ B"”) and V = Dgy(a'+a”,B'+B") =
(dji’,;\(a’ +a", B+ B"))1<jr<3- We have

g~ s+ )
22 LT by 1 sinh(Ad’) sinh(Agd’)’

hence using Theorem 2.6.1 we obtain

5/
= — B/ B// .
¢ \/ 2n¥,  smh(A(1 5 9)F) B T B
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Let (p¢);>0 be a Gauss semigroup such that g is a Gauss measure with
parameters (a’, B’). By the help of the semigroup property we have puj *u, =
p1+o- Taking into account that a3 and b33 appear only in d?jfg‘ (a/,B")
(see Theorem 2.3.1) and the fact that u; is a Gauss measure with parameters
(ta’,tB’) for all t >0, Theorem 2.3.1 and Theorem 2.6.1 give us

Vi = df,i‘(a’ +ad",B'+ B").

for 1< 4,k<3 with (j,k) # (3,3). So we have to check only that wvss =
d;g‘(a’ +a”, B’ + B"”). By the help of Theorem 2.6.1 we get

1"

1
V3,3 = dé,S + 3,3 d/2 g dllll( é,2 + g,1>2' (2619)

Calculating the real and imaginary part of (2.6.19) one can easily check that
U3 = dgjfg‘(a' +d",B" + B") is valid.

Now suppose that (62) holds. Using the parameters of p/ and p”, define
a vector a = (a;);<;<3 and a matrix B = (b;j);<; <3, as in Lemma 2.6.3.
We show that the convolution p := p' * p” is a Gauss measure on H with
parameters (a,B). An easy calculation shows that the Fourier transforms of
p' xp” and p o at the one-dimensional representations coincide. Concerning
the Fourier transforms at the Schrédinger representations, as in case of (C1),
it is enough to show that

2

Ci\(B)=Cin(B)YCL\(B"), | ————
£A(B) = C1a(B")Cxa(B") ot dl,

and V = Dyy(a’ +a”,B' + B"”). Using Theorem 2.3.1 we have

1 1 2m 1
v, Y
VN2 e e i (R - E2)2rae, + 8
1

\/27T>\b1’17

since b7 ,/b7; = by o/b11 = 0. Using similar arguments one can also easily
check that V = Dyy(a’ +a”,B"+ B"”) holds. We note that in this case the
parameters of p’ x ' is not the sum of the parameters of u’ and pu”.

Suppose that (63) holds. Proposition 2.6.6 gives us that the convolution
wxu” is a Gauss measure on H with parameters (o’ +a”, B'+ B"”). In cases
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(C4), (C5), (C6), (C7) we can argue as in cases (C2), (C3). Consequently, the
proof is complete. o

For the proof of Theorem 2.2.1 we need the following lemma about the
support of a Gauss measure on H.

2.6.8 Lemma. Let pu be a Gauss measure on H with parameters (a,B)
such that by 1b22 — biQ = 0. Let Yy € H be defined as in Section 2.1. If

rank (B) =2 then supp (u) =exp (Yo+R-U+R-X3), where

U bi1 X1 +b21Xo if b11 >0,
' b272X2 Zf bl,l =0 and b2’2 > 0.

If rank(B) =1 then supp (i) = exp (Yo +R-U+R- [YO,U]), where

b11 X1 +b21 X2 +031X3 if by >0,
U .= bQ,QXQ + b372X3 Zf b1,1 =0 and b272 > 0,
b3’3X3 Zf bl,l = b212 =0 and b3’3 > 0.

If rank (B) =0 then supp (u) = exp(Yp).

Proof. We apply (iii) — (v) of Lemma 2.4.3. If rank(B) =2 then one can
check that £(Y1,Y2) = L(U, X3). If rank(B) =1 then L(Y7) = L(U). O

Proof of Theorem 2.2.1. First we prove that if one of the conditions (C1)

and (C2) holds then one of the conditions (C1)— (C7) in Theorem 2.6.7 is
valid, which implies that the convolution u’ * " is a Gauss measure on H.

Suppose that (C1) holds. Lemma 2.4.3 implies §' = ¢"” = 0.
If by, =07, =0 then (C7) holds.
If by, >0, & =0 and b}, =0, §" =0 we show that (C4) holds. It

is sufficient to show that b5, = 0. Suppose that, on the contrary, by, # 0.
When rank (B’) =rank (B”) =2, by the help of Lemma 2.6.8, we get

supp (') = exp (Yg+R-U'+R- X3), supp (1) = exp (Yy'+R-U" +R- X3),
where U’ =0} ;X1 +by,Xy and U” = b5 ,X5. Since in this case supp (u')

and supp (u”) are contained in “Euclidean cosets” of the same 2-dimensional
Abelian subgroup of H, we obtain that L£(U’, X3) = L(U”,X3). From this
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we conclude bj ; = 0, which leads to a contradiction. When rank (B’) = 1,
rank (B”) = 2 and in other cases one can argue similarly, so (C4) holds.

If 87;,=0, &’ =0 and b/, >0, 6" =0 the same argument shows that
(C6) holds.

If b, >0, =0 and b}, >0, 6" =0 we show that (C2) holds. When
rank (B’) = rank (B”) = 2, Lemma 2.6.8 implies that
supp (1) = exp (Yo +R-U'+R-X3),  supp(u”) =exp (Yy'+R-U"+R- X3),
where U’ = b} ;X1 +b5,Xo and U” =0} ;X; + b5, Xo. Condition (C1)
yields that L(U’, X3) = L(U", X3), hence we have by by = 5,07 ;. Since
§'=0"=0 weget by,b), =05,b;. Thus (C2) holds with o := bi1/b11-
When rank (B’) =rank (B”) =1, Lemma 2.6.8 implies that

supp (1) =exp (Yy + R-U'+R- [Yy,U"]),
supp (1) = exp (Yg' + R - U" + R[5, U"]),

where U’ = b/l,le + b’2’1X2 + bl3’1X3 and U" = bll/’le + /2/’1X2 + bg,ng.
Condition (C1) yields L(U',[Yy,U']) = L(U",[Yy',U"]), hence L(b} ;X1 +
by 1 Xo) = L(V]1X1 +b5,X2). Tt can be easily checked that (C2) holds
with o = b/1/,1/b/1,1- When rank (B’) =1, rank(B"”) =2 or rank(B’) = 2,
rank (B”) =1 we also have (C2) holds.

Suppose that (C2) holds (i.e., g/ = py, p' = xv or u = py *v,
w' = pgv with appropriate nonnegative real numbers ¢/, t’ and a Gauss
measure v with support contained in the center of H). Then we have

' ox = x g ¥V = iy ¥ v or o " = gk vk g = g x v

Remark 2.6.5 and Proposition 2.6.6 yield that p’ * u” is a Gauss measure on
H.

Conversely, suppose that pu’ * p” is a Gauss measure on H. Then by
Theorem 2.6.7, one of the conditions (C1) — (C7) holds. We show that then
one of the conditions (C1) and (C2) is valid.

Suppose that (C1) holds. If by 3 —oby3 >0 thenlet (aj),>o bea Gauss
semigroup such that o} = ¢/ and let v be a Gauss measure on H with
parameters (a,, B,) such that

0 0 0 0

B,:=10 0 0 , a, = 0
0 0 bg,a - 955,3 as — oaj
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Remark 2.6.5 and Proposition 2.6.6 imply that ;" = aj*v, hence (C2) holds.
If 053 —ob35 <0 thenlet (af),>, bea Gauss semigroup such that of = p”
and let v be a Gauss measure on H with parameters (a,,B,) such that

0 0 0 0
B, =10 0 0 , a, = 0
0 0 byy—o0 "0, ay — o 'aj

s

Remark 2.6.5 and Proposition 2.6.6 imply that p' = 0/1’/9 x v, hence (C2)
holds.

Suppose that (62) holds. Lemma 2.6.8 implies that
supp (1) C exp (Yg+R-U'+R- X3), supp (1) C exp (YJ'+R-U” +R-X3),

where U’ = b/1’1X1 + blg 1 X2 and U" = b/1/71X1 + ngXQ. Condition (62)

gives us that L(U’) L(U”), hence (C1) holds.

Suppose that (C3) holds. Let (a});>0 be a Gauss semigroup such that
o) =/ andlet v be a Gauss measure with parameters (a,,B,) such that

00 0 0
B,=(0 0 0], a,:= |0
0 0 b3, ay

Then we have p” =v=aj*v, so (C2) holds.
Suppose that (C4) holds. By the help of Lemma 2.6.8, we have
supp (1) Cexp (Yg +R-U'+R- X3), supp (1) Cexp (Yy' +R-U"),

where U’ = b} ;X1 +b5,Xe and U” = b3 ;X3. Hence the support of p' is
contained in exp (Yj+R-U’+R-X3) and the support of p” is contained in
exp (YO” +R-U' +R- Xg), so (C1) holds. Similar arguments show that when
(C5) holds then (C2) is valid, and when (C6) holds then (C1) is valid.

Suppose that (67) holds. Using Lemma 2.6.8, we have
supp (1) Cexp (Yg+R-U'+R-X3),  supp(u”) C exp (Yy'+R-U"+R- X3),

where U’ = by ,Xy and U” = b4 ,X5, so (Cl) holds. O
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2.6.9 Remark. In case of (Cl) in Theorem 2.2.1, p' and p” are Gauss
measures also in the “Euclidean sense” (i.e., considering them as measures on
R3), but the parameters of the convolution p’ * u” are not necessarily the
sum of the parameters of ' and p”. In case of (C2) in Theorem 2.2.1, u’
and p” are not necessarily Gauss measures in the ”Euclidean sense”, but the
parameters of the convolution u'*pu” are the sum of the parameters of ' and

MI/ .

2.6.10 Remark. It is natural to ask whether we can prove our results for non-
symmetric Gauss measures using only the results for symmetric Gauss measures.
First we recall that a measure v on H is called symmetric if v = v*, where
v*(B) := v(B~1) for all Borel subsets B of H. The measure v* is called
the adjoint of v. We check that a Gauss measure g on H with parameters
(a,B) is symmetric if and only if a = 0. First we suppose that u is a
symmetric Gauss measure on H with parameters (a,B). Then there exists
a unique Gauss semigroup (fi¢);>o such that u; = p and the canonical
representation of the infinitesimal generator of (u¢);>¢ is (a,B,0) (for the
canonical representation, see Heyer [30, Theorem 4.3.1]). Then the canonical
representation of the infinitesimal generator of the adjoint semigroup (13 );>
is (—a, B,0) (see Siebert [53, Section 3]). Moreover, uj = pu* = . By Lemma
6.2.6 in Heyer [30], (u});>¢ is a Gauss semigroup. Using that a Gauss measure
on H can be embedded only in a uniquely determined Gauss semigroup, we get
ur = pg for all ¢ > 0. Hence the canonical representations of the infinitesimal
generators of (u¢);>0 and (u;);>o coincide, which implies a = 0.

Conversely, let 1 be a Gauss measure on H with parameters (0, B). Then
there exists a unique Gauss semigroup (j¢);>¢ such that u; = p and the
canonical representation of the infinitesimal generator of (u:);>¢ is (0, B,0).
Then the infinitesimal generator of the adjoint semigroup (uf);>o admits
canonical representation (0,B,0). By Theorem 4.2.5 in Heyer [30], we get
ur = py for all ¢ >0, which implies p} = ug = p. Since pf = p*, we get
W= p*, ie., p is symmetric.

The answer to our original question concerning symmetric and non-
symmetric Gauss measures on H is negative. The reason for this is that
in case of H the convolution of a symmetric Gauss measure and a Dirac mea-
sure is in general not a Gauss measure. For example, if a = (1,0,0) € H and
(tt);>0 is a Gauss semigroup with infinitesimal generator X2 4+ X2, then
using Theorem 2.2.1 and Lemma 2.4.3, one can easily check that pq *d, is not
a Gauss measure on H.
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2.6.11 Remark. We note that if the convolution of two Gauss measures on H
is again a Gauss measure on H, then the corresponding infinitesimal generators
not necessarily commute, nor even if the infinitesimal generator corresponding
to the convolution is the sum of the original infinitesimal generators. Now we
give an illuminating counterexample. Let p' and p” be Gauss measures on
H such that the corresponding Gauss semigroups have infinitesimal generators

~ 1 ~ ~ - 1 ~ ~ o~
N = §(X1 + X,)? and N = §(X1 + X5)? 4+ X1 X3, respectively.

Using Theorem 2.6.7 and Lemma 2.6.3, p' * p/ is a symmetric Gauss measure
on H such that the corresponding Gauss semigroup has infinitesimal generator
N"4+ N"”. But N’ and N” do not commute. Indeed, N'N"” — N"N' =
—(X1 + X2)X2 £0.
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Chapter 3

Gauss measures on the
affine group

In this chapter it is shown that a Gauss measure on the affine group (i.e., the
group of affine mappings on R) can be embedded only in a uniquely determined
Gauss semigroup (see Theorem 3.3.1). The starting point of the proof is the
fact that a Gauss Lévy process in the affine group satisfies a certain stochastic
differential equation (SDE). Theorem 3.2.1 contains the solution of this SDE.
Moreover, we give a complete description of supports of Gauss measures on the
affine group using Siebert’s support formula (see Theorem 3.4.1).
The results of this chapter appeared in our paper [5].

3.1 Motivation

A probability measure g on a locally compact group G is called continu-
ously embeddable if there exists a continuous convolution semigroup (u¢);>0
of probability measures on G (i.e., s * gy = psre for all s, >0, and
e — g = 6. as t | 0) satisfying pu; = p. (Here J, denotes the Dirac
measure concentrated on the unit element e of G.)

For a general locally compact group G one does not know whether the em-
bedding convolution semigroup of a continuously embeddable probability mea-
sure on G is unique. If (u¢);>¢ and (v¢);>o are convolution semigroups of
probability measures on (R? +) then it is well-known that u; = vy implies

59
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ue = vy for all t > 0. The same statement holds for locally compact Abelian
groups without non-trivial compact subgroups (cf. Heyer [30, Theorem 3.5.15]).
But for example in case of the one-dimensional torus group {e’* : —7 < 2 < 7}
(which is compact), the Dirac measure .-~ is continuously embeddable into
the continuous convolution semigroups (de-t=);>¢ and (de-stx);>q, which do
not coincide (their infinitesimal generators are different). The question of unic-
ity of embedding into stable and semi-stable semigroups on simply connected
nilpotent Lie groups has been studied by Drisch and Gallardo [18], Nobel [43]
and see also a detailed discussion by Hazod and Siebert [28, Section 2.6]. Neuen-
schwander [41] studied Poisson semigroups on simply connected nilpotent Lie
groups.

By a Gauss measure on a locally compact group G we mean a probability
measure 4 on G for which there exists a Gauss semigroup (u:);>o (i-e., a
continuous convolution semigroup (p¢);>o for which limy ot~ (G\U) =0
for all Borel neighbourhoods U of e) such that p= p;.

3.1.1 Remark. We note that the definition of a Gauss semigroup slightly dif-
fers from the Definition 6.2.1 in Heyer [30], since in our definition, given a Gauss
semigroup (f4¢);>¢, the measure p; can be a Dirac measure for any ¢ > 0.
More precisely, one can prove the following assertion. Suppose that G is second
countable, (u¢);>o is a continuous convolution semigroup on G and there
exists some to > 0 such that iy, is a Dirac measure on G. Then there exists
a continuous one-parameter subsemigroup (z:);>o of G such that pu; = o,
for all ¢t = 0.

Pap [44] proved that a Gauss measure on a simply connected nilpotent Lie
group has a unique embedding semigroup among Gauss semigroups. We prove
the same result for the 2-dimensional affine group, i.e., the group of affine map-
pings on R, which is a Lie group but not nilpotent (see Theorem 3.3.1). Our
method, which is related to the idea of Pap [44], consists of recursively calculat-
ing the first and second moments. In order to prove the uniqueness of embedding
we consider a Gauss Lévy process (£(t));>¢ in the affine group related to a
Gauss semigroup, and we show that (£(f));>, satisfies a certain stochastic
differential equation (SDE). Theorem 3.2.1 contains the solution of this SDE.
The question about the existence of a non-Gauss embedding semigroup of a
Gauss measure remains still open. In the special case of simply connected step
2-nilpotent Lie groups Neuenschwander [42] showed that a Gauss measure does
not admit a non-Gauss embedding semigroup.

We will also investigate the support of iy for ¢ >0 where (11¢);>, formsa



3.2. GAUSS LEVY PROCESSES 61

Gauss semigroup on the affine group. Siebert [54, Theorem 2] showed that given
a Gauss semigroup (p¢);>o on a connected Lie group G, either the measures
we are absolutely continuous with respect to a left or right (and then necessarily
to any left or right) Haar measure on G for all ¢ > 0, or the measures p; are
singular with respect to a left or right (and then necessarily to any left or right)
Haar measure on G for all ¢ > 0. In the first case we say that (i4);>¢ is
an absolutely continuous semigroup on G, otherwise it is called singular. For
any absolutely continuous Gauss semigroup (it);>o on a connected Abelian
Lie group G, we have supp(u;) =G for all ¢ > 0, where supp(u) denotes
the support of the measure p. McCrudden [37] showed that for any absolutely
continuous Gauss semigroup (,ut)t>0 on any connected nilpotent Lie group G,
we have supp(u:) = G for all ¢ > 0. But in the solvable case the situation
becomes more complicated. Siebert [54] showed that on the affine group there
exists an absolutely continuous Gauss semigroup (it);>¢ with supp (u:) # G
for every t > 0. We will give a complete description of supports for Gauss
semigroups on the affine group using Siebert’s support formula (see Theorem
3.4.1). See further investigations on other Lie groups by McCrudden [36], [37],
[38], Kelly-Lyth and McCrudden [35].

3.2 Gauss Lévy processes

Let G be a second countable locally compact Ty-topological group. A stochas-
tic process (£(t));>o (on a probability space (2,.A,P)) with values in G has
stationary independent left-increments if forall 0 <t <t < -+- Ktp, n €N,
the random elements &(t1), &(t1)7¢(ta), ..., E(tn_1)"'€(t,) are independent
and the distribution of ¢(s)71£(¢) depends only on t—s forall 0 < s < t. Now
we recall the notion of stochastic continuity of a stochastic process (£(t));>o
with values in G. By Hewitt—Ross [29, Theorem 8.3], G admits a left-invariant
metric p compatible with its topology. We say that (£(f));>¢ is stochastically
continuous if for all ¢ty > 0 and for all ¢, >0, n €N, with lim,_. t, = to
we have

lim P(p(¢(tn),&(t0)) >€) =0, Ve>0.
If (£(t));>0 has stationary independent left-increments then the left-invariant
property of p implies that (£(t)),;>o is stochastically continuous if and only
if forall ¢, 20, neN, with lim,_ . ¢, =0 we have

lim P(p(¢(tn),€) >€) =0, Ve>0.

n—o0
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By Vakhania—Tarieladze-Chobanyan [59, p. 91], this latter condition is equiva-
lent to the fact that the sequence &£(t,), n € N, is convergent in distribution to
the Dirac measure J.. Hence the definition of stochastic continuity of a process
with values in G having stationary independent left-increments is independent
of the choice of left-invariant metrics on G (compatible with the topology of
G). By a Lévy process (£(t));>o (on a probability space (£2,.A,P)) with values
in G we mean a stochastically continuous process with stationary independent
left-increments such that &(0) = e and regular in the sense that for almost
every w €  the path ¢ +— &(¢)(w) is right continuous on [0,00) and has
left-hand limits on (0, 00).

To a Lévy process (£(t));>¢ with valuesin G one can correspond a unique
continuous convolution semigroup (p¢);>o such that the distribution of £(t) is
pe forall ¢ 2 0. Conversely, for a continuous convolution semigroup (it);>0
there exist a probability space (£2,4,P) and a Lévy process ({(t));>o on
(Q,A,P) with values in G such that the distribution of £(t) is p; for all
t >0 (see Heyer [30, p. 334-335]). Moreover, the distribution of &(s)71&(¢)
is pui_s forall 0< s <t

By a Gauss Lévy process we mean a Lévy process (£(t));>o for which the
corresponding continuous convolution semigroup (i¢);>o is a Gauss semigroup,
ie.,

1 1
0 = lim (G \ U) = lim 1 P(E(0) # U)

for all Borel neighbourhoods U of e. Corollary 2 of Theorem 2 in Siebert
[55] implies that for a Gauss Lévy process (£(t));>o the path t+— £(t)(w) is
continuous on [0,00) for almost every w € Q. Moreover, given a continuous
convolution semigroup, if each of its associated Lévy processes has continuous
paths with probability one then the convolution semigroup in question is a Gauss
semigroup. Hence a Gauss Lévy process with values in G can also be called a
Brownian motion in G.

By the infinitesimal generator of a Lévy process (£(t));>q we mean the
infinitesimal generator of the continuous convolution semigroup (i¢);>q cor-
responding to it, i.e.,

(N)(a) =t [ (7ay) ~ F(@) pe(dy) = lim TE(F (D) ~ f(2)), 2 € G,
tlo t Ja tlo t
for suitable functions f : G — R. (The infinitesimal generator is always defined
for infinitely differentiable functions f: G — R with compact support.)
Roynette [47] gave a recursive formula for constructing Gauss Lévy processes
in an arbitrary nilpotent Lie group by the help of a corresponding Gauss Lévy
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process in the corresponding Lie algebra, that is, by some independent Wiener
processes in R. The formula involves It6 integrals and reflects the group law.
In Feinsilver and Schott [21], [22] one can find an operator approach (applicable
for other Lie groups and based on limit theorems) which can be used to obtain
similar explicit formulas. Applebaum and Kunita [1] studied Lévy processes
(£(t))i=o with values in a connected Lie group G. They showed that for all
bounded twice continuously differentiable functions f : G — R having limit
at infinity, the process (f(£(t)));>o satisfies a stochastic differential equation
connected to the infinitesimal generator of the process (£(t))¢>o-

In case of the affine group it turns out that a Gauss Lévy process (£(t));>0
can be constructed by the help of one standard Wiener process, or two indepen-
dent standard Wiener processes. The formula involves again It6 integrals and
reflects the group law as in the case of nilpotent Lie groups (see, e.g., Roynette
7).

Concerning Gauss Lévy processes and Gauss measures on the affine group F
(the group of affine mappings on R) we can restrict ourselves to the group G of
direction preserving affine mappings on R. Indeed, the connected component
of the identity e of F coincides with G, hence, for a Gauss semigroup
(tt)¢>o of probability measures on F, the support of p; is contained in
G for all ¢t >0 (see Heyer [30, Theorem 6.2.3]). Hence the restriction of a
Gauss measure on F' onto G is a Gauss measure on (. Similarly, a Gauss
Lévy process with values in F' can be considered as a Gauss Lévy process with
values in G.

The 2-dimensional affine group F can be realized as the matrix group

F:{(g l{):a#O,beR}.

Here the notion ”a matrix group” means a closed subgroup of the group GLy(R)
of all invertible, 2 x 2 real matrices. Endowing GLo(R) with the topology
induced on it by the natural topology of R*, it is a Lie group. By Baker [3,
Theorem 7.24] each matrix group is a Lie subgroup of GLy(R). Hence F is
a Lie group and it is not connected, not compact and not nilpotent.

The group G of direction preserving affine mappings on R can be realized

as the matrix group
a b
G_{<O 1>.a>0,be}R}.

Then G is a connected solvable Lie group which is not nilpotent.
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The Lie algebra G of G can be realized as the matrix algebra

g:{(‘g g):a,ﬁeR}.

Moreover, the Lie algebra of F coincides with G. Counsider the basis {e1,e2}

of G defined by
(1 0 {0 1
€] = I E €g = 0 0/

Then we have the commutation relation [e,es] = ejeq — ege; = eq.

Lévy processes with values in a Lie group can be given by their infinites-
imal generators containing left-invariant differential operators (see Heyer [30,
Theorems 4.2.4 and 4.2.5]). If f: F — R is continuously differentiable then,

for every X € G, we can introduce the left-invariant differential operator X

defined by
Xf(g):=lim flg exp(t)tf)) —fl9).

geF.

Here exp denotes the exponential mapping from G into F. Note that the
mapping X € G — X is injective and linear (see, e.g., Corwin—Greenleaf [15,
p. 110]). It is known that a Lévy process (£(t));>o in F is a Gauss Lévy
process if and only if its infinitesimal generator admits the form

2 2 2
N = Z aﬁi + % Z Z b@jgigj, (321)
i=1

i=1j=1

where ai,a90 € R and B = (bi,j)1<i,jg2 is a real symmetric positive semidef-
inite matrix. This easily follows from Theorem 4.2.4 and Lemma 6.2.6 in Heyer
[30] and from the fact that given a Gauss Lévy process (£(t));>o in F' such
that the distribution of &(tp) is a Dirac measure on F' for some to > 0 then
there exist a;, a; € R such that the distribution of () is Jexp(tare;+tases)
for all ¢ > 0. B

The infinitesimal generator N can be written in the form

- o~ 1< .
N:Y+§I;Xk, (3.2.2)

where

2 2
Y =3 aie;,  X;=) oije, 1<j<r<2,
i=1 i=1
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where X = (0;;) isa 2 xr matrix such that B=X-%" and rankX: =
rank B =r.

3.2.1 Theorem. Let (£(t));>o be a Gauss Lévy process with values in the
affine group F with infinitesimal generator (3.2.1). Then

t
PRI e
P /Oe1 dZ:(s) +hizs/2)| s
0 1

where
Zl(t) :G,it—l—ZO'i)jo(t), 1 =1,2,
j=1
and (Wi(t));>o and (Wa(t)),>o are independent standard Wiener processes
in R.

Proof. If b, ; =0 forall 1<4,j <2 then one can check that the process

ealt a et1t_1
( a“ ) if ay 7é 0,
x(t) := exp(taje; + tages) = 0 1 t=>0

1 t = Iy
( “2) if a1 =0,
0 1

is a Gauss Lévy process in F' with infinitesimal generator N= Zle a;€;.
If b;; #0 forsome 1< ,j <2 then, applying Theorem 3.1 in Applebaum
and Kunita [1], (£(f));> can be represented as a solution of the SDE

2 t 1 2 t 2 t
co=r+3 | elesds+ 3 3 ) tateleiesas + 3 [ etores o)

where I isthe 2 x 2 identity matrix, and B(t) = (B1(t), B2(t)) is a Gauss
Lévy process in R? with zero mean and covariances Cov(B;(t), B;(t)) = tb; ;,
1<4,5 <2

Writing £(¢) in the form
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and using e? =e;, €3 =0, ejea = €3, eze; =0 we obtain the SDE

dé (1) = ( b“)&( ) dt + &1 () dBy (8),
(3.2.3)

dés (1) = ( ) €1 (8)dt + €1() dBa(d).

Clearly Bl(t) = Z§:1 017jo(t) and Bg(t) = Z;:l O'Q,jo(t), where

(W1i(t))i>o and (Wz(t));>o are independent standard Wiener processes in
R. By a simple application of It6’s formula we obtain

&(t) = elartbi1/2)t+ Gy o1 W)= T ol t/2 _ eZ1(t)

. _ T . . T 2 _
since B=3Y-X" implies >, o7 ; =bi1. Moreover,

L/igl ( EQ)SAFZZ:OQ] ()> jgte21@>d(2@(s)+blgs/zy

Hence the assertion. O

3.2.2 Remark. The process (Z1(t), Zs(t));>¢ is a Gauss Lévy process in R?
with infinitesimal generator

E:%64— }:bda@,

i,j=1

i.e., replacing in (3.2.1) the differential operators €; and é; by 9y and 0o,
respectively.

3.3 Uniqueness of embedding

3.3.1 Theorem. Let (u);>q and (v¢);>o be Gauss semigroups on the
affine group F. If py = vy then we have puy = vy for all t > 0. In other
words, a Gauss measure on the affine group can be embedded only in a uniquely
determined Gauss semigroup.

Proof. It is sufficient to show that by the help of the measure p; we can
construct the whole Gauss semigroup (u¢);>o- A convolution semigroup is
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uniquely determined by its infinitesimal generator, hence it is sufficient to con-
struct the infinitesimal generator of (u);>,. Consider a Gauss Lévy process
(§(t))¢>0 which corresponds to (ut);>o. We will show that the distribution of
€(1) uniquely determines the parameters a1, ag, b1, b1,2 and by o of the in-
finitesimal generator (3.2.1). It turns out that the knowledge of the expectation
vector and covariance matrix of £(1) uniquely defines these parameters.

First we calculate the expectation of £(t). Taking the expectation of the
integrated forms of the stochastic differential equations (3.2.3) we obtain

t
E&G(t) =1+ (a1 + 1)121) / E&i(s)ds,
0

Eéa(t) = (az + bl;) /Ot E¢1(s) ds.

Indeed, we check that

E(/Otgl(s) dBl(s)>:O, E(/Otgl(s) ng(s))zo, >0,

For this it is enough to show that (see, e.g., Karatzas—Shreve [34, Definition
3.2.9))

E (/Ot £ (s) ds) <oo, t=0. (3.3.1)

If &(t)=e"®, £ >0, where (W(t)),>, is a standard Wiener process in R,
then

t t t 4 1
E / W) ds ) = / E(e®V)) ds = / expd =% ds = ~(e — 1) < 0.
0 0 0 2 2

The general case can be handled similarly.
It follows that

E&i(t) = elartbra/2)t, (3.3.2)

b t
E&y(t) = <a2 + 122)/ elartbin/2s g (3.3.3)
0
Using 1t6’s formula we have the following stochastic differential equations

déi(t) = 2&1(t) d&u (t) + d[&r, &l
de3(t) = 262(t) déa(t) + d[éz, ol
d(&1(t)&a(t)) = &a(t) d&r (t) + &1 (t) déa(t) + d[&r, &2les
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where [.,.]; denotes the cross quadratic variation of continuous semimartin-
gales.

Taking into account (3.2.3) and the facts that B;(t) = >°7_, 07 ;W;(t), i = 1,2
and B = X% we obtain

dei(t) = 261 (¢) d&r (t) + b1 1 &5 (2) dt,
de3(t) = 265(t) déa(t) + ba2E3(t) dt,
d(£1(t)&2(t)) = &a(t) dEr(t) + &1 (2) déa(t) + by 2&F (1) dt.

Taking the expectation of the integrated forms of these equations we get
t
EEHE) = L+ 2(a + bua) [ EGH(s)ds,
0

EC2(t) = bay / E€2(s)ds + (2az + b ) / E(62 ()6 (s)) ds,
(3.3.4)

Eles(16x(1) = (0 + Sina) [ E€i(s) 0
#(o+ %) [ e s

Indeed, we check that for all ¢ >0

e( &) a(s)) =€ ( [ &) aBas)) =0

e ([ e am:00) =€ ([ @01ts) 98205 =0

For this it is enough to show that for all ¢ 2= 0,

E (/Ot HO) ds) < oo, (3.3.5)

e ([ () (s) ds) < . (3:3.6)

The proof of (3.3.5) is similar to the proof of (3.3.1). If
Gty =MW >0,

t
gg(t):/ el diWy(s), t >0,
0
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where W7 and W, are independent standard Wiener processes in R, then,
by Karatzas—Shreve [34, Proposition 3.2.10],

(ee(f )

2

c (/s W1 (s)+ Wi (u) de(u)) _ /S E(GZ(W1(5)+W1(’U«))) du.
0 0

E(&(5)€3(5))

Hence

t t s
E (/0 & ()& (s) ds) :/0 /O E(e2Wi()FWi(w)) dy ds < oo, (3.3.7)

since the function (s,u) € [0,#] x [0, 1] — E(e2W1()+Wi(w)) 5 continuous. For
the general case it is enough to check that

E (/Ot e2Wi(s) (/OS e () d(Wy(u) +u)>2 ds) < 0.

Indeed, for all s € [0,1]

K 2 s 2 s 2
([ e aomvw) <2 ([ e ama) w2 [7e o a)
0 0 0

and hence using (3.3.7) it is enough to check that

t s 2 t s 2
E(/ e2Wi(s) (/ Wi (w) du) ds) = / E </ eW1(s)+Wi(w) du) ds < oo.
0 0 0 0

For this we show that the function

€0,t] —E (/ Wa(s)+Wa(w) du) (3.3.8)

is bounded. Indeed, for all 0 < s < t,

E(/ Wi (5)+ W1 () du) :/s /SE(e2W1<s>+W1(u>+w1<v>) dudo.
0 0 0

Since the function (u,v) € [0, s]x [0, s] = E (e2W1()FWi(W)+Wi ()} g continuous
and hence bounded for all s € [0,¢], the function in (3.3.8) is bounded. Hence
(3.3.6) is valid.
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It can be easily checked that the unique solutions of the equations (3.3.4)
are the following

EEE(t) = elmthnt (3.3.9)
3 t
E(&1(1)€a(t)) = (az + 2b1,2) lortbia/2)t / (a1 3b1.1/2)s g (3.3.10)
0
3 ¢ s
E€2(t) = (2a9 + b12) (ag + 2b172> / elart+bii/2)s </ ala1+3b1,1/2)u du) ds
0 0
t
+b2,2/ e2(artbin)s g, (3.3.11)
0

Using (3.3.2) and (3.3.9) with ¢t =1 we have

o+ % =logE& (1),
2(@1 + bl,l) = log Eg%(l)

This system of linear equations has a unique solution for a; and by,;. Substi-
tuting a; and by into (3.3.3) and (3.3.10) with ¢ =1 we obtain a system of
linear equations for as and b; o which has again a unique solution. Equation
(3.3.11) yields that by o is unique, too. So the infinitesimal generator of the
Gauss semigroup (p¢);>o is uniquely determined by ;. |

3.4 Support of a Gauss measure

Let (ut)i>0 be a Gauss semigroup on the affine group F' with infinitesimal

generator N. Siebert [54] showed that according to the structure of N we
can distinguish five different types of Gauss semigroups:

(i) N=Y + %()?12 + X2) with X; and X, linearly independent. Then
the semigroup is absolutely continuous, it has a strictly positive analytic
density and supp (u¢) = G for all ¢ > 0. Moreover, rank(B) = 2.

(i) N=Y + %5(12 with ¥ and X; linearly independent and [X7,ez] # 0.
Then the semigroup is absolutely continuous. Moreover, rank (B) = 1.

i) N=Y + 1X2 with ¥ and X, linearly independent and [X1,es] = 0.
2<%1
Then the semigroup is singular. Moreover, rank (B) = 1.
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(iv) N = }7+%)?12 with Y and X; linearly dependent. Then the semigroup
is singular and is supported by the proper closed subgroup exp (R X3).
Moreover, rank (B) = 1.

(v) N =Y. Then the semigroup is singular and consists of Dirac measures,
namely, iy = dexp(ry) for all ¢ = 0.

Our aim is to determine the supports of Gauss semigroups of type (ii) and
(iii). In special cases (when N =& + &2 and N = & + é2) Siebert [54] has
already described them.

Let M denote the Lie subalgebra generated by {X;:1 << r}. We will
use Siebert’s support formula

> ty \»
supp () = U (Mexp - ) for all t >0,

n=1
where M is the analytic subgroup of G corresponding to M (see Siebert
[54]).

3.4.1 Theorem. Let (ut);>o be a Gauss semigroup on the affine group F

with infinitesimal generator N.

(a) If N s of type (ii) then for all t >0, the measure p; is supported by

a b .
{(0 1) ICL>O7 b> Zf'i(a—l)} Zf a2b1’1 —a1b271 > 0,

b
{(g 1>:a>0,b<2f'1(a1)} if azbry —aibzy <O0.

(b) If N is of type (iii) then the measure p; is supported by
exp(tajer) exp(R - ez) for all t > 0.

Proof. Inboth cases we have r =1 and N = }7+%)?12, where Y = aje;+ases
and X; = 01,161 + 02,1€2.

(a). Now oq162 =[X7,e9] #0, and Y and X; are linearly independent,
hence a1021 — G201,1 # 0, which implics (11b271 — (12b171 7é 0.

First consider the case a; = 0. By induction,

k k k—1
a [ a® Qg
<O O) —<0 0 >, k=1,2,...,
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hence

« , for a#0,

(1 ﬁ), for aa=0.
0 1

Using this formula it can be easily checked by induction that the elements of
the set (M exp %)n have the form S = (s; ;);<; j<2, Where

s11 = e(a1+-"+an)01,17
—t (1+Fan)or,n o 92,1 (glar+tan)orr _
S12 = j02@ Tt T (e i 1)
+ Lag (et 4. 4 e(a1+“'+an—1)01,1) ,
s21 =0,
S22 = 1,
and ai,...,a, € R, n € N can be arbitrary. The term e*7%1 4 ... 4

elorttan—1)oi1  atends every positive number. Hence s19 2 %a28171 +

Zfi (5171 — 1) if as > 0, and S1,2 < %0@8171 + %(5171 — 1) if ag < 0.
Using Siebert’s supports formula and the facts that 72L = b21and b1 >0

01,1 b1
we obtain the assertion.

If a1 # 0 then again by induction we obtain that the elements of the set
(M exp %)n have the form S = (s; ;)i<; j<2, Where

_ ety t
s11 = e(a1+ +on)oi,1+ ar
— 1—e~'91/" | 021 —tai;/n) alar++an)or,i+tar _ 2.1
12 = (a2 ay + 01,1e € 01,1
+ eter/n_q <a2 _ 2, (emal,l 4ot e(a1+--~+an71)01,1+(”*2)ml/”) ,
al 01,1
s21 =0,
522 217
and ai,...,a, € R, n € N can be arbitrary. The term e* 711 4 ... +
elorttan—n)orit(n=2)tar/n  attends every positive number. Using the fact
tay/n_
that &= >0 we have

1 eital/n 091 o

5L —t 2,1 .

S1,2 2 <a2 P + 70_ e ar/n S1,1 — p if agbLl — a1b271 > 0,
1 1,1 11

)
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1—etm/m gy 02,1 .
81,2 < g ——— + —=e tay/n S$1,1 — : if agbl)l — albg)l < 0.
aq 01,1 01,1
Since
1 — e—tai/n 031 _tar/m . 02,1 )
ag——— + ——¢ > — if agbm — a1b2,1 > 0,
aj 01,1 01,1
L—e t/m gy / 02,1 .
ag——— + ——e A if a2b171 — a1b271 <0,
ay 01,1 01,1
and
) etal/n -1
lim — =0,
n—oo (11

we get the assertion.

(b). Now o011e2 = [X1,e2] = 0. Moreover, Y and X; are linearly
independent, hence a,021 —ax01,1 # 0, which implies a; # 0. The elements
of the set (M exp %)n have the form

(etal %(etm —1) + 094 (041 +aget@ /™ (g an)e(n—l)alt/n))
0 1 ’

where «a1,...,a, € R. Using Siebert’s support formula we get

tay
supp (pt) = {(eo f) RS R} for all ¢ >0,

that is supp (u:) = exp(taie; + R -es) = exp(tajer) exp(R-ey) forallt > 0. O

3.4.2 Remark. In case (ii) the semigroup (ut);>o is absolutely continuous
and supp (u¢) is the same closed subsemigroup of G for all ¢ > 0. In case
(iii) the semigroup (ut),>¢ is singular and supp () is a proper coset of the
same closed normal subgroup exp(R-e3) for all ¢ > 0.

We recall that a measure v on the affine group F is called symmetric if
v = v*, where v*(B) :=v(B~!) for all Borel subsets B of F. A process
(£(t));>o with values in F' is called symmetric if the distribution of £(t) is
symmetric for all ¢ 2> 0. Similarly as in Remark 2.6.10 one can check that a
Gauss Lévy process in F' with infinitesimal generator (3.2.1) is symmetric if
and only if a1 = ay = 0.
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3.4.3 Remark. Let (£(t));>o be the Gauss Lévy process in the affine group
F with infinitesimal generator N of type (iii), i.c., N = a1&; +ases+ 503 163,
where aq # 0 and o271 # 0. By Theorem 3.4.1, the distribution of &(¢) is
singular for all ¢ > 0. Since a; # 0, the distribution of £(t) is not symmetric
for any ¢ > 0. But

e2a1t -1

0 =n JECHEET

2&1
where

ea’lt a &
z(t) = exp(tare; + tages) = < . 2 o > 7
and (n(t));>o is a symmetric Gauss Lévy process with infinitesimal generator

%o%’lég. Indeed, by Theorem 3.2.1

5(t):<eo§t f()tealsd(a281+0271W(8)))’ n(t)=<(1) 02’1117[/@)), (>0,

where (W (t));>o and (W(t));>o arestandard Wiener processes in R. Clearly

2a1t _ ait e®1t _q o [e2e1t 1
n<el)x<t>—<eol @ +"2;W(2a1 )>, (>0

2(11

Both processes

t ealt _ 1 . e2a1t _ 1
(/ e“lsd(a25+0271W(s))> , (az + o9 W (>>
0 >0 ay 2a, >0

are processes with independent increments in R starting from 0 and their
increments on the interval [s,¢] C [0,00) have a normal distribution with mean

Lleals and variance 0571&%162(115, hence the assertion. The process
(n(t))¢>0 can be considered as the symmetric counterpart of process (£(t));>0-
In fact, (x(t));>o is a deterministic Lévy process on the affine group F, which
can be considered as the shift part of the process (£(t));>o. We note that

using Trotter’s formula of Hazod [27], Siebert [54] showed that the distribution
of &(t) and 7 (ezaltl) x(t) coincide for all ¢ 2> 0 in the special case a; = 1,

2a1

ag = 0 and 02,1 = 2.

Moreover, it can be checked that if the infinitesimal generator of a Gauss
Lévy process (£(t));>o is of type different from (iii) then the decomposition
£(t) = n(c(t))=(t), t =0, does not hold with any function ¢ : [0,00) — [0,00).



Chapter 4

Limit theorems on LCA2
groups

First we recall the most important notions and known results in the theory
of probability measures on locally compact Abelian groups. Then we prove
(central) limit theorems for row sums of a rowwise independent infinitesimal
array of random elements with values in a locally compact Abelian group. We
give a proof of Gaiser’s theorem on convergence of triangular arrays [23, Satz
1.3.6], since it does not have an easy access and it is not complete (see Theorem
4.3.1). This theorem gives sufficient conditions for convergence of the row sums
of a rowwise independent infinitesimal array of random elements with values in
an LCA2 group, but the limit measure can not have a nondegenerate idempotent
factor, i.e., a nondegenerate Haar measure on some compact subgroup as its
factor.

As new results we prove necessary and sufficient conditions for convergence
of the row sums of symmetric arrays and Bernoulli arrays, where the limit
measure can also be a nondegenerate normalized Haar measure on a compact
subgroup (see Theorem 4.4.2 and Theorem 4.5.1). Then we investigate special
LCA2 groups: the torus group (see Section 4.6), the group of p-adic integers
(see Section 4.7) and the p-adic solenoid (see Section 4.8).

Besides proving limit theorems, we give a construction of an arbitrary weakly
infinitely divisible probability measure on the torus group and the group of p-
adic integers (see Theorems 4.6.4 and 4.7.4). On the p-adic solenoid we give a
construction of weakly infinitely divisible probability measures without nonde-

75
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generate idempotent factors (see Theorem 4.8.4). In our constructions we only
use real valued random variables. We note that, as a special case of our results,
we have a new construction of the normalized Haar measure on the group of
p-adic integers and the p-adic solenoid.

The results of this chapter are contained in our submitted papers [7] and [8].

4.1 Motivation

Let G be a second countable locally compact Abelian Ty-topological group
(LCA2 group). The group operation in G will be denoted by +. Let B(G)
denote the o-algebra of Borel sets in G. Let M(G) denote the set of
probability measures on B(G). For u,v € MY(G), the convolution px*v is
the unique measure in M*'(G) defined by

(u*v)(A) = / w(Az™Y) v(dx), A € B(G).
G
Then M*(G) is an Abelian topological semigroup with the product (u,v) €
MYG) x MY(G) — pxv and the topology induced by weak convergence.
The main question of limit problems on G can be formulated as follows. Let
{Xnr:neN k=1,...,K,} be a triangular array of rowwise independent
random elements with values in G satisfying the infinitesimality condition
lim max P(X,,€G\U)=0
n—oo 1Sk Ky,
for all Borel neighbourhoods U of the identity e of G. One searches for
conditions on the array so that the convergence in distribution

K’Vl,

D
E Xngp — as n — 00
k=1

to a probability measure g on G holds. For a sequence {X, :n € N} of
random elements in G and for a probability measure g on G, the notation

X, N © means weak convergence Py, —— g of the distributions Px, of
X,, n € N towards pu. Moreover, for a random element X in G, the

notation X 2 ¢ means that the distribution Px of X is pu.

Let L(G) denote the set of all possible limits of row sums of rowwise
independent infinitesimal triangular arrays in G. The following problems
arise:
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(P1) How to parametrize the set L£(G), i.e., to give a bijection between L(QG)
and an appropriate parameter set P(G);

(P2) How to associate suitable quantities ¢, totherows {X, ,:1 <k < K, },

n € N so that
K'IZ

D
Z Xn,k — K = qn — g,
k=1
where ¢ € P(G) corresponds to the limiting distribution p, and the
convergence ¢, — ¢ is meant in an appropriate sense.

The problem (P1) has been solved by Parthasarathy (see Chapter IV, Corollary
7.1 in [46] and Remark 4.2.7 in Section 4.2). Gaiser [23] gave a partial solution
to the problem (P2). His theorem (see Section 4.3) gives only some sufficient

conditions for the convergence ZkK:"l Xk 2, 1, which does not include the
case where p has a nondegenerate idempotent factor, i.e., a nondegenerate Haar
measure on a compact subgroup of G as its factor. For a survey of results on
limit theorems on a general locally compact Abelian group, see Bingham [10].

We prove necessary and sufficient conditions for some limit theorems to hold
on general locally compact Abelian groups. Our results complete the results
of Gaiser [23]. In our theorems the limit measure can also be a nondegenerate
normalized Haar measure on a compact subgroup of G.

We also specify our results considering some classical topological groups
such as the torus group, the group of p-adic integers and the p-adic solenoid.
Here we apply Gaiser’s theorem as well. For completeness, we present a proof
of this theorem, since Gaiser’s dissertation does not have an easy access and
Gaiser’s proof is not complete. Concerning limit problems on totally discon-
nected Abelian groups, like the group of p-adic integers, we mention Teloken
[57].

Besides proving limit theorems, we give a construction of an arbitrary weakly
infinitely divisible probability measure on the torus group and the group of p-
adic integers. On the p-adic solenoid we give a construction of weakly infinitely
divisible probability measures without nondegenerate idempotent factors. In
our constructions we only use real valued random variables. Let us consider a
probability measure g on G and an infinitesimal rowwise independent array
{Xnr:neN k=1,...,K,} of random elements with values in G. If the
row sums Zf;l Xn, of this array converge in distribution to u then p is
necessarily weakly infinitely divisible (see, e.g., Parthasarathy [46, Chapter IV,
Theorem 5.2]). Moreover, Parthasarathy [46, Chapter IV, Corollary 7.1] gives a
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representation of an arbitrary weakly infinitely divisible probability measure on
G in terms of a Haar measure, a Dirac measure, a symmetric Gauss measure
and a generalized Poisson measure on G (for the definitions, see Section 4.2).

In this chapter we consider special cases: the torus group, the group of p-adic
integers and the p-adic solenoid. For each of the three groups, first we find a
measurable homomorphism ¢ from an appropriate Abelian topological group
(which is a certain product of some subgroups of R) onto the group in question.
Then we consider an arbitrary weakly infinitely divisible probability measure p
on the group in question (without a nondegenerate idempotent factor in case of
the p-adic solenoid) and we find real valued random variables Zy, Zy,... such
that the distribution of ¢(Zy, Z1,...) is p. Since ¢ is a homomorphism, the
building blocks of p (Haar measure, Dirac measure, symmetric Gauss measure
and generalized Poisson measure) can be handled separately.

We note that, as a special case of our results, we have a new construction
of the normalized Haar measure on the group of p-adic integers and the p-adic
solenoid. Another kind of description of the normalized Haar measure on the
group of p-adic integers can also be found in Hewitt and Ross [29, p. 220]. One
can find a construction of the normalized Haar measure on the p-adic solenoid
in Chistyakov [14, Section 3]. It is based on Hausdorff measures and rather
sophisticated, while our simpler construction (see Theorem 4.8.4) is based on a
probabilistic method and reflects the structure of the p-adic solenoid.

4.2 Parametrization of weakly infinitely divisi-
ble measures

Let Z, and R, denote the set of nonnegative integers ant the set of nonneg-
ative real numbers, respectively. The expression “a measure g on (G” means
a measure p on the o-algebra of Borel subsets of G, ie., on B(G). The
Dirac measure at a point x € G will be denoted by §,.

4.2.1 Definition. A probability measure g on G is called infinitely di-

visible if for all n € N there exists a probability measure u, on G such

that p = p;™, where p'" denotes the n-times convolution.

4.2.2 Definition. A probability measure p on G is called weakly infinitely

divisible if for all n € N there exist a probability measure u, on G and
*7

an element =z, € G such that p = p™ % J,, . The collection of all weakly
infinitely divisible measures on G will be denoted by Z,(G).
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According to Parthasarathy [46, Chapter IV, Theorem 5.2], L(G) C Z,(G).
Now we recall the building blocks of weakly infinitely divisible measures. The
main tool for their description is the Fourier transform. A function y : G — C
is said to be a character of G if it is bounded, continuous, not identically zero
and x(r +y) = x(z)x(y) for all z,y € G. Note that [x(g)| =1 for all
characters x of G and for all g € G. The group of all characters of G is
called the character group of G and is denoted by G. The character group
G of G is also a second countable locally compact Abelian Ty-topological
group (see Theorems 23.15 and 24.14 in Hewitt—Ross [29]). For every bounded
measure p on G, let 7i: G — C be defined by

~

0= [ xdu  xeG

This function 7 is called the Fourier transform of p. Note that for each
character x € G, the mapping z € G — T\(,;), where T\, (z) := x(z)z,
z € C, x € G, is a one-dimensional unitary representation of G in the group
of unitary operators of C. Hence the definition of the Fourier transform of a
measure on a locally compact Abelian group is in accordance with the definition
of the Fourier transform of a measure on a general locally compact group. The
basic properties of the Fourier transformation can be found, e.g., in Heyer [30,
Theorem 1.3.8, Theorem 1.4.2], in Hewitt and Ross [29, Theorem 23.10] and
in Parthasarathy [46, Chapter IV, Theorem 3.3]. We only mention that the
Fourier transformation is injective.

If H isacompact subgroup of G then wy will denote the Haar measure on
H (considered as a measure on G) normalized by the requirement wgy(H) =
1. The normalized Haar measures of compact subgroups of G are the only
idempotents in the semigroup of probability measures on G (see, e.g., Wendel
[60, Theorem 1]). It can be checked that for all x € G,

~ 1 if —1 forall z€H,
G ):{ if x(z) or all z (42.1)

0 otherwise,
ie., Wy = 1yL, where
HY :={xeG:x(x)=1 forall z€ H}

is the annihilator of H. Clearly wy € Z,(G), since wy *wy = wgy. Sazonov
and Tutubalin [51] proved that wy € L£(G).
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Obviously 6, € Z,(G) for all = € G, and one can easily check that
0 € L(G) for all = € G*°, where G*° denotes the arc-component of the
identity e. By the arc-component G*°¢ of e we mean

G — U {¢(R) . € Hom(R, G)})

where Hom(R,G) denotes the set of all continuous homomorphisms from the
additive group R into G. R

A quadratic form on G is a nonnegative continuous function ¥ : G — Ry
such that

Pxaxz) +¥0axz ') =2 0xa) + ¥(x2)) for all 1,2 € G.

The set of all quadratic forms on G will be denoted by q (G).

For any quadratic form 1 € qy(G), there exists a unique probability
measure 7y, on G determined by

Fo(x) = e ¥X)/2 for all x € G,

see, e.g., Theorem 5.2.8 in Heyer [30]. We check that v, is a symmetric Gauss
measure on G (in the sense of the definition of a Gauss measure on a (not
necessarily Abelian) locally compact group given in Section 3.1 in Chapter 3).
Theorem 3.7 in Heyer—Pap [31] implies that if » is a probability measure on

G such that there exists a quadratic form 1, € q4+(G) and a continuously
embeddable element m, € G with

P(x) = x(my)e /2 forall yed,

then v is a Gauss measure on G. Using that the identity e of G is continu-
ously embeddable into the continuous one-parameter subsemigroup (z¢);>¢ in

G, where z; =€ forall t >0, and x(e) =1 forall x € é, we obtain that
vy is a Gauss measure on G. To prove the symmetry of -, by definition,
we have to check that ~; =y, where 77 (B):= vy (B™1) for all B € B(G).
This follows from

) =700 =T(x)  forall x€G,

where Z denotes the conjugate of an element z € C. Obviously vy € L(G),
since vy = ’ywn forall n € N and vy, 5 6, as n — oo. (Recall that

w
— denotes weak convergence of bounded measures on G.)
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For a bounded measure 7 on G, the compound Poisson measure e(n) is
the probability measure on G defined by

* * 7 *k
e(m) =" (5 +n+ A+ I 4 ).

The Fourier transform of a compound Poisson measure e(n) is

(e(m) () = exp { JCR n(dx)} L yed (22

Clearly e(n) € L(G), since e(n) = (e(n/n))*n forall n € N and e(n/n) —— b
as n — oo. In order to introduce generalized Poisson measures, we recall the
notions of a local inner product and a Lévy measure. Let A, denote the
collection of all Borel neighbourhoods of e.

4.2.3 Definition. A continuous function g : G X G — R is called a local
inner product for G if

(i) for every compact subset C of G, there exists U € N, such that

x(z) =e9=X)  forall €U, xeC,

(ii) for all x € G and x,x1,x2 € @,

9@, x1x2) = 9(z,x1) + 9(®,x2),  g9(=z,x) = —g(z,x),

(iii) for every compact subset C of G,

sup sup |g(z, x)| < oo, lim sup [g(x, x)| = 0.
zeG xeC T—=exel

Parthasarathy [46, Chapter IV, Lemma 5.3] proved the existence of a local
inner product for an arbitrary second countable locally compact Abelian Tp-
topological group.

4.2.4 Definition. An extended real valued measure n on G is said to
be a Lévy measure if n({e}) =0, n(G\U) < oo for all U € N, and

~

Jo(1—Rex(z))n(dz) < oo forall x € G. The set of all Lévy measures on G
will be denoted by L(G).
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It can be checked that every Lévy measure on G is o-finite. We note that
for all y € G there exists U € N, such that

1 1
Zg(an)z < 1—Re X(SU) < ig(an)Qa T e Ua (423)

(see, e.g., Heyer [30, p. 344]), thus the requirement [, (1 — Re x(z))n(dz) < co
can be replaced by [, g(z,x)*n(dz) < oo for some (and then necessarily for
any) local inner product g.

For a Lévy measure 1 € L(G) and for a local inner product g for G, the
generalized Poisson measure m, 4 is the probability measure on G defined by

70 o(x) = exp {/G (x(@) — 1 —ig(z, X)) n(dx)} for all y €@

(see, e.g., Parthasarathy [46, Chapter IV, Theorem 7.1]). Obviously m, 4 €
L(G), since m, 4= T, g forall neN and m,/,, , 56, as n — oo.

4.2.5 Definition. For a bounded measure n on G and for a local inner
product ¢ for G, the local mean of 1 with respect to ¢ is the uniquely
defined element mg4(n) € G given by

X(mg(n)) = exp {i/Gg(x,x) n(dx)} for all y € G.

The existence and uniqueness of a local mean is guaranteed by Pontryagin’s
duality theorem. If 7 coincides with the distribution Px of a random element
X in G, we will use the notation mgy(X) instead of my(Px). Remark that
x(mg(X)) = e’ B9XX) forall y e G.

Note that for a bounded measure n on G with n({e}) = 0 we have
n €L(G) and e(n) = Ty, g * O, (y)-

Let P(G) be the set of all quadruplets (H,a,v,n), where H is a
compact subgroup of G, a € G, 9 € q+(§) and n € L(G). Parthasarathy
[46, Chapter IV, Corollary 7.1] proved the following parametrization for weakly
infinitely divisible measures on G.

4.2.6 Theorem. (Parthasarathy) Let g be a fized local inner product for
G. If pne€Z,(G) then there exists a quadruplet (H,a,v,n) € P(G) such that

= wWH * 0g * Yy * Ty g (4.2.4)
Conversely, if (H,a,v,n) € P(G) then wg * 04 % Yy * Ty, g € Lu(G).
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4.2.7 Remark. In general, this parametrization is not one-to-one (see
Parthasarathy [46, p.112, Remark 3]), but the compact subgroup H is uniquely
determined in (4.2.4) by p (more precisely, H is the annihilator of the open
subgroup {x € G : Ji(x) # 0}). If H = {e} then the quadratic form
in (4.2.4) is also uniquely determined by p. In order to obtain one-to-one
parametrization one can take equivalence classes of quadruplets related to the
equivalence relation =~ defined by

(H7a17/¢}17”71) ~ (H7 GQ,Z[JQ,'I]Q) — wH*6a1*7w1 >k7-‘—7]1,!] = WH*éaz*’ywz*ﬂ-’rlz,g'

4.3 Gaiser’s limit theorem

Let C(G), Co(G) and C§(G) denote the spaces of real valued bounded
continuous functions on G, the set of all functions in C(G) vanishing in
some U € N, and the set of all uniformly continuous functions in Co(G),
respectively. Gaiser [23, Satz 1.3.6] proved the following limit theorem.

4.3.1 Theorem. (Gaiser) Let g be a fized local inner product for G. Let
{Xnr:neN k=1,...,K,} be a rowwise independent infinitesimal array of
random elements in G. Suppose that there exists a quadruplet ({e},a,1,n) €
P(G) such that

Kn

(i) ng(Xn,k) —a as n— oo,
k=1

Ky
(i) Y Varg(Xnwx) — w(X)Jr/Gg(x,x)Qn(dx) as n— oo forall x €G,

k=1
Kn

(iii) ZEf(ka) —>/ fdn as n— oo forall feCy(G).
k=1 G

Then
K

ZXn,k T as n— o0o. (4.3.1)
k=1

4.3.2 Remark. If either a#e or ¥ #0 or n# 0 then the infinitesimality
of {Xpr:neN k=1,...,K,} and (4.3.1) imply K, — oo.
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4.3.3 Remark. Condition (i) is equivalent to

K,
i) exp {zz Eg(Xnyk,x)} — x(a) as n— oo forall x € G.
k=1

Concerning condition (iii) we mention the following version of the well-known
portmanteau theorem.

4.3.4 Theorem. Let {n, :n € Z;} be a sequence of extended real valued
measures on G such that n,(G\U) < co for all U € N, and for all n € Z.
Then the following assertions are equivalent:

(a) /Gfdnn—>/cfdno as n— oo forall feCo(G),

(b) /Gfdnn—>/cfd770 as n— oo forall fe€CH(G),
(¢) M (G\U) = no(G\U) as n— oo forall UeN, with no(dU) =0,

(d) fdnne/ fdno as n— oo forall feC(G), UeN, with
G\U G\U

UO(aU) = 0}
(&) Mleww — mlew as n— oo forall U€EN, with no(dU) = 0.

(Here and in the sequel 7|p denotes the restriction of a measure 7 onto a
Borel subset B of G, considered as a measure on G.)

For the proof of Theorem 4.3.4, see Theorem 5.2.1 and Remark 5.2.2 in
Chapter 5. Theorem 4.3.4 is a consequence of Theorem 5.2.1 in Chapter 5.

4.3.5 Remark. Due to Theorem 4.3.4, condition (iii) of Theorem 4.3.1 is equiv-
alent to

K,

(iii") ZP(Xn,k eG\U)—>n(G\U) as n—oo forall UeN, with
k=1
n(oU) = 0.

In order to prove Theorem 4.3.1, first we recall a theorem about convergence
of weakly infinitely divisible measures without idempotent factors (see Gaiser
[23, Satz 1.2.1]).
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4.3.6 Theorem. For each n € Zy, let p, € Z,(G) be such that (4.2.4)
holds for p, with a quadruplet ({e}, an,¥n,nn). If there exists a local inner
product g for G such that

(i) anp —ag as n — oo,

(it) n(X) + Jg 9(2,X)? M (dz) — Yo (X) + [ 9(z,X)* no(dz) as n— oo for
all x € é,

(iit) [ fdnn — [ fdno as n— oo forall feCo(G),

then pi, — g as n — 0.

Proof. It suffices to show i, (x) — fio(x) as n — oo forall x € G. Let

h(z,x) == x(z) — 1 —ig(z,x) + %g(x,xf

forall z € G and all x € G. Then

Fin(x) =X(an)exp{—; (wn(x) +/Gg( 21y (dz) ) / h(z, X) N dw)}

for all n € Z, andall x € G. Taking into account assumptions (i) and (ii),
it is enough to show that

/h(x,x) nn(dx)—>/ h(z,x)no(dz) as n—oo forall y € G. (4.3.2)
G G

For each y € G, there exists U € N, such that y(z) = e9@X) forall z € U.
Using the inequality

2 3
y? < vl for all y € R, (4.3.3)

eV —1—1
1w+ 6

we obtain |h(x,x)| < |g(z,x)|?/6 forall z € U. Consequently, for all V € N,
with V C U,

SIP W)+ IP(V),

/h@wmwﬂf/hQMWM@
G G
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where

V)= / 19z, )1 (1 + 170) (dz),

I2(WV) =

/ B, x) 7 (d) — / B x) mo(dx)|
a\V G\V

We have )
V)< < 5 Sub lg(z, x I/ z,X)% (1 + m0)(dz).

By assumption (ii),

sup [ g0 (d0) < s (w '+ [ g(x,x>2nn<dm>) <.

neLy neZly

Theorem 8.3 in Hewitt and Ross [29] yields existence of a metric d on G
compatible with the topology of G. The function ¢t — no({x € G : d(z,e) = t})
from (0,00) into R is non-increasing, hence the set {¢ € (0,00) : no({z € G :
d(z,e) = t}) > 0} of its discontinuities is countable. Consequently, for arbitrary
€ > 0, there exists t > 0 such that Vi :={z € G :d(z,e) <t} €N, Vi1 CU,
no(aVl) =0 and

sup Jg(z, x)| < 5

up [g(T, X 5

yeVy 2 sup Ji 9(x, x)? nn(dx)
nely

thus Ir(Ll)(Vl) < €/2. By assumption (iii) and Theorem 4.3.4, I,(LQ)(Vl) <e/2
for all sufficiently large n, hence we obtain

/ (e, x) m(d) — / B, x) mo(da)| < ¢
G G

for all sufficiently large n, which implies (4.3.2). ad
The notion of a special local inner product is also needed.

4.3.7 Definition. A local inner product g for G is called special if it is
uniformly continuous in its first variable, i.e., if for all x € G and for all € >0
there exists U € N, such that |g(z,x) —g(y,x)| <& for all z,y € G with
z—yelU.
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Gaiser [23, Satz 1.1.4] proved the existence of a special local inner product for
an arbitrary second countable locally compact Abelian Ty-topological group.
The proof goes along the lines of the proof of the existence of a local inner
product in Heyer [30, Theorem 5.1.10].

Proof of Theorem 4.3.1. First we show that it is enough to prove the state-
ment for a special local inner product, namely, to prove that if the statement is
true for some local inner product g, then it is true for any local inner product g.
Suppose that assumptions (i)—(iii) hold for § with a quadruplet ({e},a,,n).
We show that they hold for ¢ with the quadruplet ({e},a + mgy, 4(n),%,n),
where the element my 4(n) € G is uniquely determined by

x(mg,gm)):exp{z‘ / <g<x,x>—§<x,x>>n<dx>} for all y € G.

(Note that g¢(-,x) — g(-, x) € Co(G) can be checked easily.) Hence we want to
prove

Ky

i) ng(Xn,k) —a+mgy 4(n) as n — oo,
k=1

Ky,
(i) S Varg(Xo ) = 000+ | w0 n(dn) as n— o0 forall x € G,
k=1

=
3

(iii") ZEf(Xn,k)_’/Gfdn as n— oo forall feCo(G).

k=1

Clearly (iii’) holds, since it is identical with assumption (iii).

By assumption (i), in order to prove (i') we have to show

Kn

K,
X (Z mg(Xnk) — ng(XnJg)) — x(mg, 4(n)) for all y € G.
k=1

k=1
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We have
K,
X Xn,k))
(ng - Ym, ) H s Ko
k=1 )
K etE9(Xn kX)

K,
H zEg(X,, ksX) exp{ kz nk’ g(Xn,]mX))}

P { [ st - au:,x))n(da:)} ,

where we applied assumption (iii) with the function g¢(-,x) — g(-, x) € Co(G).
By assumption (ii), in order to prove (ii’) we have to show

K, K,
> Var g(Xox, x)— Y Var §( Xk, x) — / (9(z,)* =92, x)*) n(dx) (4.34)
k=1 k=1 G

for all x € G, where g(-,x)? — g(-,x)? € Co(G) can be checked easily. We
have

K, K,
ZVarg(Xn,k, X) — ZVarﬁ(ka,X) = A, — By,

where

=

g

E (g(Xn,k:7 X)2 - g(Xn,ka X)2)a
1

b
3
[

L)

B, : [(Eg(Xn,k;X))2 - (EE(XTLJC?X))Q]

=
Il
—

Applying assumption (iii) with the function g(-,x)? — (-, x)? € Co(G), we
obtain
An = /G (9(z, ) = g(z,x)?) n(dz). (4.3.5)

Moreover,

Bn=> E(9(Xnk:X) = 9(Xnk, X)) E(9(Xn ks X) + 9( Xk, X))
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implies
K,

B, max E nks X)| + nks X E ks X) — 9(Xn ks X))
|Bn| < | Jhax (19X, )] + 19( Xk 2 19(Xn, X) — §( X, X))

Using assumption (iii) with the function |g(-,x) — g(:, x)| € Co(G), we get

K,
S Elg(Xn x) — G(Xose )| — / l9(5, %) — G, Ol n(dz).  (43.6)
k=1
Infinitesimality of {X,r:neN, k=1,...,K,} implies
max E|g(Xnk,x) —0 for all y € G. (4.3.7)
1<k K,

Indeed,

max  E|g(X,x, x)| < sup |g(x, x)| +sup |g(z,x)|- max P(X, € G\U)
1<k<Kn zeU z€@ 1<k< K,

for all U € N, and for all x € é, and (iii) of Definition 4.2.3 implies
sup,cp |9(x, x)] = 0 as U | {e}. Clearly (4.3.6) and (4.3.7) imply B, — 0,
hence, by (4.3.5), we obtain (4.3.4).

We conclude that assumptions (i)—(iii) hold for the local inner product g
with the quadruplet ({e},a + my, 4(n),%,n). Since we supposed that the
statement is true for g, we get

Ky

D
Z X'n,,k - 5a+mg, 9(77) * ’Yw * //T"]-,g'
k=1

Hence

K
Ex(Z Xn,k) —x(a+myg,4(n) exp{—;w(x)Jr/G (x(2) =1 —ig(z,x)) n(dx)}

k=1
—x@ep {5000 + [ (@) = 1 7w 0) nien)

for all x € CA77, which implies

Kn

D
ZX”J“ — Og * Yo * Ty, g-
k=1
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Thus we may suppose that g is a special local inner product. Let Y, j :=
Xng —mg(Xpyp) forall neN, k=1,...,K, Weshow that {Y,,:n €
N,k =1,...,K,} is an infinitesimal array of rowwise independent random
elements in G, and

K

n
(1" ng(Yn,k) —e as n — o9,
k=1

Kn

(@) S E(gYpr %) — () + / g(z,x)?n(dz) as n — oo forall y € G,
1 G

ES
Il

=

n

(iii") Ef(Ynk) — /Gfdn as n— oo forall feCy(G).

>
Il
—

Infinitesimality of {Y,r:neN, k=1,...,K,} isequivalent to

nax [Ex(Yor) —1] — 0 for all y € G. (4.3.8)
1<k< K,
We have
EX(Xn k) EX(Xn k)
Ex (Vo) — 1] = [—2mmk)l g = [ ZXomk)
|E x( n,k) ‘ X(mg(Xn,k)) etE 9(Xo k%)

_ ‘EX(XnJc) . eiEg(X7z,k7X)| < |EX(Xn,k) B 1‘+|eiEg(xn,k,X) . 1‘.
Infinitesimality of {X, ,:n €N, k=1,...,K,} implies

max |Ex(Xpr)—1]—0 for all y € G. (4.3.9)
1<k<K,

Infinitesimality of {X,r:neN, k=1,...,K,} implies (4.3.7) as well, hence
using the inequality [e® — 1| < |y| for all y € R, we get

max ‘eiEg(X’“’“X) — 1’ — 0 for all x € 6’,
1<ELS K,

and we obtain (4.3.8).
For (i"), it is enough to show

Kn
Z Eg(Yok,x) — 0 for all x € G.
k=1
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Let x € G be fixed. Infinitesimality of {X,r:neN, k=1,...,K,} implies
that for all V € N, and for all sufficiently large n we have mgy(X, 1) € V
for k=1,...,K,. Consequently, using (4.3.7) as well, we conclude that for
all sufficiently large n we have

g(mg(Xn k), x) = Eg(Xn k. x) for k=1,...,K,. (4.3.10)

Infinitesimality of {X,r:n €N, k=1,...,K,} and properties of the local
inner product ¢ imply also the existence of U € N, such that n(dU) = 0
and forall zx €U, k=1,...,K,,

9(x —mg(Xn k), x) — 9(2, x) = —g(mg(Xn k), X) (4.3.11)
for all sufficiently large n (see Parthasarathy [46, page 91]). Consequently, for

all sufficiently large n, we obtain

Ky

Z Eg(YTL,kv X)

k=1

> E (0¥ 09X X) + 90mg (Xo i), 0) L (Ko )
k=1

K’VL

< max_ suplg@ —my(Xnr)ix) — 9(201) 3 P(Xo € G\U)
1<k<Kn z€@ t

=

n

=, Jnax g(mg(Xni), X)) 1( kK €G\U) —

=
Il

Indeed,

max sup gl — my(Xox)x) — g )| =0 as oo, (4312)
1SESKn zeG

since g is uniformly continuous in its first variable and for all V' € A, and for
all sufficiently large n we have my(X, ) €V for k=1,...,K,. Moreover,
(4.3.7) and (4.3.10) imply

Xp)s 0 : 43.13
| Jnax lg(myg(Xnk), x)| — as n — 00 ( )

and assumption (iii) implies
K

supX:P(Xn,;€ e G\U) < c0. (4.3.14)
neN ;=
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To prove (ii”'), we have to show

K,

3

( Yok, X ) Var g( nk,X)) —0 for all Xeé.
k=1

Consider again a neighbourhood U € N, such that n(0U) =0 and (4.3.11)
holds for all sufficiently large n. We have

E (g(Yn,k7 X)2) - Varg(Xn,kv X) = Cn,k + Dn,ka
where
2
Cn,k = E (g(YnJm X)2 - g(Xn,ku X)Q) ]]-U(Xn,k) + (Eg(Xn,k7 X)) 9

D, :=E <Q(Yn,k, X)? = 9(Xn ks X)2) Lovu (X k)-

For all sufficiently large n we have (4.3.10), hence

Cn,k =E ((Q(Xn,k7 X) - g(mg(Xn,k‘)vX))z

+ (Eg(Xn X))
= g(mg< D0 Pk € U)—29(my (X ) 1) E (4K 5 )1 (X))
+ (Eg(Xnrsx)°
= 2E g(Xn,,ﬁ ) E (90X ) Lero (X)) ~(Eg(Xnse ) P(Xn k€ G\ U).

- g(Xn,kvX)2>]]-U(Xn,k)

Consequently, again by (4.3.10),

Conl < P(Xo € G\ U) (2|Eg<xn,k,x> sup )| + |Eg<xn,k,x>|2) .
(4.3.15)

Moreover,

ok = E (Y1 X) — 9(Xn k> X)) (9(Yn ks X) + 9( X X)) Lenw (X k),
thus

IDn,k| < 2P(Xn,k eG \ U) sup |g($a X)|

(4.3.16)

X max su x—m. (X , _ z, )
1<k< K, Ieg’g g(Xnk), x) — g( X)|
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Now (4.3.15) and (4.3.16), using (4.3.12), (4.3.13) and (4.3.14), imply (ii").
To prove (iii"), it is enough to show

K, K,
S Ef(Yar) =Y Ef(Xuk) =0 (4.3.17)
k=1 k=1

for all f € C§(G) (see Theorem 4.3.4). Choose V € N, such that f(z) =0
for all z € V. Then choose U € N, such that U —U CV, where U —U :=
{z —y:2z,y € U}. Infinitesimality of {X,r:n €N, k=1,...,K,} implies
that for all sufficiently large n we have my(Xnx) € U for k=1,...,K,,
hence

F¥nn) = F(Xng) = (FYnr) = F(Xnn)) Lavw (Xnk)-

Consequently,

K., K, Ky
S Ef(Ynr)— D Ef(Xn)| <sup | f(z—mg(Xnr)—f(2)] D P(Xnx € G\U),
k=1 k=1 z€C =1

and uniform continuity of f and (4.3.14) imply (4.3.17).
Now consider the shifted compound Poisson measures

Ky
Vp = e<ZPyn,k> *6 i(:nlmg(Xn,k), HEN.
k=1

Clearly v, € Z,,(G) such that (4.2.4) holds for v, with the quadruplet

K, K, Ky
({e}, S iy () + 3 1y (Vo) 0 zPyn,,k) |
k=1 k=1 k=1

By Theorem 4.3.6, using (i) and (i")-(iii""), we obtain
Uy — 8, * Yy ¥ Ty g

Applying a theorem on the accompanying Poisson array due to Parthasarathy
[46, Chapter IV, Theorem 5.1], we conclude the statement. O

4.4 Limit theorems for symmetric arrays

A random element X in G is called symmetric if X 2 _x. By a symmetric
array we mean an array of symmetric random elements in G.
The following theorem is an easy consequence of Theorem 4.3.1.
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4.4.1 Theorem. (CLT for symmetric array) Let g be a fized local inner
product for G. Let {X,r:neN k=1,...,K,} be a rowwise independent
array of random elements in G such that X, 2 — Xk forall neN,
k=1,...,K,. Suppose that there exists a quadratic form 1 on G such that

Knr
(i) ZVarg(Xn,k,x) —(x) as n— oo forall x €@,
k=1

K
(ii) ZP(Xn7k€G\U)—>O as n— oo forall U e N,.
k=1

Then the array {Xpr:neN, k=1,...,K,} is infinitesimal and

K

~ D
E Xk — Yy as m — oo.
k=1

The next theorem gives necessary and sufficient conditions in case of a row-
wise independent and identically distributed (i.i.d.) symmetric array. It turns
out that in this special case conditions of Theorem 4.4.1 are not only sufficient
but necessary as well. If G is compact then the limit measure can be the
normalized Haar measure on G.

4.4.2 Theorem. (Limit theorem for rowwise i.i.d. symmetric array)
Let {X,,:neNk=1,...,K,} be an infinitesimal, rowwise i.i.d. array

of random elements in G such that K, — oo and X, L — X,k for all

neN, k=1,... K,. R
If g s a local inner product for G and Y is a quadratic form on G,
then the following statements are equivalent:

Kfl
(1) ZXn,k 2, Yy as m— 00,
k=1

(ii) Kn(l — ReEx(Xn}l)) — @ as n—oo forall x € CAT',

(iii) K, Varg(X,1,x) = ¢¥(x) as n— oo forall x € G
and K,P(X,1 € G\U)—0 as n— oo forall UeN..
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If G is compact then

K
ZX”)’C L = K, (1 —=ReEx(Xpn1)) = oo forall x € G\ {1}
k=1

For the proof of Theorem 4.4.2, we need the following simple observation.

4.4.3 Lemma. Let {a, : n € N} be a sequence of real numbers such that
an = —n for all sufficiently large n, and let o € RU{—o00,c0}. Then

Qp\ ™ o
(1—1——) — e <~ an — Q,
n

o0

where e~ :=0 and e := co.

Proof. If a, — a €R then «,/n — 0, hence L’Hospital’s rule gives

Now suppose that «, — —oo. By the assumptions, we can choose ng € N

such that «a, = —n for all n 2> mng, hence 1+ a,/n =0 forall n = ng,

implying liminf(1 4+ oy, /n)™ 2 0. For each M € R there exists np € N
n—oo

such that o, < M for all n 2= ny;. Then (1+a,/n)" < (1+M/n)" for all
n 2 max(ng,nyr), which implies

n\" . M\"
lim sup (1 + a—) < limsup (1 + ) =M.
n n

n—oo n—oo

Since M is arbitrary, we obtain limsup(l+ay,/n)™ < 0, and finally lim (1+

n— o0 n—00
o, /n)™ = 0. The case of «, — 0o can be handled similarly.

If (1+a,/n)"—e* and «, / « then there exist subsequences (n’) and
(n") and o,a € RU{—00,00} with o # " such that o, — o and
o — . Then (14 ap /n/)" — e and (14 anr/n")" — e lead to a
contradiction. O

Proof of Theorem 4.4.2. (i) <= (ii). Statement (i) is equivalent to

Ky
EX(ZXM) —Au(x)  forall yed. (4.4.1)
k=1



96 CHAPTER 4. LIMIT THEOREMS ON LCA2 GROUPS

We have 7y(x) = e ¥00/2. Clearly X, 2 —X,r implies Ex(X,x) =
ReE x (X, %), hence

K’IL
ReE X(Xn,l) — 1)

Ky
EX(ZX"J“) = (ReEX(Xn,l))Kn = (1 + Kn( R
k=1 n
(4.4.2)

Infinitesimality of {X,,:neN, k=1,...,K,} implies Ex(X,1) — 1 (see
(4.3.8)), thus ReEx(X,,1)—1 2= —1 for all sufficiently large n € N. Hence by
K, — oo and by Lemma 4.4.3 we conclude that (4.4.1) and (ii) are equivalent.

(ii) = (iii). We have already proved that (ii) implies (i), hence, by Theorem
5.4.2 in Heyer [30], (ii) implies K, P(X,,1 € G\U) — 0 forall U € N,. Clearly
Xk 2 — X, implies Eg(Xnx, x) =0, thus Varg(X,1,x) = E (9(Xn,1,X)?).
Consequently, it is enough to show

1 ~
K, (Re Ex(Xn1)—1+ iE (9(Xn 1, X)z)) -0 forall x € G. (4.4.3)

For x € G, choose U € N, such that x(z) = e9X) and (4.2.3) hold for all
xz € U. Then

1
K, (ReEX(XnJ) -1+ §E (g(Xn,laX)Z)) = A, + By,

where
19(Xn,1,X) ; 1 2
Ap = K ReE {7020 =1 —ig(Xn1,X) + 59(Xn,1,X)" ) Lu(Xn ),
1
By i= K, ReE (X(Xot) = 14 50(X01.0° ) T (X0).
By (4.3.3) and (4.2.3) we get

4(K, (1 — ReEx (X))

3K 2

)

1
|An| < gKn E (|g(Xn,1: X)|3 ]lU(Xn,l)) <
hence K, — oo and assumption (ii) yield A, — 0. Moreover,

1
Bl < (24 5 5wl 0?) K, PXL € GAD) =0
z€G
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thus we obtain (4.4.3).

(iii) = (i) follows from Theorem 4.4.1.

If G is compact then every Haar measure on G is finite (see, e.g., Hewitt—
Ross [29, Theorem 15.9]). Hence the normalized Haar measure wg on G is
a probability measure and the Fourier transform &g is defined. Convergence

Kn D . .
>ty Xnp — we s equivalent to

Kn
EX<ZXWC> —Og(x) forall xed. (4.4.4)
k=1
Using (4.4.2), (4.2.1) and Lemma 4.4.3, one can easily show that (4.4.4) holds
if and only if K,(1—ReEx(X,1)) — oo forall x € G\ {lg}. O
A random element X in G is called Rademacher if P(X =e) =1 or there
exists an element = € G, = # e such that P(X =z) = P(X = —z) = 1/2.
By a Rademacher array we mean an array of Rademacher random elements in
G. The next statement is a special case of Theorem 4.4.2.

4.4.4 Theorem. (Limit theorem for rowwise i.i.d. Rademacher array)
Let z, € G, n €N such that =, —e. Let {X,p:neN k=1,...,K,}
be a rowwise i.i.d. array of random elements in G such that K, — co and

1
P(Xn,k = xn) = P(Xnyk = —ZL’n) = 5

Then the array {X,r:neN k=1,...,K,} isinfinitesimal.
If ¥ is a quadratic form on G then

K

ZX"”“ N Yy = Kn(l — Rex(wn)) — %X) for all x € G.
k=1

If G is compact then

K,
ZX"»k Liwg K, (1 —Rex(zn)) — o0 forall x € G \ {1¢g}-
k=1

Note that in Theorem 4.4.4 the expression 1— Rex(z,) can be replaced in
both places by % g(zn,x)%, where g is an arbitrary local inner product for G
(see the proof of (4.4.3) and the inequalities in (4.2.3)).
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4.5 Limit theorem for Bernoulli arrays

A random element X in G is called Bernoulli if there exists an element x € G,
x # e such that P(X =x2)=p, P(X =¢)=1—p with some p € [0,1]. By
a Bernoulli array we mean an array of Bernoulli random elements in G. In the
following limit theorem the limit measure can be the normalized Haar measure
on the smallest closed subgroup of G containing a single element provided that
this subgroup is compact.

4.5.1 Theorem. (Limit theorem for rowwise i.i.d. Bernoulli array)
Let x € G such that x #e. Let {X,r:neN k=1,...,K,} bearowwise
i.5.d. array of random elements in G such that K, — oo,

P(Xn,k = 1’) = Pn, P(Xn,k = 6) =1-—py,

and pn, — 0. Then the array {Xn,:neN, k=1,...,K,} is infinitesimal.
If X\ is a nonnegative real number then

K,
S Xop e(M) = Kupn— A
k=1

If the smallest closed subgroup H of G containing x is compact then

Ky

D
E Xy —wgp = K,p, — oo
k=1

Proof. First we suppose K, p, — A and show convergence ZkK:"i Xk 2,
e(Adz). We need to prove

K,
EX(ZXn,k) — (e(M,))(x)  forall xeG. (4.5.1)
k=1
We have (e(Ad,)) (x) = erx@)=1) and
K,

Ex(’an,k) = (pax(2) + 1 —py)5r = (1 + ]W(SU)_U)K" . (4.5.2)

If {z,:n €N} is asequence of complex numbers such that z, — z € C then
(1 + %)n — e*. Consequently, K, p, — A and K, — oo imply (4.5.1).



4.5. LIMIT THEOREM FOR BERNOULLI ARRAYS 99

Next we suppose K, p, — oo and show that Zsz"l Xk 2, wg. (Since
H is compact we can consider the normalized Haar measure wy on G.) We
need to prove

K‘H,
EX<ZXM> —op(x) forall xed.
k=1

Since H is the smallest closed subgroup of G containing x, Remarks 23.24
(a) in Hewitt—Ross [29] implies {z}1 = H', and thus by (4.2.1) we are left to

check p
n 1 f 1
Ex(ZXn,k> H{ if e o) (4.5.3)
k=1

0 otherwise.

If x € {z}*t then x(z)=1, hence

Kn
EX(ZXn,k> = (an(l') +1 _pn)Kn =1,
k=1
and we obtain (4.5.3). To handle the case x & {z}*, consider the equality

Ky

K,
EX(ZXW>’ = lpnx(z) +1—pn
k=1
= ((1 + pn(Rex(z) — 1))2 —|—pi(|m X(x))2> fon/2
K, /2
Ko pa (2(Rex(x) = 1) + pul1 = x(@)?)

=11
+ K,

Clearly x & {x}* implies x(z) # 1, and by |x(x)| =1 we get Rex(z)—1 < 0.
Hence, by Lemma 4.4.3, we conclude that K, p,, — oo, K, — oo and p, — 0
imply (4.5.3).

Now we suppose 2521 Xk 2, e(Ad,;) and derive K,p, — X If
K, pn 7> X\ then either there exists a subsequence (n') such that K,/ p, — oo,
or there exist subsequences (n”) and (n) and two distinct nonnegative
real numbers )\’ and X" such that K, p,» — N’ and Kpmwpym —
N, In the first case we would obtain Zf:’”i X'k 2, wgr, which con-

tradicts to ZkK:"l Xnk 2, e(Ad;). In the second case we would obtain
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K X e > e(N'8,) and S5 X i —2 e(N"6,) which again contra-
dicts to ZkK:’Ll Xk 2, e(Ady).

Finally we suppose ZkK:"l Xk 2, wg and prove K,p, — oo. If
K, pn #» oo then there exists a subsequence (n’) and a nonnegative real

number )\ such that K, p,, — X. Then we would obtain ZkK:"i X'k 2,

e(\6,), which contradicts to ZkK;Ll Xk L2 on. O

4.6 Limit theorems on the torus

The set T := {e®® : —7 < a < 7} equipped with the usual multiplication of
complex numbers and with the relative topology as a subset of complex numbers
is a second countable compact Abelian Ty-topological group. In fact, T is a
Lie group and it is called the one-dimensional torus group. Its character group
is T={xe:{€Z}, where

xe(y) =y, yeT, (el

Hence T is topologically isomorphic with the additive group of integers Z.
The set of all quadratic forms on T is q4(T) = {¢ : b € Ry}, where

Yo(xe) ==bl%,  (€Z, beR,.

Let us define the functions arg: T — [-m, 7] and h: R — R by

arg(e’®) := x, T <,
0 if z<—-m or z2>m,
h(z) —z—7m if -vr<er<—7/2,
x) =
x if —m/2<z<7/2,

—z+7m if 7/2<x <.
The function gr: T x T — R, defined by

gr(y, xe) := th(argy), yeT, (€L,

is a local inner product for T. An extended real valued measure n on T is
a Lévy measure if and only if n({e}) =0 and [.(argy)?n(dy) < oc.
Theorem 4.3.1 has the following consequence on the torus.



4.6. LIMIT THEOREMS ON THE TORUS 101

4.6.1 Theorem. (Gauss—Poisson limit theorem) Let {X,:neN, k=
1,...,K,} be arowwise independent array of random elements in T. Suppose
that there exists a quadruplet ({e},a,v¥p,n) € P(T) such that

(i) max P(larg(X,x)|>€)—0 as n—oo forall ¢>0,
1<k< K,

K”L
(ii) exp {z Z E h(arg(Xnyk))} —a as n — oo,
k=1

K,

(iii) ZVar h(arg(X, 1)) — b+/ (h(arg y))Qn(dy) as n — oo,
k=1 T
K
(iv) ZEf(ka) —>/fd77 as n— oo forall feCy(T).
k=1 T
Then the array {X,r:neN k=1,...,K,} isinfinitesimal and
K
ZXn,ki’(Sa*'%/)b*ﬂ-n,gT as n — 00.
k=1

The next theorem shows that if the limit measure in Theorem 4.6.1 has
no generalized Poisson factor m, 4, then the truncation function A can be
omitted.

4.6.2 Theorem. (CLT) Let {X,;:n e N k=1,...,K,} be a rowwise
independent array of random elements in T.  Suppose that there exist an
element a € T and a nonnegative real number b such that

K,
(i) exp {ZZ E arg(ka.)} —a as n — oo,
k=1

Kn

(ii) ZVar arg(Xn,) — b as n— oo,
k=1

Kn

(iii) ZP(| arg(Xnx)| >€) —0 as n—oo forall €>0.
k=1
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Then the array {X,r:neN k=1,...,K,} isinfinitesimal and
K'n/
ZXnyki’(sa*Wn) as n — oo.

k=1

Proof. In view of Theorem 4.6.1 and Remark 4.3.5, it is enough to check

K’ﬂ
(i) exp {z Z Eh(arg(Xnﬁk))} —a as n— oo,
k=1

KTZ
(ii") ZVar h(arg(X, ) — b as n — oo,
k=1
Kn
(iii") P(larg(X, k)| >¢€) =0 as n— oo forall ¢>0.
k=1

Clearly (iii') and assumption (iii) are identical. In order to prove (i) it is
sufficient to show

K,
ZEharg ZEarg nk) — 0,
k=1

since |er —eW2| = |e¥W1—¥2) — 1|  |y; — yo| for all yi,y2 € R. We have
|h(y) =yl < Tl{—r,—r/2Ux/2,](y) for all y € [~m, 7], hence

Kn K'n/
ZEh (arg(X ZE arg(Xn. k) QWZP(|arg(Xn,k)|Z7r/2)—>O
k=1 k=1

by condition (iii). In order to check (ii') it is enough to prove

K,

ZVarharg nk) ZVararg nk) — 0.
k=1
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We have
K, Ky
ZVar h(arg(Xnx)) — ZVar arg(X, k)
k=1 k=1
K"L
<D E|(harg(Xn )" (arg(Xo))?
k=1
o 2
+ 3 [ harg(Xap))? = (E arg(Xu 1))
k=1
Kn
<272 P(|arg(Xn k)| = 7/2) — 0,
k=1
as desired. O

Theorem 4.4.4 has the following consequence on the torus.

4.6.3 Theorem. (Limit theorem for rowwise i.i.d. Rademacher array)
Let z, €T, ne€N such that z, —e. Let {X,pr:neNk=1,...,K,}
be a rowwise i.i.d. array of random elements in T such that K, — oo and

1

5

Then the array {Xn,r:neN k=1,...,K,} isinfinitesimal.
If b is a nonnegative real number then

K,
D
ZX"J“ — Vo = K,(argz,)? — b.
k=1
Moreover,
Ky
ZX””“ D, wr — K, (arg mn)2 — 00.
k=1

In the rest of this section we consider the question of giving a construction
of an arbitrary weakly infinitely divisible measure on T using only real valued
random variables. We show that for a weakly infinitely divisible measure g on
T there exist independent real valued random variables U and Z such that U
is uniformly distributed on a suitable subset of R, Z has an infinitely divisible
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distribution on R, and e U+2) £ p. We note that R is a locally compact
Abelian Tp-topological group, its character group is R = {x, : y € R}, where
xy(z) :=e¥*. The function gg : R x R — R, defined by gr(z, xy) == yh(z),
is a local inner product for R.

For the parametrization of an arbitrary weakly infinitely divisible measure on
T we need to know all the compact subgroups of T. The compact subgroups
of T are

H, :={e*™/".j=0,1,...,r —1}, reN,

and T itself.

4.6.4 Theorem. If (H,a,¢p,n) € P(T) then

ei(UtargatX+Y) 2 WH * 0q * Vo * T, gr>

where U, X and Y are independent real valued random wvariables such that
U is uniformly distributed on [0,2n] if H =T, U is uniformly distributed
on {2nj/r :j=0,1,....,r—1} if H = H, for some r €N, X hasa
normal distribution on R with zero mean and variance b, and the distribution
of Y s the generalized Poisson measure Targon, gz 0N R, where the measure
argon on R is defined by (argon)(B) := n({z € T : arg(x) € B}) for all
Borel subsets B of R.

Proof. Let U be a real valued random variable which is uniformly distributed
on [0,2x]. Then for all x, €T, £€Z, £+0,

) ) 1 [27
Exe(eV) =EeV = 2—/ e dx = 0.
T Jo

Hence Exo(e’V) =or(xe) forall x, € T, £ €Z, and we obtain eV 2 wr.
Now let U be a real valued random variable which is uniformly distributed
on {27j/r:j5=0,1,...,7—1} withsome r € N. Then forall x, €T, ¢ € Z,

, , 1= 1 if r¢
E er — Eez@U i e27rz€j/r — )
xe(€™) r jgo 0 otherwise.

Hence Ex(eV) =@y, (x¢) forall x; €T, £ € Z, and we obtain eV 2 W, -

. . D
For a € T, we have a =¢€'®®8% hence e'?8% =,.
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For b€ R, the Fourier transform of the symmetric Gauss measure 7y,
has the form . ~
A (X0) = e /2 xe €T, (el

Forall x, €T, (€Z,

EXg(eiX) — EeitX _ g—00%/2

Hence E y,(e') = vy, (xe) forall x, € T, ¢ € Z, and we obtain X L Vb -
For a Lévy measure n € L(T), the Fourier transform of the generalized
Poisson measure , 4, has the form

%n,gT<x@>=exp{ / (y‘—l—z’Eh(argy))n(dy)}, wel, tez

An extended real valued measure 77 on R is a Lévy measure if and only if
7({0}) =0 and [, min{1,2%}7(dz) < co. Consequently, argon is a Lévy
measure on R, and for all y, € 'ﬁ‘, leZ,

Exe(e?) =Ee!Y =exp {/R (e —1— ilh(z)) (argon)(dx)}

= exp {/ (" — 1 —ith(argy)) n(dy)} :
T
Hence Ex(eY) =7, g:(x¢) forall x, € T, ¢ € Z, and we obtain e’ 2 T, gr-
Finally, independence of U, X and Y implies
EX(ei(U+arga+X+Y)) _ Ex(eiU) . X(eiarga) . Ex(eiX) . Ex(eiY)
= WH(X) 80 (00) Yo, (X) Tn, g (X) = (Wh * 0 s, * 7, g2) " (X)

for all x € ﬁ‘, hence we obtain the statement. O

4.7 Limit theorems on the group of p-adic inte-
gers

Let p be a prime. The group of p-adic integers is

A, = {(xo,xl,...):xj €{0,1,...,p—1} for all j€Z+},
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where the sum z:=x+y e A, for z,y € A, is uniquely determined by the
relationships

d

d
Z zp’ = Z(Z‘J +y))p’  modptt  forall de€Zy.
=0 =0

Equivalently, the operation + in A, can be given in the following way.
For z,y € A, let their sum z be defined as follows. Write 2o +yo = top+ 2o,
where zg € {0,...,p—1} and ¢ty is an integer. Suppose that zg, 21,...,2; and
to,t1,...,tr have been defined. Then write xpy1 + Yrt1 + te = tht1P + Zkt+1,
where zp41 € {0,...,p—1} and tx4; is an integer. This defines by induction
a sequence z = (2n),>¢ in A, We define the sum x+y tobe z. To
complete the definition of addition in A,, we define 0+2 =2+0=2 for all
x € A, where 0 is the identically zero sequence in A,. (Definition 10.2 in
Hewitt—Ross [29] contains this introduction of the group operation in A,.)

For each r € Z4, let

Ari={zeA,:2; =0 forall j<r—1}

The family of sets {x+A, :z € A,, r € Z,} is an open subbasis for a topology
on A, under which A, is asecond countable compact Abelian Tj-topological
group (see Theorems 4.5 and 10.5 in Hewitt—Ross [29]). Note that A, is not
a Lie group.

We show that A, is totally disconnected. By definition, we have to check
that every component of A, consists of one point. Let Cy be the component
of the identity 0 in A,. By Theorem 7.2 in Hewitt—-Ross [29], for all = € A,
x4+ Cy is the component of x. So it is enough to prove that Co = {0}. By
Theorem 7.8 in Hewitt—Ross [29], Cy is the intersection of all open subgroups
of A,. Since A, is an open subgroup of A, forall r € Z;, we have

Co C [ Ar = {0}.
r=0

Since 0 € Cy, we have Cp = {0}.
The character group of A, is A, ={xa¢:d € Zy, £L=0,1,...,p1 -1},
where

Xa(a) = e2mil@otpmttplea) e A deZy, £=0,1,...,pt -1,

see, e.g., Hewitt—Ross [29, p. 403].
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Since the group A, is totally disconnected, the only quadratic form on ﬁp
is ¢ =0, and the function ga, : A X Ep — R, ga, =0 is a local inner
product for A, (see Parthasarathy [46, p. 109, Remark 1]).

An extended real valued measure n on A, is a Lévy measure if and only
if n({e}) =0 and n(A,\A,) <oo forall reZy.

Theorem 4.3.1 has the following consequence on the group A, of p-adic
integers.

4.7.1 Theorem. (Poisson limit theorem) Let {X,, : n € Nk =
1,...,K,} be a rowwise independent array of random elements in A,. Sup-
pose that there exists a Lévy measure n € L(A,) such that

(1) 1<Hklz)§(nP<((Xn,k)0a ceey (Xn,k)d) 7é O) —0 as n— for all d e Z—H
Ky
k=1

—_>77({x€Ap:xozﬁo,...,xdzﬁd}) as n — oo foral deZy,
Loy, lg €{0,...,p—1} with (Ly,...,¢;) # 0.

Then the array {X,r:neN, k=1,...,K,} isinfinitesimal and

Kn

e D
g nk — T, ga, as n — oo.
k=1

For the proof of Theorem 4.7.1, we use the following lemma.

4.7.2 Lemma. Let {n,:n € Zy} be extended real valued measures on A,
such that 1,(Ap \ A;) < oo forall n,r € Z,. Then the following statements
are equivalent:

(a) Mz +Ar) = no(z+A;) as n—oo forall TeN, ze A\ Ay,
(b) / fdnn—>/ fdng as n— oo forall feCo(Ay).
AP AP

Proof. By Theorem 4.3.4, (b) is equivalent to

(b") Malaj v —— mla v as n— oo forall UeN, with n(0U) = 0.
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It can be checked that if 7,[a,\v BN Mola,\v holds for some U € N, with

no(OU) =0 then m,|a\v — 7ola,\v holds for all V € N, with V DU
and 79(0V) = 0. Hence, using that {A, : r € N} is an open neighbourhood
basis of e and OA, =0 for all r € Z,, (b')is equivalent to

(b") Nnla\a, =, Mola\a, as n— oo forall reN.

For distinct elements z,y € Ap, let p(x,y) be the number 27™, where m
is the least nonnegative integer for which x,, # y,,. For all = € A,, let
o(z,z) == 0. Then p is an invariant metric on A, compatible with the
topology of A, (see Theorem 10.5 in Hewitt and Ross [29]). Let d(zx,y) :=
Yoo 2*’“]1{“#%} for all z,y € A,. Then d is a metricon A, equivalent
to o, since o(z,y) < d(z,y) < 20(x,y) forall z,y € A,. Hence the original
topology of A, and the topology on A, induced by the metric d coincide.
Then weak convergence of bounded measures on the locally compact group A,
can be considered as weak convergence of bounded measures on the metric space
A, equipped with the metric d.
We show that the set

M :={ly4a, :ceN, z e Ay}

is convergence determining for the weak convergence of probability measures on
A,. For this one can check that Proposition 4.6 in Ethier and Kurtz [20] is
applicable with the following choices: S := A, equipped with the metric d,
Sk is theset {0,1,...,p—1} for all k € N, dj is the discrete metric on Sy,
k€N, and

M, = {ka :CkESk}, kEN,

where

0 if = # cg,

For checking we note that for each ¢ € N and z € A, the function 1,45, is
bounded and continuous, since the set z + A. is open and closed. Moreover,
for each k € N, Sy with the metric dj is a complete separable metric space.

It is easy to check that M is a convergence determining set for the weak con-
vergence of bounded measures on A, as well. Consequently, (b/’) is equivalent
to

) / Toqa. 777L|Ap\Ar(d‘T)4’/ Teia, Mola\a, (dz) as n— oo for all
AP

P

x €A, and for all ¢,r € N.

1 if z=
fck(x)::{ BT x €8k, keN.
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Clearly, this is equivalent to

(b”") 77n(<x +A)N (A, Ar)) N 770((95 + A N (AL )\ AT)) as n — oo for all
z €A, and for all ¢, € N.

‘We have

AN\A,. if r=c and z €A,
(@+A)N(AL\A) =10 if r<c and z € A,,

xr+ A, otherwise.

If » > c then A.\ A, can be written as a union of p"~¢—1 disjoint sets of
the form y+ A, with y € A.\A,. Consequently, (b"") and (a) are equivalent.
O

Proof of Theorem 4.7.1. The local mean of any random element with values
in A, is e (with respect to the local inner product ga, = 0). Moreover, for
each U € N,, there exists r € Z, such that A, C U. Hence, in view of
Theorem 4.3.1, it is enough to check that

i)  Joax P(Xnr€Ap\A) —0 as n— oo foral reZ,,

Kn
(i) ZEf(ka) — /A fdn as n— oo forall feCo(A)).
k=1 P

Clearly {z € A, : (w0,1,...,24) # 0} = A, \ Agy1, hence (i) and (i) are
identical. Applying Lemma 4.7.2 for n, = Zsz"l Px,, and mo =17, we
conclude that (ii”) and (ii) are equivalent. O

4.7.3 Remark. Theorem 4.4.4 has the following consequence on A,. If z, €
A,, n €N suchthat z, —e, and {X,,,:neN, k=1,...,K,} isarowwise
iid. array of random elements in A, such that K, — oo and P(X,; =
) =P(Xpp = —x,) = %, then the array {X,,:neN k=1,... K.} is
infinitesimal and ZkK:"l Xk 2, Oc-

In the rest of this section we consider the question of giving a construction
of an arbitrary weakly infinitely divisible measure on A, using only real valued
random variables. We show that for a weakly infinitely divisible measure g on
A, there exist integer valued random variables Uy, Ui, ... and Zy, Z,... such
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that Uy,U;,... are independent of each other and of the sequence Zy, Zy,...,
moreover, Uy, Uy,... are uniformly distributed on a suitable subset of Z,
(Zo,...,Zy,) has a weakly infinitely divisible distribution on Z"*! for all
ne€Zy, and o(Ug+Zo, U1+ 2Z1,...) Z i, where the mapping ¢ : Z>*° — A,,
uniquely defined by the relationships

Zyjpj = Z(p(y)Jp] mod p?*! for all d € Z,, (4.7.1)

is a measurable homomorphism from the Abelian topological group Z> (fur-
nished with the product topology) onto A,. (Note that Z* is not locally
compact.) Measurability of ¢ follows from

9071(:6+A7') = {y S ZOO : (y07y1, e 7y7"—1) S Fx,r}

for all x € Ay, r € Z4, where F,, is a suitable finite subset of Z".

For the parametrization of an arbitrary weakly infinitely divisible measure
on A, we need to know all the compact subgroups of A,. Forall r e Z,,
A, is a compact subgroup of A, and Example 10.16 (a) in Hewitt-Ross [29]
shows that there is no compact subgroup of A, which differs from A,, r = 0.

4.7.4 Theorem. If (A,,a,0,n) € P(A,) then

©(Uo + ao + Yo, U1+(l1+Y17-~)EWAT*(Sa*Wn,gApy

where Uy, Uy, ... and Yy, Y1, ... are integer valued random variables such
that Uy, Uy, ... are independent of each other and of the sequence Yy, Y1, ...,
moreover, Uy =---=U,_1 =0 and U,, U,y1, ... are uniformly distributed on

{0,1,...,p—1}, and the distribution of (Yy,...,Ys) is the compound Poisson
measure e(Nn11) on Z"TY forall n € Z,, where the measure 1,11 on Z"H1
is defined by 1n4+1({0}) :=0 and np11(€) :=n{zx € Ap: (xo,21,...,2T0) = £})
for all €€ 7"\ {0}.

Proof. Since Uy, Uy, ... and Yy, Y7, ... are integer valued random variables
and the mapping ¢ : Z> — A, is measurable, we obtain that (U + ag +
Yo, Uy + a1 +Y1,...) is arandom element with values in A,,.
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First we show ¢(U) 2 wa,., where U := (Up,Uy,...). By (4.7.1) we obtain

Exae(pU) = E e2mit(p(U)o+pe(U) 1+ +pto(U)a) /p*

— E &2mit(Uo+pUs+-+pUa) /p*H! (4.7.2)

—1 p—1
1% N ,
= { pd-rtl Z Z 2l it 4% /P 0 if > and pdtieT f,
- Jr=0  ja=0
1 otherwise

forall d € Z; and ¢=0,1,...,p%"! — 1. Hence Exu/(p(U)) = @a,(Xar)
forall d€Z, and £=0,1,...,p"! — 1, and we obtain (U)

19

WA.. -

For a € A,, we have a = ¢(ao,a1,...), hence ¢(ag,a,...) L 0.

For a Lévy measure n € L(A,), the Fourier transform of the generalized
Poisson measure 7, g,  has the form

Tn,ga, (Xa,) = €xp { /A

forall d € Z; and £=0,1,...,p%" —1. Then 1,41 (Z"") = n(A,\Apt1) <
0o, hence 7,.1 is a bounded measure on Z"*! and the compound Poisson
measure e(n,41) on Z""1 is defined. The character group of Z"*! is
(Z" )" = {Xzg,21,2m 205215« -5 2n € T}, where Xag.z1,. 20 (Coy b1y o ooy b)) i=

2ozt gt forall (Lo, by, ..., 0,) € ZFL,

(eQTriZ(aco-‘rpEl+'“+Pd$d)/pd+1 — 1)’[’](d$) }

P

We show that the family of measures {e(n,11) : n € Z;} satisfies the
consistency property: e(n,12)(B X Z) = e(nn+1)(B) for all subsets B of
Z™*! and for all n € Z,. For this it is enough to check that

(e(nn+1))A(X20721;-<~7Zn) = ﬁ(XZD;zl ;<~-7Zn) (4.7.3)

for all zg,21,...,2, € T, where g is the probability measure on Z"*! defined
by wu(B):=e(nni2)(B xZ), B CZ"". Then

(e(ﬁn+1)ﬂXZO,Z1,-..,zn,) =€xXp {/ (Z(t;ozfl e Zan - 1) 77n+1(d£07 dela B dfn)} s
Z

n+1
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and

ﬂ(XZO7ZIy~~~7Zn) = / . Xz0,21,0-,2n (60, Elv s ag’n) :u’(dEOa dflv cee 7d£n)
Zn+1

= D waau{t) = Y0 Al are(r) ({6 x Z)

Lezn+t tezn+1
= 37 bk e (maa) (k) = ((nr2)) (Xeororznit)-
keZn+2

Since
(e(Mn+2)) (Xzo0,21,....20,1)
= exp {/ (25028 2 1) a(dl, déy, . . .,dzn,den+1)} ,
Zn+2

to prove (4.7.3) it is enough to check that
/ (202" 2l — 1) Mo (dlo, dly, .. by, dlyir)
Zn+2

:/ X (zg"zfl --~zﬁ" — 1) npg1(dlo, dly, ..., de,).
Zn+1

We show that both sides of the above equation are equal to

[ Gaeag s = ).
AP
This integral is finite, since

[ e = [ e s - )
A, Ap\Apnt1

< 2n(Ap \ Apt1) < 0.
Using the notation A,41(¢) := {z € A, : (zo,71,...,3,) = £} forall £z,

we get

/ (zg”“zi“ Z,f” — 1) U(dx) = Z / (ZgoZ? zzn _ 1)77(dx)
A Apy1(£)

P Lezntt

= 3 (sl st — D ({0)

leznt+1

:/ . (zloztr o 2l — 1)y (dly, dly, ..., dEy).
Zn 1
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A similar computation shows that

/ (220280 - 2% — 1) n(da)
A

P

:/ (250250 2 — ) ya(dlo, dly, ... dly, dly).
Zn+2

Hence (4.7.3) is satisfied.

By Kolmogorov’s Consistency Theorem (see, e.g., Shiryaev [52, p.163, The-
orem 3]), there exists a sequence Yp, Y7, ... of integer valued random variables
such that the distribution of (Yp,...,Y,) is the compound Poisson measure
e(Mpy1) on Z"*! forall n€Z,. Forall d€Z, and £=0,1,...,p¢tt —1
we have

Exae(e(Yo,Y1,...))=E @2mil(Yo+pYi+-+pYa) /p**

= exp {/d (eQﬂ'i@(@o"rl)&-‘r"'-‘rpded)/derl — 1) 7’]d+1(d£0, dél, ey d£d>}
Za+1

Hence Exae(p(Yo,Y1,...)) = Ty ga,(Xae) for all d € Zy and ¢ =

0,1,...,p%t — 1, and we obtain (Yp,Y,...) 2 T, ga, -

Since the sequences Uy, U,... and Yp,Y7,... are independent and the
mapping ¢ :Z>* — A, is a homomorphism, we have

(eQﬂ'ie(.’lio-‘rpfb'l+"‘+Pdwd)/pd+l — 1) n(dx)} .

P

Ex(e(Uo+ao+ Yo, Up + a1+ Y1,...))
Ex(e(Uo,Us,...))  x(¢(ao,a1,...)) - Ex(¢(Yo, Y1,...))
= Wa, (X) da(X) %n,gap (X) = (wa, * 0q * T, 9a, ) (%)

for all x € ﬁp, and we obtain the statement. O

4.8 Limit theorems on the p-adic solenoid

Let p be a prime. The p-adic solenoid is a subgroup of T°°, namely,

Sp = {(wo,y1,...) € T s y; = yj,, forall jeZi},
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furnished with the relative topology as a subset of the locally compact Tp-
topological group T*. Then S, is a second countable compact connected
Abelian Tj-topological group. For an equivalent introduction of the p-adic
solenoid, see Hewitt—Ross [29, Definition 10.12]. Note that S, is not a Lie
group. By Theorems 23.21 and 24.11 in Hewitt—Ross [29], the character group
of S, is S, ={xae:deZy, L}, where

Xaey) :=vh  yeS, deZ,, (cI.
The set of all quadratic forms on §p is qu (§p) = {4y : b€ R}, where

be?
Uo(Xa,e) == e d€Zy, (€7, beRy,

see, e.g., Heyer-Pap [31, Section 5.4]. The function gs, : .S, x .§p — R,

Lh(argy,
%, yesS, deZ,, (e,

9s, (Y, Xae) = ,

is a local inner product for S,. An extended real valued measure 7 on S, is
a Lévy measure if and only if n({e}) =0 and fs,, (arg yo)? n(dy) < oo.
Theorem 4.3.1 has the following consequence on the p-adic solenoid S,.

4.8.1 Theorem. (Gauss—Poisson limit theorem) Let {X,,:neN, k=
1,...,K,} be arowwise independent array of random elements in S,. Suppose
that there exists a quadruplet ({e},a,vp,n) € P(S,) such that

(i) max P@Ej<d:]arg((Xnk);)|>e)—0 as n— oo forall deZs
1Sk Ky ’

and for all € >0,

. Kn,
(ii) exp {Zd Z Eh(arg((Xnﬁk)o))} —ag as n—oo foral deZ;,
p
k=1

Ky

(i) Y Var harg((Xi)0) b+ [ hasg(un) () as n— oo,
k=1 Sp

k

Ky

(iv) ZEf(X”J“)_)/S fdn as n— oo forall feCo(Sy).

=1
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Then the array {X,r:neN k=1,...,K,} isinfinitesimal and

Kn

Xp g — 0 * * T as m — 00
n,k a * Yoy 1,95y :
k=1

The next theorem shows that if the limit measure in Theorem 4.8.1 has
no generalized Poisson factor m, 45 then the truncation function h can be
omitted. The proof of this fact can be carried out as in case of Theorem 4.6.2.

4.8.2 Theorem. (CLT) Let {X,,:n e N k=1,...,K,} be a rowwise
independent array of random elements in S,. Suppose that there exist an
element a € S, and a nonnegative real number b such that

. K,
(1) exp{ ZEarg )}—>ad as n—oo forall de€Zy,
k=1
(i) ZVar arg((X,.x)o) — b as n — oo,

(iil) ZP(H]’ <d:larg((Xnk)j) >¢€) —0 as n— oo forall deZy
and for all £ > 0.
Then the array {X,r:neN, k=1,...,K,} isinfinitesimal and

K,

ZX””“ N Og * Yaby -
k=1

Theorem 4.4.4 has the following consequence on S,.

4.8.3 Theorem. (Limit theorem for rowwise i.i.d. Rademacher array)
Let ™ € S,, n €N suchthat 2" —e. Let {X,r:neN k=1,...,K,}
be a rowwise i.i.d. array of random elements in S, such that K, — oo and

Then the array {Xn,r:neN k=1,...,K,} isinfinitesimal.
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If b is a nonnegative real number then

K

n 5 o
ZX"»’“ — Vi — Kn(arg(xé ))) — b.
k=1

Moreover,

Ky
ZX”vk 2, ws, <— Kn(arg(xén)))Q — 00.
k=1

In the rest of this section we consider the question of giving a construction of
a weakly infinitely divisible measure on S, without a nondegenerate idempotent
factor using only real valued random variables. We show that for a weakly
infinitely divisible measure p on S, without an idempotent factor there
exist real valued random variables Zy,Z7,... such that (Zy,...,Z,) has
a weakly infinitely divisible distribution on R x Z™ for all n € Z,, and

o(Zo, Z1,...) L p, where the mapping ¢ : R x Z*° — S, defined by

90(:‘/0; Y1, Y2, - .- )
= (eiyo ei(Wo+2my1) /P Gi(yot+2my1+2my2p) /p?  Gi(yo+2my1+2my2p+2mysp”) /p? )
. b b ) bR

for (yo,v1,¥2,...) € RXZ>, is a measurable homomorphism from the Abelian
topological group RxZ> (furnished with the product topology) onto S,. Note
that R xZ* is not locally compact, but R x Z™ is a second countable locally
compact Abelian Ty-topological group for all n € Z,. The character group of
RxZ" is (RXZ")'={xy-:y ER, 2 € T"}, where x,.(x,() :=eW=z{" ... 2Ln
forall z,y €R, 2= (z1,...,2,) € T" and £ = (¢1,...,¢,) € Z"™. The function
grxzn (2, 0), Xy,2) = yh(z) is alocal inner product for R x Z".

We also find independent real valued random variables Ugy,U,... such
that Ugy,Uy,... are uniformly distributed on suitable subsets of R and

(p(Uo, Ul, . ) 2 wsp.
4.8.4 Theorem. If ({e},a,vp,n) € P(S,) then

o(1(a)o + Xo + Yo, 7(a)1 + Y1, 7(a)2 + Ya,...)

. . . 2
_ (aer(X0+Yo)’ a/lel()([)JrY'()JrQﬂ‘}/l)/p7 a2eZ(X0+Y()+27TY1+27TY2p)/p ... .)

25
= Oa * Yoy * T, gs,, 5
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where the mapping 7:Sp, — R x Z> is defined by

( pargT; — argrg pargrs — argry )
7(z) == | arg o, ,
27 21

for x = (xo,21,...) € Sp, Xo, Yo are real valued random variables and
Y1,Ys, ... areinteger valued random variables such that Xo is independent of
the sequence Yy,Y1,..., the variable Xy has a normal distribution with zero
mean and variance b, and the distribution of (Yo,...,Y,) is the generalized
Poisson measure Ty, .| gayxsn 0N RXZ™ for all n € Zy, where the measure

Mnt1 on R XZ™ is defined by 1,+1({0}) :=0 and

Nnt1(B x {£}) := n({x €S, :7(x)o € B, (1(x)1,...,7(x)n) = E})

for all Borel subsets B of R and for all ¢ € 7™ with 0¢& B x {{}.

Moreover,
D
Uy, Uy,...) = ws,,
where Uy,Uy,... are independent real valued random variables such that Uy
is uniformly distributed on [0,27] and Uy, Us,... are uniformly distributed

on {0,1,...,p—1}.

Proof. Since Xy, Yy and Uy, Uy,... are real valued random variables and
Y1,Ys, ... are integer valued random variables and the mapping ¢ : Rx Z>* —
S, is measurable, we obtain that ¢(7(a)o+Xo+Yo, 7(a)1+Y1, 7(a)2+Y2,...)
and (Up, Uy,...) are random elements with values in S,,.

For a € S,, wehave a=¢(7(a)), hence ¢(r(a)) 25,
For b€ R;, the Fourier transform of the Gauss measure +,, has the form

~ be?
'ow(Xd,e)ZeXp{—W}7 deZy, (el

Forall de€Zy and (€ Z,

) d b2
EXd,f(QO(XO’ 0,0,... )) = Ee! /P = P {_ 2p2d } .

Hence Exq(¢(X0,0,0,...)) =7y, (xae) forall d€Z; and ¢ € Z, and we
obtain ¢(Xoy,0,0,...) 2 Vb -



118 CHAPTER 4. LIMIT THEOREMS ON LCA2 GROUPS

For a Lévy measure 7 € L(S,), the Fourier transform of the generalized
Poisson measure m, 4, has the form

forall d € Z; and ¢ € Z. An extended real valued measure 77 on RxZ" isa
Lévy measure if and only if 77({0}) =0, 7({(z,£) € RXZ" : |z| Z e or £ #£0}) <
oo forall >0, and [p, . h(2)?7(dz,dl) < co. We have

(i — 1 —ith(arg yo)/p?) n(dy)}

p

Mnr1({(x,£) ER X Z" : || = € or £ # 0})
=n({y € Sp : |argyo| Z € or (T(y)1,...,7(y)n) # 0}) = n(Sp \ Neyn) < 00

for all € € (0,7), where
Nen = {y € Sy : |argyo| <e, |argyi| < e/p,...,|argyn| <e/p"}.

Moreover, [p. ;n h(x)? g1 (dz, dO) fs (argyo)? n(dy) < oo, since n is a
Lévy measure on S,. Hence, 1,41 isa Levy measure on RxZ". The family of
measures {7y, gz, 7 € Zy} is consistent, since ., 4. .., ({7} XZ) =
M1, genan ({2}) for all o € R x Z"™' and n € Zy. Indeed, this is a
consequence of

(7T77n+2,gmxzn+1 )A(Xy,zhm’zml) = (7T77n+1,gm<><zn )A(Xy,21,~~~,zn)

forall y €R, z1,...,2, € T, which follows from

/ » (eiywzfl .. ~sz" -1 zyh(m)) Nni2(dz,dly, ..., dl,, dl, 1)
RxzZ"™

= / (eiw”z:f1 szl — 1 — iyh(@)) Py (dz, déy, . dE,)
RxZ™
forall y € R, 21,...,2, € T, where both sides are equal to

I:= / (eiy argwozy’argfl—argfo)/@”) . Zflpargwn—arg:vn,l)/(%r)
S

P

— 1 —iyh(arg x0)> n(dz).



4.8. LIMIT THEOREMS ON THE P-ADIC SOLENOID 119

This integral is finite. Indeed, for all z € N.,, and 0 < e < 7/2 we have
pargx, = argx,_1 for each k=1,...,n, hence

111 < 2+ 7lyl) 1Sy \ Now) + / €50 _ 1 iy arg 2| n(da)
NE,'n,

1
<@+l S\ New) + 5 [ () n(de) < o
Ns,n

since 7 is a Lévy measure on S,. By Kolmogorov’s Consistency Theorem
(see, e.g., Shiryaev [52, p.163, Theorem 3]), there exist a real valued random
variable Y, and a sequence Yi, Y5, ... of integer valued random variables
such that the distribution of (Yp,...,Y,) is the generalized Poisson measure
forall ne€Zy. Forall de€Z, and (€ Z,

7r77n+ 15 gRXZ™

E (0¥, Vi, .. )) = E 0027k 2m¥ip =)t

_ exp{/ (eif(I+27'r€1+»..+27rédpd—1)/pd _1_ zéh(m)/pd) ’I7d+1(d£L'7 dél, s dﬁd)}
RxZ4

Hence Exa(p(Yo,Y1,...)) = Ty, g5, (Xae) forall d €Z; and ¢ €Z, and

P

(vh — 1 — ith(arg yo)/p®) n(dy)} :

we obtain (Yo, Y1,...) 2 T, gs, -
Since the sequence Yp, Y7,... and the random variable X, are independent
and the mapping ¢ : R x Z* — S5, is a homomorphism, we get

Ex(e(r(a)o + Xo + Yo, 7(a)1 + Y1, 7(a)s + Ya,...))
= x(¢((a)o, 7(a)1,-..)) - Ex(¢(X0,0,0,...)) - Ex(¢(Yo,Y1,...))
= 6a(X) Ty (X) T, g5, () = (Ba * Yus, * Ty g5, ) (%)

for all x € §p, and we obtain the first statement.
For all d € Z; and ¢ € Z\ {0},

Exac(e(Uo,Us,...))=E il (Uo+2rUst-+2mUap" ") /p?

1 27 B p—1 p—1 d—1y, d
/ et/ qy 3O Y emittiorittian D/,
0

© 2mpd
P Jo=0 Jja—1=0
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Using (4.7.2), we get Exa¢(0(Up,Uy,...)) =0 forall d € Zy and ¢ € Z\{0}.
Hence Exq¢(¢(Uo,Us,...)) = ©s,(xae) forall de€Zy and ¢ € Z, and we

obtain cp(Uo,Uh...)ngp. ]



Chapter 5

Portmanteau theorem for
unbounded measures

In this chapter we prove an analogue of the portmanteau theorem on weak
convergence of probability measures allowing measures which are finite on the
complement of any Borel neighbourhood of a fixed element of an underlying
metric space. We use this result in proving Gaiser’s limit theorem (Theorem
4.3.1). We present this separately, because it can be formulated in a more
general setting than it is needed in proving Gaiser’s theorem.

The results of this chapter are contained in our submitted paper [9].

5.1 Motivation

Weak convergence of probability measures on a metric space has a very impor-
tant role in probability theory. The well-known portmanteau theorem due to A.
D. Alexandroff (see, e.g., Dudley [19, Theorem 11.1.1]) provides useful condi-
tions equivalent to weak convergence of probability measures; any of them could
serve as the definition of weak convergence. Proposition 1.2.13 in the book of
Meerschaert and Scheffler [39] gives an analogue of the portmanteau theorem
for bounded measures on R?. Moreover, Proposition 1.2.19 in Meerschaert and
Scheffler [39] gives an analogue for special unbounded measures on R?, more
precisely, for extended real valued measures which are finite on the complement
of any Borel neighbourhood of 0 € R%.

By giving counterexamples we show that some parts of Propositions 1.2.13

121
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and 1.2.19 in Meerschaert and Scheffler [39] are not true, namely, the equivalence
of (¢) and (d) in their propositions is not valid (see Remark 5.2.3 and
Remark 5.2.4). We reformulate Proposition 1.2.19 in Meerschaert and Scheffler
[39] in a more detailed form adding new equivalent assertions to it (see Theorem
5.2.1). Moreover, we note that Theorem 5.2.1 generalizes the equivalence of (a)
and (b) in Theorem 11.3.3 of Dudley [19] in two aspects. On the one hand,
the equivalence is extended allowing not necessarily finite measures which are
finite on the complement of any Borel neighbourhood of a fixed element of an
underlying metric space. On the other hand, we do not assume the separability
of the underlying metric space to prove the equivalence. But we mention that
this latter fact is hiddenly contained in Problem 3, p. 312 in Dudley [19].
For completeness we give a detailed proof of Theorem 5.2.1. Our proof goes
along the lines of the proof of the original portmanteau theorem (Dudley [19,
Theorem 11.1.1]) and differs from the proof of Proposition 1.2.19 in Meerschaert
and Scheffler [39)].

To shed some light on the sense of the analogue of the portmanteau theorem,
let us consider the question of weak convergence of infinitely divisible probability
measures fi,, n € N towards an infinitely divisible probability measure pg
in case of the real line R. Theorem 2.9, p. 355 in Jacod—Shiryayev [33] gives
equivalent conditions for weak convergence i, — io. Among these conditions
we have

/fdnn —>/fdn0 for all f € Ca(R), (5.1.1)
R R

where 1,, n € Z; are nonnegative, extended real valued measures on R
with 7,({0}) = 0 and [p(2® A 1)n,(dz) < oo, (ie., Lévy measures on
R) corresponding to p,, and Cy(R) is the set of all real valued bounded
continuous functions f on R wvanishing on some Borel neighbourhood of 0
and having a limit at infinity. The analogue of the portmanteau theorem is
about the equivalent reformulations of (5.1.1) when it holds for all real valued
bounded continuous functions on R vanishing on some Borel neighbourhood
of 0.

5.2 An analogue of the portmanteau theorem

Let Zy denote the set of nonnegative integers. Let (X,d) be a metric space
and zp be a fixed element of X. Let B(X) denote the o-algebra of Borel
subsets of X. A Borel neighbourhood U of zy is an element of B(X) for
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which there exists an open subset U of X such that Ty € UcCU. Let
Nz, denote the set of all Borel neighbourhoods of zg, and the set of bounded
measures on X is denoted by MP?®(X). The expression "a measure p on X”
means a measure g on the o-algebra B(X).

Let C(X), Cyz(X) and BL, (X) denote the spaces of all real valued
bounded continuous functions on X, the set of all elements of C(X) vanishing
on some Borel neighbourhood of g, and the set of all real valued bounded
Lipschitz functions vanishing on some Borel neighbourhood of xg, respectively.

For a measure 7 on X and for a Borel subset B € B(X), let n|p denote
the restriction of 1 onto B, ie., n|p(4):=n(BNA) foral Aec B(X).

Let pin, n € Z, be bounded measures on X. We say that g, — p
if pn(4) — p(A) for all A € B(X) with wu(0A) = 0. This is called weak
convergence of bounded measures on X.

The well-known portmanteau theorem (see, e.g., Dudley [19, Theorem
11.1.1]) gives equivalent reformulations of weak convergence of probability mea-
sures.

Now we formulate and prove an analogue of the portmanteau theorem for
unbounded measures.

5.2.1 Theorem. Let (X,d) be a metric space and xo be a fized element of
X. Let nn, n € Zy, be measures on X such that n, (X \U) < oo for all
UeN,, and forall n€Z,. Then the following assertions are equivalent:
(i) fX\denn — fX\deno forall feC(X) and for all U € N, with
Mo (8U) = 07

(i) 7mlx\u SN nolx\u for all U € Ny, with no(0U) =0,

)

) (X \U) = no(X\U) forall Ue N, with no(dU) =0,
(iv) [y fdne — [ fdno forall f € Cuy(X),
)

)

(iii

(v) [x fdnn — [y fdno forall f € BLg,(X),

(vi) the following inequalities hold:

(a) limsup,,_, . M (X\U) < no(X\U) for all open neighbourhoods U of xy,
(b) liminf,, o0 7, (X\V) = no(X\V) for all closed neighbourhoods V of xg.
Proof. First we show the equivalence of (i),(ii) and (iii).

(i)=(ii): Suppose that (i) holds. Let U be an element of N, with
n0(0U) = 0. Note that n,|x\v € M®(X), n € Z;. By the equivalence of
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(a) and (b) in Proposition 1.2.13 in Meerschaert and Scheffler [39], to prove
Ml x\o — Molx\v it is enough to check

/fdnn‘X\U_)/fan‘X\U for all feC(X).
X X

For this it is enough to show that for all real valued bounded measurable func-
tions h on X, forall A€ B(X) and for all n€Z, we have

/hdnn|A:/hdnn. (5.2.1)
X A

Using Beppo-Levi’s theorem, a standard measure-theoretic argument shows that
(5.2.1) is valid.

(ii)=(iii): Suppose that (ii) holds. Let U be an element of N, with
no(0U) = 0. By (ii), we have n,/x\0 — no|lx\v- Since no|x\v(0X) =

ol x\o(0) =0, we get 7, (X\U) = nn|x\v(X) = nolx\v(X) =n0(X\U), as
desired.

(iii)=(ii): Suppose that (iii) holds. Let U be an element of N, with
no(0U) = 0 and let B € B(X) be such that no|x\y(9B) = 0. We have to

show that 7,|x\v(B) — no|x\v(B).
Since nn|x\v(B) = n (BN (X \U)), n€Z; and

BNX\U) = X\[X\ (BN (X\U))],

by (iii), it is enough to check that ny(8(X \ (BN (X \U)))) = 0. First we
show that

(BN (X\U))cC (0BN(X\U))uaU, (5.2.2)

for all subsets B, U of X. Let z be an element of (BN (X \U)) and
(Un)n>1> (Zn)n>1 be two sequences such that lim, oo yn = lim, o0 2n = @
and y, € BN(X\U), 2z, € X\(BN(X\U)),n€N. Then forall n €N we
have one or two of the following possibilities:

ey, €B, y,€¢ X\U and z, € X\ B,
ey, €B, y, € X\U and z, €U.

Then we get = € (IBN((X\U)UdU)) U (dUN(BUIB)) U (dBNAU). Since
OBN((X\U)UdU) C (BN (X\U))UdU, we have z € (0BN(X\U))UadU,
as desired.
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Using (5.2.2) we get 1o (0(X\(BN(X\U)))) < 10(0BN(X\U))+n0(0U) =
0. Indeed, by the assumptions 7o(0BN (X \U)) =0 and ny(0U) = 0. Hence
m(O(X \ (BN (X\ 1)) = 0.
(ii)=(i): Using again the equivalence of (a) and (b) in Proposition 1.2.13 in
Meerschaert and Scheffler [39] and (5.2.1) we obtain (i).
(iii)=(iv): Suppose that (iii) holds. Let f be an element of C,,(X). Then
there exists A € N, such that f(z) =0 forall z € A and 79(04) = 0.
Indeed, using that the function ¢ — no({z € X : d(z,z0) > t}) from (0,00)
into R is monotone decreasing, we get the set {t € (0,00) : no({z € X :
d(z,z0) = t}) > 0} of its discontinuities is at most countable. Consequently,
for all U € N,, there exists some ¢> 0 such that U := {z € X : d(z, ) <
ty € Nyy, U C U and 19(0U) = 0. (Note that at this step we use that an
element U of N, contains an open subset of X containing zy.) This
implies the existence of A. We show that the set

D= {te]R:nO({xeX:f(a:):t}) >0}
is at most countable. The function F :R — [0,79(X \ A)], defined by
F(t):==n({zr e X\ A: f(z) <t}), teR,

is monotone increasing and left-continuous, so it has at most countable many
discontinuity points. (Note that 7(X \ A) < co, by the assumption on 17y.)
And typ € R is a discontinuity point of F if and only if F(tg +0) > F(to),
ie, n({x e X\ A: f(z) =to}) >0. If to #0, then

{lreX:flx)=tot={reX\A: f(x)=to},

which implies that tg # 0 is a discontinuity point of F if and only if ny({z €
X : f(z) =to}) > 0. Henceif t € D then t=0 or t isa discontinuity point
of F, which yields that D is at most countable. Since f is bounded and D
is at most countable, there exists a real number M > 0 such that —M, M ¢ D
and |f(z)] <M for x € X. Let € >0 be arbitrary, but fixed. Choose real
numbers t;, i = 0,...,k such that —M =ty <t1 < --- <tp=M,t; ¢ D,
i=0,...,k and maxyc;<x_1(tiy1 —t;) <e. The countability of D implies
the existence of t;, ¢ =0,..., k. Let

B; ::f‘l([ti,tiﬂ))m(X\A):{x e X\A:t; < fz) < tm}, i=0,... k1.
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Then B;,i=0,...,k—1, are pairwise disjoint Borel sets and X\ A = Ufz_ol B;.

Since f is continuous, the boundary 9(f~!(H)) of theset f~1(H) is asubset

of the set f~1(0H) for all subsets H of R. Using (5.2.2) this implies that
X\ By)=0B; C [ {t:H) U ({tipa}) UOA, i=0,... k-1

Since t; ¢ D,i=0,...,k, 1n9(0A4) =0, and

mo(0(X\By)) <mo({z € X« f(w) =ti}) +mo({z € X : f(2) = tit1}) +n0(0A),

we get no(0(X \ B;)) =0, ¢ =0,...,k—1. Since A C X\ B;, we have

X\B; €N, forall i =0,...,k—1. Hence condition (iii) implies that
Mn(Bi) = no(Bi) as n—o00,i=0,...,k—1. Then

[ [rom— [ ram| <[ [ ran— [ ran]

k—1 k—1
<[ rdn = Y tma (B + | 3t (B) — m(B2)
i=0 =0

e

k-1
+ ‘ tino(B;) —/ fdno‘
; ( X\A
k_

k—1 1
<3 [ 1) = tilm(dn) + | 3t (Bo) ()|
i=0 Y Bi 0

1=

k—1
+3 /B 11w i)

k—1
<2 — +’ t:(nn(By) — 1o(Bi ’
<2 max (tr =) ; (11(B:) = 1m0(By))

Hence

limsup‘/xfdnn—/xfdno) <2 max (tip1 —t;) < 2e.

n—00 0<i<k—1

Since ¢ > 0 is arbitrary, (iv) holds.

(iv)=(v): It is trivial, since BL,,(X) C Cyp, (X).

(v)=-(vi): Suppose that (v) holds. First let U be an open neighbourhood
of zy. Let € >0 be arbitrary, but fixed. We show that there exists a closed
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neighbourhood U, of zy such that U. C U and no(U \ U.) < ¢, and
a function f € BL,,(X) such that f(z) =0 for z € U, f(x) =1 for
x€X\U and 0K f(z) <1 for z € X.

For all B € B(X) and for all A\ >0 we use the notation B* := {x €X:
d(z,B) < )\}, where d(z, B) := inf{d(z,z) : z € B}. Since U is open, we
get U= )", F,, where F,:=X\(X\U)Y", neN. Then F, C F,41,
n €N, F, isaclosed subset of X forall n €N and (), (X\F,) =X \U.
We also have 19(X \ Fy) < oo for some sufficiently large N € N and
X\F, DX\ F,41 forall neN, and hence the continuity of the measure 7y
implies that lim, e 7o(X \ Fp) = no(X \ U). Since no(X \ U) < oo, there
exists some ng € N such that no(X \ Fp,) —no(X \U) <e. Set U, := F,.
Since

M0(X\ Fag) = no(X \ U) =10 (X \ Fp ) \ (X \U)) =m0 (U \ Fr,),

we have U, is a closed neighborhood of x5, U. CU and no(U\U.) < e.
We show that the function f : X — R, defined by f(z) :=

min(1,nod(z,U:)), = € X, is an element of BL, (X), f(z)=0 for z € U,

fl@)=1 for 1€ X\U and 0< f(z) <1 for x € X.

Note that if € U, then d(z,U.) =0, hence f(z) =0. Andif z € X\U then

d(z,U.) =2 d(X\U,U.) 2 1/ng, hence f(xz)=1. The fact that 0 < f(z) < 1,

x € X is obvious. To prove that f is Lipschitz, we check that

If(z) — f(y)| < nod(z,y) for all z,y € X.

If z,y € X with d(z,y) = 1/no then |f(x) — f(y)| <1< nod(z,y). If
xz,y € X with d(z,y) < 1/np then we have to consider the following four cases
apart from changing the role of =z and y:

ez eX\U, yeU\U,,
ezxelU, yeU\U,,

e z,ycU\U,,

e x,yc U, or z,ye X\U.

If e X\U, yeU\U: and f(y) = nod(y,U:) then d(y,U.) <1/ng and
we get ‘f(x) - f(y)| =1- nOd(yv UE) < nod(x,y) Indeeda

1/ng K dA(X\U,U) <d(z,U.) < d(z,y) + d(y, Ue).
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If 2€ X\U, yeU\U: and f(y) =1 then |f(z)— f(y)| =0 < nod(z,y).
If 2 €U, yeU\U. and f(y) =1 then d(y,U)}l/no and we
et (@)~ f)] = 1 <ol ). Tadeed, d(z.) > dU-9) > 1. 1

x€eU, yeU\U: and f(y) =nod(y,U:) then d(y,U.) < /no and we get
()~ ()] = nod(y, U.) < mod(z. y).

If 2,y e U\U: and f(z) =1, f(y) = nod(y,U:) then d(z,U.) = 1/ny,
d(y,U) < 1/ny and we get | f(z)—£(y)| = 1—-nod(y, U.) < nod(z,y). Indeed.
1/ng L d(z,U.) < d(z,y) + d(y,U:). The case z,y € U\ U. and f(y) =1
f(x) = nod(z,U:) can be handled similarly. If z,y € U\ U, and f(z) =
nod(z,Ue), f(y) =noed(y,U:) then

[f(@) = f(y)| = nold(z, Us:) — d(y, Us)| < nod(z, y).-

Indeed, since U, is closed, we have |d(z,U:) —d(y,U.)| < d(z,y). If z,y €
U\U. and f(z)=f(y) =1 then |f(z) — /()| = 0 < nod(z.y).

If 2,y €U, or x,y € X\U then |f(z)— f(y)] = 0< nod(z,y). Hence
f € BL,,(X).

Then we get

JoTemo=[ e S mX VU =m0 (VU <X\ 0)
/fdnn>/ Fdn, =0, (X \ D).

X X\U

Hence by condition (v) we have

limsupn, (X \U) < limsup/ fdn, = lim / fdn, :/ fdno

n—oo n—oo

<no(X\U)+e.

Since € > 0 is arbitrary, we get (a).

Now let V' be a closed neighbourhood of x3. Let e > 0 be arbitrary, but
fixed. We show that there exists an open neighbourhood V. of zy such that
V C V. and n9(V-\V) < e and a function f € BL,,(X) such that f(z)=
for z€V, f(z)=1 for z€ X\ V. and 0 f(z) <1 for z € X.

Since V is closed, we get V = ﬂzozl V,, where V, := V" n e N.
Then V41 C Vi, n € N, V,, is an open subset of X for all n € N and
UrZ, X\ V=X \V. Since X\ V,41 DX\ V,, n€N, the continuity of the
measure 1o implies that lim,_ . 70(X\V,) = no(X\V). Since no(X\V) < oo,
there exists some ng € N such that 7o(X\V)—no(X\V,,) <e. Set V. :=V,,.
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Since 79(X \ V) = no(X \ Vi) = 10 (X \ V) \ (X \ Vi) = 10(Vir, \ V), we
have V. is an open neighbourhood of zy, V C V. and no(V-\V) < e.

As earlier one can check that the function f: X — R, defined by f(x):=
min(1,ned(z,V)), z € X, is an element of BL,, (X), f( )=0 for z €V,
fl@)=1 for € X\ V. and 0< f(z) <1 for x € X. Then we get

[;ﬁmO[%memndX\%)+[Avfmm
Zno(X\V)=no(Vo\V) >no(X\V) —¢,

and [y fdn, = fx\v Fdn, < (X \ V). Hence by condition (v) we have

liminfn, (X \V) 2> hmmf/ fdn, = hm / fdn, 7/ fdng

n—oo n—oo

> (X \ V) —e.

Since € > 0 is arbitrary, we obtain (b). Hence we proved that (a) and (b)
are valid.

(vi)= (iii): Suppose that (vi) holds. Let A be an element of N, with
no(0A) = 0. Then for the interior A° and the closure A of A we have
no((X \ A°)\ (X \ A)) = no(A\ A°) = 0. Then A° is an open and A is a
closed neighbourhood of . Indeed, the fact that A isin A, yields that
A° is nonempty and contains zy. Hence we get

no(X \ A°) = limsupn, (X \ A°) = limsupn, (X \ 4) = hm mf (X \ 4)

n—oo n—oo

> hminfr]n(X \A) = no(X \ A).

Since 19(X\ A°) = no(X\A) = no(X\ A), we have the limit lim,, o 17, (X \ A)
exists and lim, oo 7, (X \ A) = no(X \ 4). O

5.2.2 Remark. The assertion (v) in Theorem 5.2.1 can be replaced by
[ogdm— [ gam foran fec, (.
X X

where Cy (X) denotes the set of all uniformly continuous functions in Cy, (X).
Indeed, Cp (X) C Cyo(X) and BLg,(X) C Cy (X).
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5.2.3 Remark. By giving a counterexample we show that the equivalence of
(a) and (b) in condition (vi) of Theorem 5.2.1 is not valid. For all n € N
let n, be the Dirac measure 02 on R concentrated on 2 and let 7y be
the Dirac measure d; on R concentrated on 0. Then n(R\V) =0 for
all closed neighbourhoods V' of 0, hence (b) in condition (vi) of Theorem
5.2.1 is satisfied. But (a) in condition (vi) of Theorem 5.2.1 is not satisfied.
Indeed, U :=(—1,1) is an open neighbourhood of 0, and

m(R\U) = nn((—oo, —1ju [1,00)) =1, neN,

hence limsup,, .7 (R\U) = 1. But ny(R\U) = 0, which yields that
(a) in condition (vi) of Theorem 5.2.1 is not satisfied. This counterexample
also implies that the equivalence of (¢) and (d) in Proposition 1.2.19 in
Meerschaert and Scheffler [39] is not valid.

5.2.4 Remark. By giving a counterexample we show that the equivalence of
(¢) and (d) in Proposition 1.2.13 in Meerschaert and Scheffler [39] is not valid.
For all n € N let p, be the measure 26,,, on R and p be the Dirac
measure dp on R. We check that p(A) < liminf, o un(A) for all open
subsets A of R, but there exists some closed subset F of R such that
limsup,, o fin(F) > p(F). If A is an open subset of R such that 0 € A
then p(A)=1 and pu,(A) =2 for all sufficiently large n, which implies that
u(A) < liminf, oo pn(A). If A is an open subset of R such that 0 ¢ A
then p(A) =0, hence wp(A) < liminf, o un(A) is valid. Let F be the
closed interval [—1,1]. Then p(F)=1 and u,(F) =2, n €N, which yields
that limsup,,_,. pn(F) =2. Hence limsup,,_, . pun(F) > p(F).



Summary

This dissertation deals with some questions of probability theory on special lo-
cally compact groups. We consider two more or less independent topics in four
chapters. First we investigate questions concerning Gauss measures on special
noncommutative Lie groups, such as on the Heisenberg group and on the affine
group (Chapter 2 and Chapter 3). In Chapter 2 one of our main interests is
to describe the distribution of the convolution of two Gauss measures on the
3-dimensional Heisenberg group. In Chapter 3 we show that a Gauss mea-
sure on the affine group can be embedded only in a uniquely determined Gauss
semigroup. Then we deal with proving (central) limit theorems for infinitesimal
triangular arrays of random elements with values in a locally compact Abelian
group, such as in the torus, in the group of p-adic integers and in the p-adic
solenoid (Chapter 4). We also consider the problem of representation of weakly
infinitely divisible probability measures on these groups (Chapter 4). Finally,
we prove an analogue of the portmanteau theorem on weak convergence of prob-
ability measures (Chapter 5). Chapter 5 can be considered as an auxiliary result
for Chapter 4. The reason for presenting it separately is that its main result
can be formulated in a more general setting than it is needed in Chapter 4.

In Chapter 2 we consider the 3-dimensional Heisenberg group H which can
be obtained by furnishing R3 with its natural topology and with the product

1
(91,92, 93)(h1, ha, h3) = (91 +h1,92 + he, g3+ hs + 5(91h2 - 92h1))-
Then H is a nilpotent Lie group. The Schrodinger representations {myy : A >
0} of H are representations in the group of unitary operators of the complex

Hilbert space L?(R) given by

[rLa(g)u](x) := eii(/\g3+ﬁg2x+,\glgz/2)u(x N \f)\g1)
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for g = (91,92,93) € H, u € L?(R) and z € R. The value of the Fourier
transform of a probability measure p on H at the Schrédinger representation
7+ is the bounded linear operator fi(m+y): L2(R) — L?(R) given by

Almea)u == /H roa(@un(dg),  ue IA(R).

A family (ut);>o of probability measures on H is said to be a continuous

convolution semigroup if we have jug * iy = pisyy for all s,t >0, and p; ——
o = 6. as t | 0, where J. denotes the Dirac measure concentrated on
the unit element e = (0,0,0) of H. (Here the notation - means weak
convergence.) A convolution semigroup (it);>o is called a Gauss semigroup if
limg ot~ 1y (H\ U) = 0 for all Borel neighbourhoods U of e. A probability
measure g on H is called continuously embeddable if there exists a continuous
convolution semigroup (it),>q of probability measures on H such that p; = p.
A probability measure on H is called a Gauss measure if it is continuously
embeddable into a Gauss semigroup.

In Chapter 2 an explicit formula is derived for the Fourier transform of
a Gauss measure on the 3-dimensional Heisenberg group at the Schrodinger
representation. Using this explicit formula, we give necessary and sufficient
conditions for the convolution of two Gauss measures to be a Gauss measure. It
turns out that a convolution of Gauss measures on H is almost never a Gauss
measure. We also give the Fourier transform of the convolution of two Gauss
measures on the Heisenberg group including the case when the convolution is
not a Gauss measure. The structure of Chapter 2 is similar to Pap [45]. Our
main theorems are generalizations of the corresponding results for symmetric
Gauss measures on H due to Pap [45].

The results of Chapter 2 are contained in our accepted paper [6].

In Chapter 3 we consider the 2-dimensional affine group F which can be
realized as the matrix group

F{(g ll’);méo,beR}.

Then F is a Lie group which is not nilpotent. It is shown that a Gauss
measure on the affine group can be embedded only in a uniquely determined
Gauss semigroup. The starting point of the proof is the fact that a Gauss Lévy
process in the affine group satisfies a certain stochastic differential equation
(SDE). We also give the solution of this SDE. Moreover, we give a complete
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description of supports of Gauss measures on the affine group using Siebert’s
support formula.

The results of Chapter 3 appeared in our paper [5].

In Chapter 4 we deal with proving (central) limit theorems on second count-
able locally compact Abelian groups (LCA2 groups). We also consider the ques-
tion of giving a construction of weakly infinitely divisible probability measures
on special LCA2 groups using only real valued random variables. We prove limit
theorems for row sums of a rowwise independent infinitesimal array of random
elements with values in an LCA2 group. We give a proof of Gaiser’s theorem
on convergence of triangular arrays [23, Satz 1.3.6], since it does not have an
easy access and it is not complete. This theorem gives sufficient conditions for
convergence of the row sums of a rowwise independent infinitesimal array of
random elements with values in an LCA2 group, but the limit measure can not
have a nondegenerate idempotent factor, i.e., a nondegenerate Haar measure on
some compact subgroup as its factor.

As new results we prove necessary and sufficient conditions for convergence of
the row sums of symmetric arrays and Bernoulli arrays, where the limit measure
can also be a nondegenerate Haar measure on a compact subgroup. Then we
investigate special LCA2 groups: the torus group, the group of p-adic integers
and the p-adic solenoid.

The set T := {e!*: —7 < x < 7} equipped with the usual multiplication of
complex numbers and with the relative topology as a subset of complex numbers
is a compact Abelian group. This is called the one-dimensional torus group.

Let p be a prime. The group of p-adic integers is

Ay = {(wg,21,...) 1 x; €{0,1,...,p—1} forall jeZi},

where the sum z:=2+4+y €A, for z,y € A, is uniquely determined by the
relationships

d
zip! = Z(x] +y))p'  modptt  forall de€Zy.
=0 =0

M-

(Here Z, denotes the set of nonnegative integers.) For each r € Z,, let
Ar={zelA,:2; =0 forall j<r—1}

The family of sets {x+A, : 2 € A,, r € Z, } is an open subbasis for a topology
on A, under which A, is a compact, totally disconnected Abelian group.
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The p-adic solenoid is a subgroup of T°°, namely,

Sy = {(yo,y1,...) € T® : y; :y§+1 for all j € Zy},

furnished with the relative topology as a subset of the locally compact group
Te°. Then S, is a compact connected Abelian group.

On the above mentioned LCA2 groups, we derive limit theorems applying
Gaiser’s theorem and our general results for symmetric and Bernoulli arrays.

Besides proving limit theorems, we give a construction of an arbitrary weakly
infinitely divisible probability measure on the torus group and the group of p-
adic integers. On the p-adic solenoid we give a construction of weakly infinitely
divisible probability measures without nondegenerate idempotent factors. In
our constructions we only use real valued random variables. For each of the
three groups, first we find a measurable homomorphism ¢ from an appropriate
Abelian topological group (which is a certain product of some subgroups of R)
onto the group in question. Then we consider an arbitrary weakly infinitely
divisible probability measure g on the group in question (without a nondegen-
erate idempotent factor in case of the p-adic solenoid) and we find real valued
random variables Zy, Z1,... such that the distribution of ¢(Zy,Z1,...) is
1. We note that, as a special case of our results, we have a new construction
of the normalized Haar measure on the group of p-adic integers and the p-adic
solenoid.

The results of Chapter 4 are contained in our submitted papers [7] and [8].

In Chapter 5 we prove an analogue of the portmanteau theorem on weak con-
vergence of probability measures allowing measures which are finite on the com-
plement of any Borel neighbourhood of a fixed element of an underlying metric
space. Our theorem is a reformulation of Proposition 1.2.19 in Meerschaert—
Scheffler [39] in a more detailed form adding new equivalent assertions to it.
Our proof differs from the proof of Meerschaert and Scheffler, and we use our
result in proving Gaiser’s limit theorem [23, Satz 1.3.6]. We present our theorem
separately in a new chapter, since it can be formulated in a more general setting
than it is needed in proving Gaiser’s limit theorem.

We remark that, by giving counterexamples, we show that some parts of
Propositions 1.2.13 and 1.2.19 in Meerschaert—Scheffler [39] are not true, namely,
the equivalence of (¢) and (d) in their propositions is not valid.

The results of Chapter 5 are contained in our submitted paper [9].



Osszefoglalé (Hungarian
summary)

Disszertaciom a valdszinliségszamitas azon teriiletéhez kapcsolodik, mely
lokdlisan kompakt csoportokon értelmezett valdszinliségi mértékek tulaj-
donsagait vizsgalja. Két, tobbé-kevésbé fliggetlen téméaval foglalkozunk a
disszertacié négy fejezetében. ElOszor specidlis nemkommutativ Lie-csopor-
tokon, a Heisenberg-csoporton és az affin-csoporton értelmezett Gauss-mér-
tékekkel kapcsolatos kérdéseket térgyalunk (2. és 3. fejezet). A 2. fejezet-
ben egyik f6 célunk, hogy megadjuk két, a 3-dimenzids Heisenberg-csoporton
értelmezett Gauss-mérték konvolucidjanak eloszlasat. A 3. fejezetben meg-
mutatjuk, hogy egy affin-csoporton értelmezett Gauss-mérték egyértelmiien
agyazhato be egy Gauss konvolucids félcsoportba. Ezt kovetoen lokalisan kom-
pakt Abel-csoportbeli értékii véletlen elemekbdl 4116 infinitezimalis haromszog-
rendszerekre vonatkozéan bizonyitunk (centralis) hatareloszlas-tételeket (4. fe-
jezet). Specidlis esetekként a térusz, a p-adikus egészek és a p-adikus szolenoid
esetét targyaljuk. Foglalkozunk ezeken a csoportokon értelmezett gyengén
korlatlanul oszthaté valdszintliségi mértékek reprezentaciéjanak kérdésével is (4.
fejezet). Az utolsé fejezetben a valdsziniliségi mértékek gyenge konvergencidjéra
vonatkozé portmanteau-tétel egy analégjét bizonyitjuk be (5. fejezet). Az 5.
fejezet a 4. fejezet kiegészitéseként, segédleteként tekinthetd, s féként azért sze-
repeltetjiik kiilon, mert a fejezet {6 eredménye sokkal altalanosabban is igaz,
mint amire a 4. fejezetben sziikségilink van.

A 2. fejezetben a 3-dimenziés Heisenberg-csoporttal foglalkozunk. Ellatva
R3-at a szokdsos topoldgidval és a

1
(91, 92,93)(h1, ha, h3) = (91 +hi,92 + ha,g93 + h3 + 5(91}12 - gzhl))
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szorzassal a 3-dimenziés Heisenberg-csoportot kapjuk, melyet H-val jeloltink.
Ismert, hogy H egy nilpotens Lie-csoport. A {m1y : A > 0} Schrédinger-repre-
zentacick H reprezentaciéi a L?(R) komplex Hilbert-tér unitér operatorainak
csoportjaban, melyek értelmezése

[ (9)u)(w) := et ART ARy (4 Vogy),

g = (91,92,93) € H, u € L} R) és 2 € R esetén. Egy H-n adott u
valészintliségi mérték Fourier-transzformaltja a wy) Schrodinger-reprezentd-
ciéban a fi(myy) : L2(R) — L3(R),

fitraui= [ ma@uads).  we I*R)

korlatos linedris operator. A H Heisenberg-csoporton értelmezett valdsziniiségi
mértékek (pt);>o csalddjat folytonos konvolicids félcsoportnak nevezziik, ha
Hs* g = lhsry minden s,t 2> 0 esetén és % 1o = 6, amint ¢ | 0, ahol &,
az e = (0,0,0) € H pontra koncentralédé Dirac-mértéket, —— pedig a gyenge
konvergencidt jeloli. Valészintiségi mértékek (j1¢);>, konvoliicids félcsoportjat
Gauss-félcsoportnak nevezziik, ha limy ot~ (H\U) =0 az e pont dsszes U
Borel-kornyezetére. Azt mondjuk, hogy egy H-n adott p valdsziniiségi mérték
folytonosan bedgyazhato, ha létezik olyan H-n adott valészintiségi mértékekbol
all6 (j1¢);>¢ folytonos konvoliciés félesoport, hogy 1 = . Egy H-n adott
valésziniiségi mértéket Gauss-mértéknek nevezziik, ha folytonosan beagyazhato
egy Gauss-félcsoportba.

A 2. fejezetben explicit képletet adunk a H  Heisenberg-csoporton
értelmezett Gauss-mértékek Fourier-transzformaltjara a Schrodinger-repre-
zentaciéban. Ezen explicit képletet felhasznédlva sziikséges és elegend6
feltételeket szarmaztatunk arra vonatkozéan, hogy mikor lesz két, a Heisenberg-
csoporton értelmezett Gauss-mérték konvolicidja tjra Gauss-mérték. Kideriil,
hogy Heisenberg-csoporton értelmezett Gauss-mértékek konvolicidja szinte so-
hasem Gauss-mérték. Megadjuk Gauss-mértékek konvolicidjanak Fourier-
transzforméaltjat abban az esetben is, mikor a konvolici6 nem Gauss-mér-
ték. A 2. fejezet felépitése hasonlé a Pap [45] cikkhez. Tételeink a Pap
[45] cikkben szerepld szimmetrikus Gauss-mértékekre vonatkozé megfeleld ered-
mények dltalanositasai.

A 2. fejezet eredményei elfogadott [6] cikkiinkben jelennek meg.

A 3. fejezetben a 2-dimenziés affin-csoportot tekintjiikk, melyen az aldabbi
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matrix-csoportot értjik

F::{(g ’1’> :a;éo,beR}.

Ismert, hogy F egy Lie-csoport, mely nem nilpotens. Megmutatjuk,
hogy egy affin-csoporton értelmezett Gauss-mérték egyértelmiien agyazhato
be egy Gauss-félcsoportba. FEzen tény bizonyitdsanak kiindulépontja, hogy
egy affin-csoportbeli értékli Gauss—Lévy-folyamat kielégit egy sztochasztikus
differencidlegyenletet. FEzen differencidlegyenlet megoldasa is szerepel a 3. fe-
jezetben. Tovabba az affin-csoporton értelmezett Gauss-mértékek tartdjanak
teljes leirdsat is megadjuk, Siebert tarté-formuldjat felhaszndlva.

A 3. fejezet eredményei [5] cikkiinkben jelentek meg.

A 4. fejezetben (centralis) hatdreloszlds-tételek bizonyitdsaval foglalkozunk
masodik megszamldlhaté lokdlisan kompakt Abel-csoportok (LCA2-csoportok)
esetében.  Foglalkozunk specialis LCA2-csoportokon értelmezett gyengén
korlatlanul oszthatd valdszinliségi mértékek konstrukcidéjanak megadasaval is
csak valds értékli valdszintiségi valtozokat felhasznédlva.  Lokélisan kom-
pakt Abel-csoportbeli értékii véletlen elemekbél allé6 soronként fliggetlen,
infinitezimalis haromszogrendszerek esetén bizonyitunk hatéreloszlas-tétele-
ket. Szerepeltetjiik Gaiser haromszogrendszerek konvergencidjara vonatkozo
tételének [23, Satz 1.3.6] bizonyitdsit, mivel a bizonyitds nehezen hozzaférhetd
és nem teljes. Gaiser tétele elégséges feltételeket fogalmaz meg arra
vonatkozoan, hogy egy lokélisan kompakt Abel-csoportbeli értékii véletlen ele-
mekbdl allé soronként fliggetlen, infinitezimalis haromszogrendszer sordsszegei
eloszlasban konvergaljanak. Azonban a szébanforgd elégséges feltételek tel-
jesiilése esetén a hatareloszldasnak nem lehet nemdegeneralt idempotens faktora,
azaz valamely kompakt részcsoport nemdegeneralt Haar-mértéke nem fordulhat
el faktoraként.

Uj eredményként sziikséges és elegendd feltételeket bizonyitunk szimmetri-
kus-, illetve in. Bernoulli-hdromszogrendszerek sordsszegeinek eloszlasban vald
konvergencidjara vonatkozdan. Esetiinkben a hatareloszlas lehet valamilyen
kompakt részcsoport nemdegeneralt normalizalt Haar-mértéke is. Ezt kovetoen
specialis LCA2-csoportokat vizsgalunk: a téruszt, a p-adikus egészek csoportjat
és a p-adikus szolenoidot.

A T:={e”®: —7m <2 <7} halmaz, felruhdzva a komplex szdmok szokdsos
szorzasaval és a komplex szamok halmazatol 6rokolt topoldgiaval, egy kompakt
Abel-csoport, az in. 1-dimenzids térusz csoport.
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Legyen p egy primszam. A p-adikus szamok csoportja a
A, = {(xo,xl,...) s z;€{0,1,...,p—1} V jGZ_,.}

halmaz, ahol tetszéleges x,y € A, esetén a z:=x+y € A, Osszeg az alabbi
kongruencidk altal egyértelmiien meghatarozott:

d

zip! = Z(xJ +y;)p’ mod p®t!, vV deZ,.
=0 §=0

M-

(Itt Z4 a nemnegativ egész szamok halmazdt jeloli.) Minden r € Z, esetén
legyen
Ari={zelA,: z;=0 V j<r—1}L

Az {z+ A,z € Ay, r € Zy} alakd halmazok nyilt szubbézisét alkotjdk
egy topoldgidnak Ap,-n. A fenti miivelettel és topologidval A, egy kompakt,
teljesen szétes6 Abel-csoport.

A p-adikus szolenoid a kévetkezd részcsoportja T-nek:

Spi={Wo,y1,...) €T®: yy=uof,,, VjeZi},

felruhdzva a T lokélisan kompakt csoporttél rokolt topolégidval. Ekkor S,
egy kompakt Abel-csoport.

A 4. fejezetben vizsgaljuk azt a kérdést, hogy milyen kovetkezményei van-
nak Gaiser tételének és az altalunk bizonyitott szimmetrikus-, illetve Bernoulli-
haromszogrendszerekre vonatkoz6 hatareloszlas-tételeknek az elébb emlitett
LCA2-csoportokon.

Hatareloszlas-tételek bizonyitasdn kiviil foglalkozunk még a 4. fejezetben
az elobb emlitett LCA2-csoportokon értelmezett gyengén korldtlanul oszthatd
valészintliségi mértékek olyan konstrukcidjanak megadédsaval is, mely csak valds
értékli valdszintliségi véltozdkat haszndl. Mindharom csoport esetén elOszor
egy ¢ mérheté homomorfizmust keresiink, mely egy alkalmas Abel-csoportot
(ami R bizonyos részcsoportjainak szorzata) képez a szébanforgé topoldgikus
csoportra. Ezutdn tekintve egy tetszoleges p gyengén korlatlanul oszthato
valészinliségi mértéket a szébanforgd topoldgikus csoporton (nemdegeneralt
idempotens faktor nélkiilit a p-adikus szolenoid esetén), olyan valés értékii
Zo, Z1, ... val6szinliségi véltozdkat keresiink, hogy ¢(Zo, Z1,...) eloszldsa
v legyen. Megjegyezziik, hogy eredményeink specidlis eseteként 1j el6allitasat
kapjuk a p-adikus egészek csoportjan, illetve a p-adikus szolenoidon értelmezett
normalizélt Haar-mértéknek.
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A 4. fejezet eredményeit a kozlésre benyijtott [7] és [8] cikkeink tartal-
mazzak.

Az 5. fejezetben a valdszinliségi mértékek gyenge konvergencidjara vonatkozd
portmanteau-tétel egy analégjat bizonyitjuk be, megengedve olyan mértéke-
ket is, melyek végesek egy alapul vett metrikus tér valamely rogzitett pontja
tetszOleges Borel-kornyezetének komplementerén. Tételiink a Meerschaert és
Scheffler [39] konyv 1.2.19 Allitésénak ujrafogalmazasa és kiegészitése, az erede-
tit6l eltérd bizonyitassal. Eredményiinket Gaiser tételének [23, Satz 1.3.6] bizo-
nyitasanal hasznaljuk, s féként azért szerepeltetjiik kiilon fejezetben, mert ered-
ménytink sokkal dltaldnosabban is igaz, mint amire a Gaiser-tétel bizonyitasanal
sziikségiink van.

Megjegyezziik, hogy a fejezetben ellenpéldat adva megmutatjuk, hogy a
Meerschaert és Scheffler [39] konyv 1.2.19 Allitdsdban és 1.2.13 Allitdsaban sze-
repld (c) és (d) részek ekvivalencidja nem teljesiil.

Az 5. fejezet eredményeit a kozlésre benyujtott [9] cikkiink tartalmazza.



140 OSSZEFOGLALO (HUNGARIAN SUMMARY)




Bibliography

1]

D. AppLEBAUM and H. KUNITA, Lévy flows on manifolds and Lévy pro-
cesses on Lie groups. J. Math. Kyoto Univ. 33 (1993), 1103-1123.

R. B. AsH, Real analysis and probability. Academic Press, New York,
1972.

A. BAKER, Matrix groups, An introduction to Lie group theory. Springer,
2001.

P. BALDI, Unicité du plongement d’une mesure de probabilité dans un
semi-groupe de convolution gaussien. Cas non-abélien. Math. Z. 188 (1985),
411-417.

M. BArczy and G. PAP, Gaussian measures on the affine group: unique-
ness of embedding and supports. Publ. Math. Debrecen 63(1-2) (2003),
221-234.

M. BARrczy and G. PAp, Fourier transform of a Gaussian measure on
the Heisenberg group, to appear in Annales de L’Institut Henri Poincaré
Probabilités et Statistiques.

M. Barczy, A. BENDIKOV and G. PAP, Limit theorems on locally com-
pact Abelian groups, submitted to Mathematische Nachrichten.

M. BArczy and G. Papr, Weakly infinitely divisible measures on some
locally compact Abelian groups, submitted to Bulletin of the Australian
Mathematical Society.

M. BARrczy and G. PAP, Portmanteau theorem for unbounded measures,
submitted to Statistics & Probability Letters.

141



142

BIBLIOGRAPHY

[10]

M. S. BINGHAM, Central limit theory on locally compact abelian groups.
In: Probability measures on groups and related structures, XI. Proceedings
Oberwolfach, 1994, pp. 14-37, World Sci. Publishing, NJ, 1995.

S. BOCHNER, General analytic setting for the central limit theory of prob-
ability. In: Bulletin Calcutta Mathematical Society Golden Jubilee Com-
memoration Volume, Part I (1958), pp. 111-128.

S. BOCHNER, Harmonic analysis and the theory of probability. Berkeley:
University of California Press, 1960.

M. CHALEYAT-MAUREL, Densités des diffusions invariantes sur certains
groupes nilpotents. Calcul d’aprés B. Gaveau. Astérisque 84—85 (1981),
203-214.

D. V. CHisTYAKOV, Fractal geometry of images of continuous embeddings
of p-adic numbers and solenoids into Euclidean spaces. Theoret. and Math.
Phys. 109(3) (1996), 1495-1507.

L. CorwiN and F. P. GREENLEAF, Representations of nilpotent Lie groups
and their applications, Part 1: Basic theory and examples. Cambridge
University Press, 1990.

E. B. DAVIES, Heat kernels and spectral theory. Cambridge University
Press, 1989.

P. DiacoNis, Group representations in probability and statistics. Institute
of Mathematical Statistics Lecture Notes-Monograph Series 11, 1988.

T. DRrisCH and L. GALLARDO, Stable laws on the Heisenberg groups. In:
H. Heyer ed., Probability Measures on Groups VII. Proceedings, Oberwol-
fach 1983, Lecture Notes in Math. 1064, pp. 56-79, Springer, Berlin—
Heidelberg-New York, 1984.

R. M. DUDLEY, Real analysis and probability. The Wadsworth & Brooks
Cole Mathematics Series, Pacific Grove, 1989.

S. N. ETHIER and T. G. KURTZ, Markov processes. John Wiley & Sons,
New York, 1986.

PH. FEINSILVER and R. ScHOTT, Operators, stochastic processes, and
Lie groups. In: H. Heyer ed., Probability Measures on Groups IX. Proceed-
ings, Oberwolfach 1988, Lecture Notes in Math. 1379, pp. 75-78, Springer,
Berlin—Heidelberg-New York, 1989.



BIBLIOGRAPHY 143

[22]

[23]

[24]

[25]

[26]

PH. FEINSILVER and R. SCHOTT, An operator approach to processes on
Lie groups. In: Probability Theory on Vector Spaces IV. Proceedings,
Lancut 1987, Lecture Notes in Math. 1391, pp. 5965, Springer, Berlin—
Heidelberg—New York, 1989.

J. GAISER, Konvergenz stochastischer prozesse mit werten in einer
lokalkompakten Abelschen gruppe. Ph.D. Thesis, Universitit Tiibingen,
1994.

I. S. GRADSHTEYN and I. M. RyZHIK, Table of integrals, series, and prod-
ucts. Academic Press, New York, 1965.

U. GRENANDER, Probabilities on algebraic structures. Almquist & Wiksell,
Stockholm, 1963.

E. J. HANNAN, Group representations and applied probability. Methuen’s
Review Series in Applied Probability Vol. 3, London: Methuen & Co. Ltd.,
1965.

W. HAzoD, Stetige Faltungshalbgruppen von Wahrscheinlichkeitsmafien
und erzeugende Distributionen. Lecture Notes in Math. 595, Springer,
Berlin-Heidelberg-New York, 1977.

W. HazoD and E. SIEBERT, Stable probability measures on FEuclidean
spaces and on locally compact groups. Structural properties and limit the-
orems. Kluwer Academic Publishers, Dordrecht, 2001.

E. HEwiTT and K. A. R0SS, Abstract harmonic analysis I. Springer, 1963.

H. HEYER, Probability measures on locally compact groups. Springer,
1977.

H. HEYER and G. PAP, On infinite divisibility and embedding of proba-
bility measures on a locally compact Abelian group. Infinite Dimensional
Harmonic Analysis IIT (Proc. of the Third German—Japanese Symposium,
Tiibingen, 2003), pp. 99-118, World Sci. Publishing, River Edge, NJ, 2005.

K. ITo and Y. KAWADA, On the probability distribution on a compact
group 1. Proc. Phys. -Math. Soc. Japan 22 (1940), 977-998.

J. JacoD and A. N. SHIRYAYEV, Limit theorems for stochastic processes.
Springer, 1987.



144

BIBLIOGRAPHY

[34]

[35]

[36]

[41]

[42]

I. KARATZAS and S. E. SHREVE, Brownian motion and stochastic calculus,
2nd ed. Springer, 1991.

D. KeELLY-LyTH and M. MCcCRUDDEN, Supports of Gauss measures on
semisimple Lie groups. Math. Z. 221 (1996), 633-645.

M. McCRUDDEN and R. M. Wo00D, On the support of absolutely contin-
uous Gauss measures. In: H. Heyer ed., Probability Measures on Groups,
VII. Proceedings, Oberwolfach 1983. Lecture Notes in Math. 1064, pp.
379-397, Springer, Berlin—Heidelberg—New York, 1984.

M. McCRUDDEN, On the supports of absolutely continuous Gauss mea-
sures on connected Lie groups. Monatsh. Math. 98 (1984), 295-310.

M. McCRUDDEN, An example of a solvable Lie group admitting an ab-
solutely continuous Gauss semigroup with incomparable supports. In: H.
Heyer ed., Probability Measures on Groups X. Proceedings, Oberwolfach
1990, pp. 293-297, Plenum Press, New York, 1991.

M. M. MEERSCHAERT and H.-P. SCHEFFLER, Limit distributions for sums

of independent random vectors. Heavy tails in theory and practice. John
Wiley & Sons, Inc., New York, 2001.

D. NEUENSCHWANDER, Probabilities on the Heisenberg group: Limit theo-
rems and Brownian motion. Lecture Notes in Math. 1630, Springer, Berlin
Heidelberg New-York, pp. 379-397, 1996.

D. NEUENSCHWANDER, On the uniqueness problem for continuous semi-
groups of probability measures on simply connected nilpotent Lie groups.
Publ. Math. Debrecen 53 (1998), 415-422.

D. NEUENSCHWANDER, Uniqueness properties of convolution roots of p-
adic and probability measures on simply connected nilpotent Lie groups.
C.R. Acad. Sci. Paris. 330 (2000), 1025-1030.

S. NOBEL, Limit theorems for probability measures on simply connected
nilpotent Lie groups. J. Theoret. Probab. 4 (1991), 261-284.

G. PAP, Uniqueness of embedding into a Gaussian semigroup on a nilpotent
Lie group. Arch. Math. 62 (1994), 282-288.

G. Pap, Fourier transform of symmetric Gauss measures on the Heisenberg
group. Semigroup Forum 64 (2002), 130-158.



BIBLIOGRAPHY 145

[46]

[47]

[48]

K. R. PARTHASARATHY, Probability measures on metric spaces. Academic
Press, New York, 1967.

B. ROYNETTE, Croissance et mouvements browniens d’un groupe de Lie
nilpotent et simplement connexe. Z. Wahr. Verw. Gebiete 32 (1975), 133—
138.

I. Z. Ruzsa and G. J. SZEKELY, Algebraic probability theory. Wiley Series
in Probability and Mathematical Statistics, 1988.

J. D. SALINGER, The cathcher in the rye. Penguin Books, London, 1994.
J. D. SALINGER, Zabhegyezé. Eurépa Konyvkiadd, Budapest, 2004.

V. SAazoNov and V. N. TUTUBALIN, Probability distributions on topo-
logical groups. Theory Probab. Appl. 11 (1966), 1-45.

A. N. SHIRYAEV, Probability, 2nd ed. Springer, 1996.

E. SIEBERT, Fourier analysis and limit theorems for convolution semigroups
on a locally compact group. Adv. Math. 39 (1981), 111-154.

E. SIEBERT, Absolute continuity, singularity, and supports of Gauss semi-
groups on a Lie group. Monatsh. Math. 93 (1982), 239-253.

E. SIEBERT, Jumps of stochastic processes with values in a topological
group. Probab. Math. Stat. 5 (1985), 197-209.

M. E. TAYLOR, Noncommutative harmonic analysis, Math. Surveys
Monogr. 22, American Mathematical Society, Providence, RI, 1986.

K. TELOKEN, Grenzwertsitze fiir wahrscheinlichkeitsmasse auf total un-
zusammenhangenden gruppen. Ph.D. Thesis, Universitat Dortmund, 1995.

W. ToME, The representation independent propagator for general Lie
groups. World Scientific, Singapore, 1998.

N. N. VAKHANIA, V. I. TARIELADZE and S. A. CHOBANYAN, Probability
distributions on Banach spaces. D. Reidel Publishing Company, Dordrecht,
1987.

J. G. WENDEL, Haar measure and the semigroup of measures on a compact
group. Proc. Amer. Math. Soc. 5 (1954), 923-929.



146 BIBLIOGRAPHY

[61] W. WoOESs, Random walks on infinite graphs and groups. Cambridge Uni-
versity Press, Cambridge, 2000.



Appendix A

List of papers of the author
and citations to these
papers

1. M. BAarczy and M. TOTH, Local automorphisms of the sets of states and
effects on a Hilbert space. Rep. Math. Phys. 48 (2001), 289-298.

e M. GYORY, Preserver problems and reflexivity problems on opera-
tor algebras and on function algebras. Ph.D. Thesis, University of
Debrecen, 2003.

e L. MOLNAR, Preserver problems on algebraic structures of linear
operators and on function spaces. Dissertation for the D.Sc. degree
of the Hungarian Academy of Sciences, 2005.

e S. O. KiMm, Automorphisms of Hilbert space effect algebras. Linear
Algebra Appl. 402 (2005), 193-198.

2. M. Barczy and G. PAP, Gaussian measures on the affine group: unique-
ness of embedding and supports. Publ. Math. Debrecen 63(1-2) (2003),
221-234.

3. L. MOLNAR and M. BARCZY, Linear maps on the space of all bounded
observables preserving maximal deviation. J. Funct. Anal. 205 (2003),
380-400.

147



e M. GYORY, Preserver problems and reflexivity problems on opera-
tor algebras and on function algebras. Ph.D. Thesis, University of
Debrecen, 2003.

e L. MOLNAR, Preserver problems on algebraic structures of linear
operators and on function spaces. Dissertation for the D.Sc. degree
of the Hungarian Academy of Sciences, 2005.

e M. A. CHEBOTAR, K. WEN-FONG and L. PJEK-HWEE, Maps pre-
serving zero Jordan products on Hermitian operators. Illinois J.
Math. 49(2) (2005), 445-452 (electronic).

. M. BARrRczy and G. PAp, Connection between deriving bridges and ra-
dial parts from multidimensional Ornstein-Uhlenbeck processes. Periodica
Mathematica Hungarica Vol. 50(1-2) (2005), 47-60.

. M. BARCzy and G. PAP, Fourier transform of a Gaussian measure on
the Heisenberg group, to appear in Annales de L’Institut Henri Poincaré
Probabilités et Statistiques.

. M. BArczy, A. BENDIKOV and G. PAP, Limit theorems on locally com-
pact Abelian groups, submitted to Mathematische Nachrichten.

e P. BECKER-KERN, Explicit representation of roots on p-adic
solenoids and non-uniqueness of embeddability into rational one-
parameter subgroups. Preprint, URL: http://www.mathematik.uni-
dortmund.de/lsiv/becker-kern/solenoid.pdf

. M. BArczy and G. PApr, Weakly infinitely divisible measures on some
locally compact Abelian groups, submitted to Bulletin of the Australian
Mathematical Society.

e P. BECKER-KERN, Explicit representation of roots on p-adic
solenoids and non-uniqueness of embeddability into rational one-
parameter subgroups. Preprint, URL: http://www.mathematik.uni-
dortmund.de/lIsiv/becker-kern/solenoid.pdf

. M. BARCZY and G. PAP, Portmanteau theorem for unbounded measures,
submitted to Statistics & Probability Letters.

148



Appendix B

List of talks of the author

I participated and gave a talk in the following international conferences with
the following titles:

1.

Convolution of Gauss measures on Heisenberg group, XXI Seminar on
Stability Problems of Stochastic Models, Eger, Hungary, January 2001.

Convolution of Gauss measures on Heisenberg group, The 12th European
Young Statisticians Meeting, Jénska Dolina, Slovakia, September 2001.

Brownian motions on the affine group, International Conference on Proba-
bility Theory on Algebriac Topological Structures, Bommerholz, Germany,
March 2003.

By ”The research in pairs program (RiP)”, T was in Oberwolfach, Ger-
many during August 2003 with Alexander Bendikov and Gyula Pap.

Central limit theorems in locally compact Abelian groups, Conference on
probability measures on groups and related structures on the occassion of
Herbert Heyer’s retirement, Budapest, Hungary, August 2004.

Some questions of Markov bridges, 25th European Meeting of Statisti-
cians, Oslo, Norway, July 2005.

149



150



Appendix C

Acknowledgements

”Bernice meet me at recess I have something
very very important to tell you.”

J.D. Salinger: The catcher in the rye !

I would like to thank Prof. Gyula Pap for being an excellent supervisor. He
has spent endless hours to teach me and he has been much more than an advisor:
I could always turn to him with questions far beyond academic life.

I am grateful to Prof. Lajos Molnar for our joint works in functional anal-
ysis which resulted in two papers about linear preserver problems and local
automorphisms. The discussions with him always inspire me.

Thanks my friends, Péter Dividanszky, Istvan Jarasi and Zoltan Szegedi for
the enjoyable conversations.

Last, but not least, I thank my father and my mother for having been able
to teach me.

LSee [49].

151



152



Appendix D

Koszonetnyilvanitasok

”Bernice, taldlkozzunk a sziinetben, valami
nagyon fontosat akarok mondani.”

J.D. Salinger: Zabhegyez6 !

Ko6szonom Pap Gyulanak, hogy kivdld témavezetém volt. Véget nem érd
konzultacidk soran tanitott engem, s szamomra sokkal tobbet jelentett, mint
pusztan témavezetd: batran fordulhattam hozzd kérdéseimmel és gondolataim-
mal, nemcsak az egyetemi életet illetGen.

Hélas vagyok Molnar Lajosnak a vele folytatott kozos kutaté munkaért
a funkciondlanalizis teriiletén, melynek gytmolcseként két cikk is sziiletett a
linearis megdrzési problémakkal és lokalis automorfizmusokkal kapcsolatban. A
vele valo beszélgetések mindig lelkesitenek.

Ko6szonet bardtaimnak, Dividnszky Péternek, Jarasi Istvannak és Szegedi
Zoltannak, az élvezetes beszélgetésekért.

Végiil, de nem utolsé sorban, koszonom édesapamnak és édesanyamnak,
hogy lehetoséget teremtettek tanulmanyaimhoz.

IForditotta Gyepes Judit (1asd [50]).
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