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INTRODUCTION

In February 2014, a consortium of scientists coedeas part of the University of California Davis
Cardiovascular Symposium to bring together expentaleand mathematical modeling perspectives
and discuss points of consensus and controversheropic of sodium in the healt This paper
summarizes the topics of presentation and discassion the Symposium, with a focus on aberrant
sodium channels and abnormal sodium homeostasardiac arrhythmias and therapy from cell to the

whole heart.
DISRUPTION OF SODIUM HOMEOSTASISIN CARDIAC DISEASE

Although normal cycling of intracellular 4in cardiac myocytes is often considered a critical
indicator of mechanical functioning in the healig intracellular Naconcentration ([Ng;) is tightly
coupled to C&" homeostasis and is an increasingly recognized matidgl force of cellular
excitability, frequency adaptation and cardiac cacttlity > * *. The direct coupling between
intracellular N& and C&*concentrations is mediated via the '}Ge* exchanger (NCX), which
exchanges 3 Né#or each C&", and comprises the primary cellular extrusion raei$m for CA*. The
NCX can operate in both forward mode, during wtitckxtrudes C&', or may promote G4 influx
when it operates in the ‘reverse mgdeThe activity of NCX is sensitively tuned to clgas in [N];;

so that a millimolar increasm _the concentration of N3 resulting from increases in heart rate,
sympathetic tone or disease can result in charyB&CiX activity that alter Ca homeostasis leading
to intracellular C&*loading in both cellular and sarcoplasmic reticul(®®R) compartments The
consequence of intracellular cardiac myocyté ‘Geading is stronger contractidh but if too much
C& *loading occurs, as in pathological states, thepotential for increased leak from thagherSR
c&*Jead which can result in spontaneous’Caaves. IftheCa& " waves are sufficiently large or
persistent, the excess intracellula’ Oaill be extruded via the NCX resulting in depolanig current
that may bring the cell to threshold Na channelatibn, casing delayed afterdepolarizations (DADS)
and arrhythmogenic triggered action potentials. Rwre detailed description of structural and

functional determinantof NCX, please refer the white paper #3 (REF).

An additional important cellular mechanism for mammance of [N§;- homeostasis is the sodium-
potassium ATPase (NKA), which uses energy derivethfhydrolysis of an ATP molecule, allowing

extrusion of three Naions in exchange for two Kions. The NKA is half-maximally activated
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between 1022 mM [N&]; and 1-2 mM external K , respectively’. Thus, at 4 mM normal
extracellular K, NKA is ~ 70% saturated, with plenty of availa#@P (5-10 mM) (half-maximal
NKA activation is 80150 1 M) 8. The NKA is covered in detail in white paper #E(.

Cardiac myocytes also contain Na transport mechenithat promote simultaneous maintenance of
| [Na']i- homeostasis and physiological pH including theilsnehydrogen exchanger (NHE), which
moves sodium into the cell in exchange for protapoet °.  The sodium-bicarbonate symporter
| (NBC) is also present in myocytes and acts as ditialal mechanism to couple [Na homeostasis
and pH®. In disease states, the importance of the coyptiatween multiple Na homeostatic
mechanisms is evident. In ischemia, failure of lmmeostasis starts with an influx of ‘Narough
the-Nd/H"-exchange(NHE) '° in attempt to raise the acidified pH (through éherusion of H). In
ischemia/reperfusion injury, activation #fe-N-d/H"-exchange(NHE) andNa'/HCO; —cotransporter
(NBC), a pathological increase in the persistem¢ Ia current component, Naentry through
connexin hemichannels, and NKA inhibition resufiséverse mode NCX activity that leads to* Ca
overload®.  During hypoxia, NHE from rabbit ventricular ooytes stimulated at 1 Hz accounted for
39% of the total Nainflux (as compared to 5% during normoxid) Inhibition of the NHE during
ischemic episodes attenuated the rise in intrdeelNa” 3 Along with N4 influx via the NHE, a
parallel decrease in energy production due to rhdadrial dysfunction and loss of ATP results in

reduced N&elimination through the N&* ATPase**, which further augments intracellular Na

Another key disease state marked by sodium dysxtigaolis heart failure (HF), where it has been
shown that [N is elevated in humans and in numerous animal redd&f® *” and'®. Elevation of
[Na'liin HF may represent a compensatory adaptationallat's for an increase in €4influx via

NCX, leading to improved contraction, as a typ@lofsiological “digitalis”.

While it is generally agreed upon that [[Jais increased in many forms of heditecsease disegse
the specific pathways responsible for Na elevasianstill a matter of controversy. Increased Nayen
through Na channels and Na/H exchanger and redda#€l pump activity have been found in various
animal models of disease. It could well be that $pecific pathway is both species and model-
dependent. For example, NKA expression is redupethiling human myocardiunt®, although

mMRNA levels are unchangél In the rat, mRNA and protein levels of the prignAIKA- « ; isoform

are preserved in most HF models, whereas the prégeels of NKA-« , are apparently reduced,
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while NKA- « 3 is increased™. In rabbit HF models all NKA isoforms have beemwh to exhibit
reduced protein expression in myocyfés Clearly, a direct causative link between biochehi
changes and function cannot be made because oftbteonfounding factors such as altered protein
regulation, function or activity that are not me@sliwith biochemical assays. An example is the
differential regulation of NKA in HF, described detail in White Paper #3 (REF).
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Figure 1: Schematic depiction of Na+ transporcpsses in the cardiac myocyte. From

Larger Nd influx by other mechanisms has also been propusattrease [Ng; in HF. For example,

a TTX sensitive diastolic Na influx was observedb® upregulated in rabbits with pressure and
volume-overload induced H®. NHE upregulation has also been documeittgdi= 6. N& influx
also occurs as a result of a gain of function ef & channel in the form of the non-inactivating late

component of the Naurrent (ha) that will be detailed in the following sections.

Elevated [Na']; islinked to disruptions in cardiac energetics and metabolism



| Although increased [N% may improve the contractile function of the disebiseart, elevated [N
may have a pathological impact on cardiac metaimotiad oxidative state. For example, the increase
in [Na']; and reverse mode NCX mediated ?Cdnflux during the cardiac action potential is
energetically less efficient than normal SR*Caelease and may contribute to a mismatch between
energy supply and demand in the failing he&tt. Furthermore, it has been shown that when
intracellular CA" transients were triggered by NCX mediated® Cantry, the efficiency of
mitochondrial C&" uptake was substantially reduced, suggesting estletficiency in the transport
mechanism necessary to drive’Ginduced stimulation of Krebs cycle proceséés An interesting
point to consider and that needs to be clarifiedligther this mitochondrial calcium uptake is rapid

enough to track changes in intracellular sodiumealdium during systole and diastole.

In failing cardiac myocytes, increased [Naimpairs energy supply-and-demand matching by
promoting acceleration of mitochondrial Caefflux, via the mitochondrial N&C& * exchanger
(NCLX), which extrudes Cafrom the mitochondria in exchange for N& Increases in [N& have
also been shown to cause an increase in mitoctadndi©, formation in normal and failing cardiac
myocytes?® that may additionally aggravate the ‘Naduced depletion of the antioxidative capacity

and exacerbate oxidative stress in the failingtféar
ABERRATIONSIN SODIUM CHANNEL FUNCTION IN CARDIAC DISEASE

In addition to changes in [NJp homeostatic mechanisms in the heart, changesetdisfribution and
function of cardiac Na channels have been linkedigease manifestation and progression in inherited
and acquired cardiac arrhythmias. Either gaitt lass-of-function results, depending on the diseas
state, and both disruptions can result in danggpoaerrhythmic consequences arising from alteration

in cardiac conduction and repolarization.

Loss of Na channel function

In the case of loss of Na channel function, eitheesult of disease-induced remodeling or as dtresu
of drug application, reduced Na current can leadinsufficient cellular excitability to allow
propagation of electrical waves, leading to a Walbwn precursor to reentrant arrhythmias -

conduction block.



One instance of remodeling of Na channels that ptay a critical role in arrhythmogenesis is in the
infarct border zone where the electrical substimtextensively remodeled compared to normal non-
infarcted epicardium. The fact that progressive electrical remodelimgt toccurs in chronic disease
states has been identified as a biomarker for suddediac death, indicates the critical importaote
revealing its mechanisné . Na currents (as well as €aand K currents) in cells isolated from
the epicardial border zone (EBZ) of 5-day infarctezhrts have been shown to have both altered

&0 3132 \ithin the reentrant circuit, two distinct cell

current amplitudes and changes in kinefit
regions have been identified, cells from the cérdcemmon pathway of the circuit (1Zc), and cells
from the outer pathway on the other side of the bifi block (outer pathway, 1Z3§. Cells from both
regions of the infarct zone regions had reducedl dlarent density, but the cells from the 1Zo also
exhibited slower Nachannel kinetics for time to peak and current gi€da These changes in Na
channel function along with some observed changeis-type C&" currents give rise to electrical
anisotropy that promotes stable lines of block imitthe zone®*. These stable lines of block then

allow for development of sustained reentrant ekoiteand stable ventricular tachycardias (VTshHa

cotearthalborder=zor(EBZ).

If regional differences of ionic currents in celisthe EBZ are the mechanisms underlying the lofes
block observed in the EBZ, then restoration of eitthe N& channel or the L-type Gachannel
should be antiarrhythmic by disrupting the stapilif the lines of block leading to termination of
reentry. Indeed, recent studi®ssuggest that gene transfer mediated overexpressitime skeletal
muscle sodium channel (SkM1), resulted in improiad channel availability since SkM1 channels
have positively shifted kinetics of inactivatiomdering them primarily open at depolarized potdsitia
at which cardiac Na channels are closed. SkM1 apeession improved conduction and reduced the
incidence of inducible VT/VF post-myocardial infdon *. Such approaches constitute the potential
for new development of strategic interventionsestore electrical disruptions in the heart arigiogn

electrically based remodeling.

Gain of Na channel function

Many recent works have focused on gain-of-functidrthe N& current since a range of cardiac
diseases are marked by pathological increaseseirpéinsistent late Na current component (late Na
current, ka.) that follows the rapid transient activation Qf.1 Ina is upregulated in many pathologic
conditions, such as in the failing and/or ischeh®art, in the heart exposed to oxidative stress,iman

7



results in pathological effects to promdtgeh.—(Ina} ***° via activation of CaMKII*®, increased
mitochondrial oxidative phosphorylaticf and consequent increased RG$2  Please see White
Paper #2 (REF) for detailed coverage of Na chanegllation. Increasedi} leads to action
potential prolongation, disruption of normal cedlulrepolarization, development of arrhythmia
triggers, and propensity to ventricular arrhythmia. heart failure, pharmacological targeting of. |
has been shown to result in: 1) normalization qfofarization; 2) decrease in beat-to-beat APD

variability; and 3) improvement in €&handling and contractilit§’>>

At least three distinct alterations in \Na5 gating have been shown to increasepin including
window currents, differential gating modalities,damon-equilibrium gating. These mechanisms were
initially revealed via detailed electrophysiolodistudy of mutations irBSCN5A that resulted in Long
QT Type 3 Syndrome in patients. Window currergadibes the Na current that is measurable in the
voltage range where the steady state inactivatiomecand activation curve overlap™>. The current
can be observed within the “window” of voltage agricardiac repolarization or as a steady-state
equilibrium current during voltage clamp. The danv can be affected by changes to the activation
and inactivation gating that result in expansiontte# voltage range. In addition to mutations and
polymorphisms, there have been a slew of physiokdgmodulators identified such as *Ca
calmodulin and phosphorylation (discussed in White Papertha) in normal physiology and in

pathological conditions increase the size of thedaiv®*.

The bursting of Na channels is a well-describedngammode where channels undergo a transient
failure of channel inactivation. Maltsev and Undrmas recordedyk,. from heterologously expressed
Nay1.5 in the absence of other isofor?ﬂsshowing that bursting channels were indeed ofstrae
form as those underlying the transient inward aurre Clancy et al. recorded and modeled the
transitions from normally inactivating Nahannels to bursting channels in heterologousfyessed
single N&1.5 sodium channels. A computational model basethese rates was then used to predict

the magnitude and rate dependence,gfdxpected from ensemble curretits

Non-equilibrium gating describes another form @f.Ithat is not observed during typical voltage
clamp depolarization protocols However, in response to a negative ramp cureetrgnsient inward
current is observed. The amplitude of the curifesgnsitively dependent on the rate of recoveoynfr
inactivation, where faster recovery or a shifthe wvoltage dependence of recovery from inactivation

promotes the current. Just as for the windoweruyrnon-equlibrium Na current is affected by a
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number of physiological modulators including calmla and phosphorylation (discussed in White
Paper #2).

Intrinsic gating abnormalities of the cardiac’N&annelwere reported by Maltsev and Undrovinas in
their description of a novel, ultraslow inactivaiNa current, \,., in both normal and failing human
hearts®®. The same group also showed an increased demsitglower inactivation kinetics af.l>®

in chronic heart failure as compared to normal tsean single channels two modes of gating
underlying late N, were observed, late scattered mode gating and imade of gating that had slower
kinetics in_failing human ventricular myocytes compared to rarmventricular myocytes®.
Importantly, there were no differences in the uwiteonductance of late Naurrent between normal

and failing human hearts, suggesting a single tiou of channels that are upregulated in°AF
LINKING Na" AND Na* CHANNEL ABNORMALITIESTO ARRHYTHMIAS

Disruptions in Na based processes in the hearrf@sthythmias by multiple mechanisms, depending
on the specific perturbation to the Nanked process. Of major benefit to revealing anderstanding
the mechanisms of Na based arrhythmias is the oewednt of numerous new experimental
techniques including examples such as targetecefiutar imaging®®®, SR C4&" imaging®, advances
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in electrophysiology®, “cell-in-gel” and other techniques for mechanosg@uction®® ’, mitochondrial

imaging®® stem cell technologiés, just to name a few.

In addition to the developments in experimentalhtégues, there have been dramatic gains in
accessibility of modern computing power, computalospeed and reduction in computing cost.
Recent advances have also been made in numerataligees and computing™*"® 70-73 the
implementation of customizable solvers such as iBoity "4, modeling platforms like CHASTE and
OpenCMISS "¢ and infrastructures aimed at facilitating stadézation, interoperability and
dissemination of models (e.g CellML and FieldMEY®-"-"47 75.79

Mathematical models of cardiac physiology are wideded to complement experimental findings and
clinical observations to improve understanding afd@ac electrical function in health and disease.
Implementation of such models offers multiple adages, especially that they enable exploration of
high dimensional models to determine how their eaafydynamical behaviors corresponds to that of
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low dimensional models. Emergent behaviors cambpped back to underlying parameters through
component dissection, to reveal mechanisms of esnéfgehaviors, a function for which there is no

efficient comparable experimental counterpart.

Experimental approaches and computational modelimysimulation are complementary methods to
determine how abnormalities in Na processes detred of the cell can cause emergent arrhythmias in
the whole heart. An example is a hallmark arrhythtrigger in human heart failure resulting from
Céa*-induceddelayed-afterdepolarizationDADs). When N4 accumulation and overload occurs in
cells, DADs arise because the resulting cytosokf *Gaccumulation via reverse-mode NCX may

ultimately exceed Gd efflux and precipitate Gd overload. A pathological version of the ‘Ca

C& *that is extruded by NCX, which may depolarize tle#l sufficiently to activate Na channels
leading to the emergence @dlayed-afterdepolarizationBADs) and, if large enough, arrhythmogenic
triggered action potentials. Because' Mediated Ca" overload does not occur uniformly in time or
space, beat-to-beat variability in repolarizatiomd eemergent triggeringarly afterdepolarizations

(EADs) and DADs occur unpredictably.

DADs occurring in a single myocyte are an insuéfitisource of current to trigger a premature beat i
the whole heart because the current generatedngiescell is not enough to overcome the large
electrotonically coupled downstream sink of tisddathematical models have shown that DADs must

occur simultaneously in many cells in order to gateean arrhythmia triggéf.

In the case of loss of Na channel function as desdrin infarct border zone, a reduction in
excitability at the cellular level emerges in cagpltissue as slowing of conduction velocity of the
propagating depolarizing wave that drives cardigcitation.  Slow conduction can result in an
increase in the “vulnerable window” to unidirectidrblock and, if the conditions are favorable,
retrograde conduction, promoting reentrant arrhyahimthe orgarf® 828183848586 1t is important to
note that slow conduction is enough to prolongascfiotential duration (APD) at the cellular levatla
QT interval at the organ level as a result of titernisic dynamical properties of Na channels theg g
rise to the restitution relationship. The restitotrelationship describes the correlation betw&BD
and the preceding diastolic interval (DI). As théincreases as a result of slow conduction, the
subsequent AP will be relatively prolonged. If tha is sufficiently long and other anomalies are
present, reductions in repolarization reserve o@na even triggered arrhythmias such easly
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| afterdepolarizationsHADs) may emerg8’ 88495389 Conversely, when the DI is very short, such as
during rapid pacing or tachycardia and combinedh wiher perturbations such as drugs or disease, the
relationship between APD and DI may be very stelpthis situation, arrhythmogenic oscillation of

| the APD termed alternans can develop. All of thdiseuptions to normal cardiac electrical activity

promote development of reentrant arrhythmias anetm@ak causing fibrillatiof.

| A gain of function of the Na channel during disettsat results in an increas¢ate Nd current has
also been linked to arrhythmias associated withuiaed diseases such as heart failure and post Ml
remodeling, due to their impact on action potentiairation and repolarization abnormalities.
Approximately 40% of chronic heart failure patiedie due to sudden cardiac death, with ventricular
tachycardia and fibrillation documented in 80% afipnts****92 Conditions and diseases that lead to
an increased latgd exhibit electrical instability (due to afterdepaiations, beat-to-beat variability in
repolarization, ventricular arrhythmias), mechahigsstability (impaired diastolic relaxation and
ventricular wall tension, increased diastolic aretrdased systolic force generation), as well as
mitochondrial dysfunctiorf’. This sets up a cascade leading to further ischesnid abnormal
contraction in a pathological feedback loop. Ragilcanine ventricular myocytes with prolonged APs,
C& * transients and substantial diastolic Caccumulation leading to spontaneoug Dalease were
shown to improve with TTX and ranolazine (a selezti,. blocker)®*® These results are additional
strong indication of the link between pathologital to the induction of deranged Claomeostasis at
the cellular level. A subsequent study using humemtricular myocytes® similarly found

improvement with TTX.
NEW THERAPEUTIC APPROACHESFOR NA LINKED ARRHYTHMIAS

As described above, both gain- and loss-of-funciiotihe cardiac Na channel can result in dangerous
proarrhythmic consequences by altering cardiac ectinwh and repolarization. Thus, the prospect of
targeted pharmacological treatment to modify Mased arrhythmias has fueled historical and recent
pursuit of new drugs. However, the history ofimmhythmic drug failures makes careful and rekabl

assessment of drug effects on cardiac rhythmsdimizal necessity to ensure safety and efficacy.

The difficulty in predicting drug effects on theeetrical activity of the heart is clear from botret

failure of large clinical trials to demonstrate drsafety for multiple antiarrhythmic drug classés (

example, the CAST® and SWORD” clinical trials), and from the market withdrawdl @therwise
11



promising drugs for treating cardiac dysrhythm,gbégtric disorders, gastrointestinal symptoms and
infection following unexpected sudden cardiac dé€&th These events have resulted in a burdensome
regulatory process for preclinical drugs that havevented emergence of potentially therapeutic
agents for clinical use.

The reasons that it has been so difficult to ptetio channel targeting drug effects on cardiac
electrical activity are that most antiarrhythmiags have complex interactions with multiple chaanel
conformational state specificity, bioactive metatesl and neutral and charged drug fractions. Drugs
alter the action potential waveform, which in taffects drug potency. Thus, it is extremely difift

to know how intended antiarrhythmic drugs that puiity target ion channels will alter emergent
electrical activity in the whole heart. Recentlye FDA and other stakeholders have suggested the
potential implementation of a new paradigm for @atakicity testing that includes implementation of
complementary developments in computational modedéind simulation approaches and stem cell

technologies®.
Modeling and simulations for predictive pharmacol ogy

Cardiac modeling and simulation has recently be#ized to investigate mechanisms of Nzhannel
blocking drugs that both reduce peak’Marrent and that specifically target the lat€” Narrent. A
recent study by Cardona et al. investigated lidueaffects in a multiscale computational md®el
The authors demonstrated both anti-fibrillatoryeeté in normal tissue and predicted the potential f

proarrhythmia with lidocaine during pathologiesluttng acidosis and ischemia.

Moreno et al® also implemented modeling and simulation appros¢hénvestigate the mechanisms
of failure of the once promising antiarrhythmic grflecainide, the subject of the cardiac arrhythmia
suppression trial (CAST), which, in the clinicalatr startlingly showed increased mortality with
flecainide over placebo. In the computational elod) and simulation study, the dynamical
complexity of the drug kinetics was modeled fortbaharged and neutral drug fractions. After
developing the drug-channel model, a simulatiorefis first confirmed experimental findings: no
overt proarrhythmic potential was ever observethaicellular levef. In tissue level simulations, the
outcome was dramatically different.  Substantial use-dependent block by flecainide ifannsic
dynamical property of channel block) was prediciadthe model to result in failed impulse
conduction, a higher dimensional phenomenon tharged as a result of increased electrotonic load
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in coupled tissue. Proarrhythmic conduction bldett to development of tachycardia indicated by
spiral wave reentry, which was verified experiméntd®. This emergent phenomenon was linked
back to the fundamental mechanism - the drug ldaeif unblock, identified as the basic mechanism
of failure. Moreover, the study indicated thas #inetics of drug interactions for lidocaine prdast

safety in higher dimensions as indicated by no treah arrhythmias in the presence of lidocaine in

normal tissue.

Disease induced enhancement of latg promotes the development of arrhythmogenic after-
depolarizations, triggered arrhythmic activity, afmisades de pointes (TdP) in cardiac ventricular
myocytes, cardiac tissue, and intact he®rf§ 191 192193 pharmacological targeting of.l has been
shown to improve cardiac electrical function in roy@s challenged by cardiac glycosides, hydrogen
peroxide, pharmacological enhancement of Igte dnd even with drugs that block hERG)land

reduce repolarization reserifé 10510688 101411024249 107

Recently, modeling and simulation have been usegrdbe and predict effects of the selecting. |
inhibitor ranolazine in pathological situatiot§. Simulations of clinically relevant concentratoof
drug were used to predict the cellular level efemft N channel blockade using both ranolazine and
its active metabolites on hERG, which have potdatking effects in the therapeutically relevant
range. The model was used to predict if therapeaaffects of targeted pharmacological treatment by
ranolazine prevailed over the unintended pathosdgidock of hERG for normalizing arrhythmia
triggers (EADSs) in bradycardia-dependent arrhytlsmmlLQT3, as well tachyarrhythmogenic triggers
arising from heart-failure induced remodeling (€dfADs). Model predictions suggested that acute
targeting of late J, with ranolazine can be an effective therapeutiatsgy in diverse arrhythmia

provoking situations that arise from a common pathaf increased pathologic latg.|

Trenor et al. developed a tool far-silico preclinical anti-arrhythmic drug safety assessmdrst
predicted the impact ofgIna. ratio of steady-state block of drug candidates“mmsadogenic”
biomarkers that they defined as AP duration, tridaiion, reverse rate-dependence, transmural

dispersion of repolarization and electrocardiog@minterval®.

Although the studies described above included etaiescriptions of the kinetics of drug interastio
with ion channels, it is important to note that evketailed kinetic models are phenomenological - fo

example, a Markov model of ion channel dynamicdrag channel interactions is a phenomenological
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representation that greatly simplifies the undedymolecular quantum mechanics. In the studies
described above, there is no way for example tdigtigely link atomic scale anomalies to higher
order phenomenon, or to predict how structuralysbetions might affect pharmacological effects in
the whole heart. An important aspect of modetind simulation as it relates to prediction of dise
processes and pharmacology is choosing the levdetfil in the model.  There must be a match
between the required complexity of the model amsdpitedictive capacity, so as not to introduce
unnecessary degrees of freedom that result inwas#r determined models. In other words, the
modeler must be concerned with the issue of deténgiihow to make the model "as simple as

possible, but not simpler."”

Stem cells for predictive pharmacology

The potential for personalized medicivia drug screening in patients’ own induced pluripotsiem
(hiPSC) cell-derived cardiomyocytes (hiPSC-CM®)is another developing and exciting application
at the interface of molecular and clinical inforinat™**2 Patient-specific hiPSC-CMs containing
unknown genotype profiles, or with known polymowgghs and/or mutations in cardiac ion channels
can be used to qualitatively and quantitativelyeassvariability in drug respons&s Thus far, iPSC-
CMs have been used to successfully model arrhythiisiorders, with excellent agreement between
altered cardiac channel function and emergent relgleysiological phenotypes in the inherited long

QT syndromes and catecholaminergic polymorphicrianar tachycardia™

Terrenoire et al. recently demonstrated the usefslirof such an approach in a study where they
derived iPSCs from a long QT syndrome patient withplex genetics*>. They identified ale novo
mutation in the SCN5A (F1473C) gene encoding theINB and a polymorphism (K897T) in
KCNH2, the gene encoding hERG. Biophysics and nutdecpharmacological analysis of ion
channels expressed in iPSC-CMs demonstrated tleatifease was primary consequence of the
Na,1.5 defect and was not influenced by the KCNH2 paigphism. The mutation resulted in a gain-
of-function in ka., which resulted in delayed repolarization, a pngled QT interval, and increased
risk of arrhythmia. They also found a uniquelgegt fast ratedependent reduction ind that
especially facilitated pharmacological inhibitioy the Na channel blocker mexiletine. Of critical
importance, the experiments revealed rate-depergteperties of ion currents and drug interactions
that were unique to the patient's iPSC-CMs, and theare corroborated in a successful patient
treatment regimen. This study is an exampletergotential of iPSC-CMs approaches in developing
patient-specific clinical regimerts®

14



While the study described above focused on a glaianetion perturbation in the Na channel, and its
cellular level effects, iPSC-CMs can also be celtlin monolayer or grown on scaffolds to invesggat
patient specific metrics related to loss of Na ctgrfunction, especially conduction velocity. For
example, measurements of voltage wavefronts in tagecs of iPSC-CMs via optical mappirgth

has recently been dmonstrated**

The potential for expansion of stem cell technatsgin the cardiac therapeutic arena is vast™

For example, these cells may prove extremely ugefueveal some of the most basic variations in
drug responses that might include the influenceesf polytherapy, hormones, of course drug effects
in the context of genetically based diseases. piesninclude the apparent differential effects of
hERG blockade in males and females, oral contraeepffects on cardiac risk, or to determine the

116 117 118 | order for stem cadl

electrophysiological effects of beta-blockers inT-Q patients
technologies to enter the mainstream for screeaimytherapy, best practices are in development to

improve maturity and homogeneity of electrical eitfiin iPSC-derived myocytes® *2°.
SUMMARY

Understanding how disruption in cardiac’Mmsed processes leads to derangement in multipléac
components at the level of the cell and to themeohthese perturbation to emergent behavior in the
heart to cause is a critical area of research.ublguity of disruption of sodium channels and satliu
homeostasis in cardiac disorders of excitabilityd amechanics emphasizes the importance of
fundamental understanding of the associated mesimanand disease processes to ultimately reveal

new targets for human therapy.
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