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Strong laws of large numbers for random forests
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Abstract

Random forests are studied. A moment inequality and a strong law of large numbers
are obtained for the number of trees having a fixed number of nonroot vertices.
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1 Introduction

We will consider the set of forests having N labeled rooted trees and n nonroot vertices.

The N roots are labeled by s1, . . . , sN and the nonroot vertices are labeled by 1, 2, . . . , n.

By Cayley’s theorem, the number of forests is N(N + n)n−1 (see [18], [13], [10]). We will

consider uniformly distributed probability P1 on the set of forests. The uniform probability

on the set of forests is widely studied (see e.g. [12] and the references therein).

Let µr(n, N) denote the number of trees with r nonroot vertices in the forest having N

rooted trees and n nonroot vertices. In [13] limit theorems are obtained for µr(n, N). The

limiting distributions in [13] are Poisson or normal according to the ratio of n/N .

In this paper we prove strong laws of large numbers for µr(n, N). Assume that nk

Nk
→ α,

as k →∞, for some α ∈ R. Let λ = α
1+α

. Then, as k →∞, 1
Nk

µr(nk, Nk) → L(r, λ) almost

surely (Lemma 3.1). Here L(r, λ) = (1+r)r−1

r!
e−(r+1)λλr. In Section 3 several versions of the

above strong law are obtained.

The proofs are based on a fourth moment inequality for µr(n, N) (Lemma 2.1). To obtain

the moment inequality we use Taylor’s expansion and we shall see that terms having higher

order than N2 disappear. (The proof of Lemma 2.1 is presented in Section 5.)

In Section 4 a functional limit theorem is proved where the processes are governed by

evolving random forests.

We remark that from graph theory we apply only Cayley’s theorem. Early results for

random graphs can be found e.g. in [7] and [13]. For the general theory of random graphs

and for some new results see [10], [3], [9], [15]. We remark that in [1] uniform random

recursive forests are studied. However, in [1] each path from the root is labeled with an
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increasng sequence of labels which leads to a model being different from the our one. We

also mention that there is a statistical theory of random forests (see [4]) which is not studied

here.

We shall use the notation N = {1, 2, . . . } and Z+ = {0, 1, 2, . . . }.

2 The moment inequality

Let N, n > 0 and r ≥ 0 be intergers. We will denote by Fn,N the set of forests having N

labeled rooted trees and n nonroot vertices. The N roots are labeled by s1, . . . , sN and the

nooroot vertices are labeled by 1, 2, . . . , n. It is known that Fn,N has M = N(N + n)n−1

elements (see [10]). We will consider uniformly distributed probability P1 on Fn,N . Let

µr(n, N) denote the number of trees with r nonroot vertices in the forest. Then µr(n, N) is

a random variable on Fn,N . We have

µr(n, N) =
∑N

i=1
I(r)
Nni,

where I(r)
Nni is the indicator of the event that the ith tree has r nonroot vertices. Since the

number of individual trees with r nonrooot vertices is (1 + r)r−1, so the number of forests

such that the ith tree has r nonroot vertices is m = Cr
n(1+r)r−1(N−1)(N−1+n−r)n−r−1.

Here Cr
n =

(
n
r

)
denotes the binomial coefficient. Therefore we have

E1 = E1I(r)
Nni =

m

M
=

Cr
n(1 + r)r−1(N − 1)(N − 1 + n− r)n−r−1

N(N + n)n−1
. (2.1)

Similar calculations give

E2 = E1I(r)
NniI

(r)
Nnj =

Cr
nC

r
n−r(1 + r)2(r−1)(N − 2)(N − 2 + n− 2r)n−2r−1

N(N + n)n−1
, i 6= j, (2.2)

E3 = E1I(r)
Nni1

I(r)
Nni2

I(r)
Nni3

=
Cr

nC
r
n−rC

r
n−2r(1 + r)3(r−1)(N − 3)(N − 3 + n− 3r)n−3r−1

N(N + n)n−1
, (2.3)

with ik 6= il if k 6= l, k, l ∈ {1, 2, 3}, moreover

E4 = E1I(r)
Nni1

I(r)
Nni2

I(r)
Nni3

I(r)
Nni4

= (2.4)

=
Cr

nC
r
n−rC

r
n−2rC

r
n−3r(1 + r)4(r−1)(N − 4)(N − 4 + n− 4r)n−4r−1

N(N + n)n−1

with ik 6= il if k 6= l, k, l ∈ {1, 2, 3, 4}.

Lemma 2.1. Let

α =
n

N
, λ =

n

n + N
=

α

1 + α
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and

L = L(r, λ) =
(1 + r)r−1

r!
e−(r+1)λλr.

Let N, n > 0 and r ≥ 0 be integers such that (4(r+1))4

n
< 0.001.

(1) We have

E1

{∑N

i=1

(
I(r)
Nni − E1I(r)

Nni

)}4

≤ CN2L(r + 1)4, (2.5)

where C ≤ p(α)/α2 and p(α) is a fixed polynomial of α.

(2) Assume that λ = n
n+N

≤ τ where τ is a constant with τ < 1. Then there exists a

finite constant C1 (depending only on λ) such that for all r ≥ 0 we have

E1

{∑N

i=1

(
I(r)
Nni − E1I(r)

Nni

)}4

≤ C1N
2L

g(α)

α2
(2.6)

where g(α) is a fixed polynomial of α = n/N .

Remark 2.1. Let 0 < α1 < α < α2 < ∞. Then g(α)
α2 ≤ C. Moreover, since x

1+x
is an

increasing function, λ < α2

1+α2
= τ < 1.

Remark 2.2. The sequence {L(r, λ), r ∈ Z+} can be cosidered as a distribution on Z+. To

see it we remark that
∞∑

k=1

kk−1

k!
(ae−a)k = a

see [17]. Therefore, for all λ > 0 we have

∞∑
r=0

L(r, λ) =
∞∑

r=0

(1 + r)r−1

r!
e−(r+1)λλr =

1

λ

∞∑
r=0

(1 + r)r

(r + 1)!
(e−λλ)r+1 =

λ

λ
= 1.

Another way to obtain it for the case λ 6= 1 is the following. For 0 < x < 1/e, by the

quotient criterion, the series θ(x) =
∑∞

k=1
kk−1xk

k!
is convergent. Then (see [10], p. 44) θ(x)

is a solution of the equation θe−θ = x. Therefore, for all λ > 0, λ 6= 1, we have

∞∑
r=0

L(r, λ) =
θ(e−λλ)

λ
=

λ

λ
= 1.

(For λ = 1 we have e−λλ = 1/e, that is we are on the border of the convergence domain of

the above series.)

3 The strong laws

In this section we prove strong laws of large numbers for random forests. Theorem 3.1

concerns the average number of trees containing r nonroot vertices. Theorem 3.2 is a general

strong law to be applied in Section 4.

We will assume that all indicators which we will consider in this section are defined on

the same probability space (Ω1,A1, P1).
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Lemma 3.1. Let (Nk) be a strictly increasing sequence of positive integers and let (nk) be

a sequence of nonnegative integers. Assume that nk

Nk
→ α, as k → ∞, for some α ∈ R. Let

λ = α
1+α

. Then for any r ∈ Z+, as k →∞,

1

Nk

Nk∑
i=1

I(r)
Nknki → L(r, λ) almost surely.

Proof. First consider α 6= 0. Standard calculation gives

E1I(r)
Nknki =

Cr
nk

(1 + r)r−1(Nk − 1)(Nk − 1 + nk − r)nk−r−1

Nk(Nk + nk)nk−1
→ (1 + r)r−1

r!
e−(r+1)λλr ,

as k →∞. By Lemma 2.1, condition (2.1) from p.167 of [5] is valid. Therefore Lemma 3.1

follows from Lemma 2.1 on p.167 of [5].

For α = 0 we see that L(r, λ) is 1 for r = 0. Therefore the lemma is obvious. The proof

is complete. �

Let Z′ ⊂ Z+. Introduce notation

µzk =
∑
r∈Z′

Nk∑
i=1

I(r)
Nknki, k ∈ N.

We consider µzk as the number of trees containing r nonroot vertices for some r ∈ Z′. The

following strong law of large numbers gives the limit of the average number of trees containing

r nonroot vertices for some r ∈ Z′.

Theorem 3.1. Let (Nk) be a strictly increasing sequence of positive integers and let (nk) be

a sequence of nonnegative integers. Assume that nk

Nk
→ α, as n →∞, for some α ∈ R. Let

λ = α
1+α

. Then, as k →∞, we have

1

Nk

µzk →
∑
r∈Z′

L(r, λ) almost surely.

Proof. By Lemma 3.1, there exists Ω′ ⊂ Ω1 such that P1(Ω
′) = 1 and for all ω1 ∈ Ω′ and for

all r ∈ Z+, as k →∞,

1

Nk

Nk∑
i=1

I(r)
Nknki(ω1) → L(r, λ). (3.1)

Let ω1 ∈ Ω′. Let ε > 0. Choose r0 ∈ Z+ such that

∞∑
r=r0

L(r, λ) <
ε

3
.
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Since
1

Nk

∞∑
r=r0

Nk∑
i=1

I(r)
Nknki = 1− 1

Nk

r0−1∑
r=0

Nk∑
i=1

I(r)
Nknki,

by (3.1) and Remark 2.2, it follows that

1

Nk

∞∑
r=r0

Nk∑
i=1

I(r)
Nknki(ω1) →

∞∑
r=r0

L(r, λ), as k →∞.

Therefore we can choose k1 ∈ N such that

1

Nk

∞∑
r=r0

Nk∑
i=1

I(r)
Nknki(ω1) <

ε

3

for all k > k1. Since, by (3.1),

1

Nk

∑
r∈Z′,r<r0

Nk∑
i=1

I(r)
Nknki(ω1) →

∑
r∈Z′,r<r0

L(r, λ), as k →∞,

we can choose k2 ∈ N such that∣∣∣∣∣ 1

Nk

∑
r∈Z′,r<r0

Nk∑
i=1

I(r)
Nknki(ω1)−

∑
r∈Z′,r<r0

L(r, λ)

∣∣∣∣∣ < ε

3
, for all k > k2.

Let k0 = max(k1, k2). For all k > k0 we have∣∣∣∣∣ 1

Nk

µzk −
∑
r∈Z′

L(r, λ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

Nk

∑
r∈Z′,r<r0

Nk∑
i=1

I(r)
Nknki(ω1)−

∑
r∈Z′,r<r0

L(r, λ)

∣∣∣∣∣+
+

1

Nk

∞∑
r=r0

Nk∑
i=1

I(r)
Nknki(ω1) +

∞∑
r=r0

L(r, λ) < ε.

The proof is complete. �

Our next strong law fits to the functional limit theorem in Section 4. Let I(r∞)
Nni =∑∞

k=r I(k)
Nni. It means that the ith tree contains at least r nonroot vertices. For each k let

fk(.) be a non-decreasing non-negative integer valued function on [0,∞). The function fk(t)

will mean the number of noonroot vertices being a non-decreasing function of time t. Assume

that fk(t)
Nk

→ f(t), as k →∞, where f(.) is a continuous function on [0,∞). We will consider

the random processes

Z
(r∞)
k (t) = Z

(r∞)
k (t, ω1) =

1

Nk

Nk∑
i=1

I(r∞)
Nkfk(t)i, t ∈ R+, k ∈ N, ω1 ∈ Ω1.
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Theorem 3.2. Let r ∈ Z+. Assume that limk→∞
fk(t)
Nk

→ f(t) where f(.) is a continuous

function on [0,∞). Let σr(t) =
∑∞

m=r L(m, λ(t)) with λ(t) = f(t)/(1 + f(t)).

Then for the random processes Z
(r∞)
k one has

sup
t∈R+

|Z(r∞)
k (t)− σr(t)| → 0, as k →∞,

for almost all ω1 ∈ Ω1.

Proof. By Theorem 3.1, there exists Ω′
1 ⊂ Ω1 such that P1(Ω

′
1) = 1 and for all ω1 ∈ Ω′

1, for

all t ∈ Q+

Z
(r∞)
k (t, ω1) → σr(t), as k →∞. (3.2)

Let ω1 ∈ Ω′
1, t ∈ R+. Choose t′, t′′ ∈ Q+ such that t′ < t < t′′. Since Z

(r∞)
k (s, ω1), s ∈ R+,

are increasing bounded functions of s, we have

Z
(r∞)
k (t′, ω1) ≤ Z

(r∞)
k (t, ω1) ≤ Z

(r∞)
k (t′′, ω1).

Therefore, we obtain

σr(t
′) = lim

k→∞
Z

(r∞)
k (t′, ω1) ≤ lim inf

k→∞
Z

(r∞)
k (t, ω1) ≤ lim sup

k→∞
Z

(r∞)
k (t, ω1) ≤

≤ lim
k→∞

Z
(r∞)
k (t′′, ω1) = σr(t

′′).

Since σr is a continuous bounded function, Z
(r∞)
k (t, ω1) → σr(t), as n → ∞. (The bound-

edness of σr(t) follows from
∑∞

k=1
kk−1

k!
(ae−a)k = a, see Remark 2.2.) As the functions are

non-decresing, by Dini’s theorem, this convergence is uniform. �

4 A functional limit theorem

In this section we shall study sequences of random processes with time scale determined by

the functions fk(t). To construct our random processes, we need random elements defined

on the probability space {Ω,A, P} (not on {Ω1,A1, P1}.

(Y) Let Yn, Yni, n, i ∈ N, be an array of random variables defined on {Ω,A, P}. Assume

that for any fixed n ∈ N, the above random variables are independent and identically

distributed.

We shall assume that the following condition is satisfied for the limiting behaviour of Yni.∑Nk

i=1
Yni

d−→ γ(v), as k →∞. (S)

Here γ(v) denotes a centered normally distributed random variable with variance v2. We

see that condition (S) implies that the array Yni is uniformly infinitesimal.
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Let r ∈ N. We will consider for each k ∈ N the random step function

X
(r∞)
k (t) = X

(r∞)
k [Y ](t) = X

(r∞)
k [Y, ω1](t) =

Nk∑
i=1

I(r∞)
Nkfk(t)i(ω1)Yki . (Z1)

The process X
(r∞)
k (t) has the following interpretation. We consider an evolution during time

t ∈ [0,∞) of a random forest with Nk ordered rooted trees. At the begining the random

forest has Nk trees such that each tree consists of a root vertex only. We assume that at

certain moments of time t nonroot vertices are added. Vertices are adding randomly and

such that at the moment of time t we have a random forest with fk(t) nonroot vertices and

Nk trees. Moreover, we assume that at each time instant t, the distribution on the set of

forests is uniform. Consider the sum
∑Nk

i=1 Yki. Now delete from this sum the term Yki if the

ith tree of the forest has less than r nonroot vertices. Then we obtain X
(r∞)
k (t).

Let W denote the standard Wiener process.

Theorem 4.1. Let conditions of Theorem 3.2, (Y) and (S) be valid. Let r ∈ Z+. Then for

the processes X
(r∞)
k (t), defined by (Z1), one has

X
(r∞)
k [Y, ω1]

d−→ X(r∞), as k →∞,

in D[0,∞) for almost all ω1 ∈ Ω1, where X(r∞)(t) = vW (σr(t)), t ∈ [0,∞).

We will use the following criteria of the convergence in D[0,∞).

Lemma 4.1. (1) Let U(t), Un(t), t ∈ [0, 1], n ∈ N, be random elements in D[0, 1] (under

its uniform metric and projection σ-field). Suppose that P(U ∈ A) = 1 for some

separable subset A ⊂ D[0, 1]. The necessary and sufficient conditions for {Un} to

converge in distributon (under the uniform metric) to U are

(a) the finite dimensional distributions of Un converge to the finite dimensional dis-

tributions of U ;

(b) for any ε > 0 and δ > 0 there exist n0 ∈ N and 0 = t0 < t1 < · · · < tm = 1 such

that for all n > n0

P
{

max
1≤i≤m

sup
ti−1≤t<ti

|Un(t)− Un(ti−1)| > δ
}

< ε.

(2) Let Lk denote the truncation map from D[0,∞) to D[0, k]. Let U(t), Un(t), t ∈ [0,∞),

n ∈ N, be random elements in D[0,∞) (under its uniform metric and projection σ-

field). Suppose that P(U ∈ A) = 1 for some separable subset A ⊂ D[0,∞). Then

{Un} converges in distributon in D[0,∞) (under the uniform metric) to U if and only

if {LkUn} converges in distributon in D[0, k] (under the uniform metric) to LkU for

each fixed k.
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Part (1) of Lemma 4.1 is Theorem 3, while part (2) is Theorem 23 in Chapter V of

Pollard [16].

The following lemma is a consequence of Theorem 16 of Chapter IV in Petrov [14]. (See

also the normal convergence criterion at p. 311 of [11], moreover see [8].)

Lemma 4.2. Let (Y) be fulfilled.

(1) Condition (S) is valid if and only if

(a) for all ε > 0 knP{|Yn| > ε} → 0, as n →∞;

(b) knEYnI{|Yn|≤1} → 0, as n →∞;

(c) knD2(YnI{|Yn|≤1}) → v2, as n →∞.

(2) Let (S) be valid and bni ∈ R, 1 ≤ i ≤ kn, n ∈ N. Assume that there exist 0 <

β1 < β2 < ∞ such that for any i ∈ {1, . . . , kn}, n ∈ N either β1 ≤ |bni| ≤ β2 or

bni = 0. Let Un =
kn∑
i=1

bniYni, n ∈ N. Then Un
d−→ γ(s), as n → ∞, if and only if

D2(YnI{|Yn|≤1})
∑kn

i=1(bni)
2 → s2, as n →∞.

Proof of Theorem 4.1. If instead of Yki we write YkiI{|Yki|≤1}−EYkiI{|Yki|≤1}, EYkiI{|Yki|≤1}

or YniI{|Yni|>1} in the definition of X
(r∞)
k , then the process obtained will be denoted by

X
(r∞)
k (Y <), X

(r∞)
k (EY ) and X

(r∞)
k (Y >), respectively. We have

X
(r∞)
k = X

(r∞)
k (Y <) + X

(r∞)
k (EY ) + X

(r∞)
k (Y >). (4.1)

We see that

‖X(r∞)
k (EY )‖ ≤

(
1

Nk

Nk∑
i=1

I(r∞)
Nkfk(∞)i(ω1)

)
Nk|EYkI{|Yk|≤1}|.

Observe that (S) implies that |Nk|EYkI{|Yk|≤1}| → 0, as k →∞. Consequently, X
(r∞)
k (EY ) →

0, as k →∞ for almost all ω1 ∈ Ω1.

Also we have

P{‖X(r∞)
k (Y >)‖ > 0} ≤

(
1

Nk

Nk∑
i=1

I(r∞)
Nkfk(∞)i(ω1)

)
Nk|P{|Yki| > 1}.

Now, (S) implies that NkP{|Yk| ≥ 1} → 0, as k → ∞. Consequently, X
(r∞)
k (Y >) → 0, as

k →∞, in probability in D for almost all ω1 ∈ Ω1.

Therefore we must prove the theorem for the processes X
(r∞)
k (Y <). That is we can assume

that Yki are independent centered random variables with the Lindeberg-Feller property.

Let Ω′
1 ⊂ Ω1 be from Theorem 3.2. Suppose that ω1 ⊂ Ω′

1. Then, by Theorem 3.2,

Z
(r∞)
k [ω1] → σr, as k → ∞ in D. The functions Z

(r∞)
k [ω1](t) and σr(t) are increasing
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and bounded, moreover σr(t) is continuous. Now the convergence of the finite dimensional

distributions follows from (S) and from the fact that both the process X
(r∞)
k (t) and vW (σr(t))

have independent increments.

To prove criterion (b) in Lemma 4.1 (1), we apply the method of the proof of Donsker’s

theorem, i.e. follow the lines of theorems 8.3 and 10.1 in Chapter 2 of Billingsley [2] (see

also Chuprunov-Rusakov [6], Theorem B and Theorem C). So Theorem 4.1 follows from

Lemma 4.1. �

5 Proof of Lemma 2.1

Proof. (1) Let gi = I(r)
Nni − E1I(r)

Nni. We shall use the following decomposition

A = E1

{
N∑

i=1

gi

}4

=
N∑

i1=1

N∑
i2=1

N∑
i3=1

N∑
i4=1

E1(gi1gi2gi3gi4) = (5.1)

= NE1(g1)
4 + 3N(N − 1)E1(g1)

2(g2)
2 + 4N(N − 1)E1(g1)

3g2 +

+6N(N − 1)(N − 2)E1(g1)
2g2g3 + N(N − 1)(N − 2)(N − 3)E1g1g2g3g4 =

= A1 + A2 + A3 + A4 + A5 .

We can see that E1/L → 1, as n, N → ∞. Therefore E1|gi|2 ≤ c0L. Using this inequality

and that |gi| ≤ 1, we obtain

A1 + A2 + A3 ≤ NE1(g1)
2 + 3N(N − 1)E1(g1)

2 + 4N(N − 1)E1(g1)
2 ≤ 7N2c0L . (5.2)

Now we will find an upper bound for A5. Using Newton’s binomial theorem, we have

|A5| = |N(N − 1)(N − 2)(N − 3)E1(g1g2g3g4)| <

< |N4E1(g1g2g3g4)| = N4|E4 − 4E1E3 + 6E2
1E2 − 4E4

1 + E4
1 | =

= N4|E4 − 4E1E3 + 6E2
1E2 − 3E4

1 |.

We have for each j

Ej = E1I(r)
Nn1I

(r)
Nn2 . . . I(r)

Nnj = (5.3)

=
Cr

nC
r
n−r . . . Cr

n−(j−1)r(1 + r)j(r−1)(N − j)(N − j + n− jr)n−jr−1

N(N + n)n−1
=

= LjBjDj
N − j

N
λ−rje(r+1)λj

where

Bj =
(N − j + n− jr)n−jr−1

(N + n)n−jr−1
, Dj =

n(n− 1)(n− 2) . . . (n− jr + 1)

(n + N)jr
.
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Observe that, by Taylor’s formula, it holds that

ln(1− x) = −x− 1

2ξ2
x2, (5.4)

where x > 0 and 1− x < ξ < 1 and

e−x = 1− x

1!
+ eθ x2

2!
, (5.5)

where x > 0 and −x < θ < 0.

We have the following estimates for j = 1, 2, 3, 4 and r > 0:

Dj =
n(n− 1)(n− 2) . . . (n− jr + 1)

(n + N)jr
=

= λjr

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− jr − 1

n

)
= λjr exp

(
jr−1∑
k=1

ln

(
1− k

n

))
=

= λjr exp

(
−jr(jr − 1)

2n
−

jr−1∑
k=1

1

2ξ2
k

k2

n2

)
,

where, by (5.4) and (4(r + 1))4/n < 0.001, the inequality 1 − 0.001 < ξk < 1 holds. Let

fkj = 1
2ξ2

k
. Therefore we obtain

Dj = λjr exp

(
−jr(jr − 1)

2n
−

jr−1∑
k=1

fkj
k2

n2

)
=

= λjr exp

(
−jr(jr − 1)

2n
− f

′′

j

1

n2

(jr − 1)jr(2jr − 1)

6n2

)
=

= λjr exp

(
−jr(jr − 1)

n
− f ′j

(j(r + 1))3

n2

)
,

where 0 < f
′′
j < 0.502 and 0 < f ′j < 0.17. Therefore, by (5.5), we obtain

Dj = λjr

(
1− jr(jr − 1)

2n
− f ′j

(j(r + 1))3

n2
+

eθ

2

(
jr(jr − 1)

2n
+ f ′j

(j(r + 1))3

n2

)2
)

where − jr(jr−1)
n

− f ′j
(j(r+1))3

n2 < θ < 0. Finally, for r > 0 we have

Dj = λjr

(
1− jr(jr − 1)

2n
+ fj

(j(r + 1))4

n2

)
, (5.6)

where |fj| < 1.

Moreover, Dj = 1 for r = 0.
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Observe that, by Taylor’s formula, it holds that

ln(1− x) = −x− 1

2
x2 − 1

3ξ3
x3, (5.7)

where x > 0 and 1− x < ξ < 1.

By (5.7), we have the following estimates

Bj =
(N − j + n− jr)n−jr−1

(N + n)n−jr−1
=

(
1− j(r + 1)

N + n

)n−(jr+1)

=

= exp

(
(n− (jr + 1)) ln

(
1− j(r + 1)

N + n

))
=

= exp

(
(n− (jr + 1))

(
−j(r + 1)

N + n
− 1

2

(
j(r + 1)

N + n

)2

− 1

3(ξ′j)
3

(
j(r + 1)

N + n

)3
))

,

where 0.999 < ξ′j < 1. Therefore it holds that

Bj = exp

(
(n− (jr + 1))

(
−j(r + 1)

N + n
− 1

2

(
j(r + 1)

N + n

)2

− h′j

(
j(r + 1)

N + n

)3
))

where 1
3

< h′j < 1.007
3

. Cosequently, we obtain

Bj = exp

(
−j(r + 1)λ− λ

2

(j(r + 1))2

N + n
+

(jr + 1)j(r + 1)

N + n
−

−h′jλ
(j(r + 1))3

(N + n)2
+

(jr + 1)(j(r + 1))2

2(N + n)2
+ h′j

(jr + 1)(j(r + 1))3

(N + n)3

)
=

= exp

(
−j(r + 1)λ− λ

2

(j(r + 1))2

N + n
+

(jr + 1)(j(r + 1))

N + n
+ he

j

(j(r + 1))3

(N + n)2

)
where |he

j | < 1.007
3

+ 1
2

+ 0.001 < 1. Therefore we have

Bj = e−j(r+1)λ exp

(
−λ

2

(j(r + 1))2

N + n
+

(jr + 1)j(r + 1)

N + n
+ he

j

(j(r + 1))3

(N + n)2

)
where |he

j | < 1. Thus, by (5.5), we obtain

Bj = e−j(r+1)λ

{
1− λ

2

(j(r + 1))2

N + n
+

(jr + 1)(j(r + 1))

N + n
+ he

j

(j(r + 1))3

(n + N)2
+

1

2
eθ

(
−λ

2

(j(r + 1))2

N + n
+

(jr + 1)(j(r + 1))

N + n
+ he

j

(j(r + 1))3

(n + N)2

)2
}
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where

|θ| <
∣∣∣∣−λ

2

(j(r + 1))2

N + n
+

(jr + 1)(j(r + 1))

N + n
+ he

j

(j(r + 1))3

(n + N)2

∣∣∣∣ <
<

1

2
0.001 + 0.001 + 0.001 = 0.0025.

Consequently eθ < 1.003 and

Bj = e−j(r+1)λ

(
1− λ

2

(j(r + 1))2

N + n
+

(jr + 1)(j(r + 1))

N + n
+ hj

(j(r + 1))4

(n + N)2

)
, (5.8)

where |hj| < 1 + 1.003
2

(0.0005 + 0.001 + 0.00001)2 < 1.1. Now, by (5.3), (5.6), and (5.8), we

obtain

Ej = Lj

(
1− jr(jr − 1)

2n
+ fj

(j(r + 1))4

n2

)
×

×
(

1− λ

2

(j(r + 1))2

N + n
+

(jr + 1)(j(r + 1))

N + n
+ hj

(j(r + 1))4

(N + n)2

)(
1− j

N

)
=

= Lj

(
1− jr(jr − 1)

2n
− λ

2

(j(r + 1))2

N + n
+

(jr + 1)(j(r + 1))

N + n
− j

N
+ g′

(j(r + 1))4

n2

)
where |g′| < 4.5 + 2α with α = n/N . So we have

E4 = L4

(
1− 4r(4r − 1)

2n
− λ

2

(4(r + 1))2

N + n
+

(4r + 1)(4(r + 1))

n
λ− 4

N
+ g1

(4(r + 1))4

n2

)
,

E1E3 = L4

(
1− r(r − 1)

2n
− λ

2

(r + 1)2

N + n
+

(r + 1)(r + 1)

n
λ− 1

N
−

−3r(3r − 1)

2n
− λ

2

(3(r + 1))2

N + n
+

(3r + 1)(3(r + 1))

n
λ− 3

N
+ g2

(4(r + 1))4

n2

)
,

E2
1E2 = L4

(
1− 2

r(r − 1)

2n
− 2

λ

2

(r + 1)2

N + n
+ 2

(r + 1)(r + 1)

n
λ− 2

N
−

−2r(2r − 1)

2n
− λ

2

(2(r + 1))2

N + n
+

(2r + 1)(2(r + 1))

n
λ− 2

N
+ g3

(4(r + 1))4

n2

)
and

E4
1 = L4

(
1− 4

r(r − 1)

2n
− 4

λ

2

(r + 1)2

N + n
+ 4

(r + 1)(r + 1)

n
λ− 4

N
+ g4

(4(r + 1))4

n2

)
where gj, j = 1, 2, 3, 4, are bounded with certain polynomials of α. (We can give e.g. the

following bounds: |g1| < 4.5+2α, |g2| < 13.1+12.1α+3.1α2, |g3| < 110+119α+52α2+7.1α3,

|g4| < 9.3 + 6.8α + 1.8α2 + 0.6α3 + 0.1α4.) Finally we obtain

|A5| < N4(E4 − 4E1E3 + 6E2
1E2 − 3E4

1) =
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= N4

(
(1 + r)r−1

r!
e−(r+1)λλr

)4(
0 + 0 + 0 + 0 + g

(4(r + 1))4

n2

)
,

where |g| is bounded with a certain polynomial of α. That is

|A5| < N2L4(r + 1)4 g(α)

α2
(5.9)

where g(α) is a polynomial of α.

Using the above equalities for E1, . . . , E4, we obtain

A4 ≤ N3L3

(
c(r + 1)2

n
+

c

n2

)
+ N3L4

(
c(r + 1)2

n
+

(r + 1)4

n2
p(α)

)
(5.10)

where p(α) is a polynomial of α.

Summarizing (5.2), (5.9), and (5.10), we obtain (2.5).

(2) First consider (5.9), that is A5. Let

ar = (L(r, λ))3(r + 1)4 =

(
(r + 1)r−1

r!
e−(r+1)λλr

)3

(r + 1)4.

Then ar+1

ar
≤ % < 1 for all r > r0 if λ = n

n+N
≤ τ < 1. Therefore N2L4(r + 1)4 g(α)

α2 ≤
N2LC1

g(α)
α2 where C1 depends on λ. Now consider (5.10), that is A4. The second summand

can be handled as A5. For the first summand we remark that L2(r + 1)2 → 0 (r → ∞) if

λ ≤ τ < 1. Therefore L2(r + 1)2 is bounded. So N3L3 c(r+1)2

n
≤ N2LC1

1
α

. Therefore (5.2),

(5.9), and (5.10) imply (2.6). �
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