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4 Abstract: The modified friction circle method is still an important tool in slope-stability investigations. The theoretical soundness of this
5 method was investigated, and it is shown here that there is theoretical inconsistency and that the radius of the friction circle is incorrect.
6 Using fundamental relationships of classical mechanics, the exact solution is derived from first principles. DOI: 10.1061/(ASCE)

GM.1943-5622.0000618. © 2015 American Society of Civil Engineers.
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8 Introduction

9 The application of the friction circle method to geotechnical prob-
10 lems was proposed by Glennon Gilboy and Arthur Casagrande
11 (Taylor 1937). It is assumed that the Mohr-Coulomb failure crite-
12 rion is valid and that the failure surface is cylindrical. Equilibrium
13 conditions are applied to a rigid body with a unit width, failing
14 along a circular surface. The principle of the method is that the
15 intergranular forces are in an obliquity of w to the circular surface
16 at failure, where w is the angle of the internal friction of the soil.
17 When the length of the arc is divided into small elements, the line
18 of action of the intergranular forces acting on these elements can
19 be defined by a tangent to the friction circle drawn around the
20 center of the sliding circle (Fig. 1). The radius of the friction
21 circle is

Rf ¼ R sin w (1)

where R is the radius of the sliding circle. The friction circle is a
22 graphical tool that defines the line of action of the intergranular
23 forces at any given point on the sliding circle in a convenient way.
24 In geotechnics, the method is used primarily for slope-stability
25 investigations in homogeneous soil when both cohesive and fric-
26 tional components have to be considered in the calculations (e.g.,
27 Abramson et al. 2002; Das 2006).
28 The pitfall of the original method is that the resultant of inter-
29 granular forces falls outside of the friction circle (Fig. 2). Thus,
30 the radius of the friction circle used for the resultant should be
31 bigger than Rf = Rsinw . Taylor (1937) introduced a constant mul-
32 tiplier [K]3 to compensate for this difference. The multiplier is the
33 function of the central angle [a] and the stress distribution, which
34 is usually assumed to be sinusoidal (Taylor 1937; Murthy 2002).
35 This semi-empirical approach is known as the modified friction
36 circle method. Using this method, Taylor developed charts for
37 slope stability (Taylor 1937). Despite the overwhelming success
38 of computer methods in current geotechnics, these charts, with
39 some modifications, are still used frequently in practice (e.g.,

40Michalowski 2002; Steward et al. 2011). Thus, the friction circle
41method is still an important tool in slope-stability investigations.
42In this study, the theoretical soundness of the friction circle
43method is investigated.

44Modified Friction Circle Method

45The forces acting on the failing soil slope body are
46• The totalweight [W] calculated from themass above the sliding/
47failure circle;
48• The resultant of the intergranular forces [P]; and
49• The resultant of the cohesive forces [C].
50Other possible forces, such as neutral, seepage, and seismic,
51have no significance on the outcome of this investigation; therefore,
52for simplicity, these forces are not considered here.
53The actuating force is the total weight, which acts through the
54mass center. The resistive forces are the cohesive and the intergra-
55nular. The resultant of the mobilized cohesive forces [Cm] is the
56vector sum of the mobilized cohesive forces that act along the slid-
57ing circle (Fig. 3). Themagnitude of this force is calculated as

Cm ¼ cmLchord; where cm ¼ c
Fs

(2)

where c represents the effective unit cohesion of the soil; cm is the
58effective mobilized unit cohesion of the soil; Lchord is the length of
59the chord of the sliding circle; and Fs is the factor of safety. From
60the vector sum of the cohesive forces [Cmi] acting along the arc, it
61can be seen that the direction of the resultant of the cohesive force is
62parallel with the direction of the chord. The line of action is dis-
63tanced [Rc] from the center of the circle. This distance is defined
64from momentum equilibrium of the cohesive forces to the center of
65the trial circle and is calculated as

Rc ¼ Larc
Lchord

R (3)

where Larc is the length of the arc of the sliding circle. The frictional
66component of the resistive forces acts against the movement along
67the failure surface. The line of action of the resultant of the intergra-
68nular forces is defined by the tangent line to the modified friction
69circle. When the force 4that represents the total weight and the direc-
70tions of the resultants of the intergranular and the cohesive forces
71are known, the magnitude of these forces can be determined from
72equilibrium conditions (Fig. 3).
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73 The factor of5 safety can be defined by assuming that (1) the fric-
74 tional strength is completely mobilized, (2) the friction and cohe-
75 sion strength are mobilized partially or equally,6 or (3) by using the
76 ratio of the residual and actuatingmomentums.

77If the frictional strength has been fully mobilized (Assumption
781), then the factor of safety can be defined as

Fs ¼ c
cm

(4)

79The factor of safety with respect to the two resisting components
80of the strength, cohesion and friction, can be defined separately
81(Assumption 2) as the ratio between the residual and mobilized
82parts of the strength as

FsðcÞ ¼ c
cm

and FsðwÞ ¼ tgw
tgwm

(5)

83Assuming the same mobilization for the friction and cohesion
84strength gives the factor of safety as

FsðcÞ ¼ FsðwÞ (6)

85The ratio of the total resisting and activating momentum
86(Assumption 3) can also be used to define the factor of safety
87(Frohlich 1954) as

Fs ¼ Mr

Ma
(7)

where Mr represents the total resisting moments of the available
88shear strength about the center of the trial circle; andMa is the total
89activating moment around the same center.
90The minimum value of the factor of safety is defined by a hit-
91and-miss 7method by calculating the factor of safety for the number
92of slip surfaces. The lowest factor of safety can be found by drawing
93contour lines, and the minimum value defines the most likely sur-
94face of failure.
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95 Theoretical Problemswith theMethod

96 In this simplified case, stated earlier, only three forces are act-
97 ing on this sliding body. Among these forces, the magnitude
98 and the line of action of the weight are known from the geom-
99 etry of the sliding slope and the unit weight of the soil. In the
100 assumed homogeneous soil, the resistance of the cohesion
101 forces along the trial circle is uniform. The vector sum of the
102 cohesive forces gives the magnitude and the direction of the
103 line of action of the resultant cohesive force. The distance of
104 the line of action of the resultant of the cohesive forces can be
105 defined from moment equilibrium to the center of the trial
106 circle as described earlier [Eq. (3)]. By using the fundamental
107 relationships of mechanics the magnitude, the direction and the
108 line of action of the resultant of the cohesive forces can be
109 determined. It is concluded that the calculations of the resul-
110 tants of the weight and the cohesive forces are based on a
111 sound theory of mechanics.
112 The equilibrium of the system requires that the resultant of the
113 intergranular forces satisfy two conditions. First, the forces must
114 be concurrent; therefore, the resultant of the intergranular forces
115 must intersect the cohesion and the weight force vectors at their
116 intersection. Also, in accordance with the friction circle method,
117 the direction of the resultant of the intergranular forces should be
118 the tangent line to the modified friction circle. The first condition
119 is deduced from the fundamental equilibrium requirement. The
120 theoretical justification of the second requirement is investigated
121 here8 .

122The value of K is the function of the central angle [a] and the
123stress distribution (Taylor 1937). The simplest case is the uniform
124stress distribution, which is investigated here 9. The normal forces
125acting on the surface of the sliding circle are symmetrical to the
126line of symmetry of the arc (Fig. 4). In the case of uniform stress
127distribution along the failing circle, the resultant of the normal
128forces acts on the line of symmetry, or more specifically, the re-
129sultant of the normal forces is perpendicular to the cord of the
130sliding circle, and the line of action intersects the cord in the mid-
131dle. The uniform normal forces induce uniform frictional forces
132along the sliding surface of the arc. The resultant of these friction
133forces can be determined in the same way as the resultant of the
134cohesion forces. The direction of the line of action of the result-
135ant of the frictional forces is parallel with the chord, and the line
136of action coincides with the line of action of the resultant of the
137cohesion forces (Fig. 4).
138To be in equilibrium, the three forces (weight, cohesion, and
139intergranular) must be concurrent and intersect each other at the
140same point. Thus, the line of action of the intergranular force must
141go through the intersection of the weight and cohesion forces. The
142angle between the resultant of the intergranular forces and the re-
143sultant of the normal forces [b ] varies depending on the location of
144this intersection. The angle between these forces represents the
145internal friction of the soil, which should not be effected by the
146position of the intersection of the resultants of the weight and cohe-
147sion. Thus, this angle must be defined uniquely. On the basis of this
148contradiction, it is concluded that the modified friction circle
149method is theoretically inconsistent.
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150 Exact Radius of the Friction Circle

151 All the normal forces that act along the sliding circle are concurrent,
152 and the lines of action of the forces go through the center of the slid-
153 ing circle.The line of actionof the resultant of these forces, therefore,
154 must intersect the same point. Thus, the line of action of the resultant
155 of the normal forces goes through the center of the sliding circle. The
156 line of action of the intergranular forces intercepts the cohesion and
157 the weight forces at the same point. Thus, the line of action of the re-
158 sultant of the normal forcesmust also intercept this point.
159 The normal force [N] and the induced frictional shear resistance
160 [T] form an orthogonal system because T is always perpendicular to
161 N, and vice versa. By rotating this orthogonal system and projecting
162 the original components onto the new system gives the new compo-
163 nents as

T 0 ¼ T cos d andN0 ¼ N cos d (8)

where d is the angle of rotation. Please notice that the ratio of the
164 projected new components is the same as the ratio in the original
165 system, because dividing the two equations [Eq. (8)] gives

T 0

N 0 ¼
T
N

(9)

166 The angle of rotation d can have any value without violating this
167 outcome. Because all the intergranular forces are in an obliquity

168of w to the circular surface at failure and the ratio between the fric-
169tional shear resistance force [Ti] and the corresponding normal
170force [Ni] is equal to tanw , the ratio of the resultants of T and N
171should remain the same regardless of the original directions of the
172components. Thus, the angle between the resultants ofN and Pmust
173be the same as w .
174Because all of the intergranular normal forces [Pi] are in an ob-
175liquity of w to the sliding plain, the resultant of the intergranular
176forces and the resultant of the normal forces must intersect at an
177angle of w . This condition can be satisfied and determined graphi-
178cally by a friction circle, which has the radius of

Rf�c ¼ Ri sin w ; (10)

where Ri is the distance between the center of the sliding circle and
179the interception of the line of action of the resultants of the cohesion
180and the weight (Fig. 5). The defined resultant of the intergranular
181forces is consistent with the initial assumptions and the fundamental
182equations of mechanics.
183The error that results from the incorrect radius of the friction
184circle (the currently used method) results in a difference of a few
185percent in the factor of safety depending on the geometry of the
186slope, the parameters of the soil (g , w , c), and the definition of the
187factor of safety. The introduced error always reduces the value of
188the factor of safety. Thus, the currently used method underestimates
189the factor of safety in comparison to the theoretically correct
190solution.
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191 Conclusions

192 It has been shown that the currently used modified friction circle
193 method is inconsistent with theory. The conditions deduced from
194 fundamental equations of mechanics, which must be satisfied for
195 equilibrium, are as follows:
196 • The line of action of the resultant of the normal forces must
197 intersect the center of the sliding circle;
198 • The line of action of the resultant of the frictional shear resist-
199 ance forces, for uniform normal force distribution, is identical
200 with the line of action of the resultant of the cohesive forces;
201 • Projecting the two orthogonal force components, acting along
202 the sliding circle, into a new orthogonal system of the resultants
203 of the normal and frictional shear resistance forces leaves the ra-
204 tio between the components unchanged; thus, the ratio between
205 frictional shear resistance and normal forces is uniquely defined
206 by the angle of the internal friction of the soil; and
207 • The equilibrium of the sliding slope requires the resultants of
208 the weight, the cohesion, and the intergranular forces to be
209 concurrent.
210 It is shown that these conditions can be satisfied by using a fric-
211 tion circle with a radius of Rf–c = Risinw , where Ri is the distance
212 between the center of the sliding circle and the interception of the
213 line of action of the resultants of the cohesion and the weight forces.
214 The friction circle method with the derived new friction circle ra-
215 dius is consistent and complies with all of the fundamental equa-
216 tions of mechanics and gives an exact solution for two-dimensional
217 slope-stability investigations.

218 Notation

219 The following symbols are used in this paper:
221 C ¼ resultant force from cohesion (in N);
222 c ¼ effective cohesion of the soil (in N/m2);

223Cm ¼ resultant force from mobilized cohesion (in N);
224cm ¼ effective mobilized cohesion (in N/m2);
225Fs ¼ factor of safety (dimensionless);
226K ¼ constant multiplier for the modified friction circle ra-
227dius (dimensionless);
228Larc ¼ length of the arc of the sliding circle (in m);
229Lcord ¼ length of the chord of the sliding circle (in m);
230Ma ¼ total activating moment around the center of the slid-
231ing circle (in Nm);
232Mr ¼ total resisting moments of the available shear
233strength about the center of the sliding circle (in
234Nm);
235N ¼ normal force (in N);
236P ¼ intergranular force (in N);
237R ¼ radius of the sliding circle (in m);
238Rc ¼ perpendicular distance between the center of the slid-
239ing circle and the line of action of the resultant of the
240cohesion forces (in m);
241Rc–i ¼ distance between the center of the sliding circle and
242the interception of the resultants of the weight and
243cohesion forces (in m);
244Rf ¼ radius of the friction circle calculated byEq. (1) (inm);
245Rf–c ¼ radius of the derived theoretically correct friction
246circle (in m);
247Rf–m ¼ radius of the modified friction circle (in m);
248T ¼ tangential force/resistant force from the internal fric-
249tion (in N);
250W ¼ total weight of the soil above the sliding circle
251(in N);
252a ¼ central angle of the sliding slope (in degrees);
253b ¼ angle between the resultant normal forces and the re-
254sultant intergranular force (in degrees);
255d ¼ angle of the rotation of the orthogonal system (in
256degrees);
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257 g ¼ unit weight of the soil (in N/m3);
258 w ¼ internal friction angle of the soil (in degrees); and
259 wm ¼ mobilized internal friction angle of the soil (in
260 degrees).
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