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Abstract

The problem of spectral analysis is formulated on commutative hyper-
groups and is solved for finite dimensional varieties.

1 Introduction

The study of spectral analysis and spectral synthesis problems is based on
the concept of exponential monomials. Unfortunately at this moment we do
not have a general definition of this concept on arbitrary (commutative) hy-
pergroups hence on each special type of hypergroups we need to introduce the
most appropriate form. In the papers [1] and [2] we have seen the corresponding
definition on polynomial hypergroups in one variable and in several variables,
respectively. Using these concepts we were able to prove spectral analysis and
spectral synthesis on these types of hypergroups. Here we deal with spectral
analysis only and we prove it for finite dimensional varieties on commutative
hypergroups hence we need exclusively the concept of exponentials.

Let K be a commutative hypergroup. The continuous function m : K → C
is an exponential if

m(x ∗ y) = m(x)m(y), m(0) = 1 (1)

holds for any x, y in K.
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If y is in K and f : K → C is a continuous function, then the function τyf
defined by

τyf(x) = f(x ∗ y)

for each x in K is called the translate of f by y. Let C(K) denote the space
of all continuous complex valued functions on K equipped with the pointwise
operations and the topology of uniform convergence on compact sets. A closed
subspace V of C(K) is called a variety, if it is translation invariant, that is, if f
belongs to V then all translates of f belongs to V , too.

The problem of spectral analysis for a given variety means that we are looking
for exponentials in the variety. If there is an exponential in the variety then
we say that spectral analysis holds for the variety. If spectral analysis holds for
each nonzero variety, then we say that spectral analysis holds on the hypergroup
K. For instance — as we have mentioned above — spectral analysis holds on
polynomial hypergroups.

2 Spectral analysis for finite dimensional vari-
eties

Theorem 1. Spectral analysis holds for nonzero finite dimensional varieties on
every commutative hypergroup.

Proof. Suppose that K is a commutative hypergroup and V 6= {0} is a finite
dimensional variety in C(K). We have to show that V contains an exponential.
Let f1, f2, . . . , fn be a basis of V , then there exist complex valued funcions ci,j
for i, j = 1, 2, . . . , n such that

fi(x ∗ y) =
n∑

j=1

ci,j(y)fj(x) (2)

holds for every x, y in K and i = 1, 2, . . . , n. As the functions f1, f2, . . . , fn are
linearly independent, hence there are elements xk for k = 1, 2, . . . , n in K such
that the matrix

(
fj(xk)

)n
j,k=1

is regular. We have

fi(xk ∗ y) =
n∑

j=1

ci,j(y)fj(xk)

for each y in K and k = 1, 2, . . . , n. For any fixed i this is an inhomogeneous
system of linear equations for the unknowns ci,j(y) (j = 1, 2, . . . , n) with regular
fundamental matrix, hence, by Cramer’s rule, ci,j is a linear combination of
translates of fi, hence ci,j belongs to V (i, j = 1, 2, . . . , n).

Going back to equation (2) and using the associativity of convolution we
infer that

n∑
j=1

ci,j(z)fj(x ∗ y) =
n∑

j=1

ci,j(y ∗ z)fj(x) , (3)
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or
n∑

j=1

ci,j(z)
n∑

l=1

cj,l(y)fl(x) =
n∑

j=1

ci,j(y ∗ z)fj(x) (4)

holds for each x, y, z in K. This is equivalent to
n∑

k=1

n∑
j=1

ci,j(z)cj,k(y)fk(x) =
n∑

k=1

ci,k(y ∗ z)fk(x) . (5)

By the linear independence of the fk’s we have
n∑

j=1

ci,j(z)cj,k(y) = ci,k(y ∗ z) = ci,k(z ∗ y) (6)

for each y, z in K. Let C(x) be the matrix
(
ci,j(x)

)n
i,j=1

, then from (6) it follows

C(x ∗ y) = C(x) · C(y) (7)

for each x, y in K. In particular, the matrices C(x) are commuting for different
x’s. It follows that there exists a nonsingular matrix S such that the matrix
T (x) defined by

T (x) = S−1 · C(x) · S (8)

is lower triangular for each x in K. On the other hand , the entries of T (x) are
linear combinations of the ci,j ’s, hence they belong to V . Further we have for
each x, y in K:

T (x ∗ y) = S−1 · C(x ∗ y) · S = S−1 · C(x) · C(y) · S =

= S−1 · C(x) · S · S−1 · C(y) · S = T (x) · T (y) .

Suppose that T (x) =
(
ti,j(x)

)n
i,j=1

, then using the fact that T (x) is lower tri-
angular we have that

ti,j(x ∗ y) =
i∑

k=j

ti,k(x) · tk,j(y)

holds for j = 1, 2, . . . , i and for each x, y in K. If we put j = i we get

ti,i(x ∗ y) = ti,i(x) · ti,i(y) (9)

for i = 1, 2, . . . , n and for each x, y in K, which means that the functions ti,i
(i = 1, 2, . . . , n) are exponentials in V and the theorem is proved.
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