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According to the recently proposed density functional analogue of the quantum phase transitions
the ‘density’ determines the ‘control parameter’ (corresponding to the Density Functional Theory
‘external potential’). It is also proved that in the non-degenerate case there is a one-to-one map
between the ground-state wave function and the control parameter. It is now shown that there is a
one-to-one map between the ground-state subspace and the control parameter. It is pointed out that
there is a one-to one map between the ’subspace density’ and the ‘control parameter’. The Rényi
entropies are proved to be strictly monotonous functions of the control parameter in a neighborhood
of the transition point. These properties are illustrated with the Dicke model which exhibits a QPT
from a normal phase (non-degenerate) to a superradiant case (degenerate) in the thermodynamic
limit.
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Quantum phase transitions (QPT) are extensions of

classical phase transitions to zero absolute temperature.
Quantum fluctuations, induced by a variation in the val-
ues of certain control parameter(s), lead to an abrupt
change in the physical properties of the system [1]. On
the other hand, density functional theory (DFT) (initi-
ated by Hohenberg and Kohn [2–4]) provides the density
as the basic variable to obtain properties of many particle
systems. So the DFT can be used to study QPT. In fact,
DFT has been shown to provide a relationship between
QPT and entanglement and it has been introduced an
analogue of the DFT density and showed that this new
’density’ determines the control parameter(s) in QPTs
[8]. Entanglement has also been studied in the density
functional theory [5–7].
Recently, following the idea of Wu et al. [8], a DFT

visualization of QPTs has been extended [9] with the
constraint search approach. It has been proved that, in
non-degenerate ground state, there is a bijective map be-
tween the density function and the control parameter(s).
Moreover, any strictly monotonous functional provides
us a new ’density’ with a different control parameter
(or DFT ’external potential’), which is determined by
the new ’density’. In particular, a bijection between the
Rényi entropy and the control parameter has been con-
sidered. In this paper we will generalize all these results
for a degenerate ground state subspace.
Consider the Hamiltonian

Ĥ = T̂ + V̂ee +

N
∑

i=1

v(ri) , (1)

where T̂ and V̂ee are the kinetic energy and the electron-
electron energy operators, respectively. The Schrödinger

equation can be written as

Ĥ |Ψγ〉 = E|Ψγ〉 (γ = 1, 2, . . . , g) , (2)

where g is the degeneracy. The wave functions Ψγ span
the subspace S of the Hilbert space. Instead of the wave
functions Ψγ any other set of wave functions obtained
from a unitary transformation can be used. The total
energy can be considered as a functional of the subspace
S. We can also construct density matrices in the sub-
space S [10–13]:

D̂ =

g
∑

γ=1

wγ |Ψγ〉〈Ψγ | . (3)

The weighting factors wγ should satisfy the conditions

1 =

g
∑

γ=1

wγ (4)

and

wγ ≥ 0 . (5)

The subspace (ensemble) density is given by

̺ =

g
∑

γ=1

wγ

∫

|Ψγ |2ds1dx2...dxN , (6)

where x stands for both the coordinates and the spin.
Selecting the weighting factors to be equal, the subspace
density has the symmetry of the external potential.
The energy can be written as

E = F +

∫

̺(r)v(r)dr, (7)

where the functional F is the sum of the kinetic and
electron-electron repulsion energies. The ground-state
energy is then obtained by minimizing the energy in Eq.
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(7). The constrained-search formalism [14, 15] can be
used as follows:

E[̺] = min
S

g
∑

γ=1

wγ〈Ψγ |Ĥ |Ψγ〉

= min
̺

{

min
S→̺

g
∑

γ=1

wγ〈Ψγ |Ĥ |Ψγ〉
}

= min
̺

{

F [̺] +

∫

̺(r)v(r)dr

}

. (8)

The functional F [̺] can be expressed with the density
matrix as

F [̺] = min
S→̺

tr
{

D̂(T̂ + V̂ee)
}

. (9)

Then the generalized Hohenberg-Kohn theorem has
the form

F [̺] +

∫

̺(r)v(r)dr ≥ E0, (10)

that can be readily proved as follows:

F [̺] +

∫

̺(r)v(r)dr = min
S→̺

tr
{

D̂(T̂ + V̂ee)
}

+

∫

̺(r)v(r)dr = min
S→̺

tr
{

D̂(T̂ + V̂ + V̂ee)
}

≥ E0,(11)

where the last inequality follows from the variational
principle. There is an equality if and only if the trial
subspace density ̺ is equal to the true subspace density.
The functional derivative of F gives the external poten-
tial up to a constant

δF [̺]

δ̺
= −v(r). (12)

We would like to emphasize that it is crucial to use sub-
space densities to ensure the one-to-one map between the
density and the potential. If we use the degenerate den-
sities (corresponding to the degenerate wave functions)
instead of the subspace density, a given density does gen-
erally not correspond to a unique ground state and the
map between the density and the potential is not invert-
ible as the wave function is not unique functional of the
density. Consequently the problem is subtler (see e.g.[16–
18]. If, however, we use subspace densities, the problem
is as simple as the nondegenerate problem.
Consider now a quantum system with the Hamiltonian

Ĥ = Ĥ0 +
∑

i

ξiÂi, (13)

where Ĥ0 is integrable and ξi are the control parame-
ters associated with Âi [8, 19]. Note that Ĥ0 and Âi

are known Hermitian operators. The index i is discrete.
For a continuous case, the original DFT described above
should be applied. We mention in passing that the idea of
adding various operators to the Hamiltonian in a general

density functional context was first discussed by Bauer
[20]. The expectation value of Âi is given by

ai = tr
{

D̂Âi

}

. (14)

The constrained search leads to the function

Q({ai}) = Min
S→{ai}

tr
{

D̂Ĥ0

}

= Min
D̂→{ai}

tr
{

D̂Ĥ0

}

,(15)

that is, the expectation value of the Hamiltonian Ĥ0 is
minimized subject to the constraint that each D (or S)
yields the given values ai. Note that ai are defined by
the subspace of degenerate eigenfunctions, these corre-
sponds to the ’subspace densities’ of the original density
functional theory, while ξi corresponds to the external
potential.
The minimum of the energy is searched in two steps:

E = Min
{ai}

[

Min
S→{ai}

tr
{

D̂Ĥ
}

]

= Min
{ai}

[

Min
S→{ai}

tr
{

D̂Ĥ0

}

+
∑

i

ξiai

]

= Min
{ai}

[

Q(a1, ..., aM ) +
∑

i

ξiai

]

. (16)

We can also see that Q is the Legendre transform of E:

Q(a1, ..., aM ) = E −
∑

i

ξiai. (17)

From the Hellmann-Feynman theorem

∂E

∂ξi
= tr

{

D̂
∂Ĥ

∂ξi

}

= tr
{

D̂Âi

}

= ai (18)

follows that

∂Q

∂ai
= −ξi. (19)

Theorem 1. If the inverse of the operator
P̂ =

∑

i ciÂi − c0 exits for any real c0 and ci, there is a
one-to-one map between the subspace S spanned by the
degenerate wave functions Ψγ(γ = 1, 2, . . . , g) and the
‘external potential’ {ξi}.

Proof: First, we prove that the ‘external potential’ {ξi}
determines the subspace S. If {ξi} are known, the so-
lution of the Schrödinger equation with the Hamiltonian
(13) gives the wave functions Ψγ .
Second, we have to prove that the subspace S deter-

mines the ’external potential’ {ξi}, that is, only one ’ex-
ternal potential’ {ξi} corresponds to a given S. The proof
proceeds by reductio ad absurdum. Suppose that there

are two ’external potentials’ {ξ(1)i } and {ξ(2)i } with the
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same subspace. The corresponding Schrödinger equa-
tions have the form

Ĥξ(1)Ψγ =

[

Ĥ0 +
∑

i

ξ
(1)
i Âi

]

Ψγ = E(1)Ψγ (20)

and

Ĥξ(2)Ψ
′
γ =

[

Ĥ0 +
∑

i

ξ
(2)
i Âi

]

Ψ′
γ = E(2)Ψ′

γ , (21)

where E(1) and E(2) are the eigenvalues of the Hamilto-

nians Ĥ0 +
∑

i ξ
(1)
i Âi and Ĥ0 +

∑

i ξ
(2)
i Âi, respectively.

The wave functions Ψγ and wave functions Ψ′
γ with

γ = 1, 2, . . . , g are related by a unitary transformation:

Ψγ =
∑

κ

cγκΨ
′
κ. (22)

From Eqs. (20) and (22) we arrive at

Ĥξ(1)Ψγ = Ĥξ(1)

∑

κ

cγκΨ
′
κ = E(1)Ψγ = E(1)

∑

κ

cγκΨ
′
κ.

(23)
Combining Eqs. (20), (21) and (23) we are led to the
equations

R̂
∑

κ

cγκΨ
′
κ = (E(1) − E(2))

∑

κ

cγκΨ
′
κ, (24)

where

R̂ =
∑

i

(ξ
(1)
i − ξ

(2)
i )Âi. (25)

The operator R̂ maps the states of S into the states of
S, that is, S is an invariant space of the operator R̂. A
theorem of the linear algebra states that if a Hermitian
operator leaves a finite dimensional subspace invariant
then this operator has eigenstates in this subspace [21].
But R̂ has no eigenstates in the Hilbert space unless it is
constant. We can immediately see it as follows: suppose
that Φ is an eigenfunction of R̂

R̂Φ = λΦ (26)

or

ĜΦ = 0, (27)

where

Ĝ =
∑

i

(ξ
(1)
i − ξ

(2)
i )Âi − λ. (28)

We can exclude the solution of Φ = 0 (everywhere or in a
domain of nonzero measure). Eq. (27) gives the kernel Ĝ.
(The definition is KerĜ = {Φ ∈ H : ĜΦ = 0}, where H
denotes the Hilbert space.) As the inverse of an operator
P̂ =

∑

i ciÂi − c0 exits for any real c0 and ci,the inverse

of Ĝ also exits (ci = ξ
(1)
i − ξ

(2)
i and c0 = λ). Therefore

KerĜ = {0} and it leads to ξ
(1)
i = ξ

(2)
i .�

The Hamiltonian (13) can be rewritten as

Ĥ = Ĥ0 +
∑

i

ζiB̂i, (29)

where B̂i = Âiξi/ζi, bi = tr
{

D̂B̂i

}

= aiξi/ζi and ζi 6= 0.

We can reformulate theorem 1 as:

Corolary 1. If ζi = fi(ξi) and fi are strictly
monotonous functions, there is a one-to-one map between
the subspace S and the ‘external potential’ {ζi}.
ζi are the ’new’ control parameters associated with the

’new subspace density’ bi.

Theorem 2. There is a one-to one map between the sub-
space spanned by ‘subspace densities’ {ai} and the ‘exter-
nal potential’ {ξi}.
Proof: If {ξi} are known, the subspace density {ai} can
be calculated from the Schrödinger equation with the
Hamiltonian (13) and Eq. (14). If, on the other hand, the
subspace density {ai} is available the subspace S should
be first found by minimizing the expectation value of the
Hamiltonian (see Eq. (15)). In the knowledge of S, we
have to find {ξi} for which any independent set of basis
functions of S fulfills the Schrödinger equation. �
From Corollary 1 and Theorem 2 follows

Corolary 2. If ζi = fi(ξi) and fi are strictly
monotonous functions, there is a one-to-one map between
the ‘subspace density’ bi and the ‘external potential’ {ζi}.

Theorem 3.

Q(a1, ..., aM ) +
∑

i

ξiai ≥ Egs, (30)

where Egs is the ground-state energy of the Hamiltonian
(13). Equality holds if and only if {ai} is the ground-
state ‘subspace density’.
Proof: See the constrained search approach [Eqs. (15) -
(16)].

Corolary 3.

Q(b1, ..., bM ) +
∑

i

ζibi ≥ Egs. (31)

Equality holds iff {bi} is the ‘new ground-state subspace
density’.
The Rényi entropy is defined as

Rα =
1

1− α
ln

∫

ρα(q)dq (32)

where α > 0 and ρ is the normalized density. In the
following the position representation of the wave function
is utilized.
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The ground state subspace density can be defined as

ρ(x) =

g
∑

γ=1

wγ |Ψγ(x)|2 (33)

or

ρ(x) =

g
∑

γ=1

wγ

∫

|Ψγ(x, q)|2dq, (34)

that is, in case of a many variable wave function the Rényi
entropy (32) can be determined for several (reduced) den-
sities depending on how many variables (if any (33)) are
integrated out (34). The following theorem is valid for
any case.
As it was pointed out by Wu et al. [8] one can split

Hamiltonian (13) in several ways. It is possible to focus
on only one contol parameter and merge the other parts
of the sum

∑

i ξiÂi into Ĥ0. Theorem 4 and corolary 4
is valid for this special case.

Theorem 4. The Rényi entropy Rα of the ground state
subspace density, if it exists, is a strictly monotonous
(increasing or decreasing) function of the control param-
eter ξ in a neighborhood of the transition point ξc,and its
derivative dRα/dξ diverges at ξc in the thermodynamic
limit.
Proof:

The Hamiltonian can be reformulated as µ = ξ − ξc:

Ĥ =
˜̂
H0 + µĤ ′, (35)

where
˜̂
H0 = Ĥ0 + ξcÂ, Ĥ ′ = Â and µ = ξ − ξc. It

is enough to show that ωα ≡
∫

ρα(x)dx is a strictly
monotonous function of µ in a neighborhood of µ = 0. As
the logarithm is an increasing function the Rényi entropy
has the same monotonic behavior. In the perturbation
theory the ground state wave function can be written as:

Ψγ = Ψ(0)
γ + µΨ(1)

γ +O(µ2), (36)

where the zero-order (Ψ
(0)
γ ) and first-order (Ψ

(1)
γ ) wave

functions can be expressed with the degenerate non-
perturbative eigenfunctions and eigenenergies.
Substituting Eq. (36) into Eqs (33) and (34) we arrive

at

ρ = ρ0 + µρ1 +O(µ2), (37)

where

ρ0 =

g
∑

γ=1

wγ |Ψ(0)
γ |2 (38)

ρ1 = 2

g
∑

γ=1

wγRe[Ψ
(0)∗
γ Ψ(1)

γ ] (39)

in case 1 (Eq. (33)) and

ρ0 =

g
∑

γ=1

wγ

∫

dq|Ψ(0)
γ |2 (40)

ρ1 = 2

g
∑

γ=1

wγ

∫

dqRe[Ψ(0)∗
γ Ψ(1)

γ ] (41)

in case 2 (Eq. (34)). (Note that position representation
is applied.) Finally, ωα(µ) is expanded around µ = 0

ωα(µ) = ω(0)
α + µαP +O(µ2) (42)

with

ω(0)
α =

∫

ρα0 (43)

and

P =

∫

ρα−1
0 ρ1. (44)

ω
(0)
α and P are independent of µ. Thus, we have that

dωα/dµ = αP . As P is non-zero (either strictly positive
or negative) and, therefore, ωα(µ) is strictly monotonous
in a neighborhood of µ = 0. It is shown in the Appendix

that, in the thermodynamic limit (that is, when E
(0)
k →

E
(0)
0 for one or several values of k), P and consequently

the functional derivative of the Rényi entropy diverge. �

Corolary 4. As the Rényi entropy Rα is strictly
monotonous function of ξ in the vicinity of the transition
point, there is also a one-to-one map between the Rényi
entropy of a given order Rα and the ’external potential’
ξ.
As an illustration of these results we will consider the

Dicke model [22–25]. This model describes an ensem-
ble of N two-level atoms with level splitting ω0 coupled
by a single-mode bosonic field with frequency ω and its
hamiltonian has the form:

H = ω0Jz + ωa†a+
λ√
2j

(a† + a)(J+ + J−) (45)

where Jz and J± are the angular momentum operators
for a pseudospin of length j = N/2 and a and a† are the
photon annihilation and creation operators of the field.
It is known that the Dicke model exhibits a second-order
phase transition at the critical point λc =

√
ωωc/2 in the

superradiant one in the thermodynamic limit N → ∞,
where the energy levels are nondegenerate in the normal
phase and degenerate in the superradiant one [26].
Let us rewritten the Dicke model hamiltonian as

Ĥ = Ĥ0 + λÂ (46)
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FIG. 1. (Color online) Rényi entropy R2(λ) (top) and deriva-

tive of the Rényi entropy dR
2(λ)
dλ

(bottom) as a function of the
parameter λ for different values of N = 6, 10, and 20 for the
Dicke Model and for ω0 = ω = 1. (Atomic units).

where

Ĥ0 = ω0Jz+ωa†a, Â =
1√
2j

(a†+a)(J++J−). (47)

Now, we can solve numerically the eigenvalue problem
diagonalizing the matrix representation of the Ĥ operator
( in the basis set of the Hilbert space {|n〉 ⊗ |jm〉}, with
{|n〉}∞n=0 the number states of the field and {|jm〉}jm=−j

the so-called Dicke states). See [27, 28] for more details
and [29–33] for a study of the QPT in this model in terms
of information measures.
In Fig. 1 we can see Rényi entropy R2 of the ground

state subspace density in the Dicke model as a function
of the parameter λ around the transition point λc for
different values of N = 6, 10, 20. We can realize that
it is an increasing function of the parameter λ in the
vicinity of the transition point. Additionally, we have
plotted dR2/dλ at the transition point, and we can see
that this function is always positive. Its slope goes to
infinity in the thermodynamic limit N → ∞. As we
have said above the superradiant phase is degenerate in
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FIG. 2. (Color online) The ’subspace density’ a as a function
of (top) the parameter λ and (bottom) the Rényi entropy R2,
for N = 20, in the Dicke model and for ω0 = ω = 1. (Atomic
units).

the thermodynamic limit, so , this result is valid in both
normal (non-degenerate) and superradiant (degenerate)
for N → ∞ in accordance with theorem 4.
In Fig. 2 (a) we have plotted the ’subspace density’ a =

〈Â〉 and the ’external potential’ λ. This behaviour is in
accordance with theorem 2. In figure 2(b) we can see that
there is a one-to-one map between the subspace density
a and the Rényi information R2 in the Dicke model (in
agreement with Corollary 2).
Summarizing, we have studied via DFT a connection

between the control parameter in a QPT and an analo-
gous DFT subspace density in a ground state degenerate
case. In particular (i) we have found that there is a one-to
one map between the expectation value of a local func-
tion and the control parameter, and (ii) we have consid-
ered the Rényi entropies’ case for which there is a one-to
one map with the control parameters. Finally, we have
illustrated these properties with the Dicke model which
exhibits a QPT from a normal phase (non-degenerate) to
a superradiant case (degenerate) in the thermodynamic
limit.

APPENDIX

The ground state of the non-perturbed operator
˜̂
H0 is

degenerate. The degenerate ground-state energy is E
(0)
0 .

Consider a unitary transformation of the original set of
the nondegenerate basis functions. Let the new set Φγ
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with γ = 1, .., g so that using it as a basis diagonalizes
the operator H ′ (Eq. (35)). The non-perturbed excited
state eigenfunctions are denoted by Θk,κ, κ = 1, .., gk.
Then the first-order correction to the ground-state wave
function in Eq. (36) can be written as [34]

Ψ(1)
γ =

∑

k 6=0

gk
∑

κ=1

∑

γ′ 6=κ

Φγ′

H ′∗
0,κ,γ′H ′

k,κ,γ

(E
(1)
γ − E

(1)
γ′ )(E

(0)
0 − E

(0)
k )

+
∑

k 6=0

gk
∑

κ=1

Θk,κ

H ′
k,κ,γ

E
(0)
0 − E

(0)
k

, (48)

where

E(1)
γ = 〈Φγ |H ′|Φγ〉, (49)

subscript 0 and superscript 0 refer to the ground state
and the unperturbed state, respectively and H ′

k,κ,γ ≡
〈Θk,κ|H ′|Φγ〉 . The first-order correction to the ground-
state subspace density in Eq. (37) takes the form

ρ1 = 2

g
∑

γ=1

wγRe[Ψ
(0)∗
γ Ψ(1)

γ ] = 2

g
∑

γ=1

wγ

× Re[Ψ(0)∗
γ

∑

k 6=0

gk
∑

κ=1

∑

γ′ 6=κ

Φγ′

H ′∗
0,κ,γ′H ′

k,κ,γ

(E
(1)
γ − E

(1)
γ′ )(E

(0)
0 − E

(0)
k )

+
∑

k 6=0

gk
∑

κ=1

Θk,κ

H ′
k,κ,γ

E
(0)
0 − E

(0)
k

] (50)

in case 1 (Eq. (39)). On the other hand, the first-order
correction to the ground-state subspace density in Eq.
(41) reads as

ρ1 = 2

g
∑

γ=1

wγ

∫

dqRe[Ψ(0)∗
γ Ψ(1)

γ ] = 2

g
∑

γ=1

wγ

×
∫

dqRe[Ψ(0)∗
γ

∑

k 6=0

gk
∑

κ=1

∑

γ′ 6=κ

Φγ′

H ′∗
0,κ,γ′H ′

k,κ,γ

(E
(1)
γ − E

(1)
γ′ )(E

(0)
0 − E

(0)
k )

+
∑

k 6=0

gk
∑

κ=1

Θk,κ

H ′
k,κ,γ

E
(0)
0 − E

(0)
k

] (51)

in case 2 (Eq. (34)). Then we readily obtain the deriva-
tive of ωα from Eq. (44).
If the degeneracy is not completely removed, another

unitary transformation should be performed [35]. The
new functions should be selected so that the matrix

tγ,γ′ =
∑

k 6=0

gk
∑

κ=1

H ′∗
0,κ,γ′H ′

k,κ,γ

E
(0)
0 − E

(0)
k

(52)

be diagonal. In this case the terms with zero in the de-
nominator in Eq. (48) disappear and the sum can be
obtained.
In the thermodynamic limit E

(0)
k → E

(0)
0 for one or

several values of k. It can be seen from Eqs. (50) and
(51) that ρ1 and therefore P , the derivative of ωα and
the derivative of the Rényi entropy diverge.
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