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Abstract
Random numbers are very important in many fields of computer science. Generating high-
quality random numbers using only basic arithmetic operations is challenging, especially
for devices with limited hardware capabilities, such as Internet of Things (IoT) devices. In
this paper, we present a novel pseudorandom number generator, the simple chain automaton
random number generator (SCARNG), based on compositions of abstract automata. The
main advantage of the presented algorithm is its simple structure that can be implemented
easily for very low computing capacity IoT systems, FPGAs orGPUhardware. The generated
random numbers demonstrate promising statistical behavior and satisfy the NIST statistical
suite requirements, highlighting the potential of the SCARNG for practical applications.

1 Introduction

Random number generation is very important in many field of computer science, includ-
ing Monte Carlo simulations [1], cryptography, and other computer applications. The
study of pseudorandom number generators (PRNG) has received significant attention from
researchers, and various fields of mathematics have been utilized to create random numbers
such as number theory [2] or chaos theory [3]. Generating random numbers using automata
theory is not new in the literature. Already in 1986S. Wolfram proposed a method to gen-
erate random numbers using cellular automaton [4]. In 1989, Hortensius et al. proposed
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random number generation for VLSI systems using 1-dimensional cellular automata [5].
Since then, numerous articles have been published in the literature that build upon various
types of cellular automata (see, e.g., [6–10]). The simple construction of cellular automata
makes them an attractive option for generating random numbers or developing novel cryp-
tosystems; however, this simplicity also makes them vulnerable to specific types of attacks
[11, 12]. Therefore, it is reasonable to explore the creation of novel pseudorandom number
generators and encryption schemes rely on automata theory principles different from cellular
automata.

The aim of this paper is twofold: to develop a very simple automaton that successfully
passes known statistical tests and to create a PRNGwith very simple structure that is suitable
for use in embedded devices and Internet of Things (IoT) applications. IoT is a ubiquitous
and pervasive network of physical objects that are embedded with sensors, software, and
other technologies, enabling them to connect and exchange data with other devices and sys-
tems over the Internet or other communication networks [13]. These interconnected devices
can communicate with each other, collect data, and perform various tasks autonomously;
therefore, ensuring the protection of each device is crucial in a complex IoT environment.
Compared to classical computer systems, IoT devices used in these environments are often
low-cost RFID tags, sensors, contactless smart cards that lack sufficient processing power and
memory capabilities. As a result, standard cryptographic primitives may not be suitable for
IoT endpoints and performing classical cyber attacks is often easier than on typical computer
systems, making them a potential target for malicious users [14]. Lightweight cryptography
is often employed to address the security concerns of constrained environments; however, the
diverse nature of IoT devices presents a significant challenge in the design of cryptographic
primitives for IoT systems.

In this paper, the authors continue their joint research of cryptographic tools based on
compositions of abstract finite automata [15, 16]. In 2021, the authors presented a full cycle
length counter-based PRNG based on automata compositions [17]. The promising statistical
behavior of the proposed construction inspired us to explore the potential for developing even
simpler generators based on automata compositions. The primary idea behind that PRNGwas
that randomnumbers are generated as state transitions of a givenGluskovproduct of automata,
where the states of this Gluskov product are considered as binary strings of a given lengthm.
To be more precise, for an appropriate fixed state a0 and fixed input letter x of the considered
Gluskov product, the generated pseudorandom numbers are δ(a1, x), δ(a2, x), δ(a3, x), . . . ,
δ(an, x)where δ denotes the transition function of the composite automaton and ai+1 = ai+1
mod 2m for every i = 1, 2, . . . n. It was shown that the generator produces good-quality
numbers and passes well known statistical tests, but a significant drawback of the approach is
the complexity of the automata composition being considered. In this paper, we introduce a
simpler and more compact PRNG, which we refer to as the simple chain automaton random
number generator (SCARNG). The main benefit of the algorithm proposed in this paper is its
simple structure which allows easy implementation on FPGAs, GPUs, and IoT devices with
minimal computing capacity. The algorithm proposed in this paper has successfully passed
the National Institute of Standards and Technology (NIST) statistical test [18]. Furthermore,
the unique properties of the introduced chain automaton can open new research directions.

1.1 Definitions and notations

All concepts needed for seamless understanding are presented in this paper. However, this
paper does not cover the fundamentals of automata theory and their introductions. For basic
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notations and further insight into the subject, we recommend the reader to see the SIAM
monograph on Algebraic Theory of Automata Networks written by Dömösi and Nehaniv
[19].

As usual let us denote by� a finite, nonempty set of symbols, which we call alphabet. For
any set �, let �∗ represent the free monoid over �, which means the set of all strings over
an alphabet �. Let λ be the unit element of �∗ called empty word. Then, for every p ∈ �∗,
pλ = λp = p; moreover, for every pair p, q ∈ �∗\{λ}, pq = x1 · · · xnxn+1 · · · xn+k

whenever p = x1 · · · xn, q = xn+1 · · · xn+k for some x1, . . . , xn, xn+1, . . . , xn+k ∈ �, and
k, n > 0. In addition, for every p ∈ �∗, let p0 = λ, and for every positive integer n ≥ 1, let
pn = pn−1 p.

By an automaton, we mean a deterministic finite automaton without outputs. To be more
precise, an automaton is an algebraic structureA = (A, �, δ) consisting of the nonempty and
finite state set A, the nonempty andfinite input set�, and a transition function δ : A×� → A.
The transition matrix of an automaton is represented by a matrix where rows are associated
with each input and columns with each state. For any row denoted by input x ∈ � and
any column denoted by state a ∈ A, the matrix entry contains the state δ(a, x). If all rows
of the transition matrix are permutations of the state set, then we speak about permutation
automaton.

We shall use the concept of transition function of automata in the usual extended form.
Given an automaton A = (A, �, δ), its extended transition function is the mapping δ :
A×�∗ → A,where�∗ denotes the free monoid over�, and δ : A×� → A is extended to
δ : A×�∗ → A by the following recursive definition: for every state a ∈ A, δ(a, λ) = a, and
for every triplet a ∈ A, p ∈ �∗, x ∈ �, δ(a, px) = δ(δ(a, p), x). A Latin square of order n
is an n×n matrix (with n rows and n columns), where each cell is filled with an element from
a set of n elements {a0, a1, . . . , an−1}. Each element occurs exactly once in each row and
each column of the matrix. In this paper, we will consider a special composition of automata,
called key automaton, whose state transition table forms a Latin square. By these properties,
the considered pseudorandom number generator has a strong immunity against statistical
attacks. Prior to presenting the precise design of our generator, we will first introduce several
essential concepts needed to understand the SCARNG construction.

2 Key automaton

Let Ai = (Ai , �i , δi ) be automata where i ∈ {1, . . . , n}, n ≥ 1. Take a finite
nonvoid set � and a feedback function ϕi : A1 × · · · × An × � → �i for
every i ∈ {1, . . . , n}. A Gluškov-type product of the automata Ai with respect to
the feedback functions ϕi (i ∈ {1, . . . , n}) is defined to be the automaton A =
A1 × · · · × An(�, (ϕ1, . . . , ϕn)) with state set A = A1 × · · · × An, input set
�, transition function δ given by δ((a1, . . . , an), x) = (δ1(a1, ϕ1(a1, . . . , an, x)), . . . ,
δn(an, ϕn(a1, . . . , an, x))) for all (a1, . . . , an) ∈ A and x ∈ �. In particular, if A1 =
. . . = An , then we say that A is a Gluškov-type power.

One of the most simple Gluškov-type powers is the following construction. Let A =
(�,�, δ) be an automaton whose set of states coincides with the set of input signals.
Given a positive integer n, define the automaton B = (�n, �n, δB) such that for every
pair (a1, . . . , an), (x1, . . . , xn) ∈ �n , δB((a1, . . . , an), (x1, . . . , xn)) = (a′

1, . . . , a
′
n), where

the first component a′
1 of the next-state vector (a′

1, . . . , a
′
n) is a result of a state transition

chain of automata A1, . . . ,An with A1 = . . . = An = A such that the last member
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Fig. 1 Chain power state transition

An of the chain goes from the state an into its next state under the effect of the input
signal component x1, and each of the previous members of the chain goes from its state
ai , i = 1, . . . , n − 1 into its next state under the effect of its input signal which coin-
cides with the result of the state transition of the (i + 1)th member of the considered
chain of automata. For every further j = 1, . . . , n we repeat this procedure such that
the initial state (a1, . . . , an) is changed with (a j , a j+1, . . . , an, a′

1, . . . , a
′
j−1). In formu-

las, let a′
1 = δ(a1, δ(a2, . . . , δ(an, x1) . . .)), a′

2 = δ(a2, δ(a3, . . . , δ(an, δ(a′
1, x2)) . . .)),

a′
3 = δ(a3, δ(a4, . . . , δ(an, δ(a′

1, δ(a
′
2, x3))) . . .)), . . . , a′

n = δ(an, δ(a′
1, . . . ,

δ(a′
n−1, xn) . . .)). From now on, the above constructed automaton B is referred to as a chain

power of A. The diagram illustrating the state transition of the chain power is viewed in
Fig. 1.

Proposition 1 Suppose that A = (�,�, δ) is a permutation automaton. Then, every chain
power of A also is a permutation automaton.

Proof Assume that A = (�,�, δ) is a permutation automaton. Then, by definition, all
rows of its transition matrix are permutations of the state set. Therefore, none of these
rows contain repetition. Consequently, for any states a, b ∈ � and input x ∈ �,

δ(a, x) = δ(b, x) implies a = b. Given a positive integer n, let B = (�n, �n, δB)

be a chain power of A and suppose that B is not a permutation automaton. Then, it
has distinct states (a1, . . . , an), (b1, . . . , bn) ∈ �n and input sign (x1, . . . , xn) ∈ �

with δB((a1, . . . , an), (x1, . . . , xn)) = δB((b1, . . . , bn), (x1, . . . , xn)) = (c1, . . . , cn) for
some (c1, . . . , cn) ∈ �n . Suppose that i ∈ {1, . . . , n} is the maximal index for which
ai �= bi . Then, by definition, ci = δ(ai , δ(ai+1, . . . , δ(an, δ(c1, . . . , δ(ci−1, xi )))))
and also ci = δ(bi , δ(ai+1, . . . , δ(an, δ(c1, . . . , δ(ci−1, xi ))))). Put x = δ(ai+1, . . . , δ

(an, δ(c1, . . . , δ(ci−1, xi )))) and recall that A is a permutation automaton. Obviously, then
δ(ai , x) �= δ(bi , x) contradicting the assumption ci = δ(ai , x) = δ(bi , x). Therefore, B
should be a permutation automaton. This completes the proof.

Theorem 2 Suppose that the transition matrix of an automatonA = (�,�, δ) forms a Latin
square. Then every chain power of A also has this property.
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Proof Consider an automaton A = (�,�, δ) and assume that its transition matrix forms
a Latin square. Let B = (�n, �n, δB) be its chain power for some positive integer n.
By Proposition 1, B is a permutation automaton. Therefore, it is enough to show that for
every state (a1, . . . , an) ∈ �n and distinct pair (x1, . . . , xn), (y1, . . . , yn) of input sig-
nals, δB((a1, . . . , an), (x1, . . . , xn)) �= δB((a1, . . . , an), (y1, . . . , yn)). Put (b1, . . . , bn) =
δB((a1, . . . , an), (x1, . . . , xn)) and (c1, . . . , cn) = δB((a1, . . . , an), (y1, . . . , yn)). Let i ∈
{1, . . . , n} be the minimal index with xi �= yi . Then, by definition, either i = 1, or
b1 = c1, . . . , bi−1 = ci−1. If i = 1 then b1 = δ(a1, δ(a2, . . . , δ(an, x1) . . .)) and
c1 = δ(a1, δ(a2, . . . , δ(an, y1) . . .)) with x1 �= y1. Recall that the transition matrix of A
forms a Latin square. Obviously, then using that the columns of the transition matrix are
also permutations of �, we have δ(an, x1) �= δ(an, y1). Inductively, δ(an−1, δ(an, x1)) �=
δ(an−1(an, y1)), . . . , δ(a1, δ(a2, . . . , δ(an, x1) . . .)) �= δ(a1, δ(a2, . . . , δ(an, y1) . . .)). Thus,
we are ready if i = 1. Otherwise, using b1 = c1, . . . , bi−1 = ci−1, bi = δ(ai , δ(ai+1, . . . ,

δ(an, δ(b1, . . . , δ(bi−1, xi ))))) ci = δ(ai , δ(ai+1, . . . , δ(an, δ(b1, . . . , δ(bi−1, yi ))))).
Because the columns of the transition matrix of A are permutations of �, we have
δ(bi−1, xi ) �= δ(bi−1, yi ), and inductively, δ(bi−2, δ(bi−1, xi )) �= δ(bi−2, δ(bi−1, xi )), . . .,
δ(ai+1, . . . , δ(an, δ(b1, . . . , δ(bi−1, xi )))) �= δ(ai+1, . . . , δ(an, δ(b1, . . ., δ(bi−1, yi )))).
Put x = δ(ai+1, . . . , δ(an, δ(b1, . . . , δ(bi−1, xi )))), and y = δ(ai+1, . . . , δ(an, δ(b1, . . . ,
δ(bi−1, yi )))) and recall again that the columns of the transition matrix of A are permuta-
tions of �. Then, we receive bi = δ(ai , x) �= δ(ai , y) = ci . Therefore, (b1, . . . , bn) �=
(c1, . . . , cn) as we stated. The proof is complete.

Let A = (�,�, δ) be an automaton whose transition matrix forms a Latin square. Given
a positive integer n, consider a chain power B = (�n, �n, δB) of A. From now on, we say
that B is a key automaton.

3 Counter-based pseudorandom number generator

The use of an integer counter as the sole internal state of a generator is a well-known approach
for developing a pseudo-random number generator, known as a counter-based PRNG (see
e.g. [20]).

The state transition function is an increment by one modulo the size n of the finite state
set S = {0, . . . , n − 1} and the complexity comes in the map from the state to the random
sample. Formally, a counter-based pseudorandomnumber generator (CBPRNG) is a structure
CBPRNG = (K , Z J , S, f ,U , g), where K is the key space; Z J = {0, 1, ..., J − 1}, where
J is a positive integer called output multiplicity; S is the state space; U is the output space;
f : S → S is the state transition function, si = f (si−1); g : K × Z J × S → U is the output
function.

The CBPRNG = (K , Z J , S, f ,U , g) works in discrete time scale. It starts from a
fixed state s ∈ S, called initial state and a fixed key k ∈ K . Then, the generated ran-
domnumber sequence is g(k, 0, f 1(s)), . . ., g(k, J−1, f 1(s)), g(k, 0, f 2(s)), . . . , g(k, J−
1, f 2(s)), g(k, 0, f n(s)), . . . , g(k, J − 1, f n(s)), where f 1(s) = f (s), f 2(s) = f ( f (s))
and f n(s) = f ( f n−1(s)) for every further n > 2. In this case, the vector (g(k, 0, f (s)), . . .,
g(k, J − 1, f (s)) is called the output vector of initial state.

Given a CBPRNG = (K , Z J , S, f ,U , g), we say that its state transition function f :
S → S has a full cycle if for every s ∈ S, S = { f n(s) | n = 1, . . . , |S|}, where, by definition,
|S| denotes the cardinality of S. Moreover, a CBPRNG is said to have a full cycle or full

123



P. Dömösi et al.

period if for any key and initial state s ∈ S, the CBPRNG traverses every output vector
(u0, . . . , uJ−1) ∈ U J before returning to the output vector of the initial state.

Suppose that, for the simplicity, S is a set of binary strings of the same fixed length. We
say that CBPRNG is of a trivial period if |S| is the minimal positive integer n for which
g(k, i, f n(s + n + m mod |S|)) = g(k, i, f n(s + m mod |S|)), k ∈ K , i ∈ Z J ,m ≥ 1.1

The following statement is clear.

Proposition 3 A CBPRNG = (K , Z J , S, f ,U , g) has a full cycle if and only if its state
transition function f : S → S has a full cycle, and for every key k ∈ K, the function
gk : S → U J with gk(s) = (g(k, 0, s), . . . , g(k, J − 1, s)), s ∈ S is bijective.

If the set Z J of CBPRNG = (K , Z J , S, f ,U , g) is a singleton (i.e., Z J = {0}), then
we will write g in the form g : K × S → U , and then, we say that CBPRNG has a simple
output multiplicity. In this case, we will write also CBPRNG in the form CBPRNG =
(K , S, f ,U , g). For the sake of simplicity, in this paper we consider CBPRNGs having a
simple output multiplicity.2

Given an output function g : K × S → U having a simple output multiplicity and assume
that U ⊆ S. We say that the output function g′ : K × S → U is a double round of the
output function g : K × S → U if for every k ∈ K , s ∈ S, g′(k, s) = g(k, g(k, s)). In
general, we say that g′ : K × S → U is a t(> 1)-times round of g : K × S → U if for
every k ∈ K , s ∈ S, g′(k, s) = g(k, h(k, s)) such that h : K × S is a (t − 1)-times round
of g : K × S. Finally, the single round of g : K × S → U is the function g : K × S → U
itself.

For CBPRNGs, we should have that g is complex and f is a simple counter with f (s) =
(s + 1) mod 2p , where p is the state size in bits and S = {0, . . . , 2p−1}[20]. Applying the
ideas of this construction, in this paper we consider CBPRNGs, where f is a counter, and g
is defined by composition of abstract finite automata.

Given a nonempty set �, put w = (a1, . . . , am) for every m > 1 and w = a1 · · · am with
(a1, . . . , am) ∈ �m . Consider a pair of nonempty sets �,�, a positive integer n > 0 and
functions f : �n × �n → �n, g : {w | w ∈ �n} × {z | z ∈ �n} → {w | w ∈ �n}.
Suppose that for every pair w ∈ �n, z ∈ �n , it holds that f (w, z) = g(w, z). Then, we say
that g represents f in one round. Moreover, if there exists a t ≥ 1 such that for every pair
w ∈ �n, z ∈ �n , it holds that f (w, zt ) = g(w, z), then we say that f represents g in t
rounds.

Theorem 4 Given a positive integer t ≥ 1, every key automaton transition function represents
in t ≥ 1 rounds an output function of a counter-based pseudorandom number generator
(having a simple output multiplicity).

Proof As the proof of our statement, we give a construction of an appropriate counter based
PRNG (CBPRNG) CBPRNG = (K , S, f ,U , g) having this property. First of all, consider a
counter which realizes the state function as f (n) = n+1 mod m, wherem is a sufficiently
large positive integer (preferably m = 2128), and n is given as a fixed-length binary number
(preferably with 128-bit length).

Thus, the state space is S = {0, . . . ,m − 1}.
The elements of the state set S of CBPRNG may be considered binary strings of fixed

length. We assume that the state space S of CBPRNG coincide with {w | w ∈ �n}, where
1 Of course, for every pair s1, s2, s1 + s2 mod |S| denotes the element of S having the numeric value of the
sum n1 + n2, where n1 is the numeric value of s1 and n2 is the numeric value of s2.
2 By an easy extension, our construction can be extended for the non-simple case.
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�n is the input set of K for an appropriate positive integer n ≥ 1. Moreover, we also assume
that the output set U and also the key space of CBPRNG coincides with K .

In addition, assume that the output function g : K × S → U of CBPRNG is given as
g(k, s) = δK(k, st )), k ∈ K , s ∈ S for every k ∈ K , s ∈ S and fixed t ≥ 1. Obviously, then
the transition function δK represents the output function g. This completes the proof.

By Proposition 3 and Theorem 4, we can derive the following.

Proposition 5 Let CBPRNG = (K , S, f ,U , g) be a counter based pseudorandom number
generator with simple output multiplicity (i.e., Z J = {0}) and assume that the transition
function of a given key automaton represents the output function of CBPRNG. If CBPRNG
is of a single round, then it has a full cycle.

Proof Recall that, by definition, for every key automaton, the transition matrix of its basic
automaton forms a Latin square. Therefore, by Theorem 2, the transition matrix of all key
automata has this property. Thus, all rows and all columns of their transition matrix of K are
a permutation of its state set.

Of course, because the state transition f of CBPRNG (having a simple output multi-
plicity) is a simple counter with f (s) = (s + 1) mod 2p , where p is the state size in
bits and S = {0, . . . , 2p−1}, f has a full cycle. Moreover, by Theorem 2 the key automa-
ton K = (�n, �n, δK), n > 1 is a permutation automaton; therefore, for every input sign
x ∈ �n , hx : �n → �n with hx (y) = δK(x, y) is a bijective mapping of �n onto itself.
Because t = 1, δK(x, y) = g(x, y). Obviously, then the function gx = g(x, y), y ∈ �n ,
where g denotes the output function of CBPRNG, is also bijective. By Proposition 3, that
means that CBPRNG (having a simple output multiplicity) has a full cycle.

Remark 1 Consider a key automaton K = (�n, �n, δK) such that its transition function
represents the output function g of a given CBPRNG in t rounds. Then, g is of the form
g : {w | w ∈ �n} × {z | z ∈ �n} → {w | w ∈ �n}. Then, the function fw with
fw(z) = δK(w, zt ) for t > 1 is not bijective in general. Therefore, if t > 1, then the
represented output function of CBPRNG does not necessarily have a full cycle.

4 Simple chain automaton random number generator

In this section, we give an example and then we study the security of our CBPRNG which
we call simple chain automaton random number generator (SCARNG). The main advantage
of this generator is its simplicity and the fact that it can be easily implemented for IoT devices.
The very simple structure of the proposed generator is shown in Fig. 2.

The proposed automaton uses only fundamental arithmetic operations. A detailed pseu-
docode of SCARNG is shown in Algorithm 1.
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Algorithm 1 Simple chain automaton random number generator
1: procedure SCARNG(SIZE, INPUT, AUT, ISTATE)
2: for k = 0 → SI Z E do
3: for m = 0 → 127 do
4: for i = 0 → 15 do
5: ST AT E[i] ← I ST AT E[i]
6: end for
7: x ← 0
8: l ← 16
9: for j = 0 → 15 do
10: l ← l − 1
11: if x = 0 then
12: y ← I N PUT [l] + 1
13: if y > 255 then
14: I N PUT [l] ← 0
15: x ← 0
16: else
17: I N PUT [l] ← y
18: x ← 1
19: end if
20: end if
21: end for
22: for r = 0 → ROUND − 1 do
23: for i = 0 → 15 do
24: a ← ST AT E[P[i][15]]
25: b ← I N PUT [i]
26: x ← AUT [a][b]
27: for j = 15 → 1 do
28: a ← ST AT E[P[i][ j − 1]]
29: x ← AUT [a][x]
30: end for
31: ST AT E[i] ← x
32: end for
33: end for
34: for i = 0 → 15 do
35: OARRAY [m][i] ← ST AT E[i]
36: end for
37: end for
38: PRINT(OARRAY )
39: end for
40: end procedure

4.1 Algorithm description

The procedure parameters are the number of random blocks (SI Z E), the input word
(I N PUT ) of the key automaton, the transition matrix of the basic automaton (AUT ), and
the initial (seed) state of the key automaton (I ST AT E). Each of the generated random blocks
consists of 128 random strings, and each of the random strings is 128 bits long. Thus, the size
of the generated randomblocks is 2048 byte. The key automatonK = (�n, �ROUND×n, δK)

is a ROUND-component temporal power of an automaton B = (�n, �n, δB) which is the
16-component chain power of the basic automaton A = (�n, �n, δ) and this basic automa-
ton has a 256× 256-type transition matrix which forms a Latin square. Thus, each state and
input sign can be represented by a 8-bit binary string. We shall use a 16 × 16-type auxiliary
matrix P , where its first row consists of the vector 0, 1, . . . , 15 and all the others are cyclic
permutations of the previous one. We will consider ROUND = 1, 2, 3 rounds of the output
function of CBPRNG. The vector INPUT consisting of 16 components represents a single
input sign of the key automaton.
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Fig. 2 Simple chain automaton random number generator (SCARNG) with r rounds

4.2 Toy example

In this section, we show a simple example. Consider the following transition table of an
automaton A = ({0, 1, 2, 3}, {0, 1, 2, 3}, δ)3:

δ 0 1 2 3

0 1 2 3 0
1 3 0 1 2
2 2 3 0 1
3 0 1 2 3

For the sake of simplicity assume that n = 3, i.e., the key automaton consists of the
three-factor chain power of A, moreover, let the number of rounds be 3. Assume that the
subsequent states of the counter, which are the subsequent input signals of the key automa-
ton, are determined by applying the formula st+1 = st + 1( mod 64), or in quaternary
number system, st+1 = st + 1( mod 1000), such that the generated pseudorandom num-
ber is a three-digit quaternary number. Let the core state s0, i.e., the initial state of the
counter be 203. Therefore, in this case (applying the quaternary number system for cal-
culations), st+1 = st + 1( mod 1000), i.e., the first input signal of the key automaton is

3 The states of A are labeled with the elements of the first row, and the input signals are labeled with the
elements of the first column of the transition table as usual. Omitting the first row and first column of this
table, we receive the transition matrix ofA.
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Table 1 Parameters used for
NIST test suite

Test name Block length

Block frequency 128

Non-overlapping template 9

Overlapping template 9

Approximate entropy 10

Serial 16

Linear complexity 500

203+1 = 210 in the quaternary number system. Let 123 be a fixed state of the key automaton
(consisting of the state’s first, second, and third component automaton of the chain power of
A represented by the key automaton). In that case, with a1a2a3 = 123, x1x2x3 = 210,
a′
1 = δ(a1, δ(a2, δ(a3, x1))) = δ(1, δ(2, δ(3, 2))) = δ(1, δ(2, 1)) = δ(1, 1) = 0,

a′
2 = δ(a2, δ(a3, δ(a′

1, x2))) = δ(2, δ(3, δ(0, 1))) = δ(2, δ(3, 3)) = δ(2, 3) = 2,
a;3 = δ(a3, δ(a′

1, δ(a
′
2, x3))) = δ(3, δ(0, δ(2, 0))) = δ(3, δ(0, 3)) = δ(3, 0) = 0.

Therefore, in the second round we have a1a2a3 = 020, and as before, x1x2x3 = 210.
Thus, we get
a′
1 = δ(a1, δ(a2, δ(a3, x1))) = δ(0, δ(2, δ(0, 2))) = δ(0, δ(2, 2)) = δ(0, 0) = 1,

a′
2 = δ(a2, δ(a3, δ(a′

1, x2))) = δ(2, δ(0, δ(1, 1))) = δ(2, δ(0, 0)) = δ(2, 1) = 1,
a′
3 = δ(a3, δ(a′

1, δ(a
′
2, x3))) = δ(0, δ(1, δ(1, 0))) = δ(0, δ(1, 2)) = δ(0, 3) = 0.

Hence, in the third round we have a1a2a3 = 110, and as previously, x1x2x3 = 210.
Consequently, we get the first pseudorandom number in the following way.
a′
1 = δ(a1, δ(a2, δ(a3, x1))) = δ(1, δ(1, δ(0, 2))) = δ(1, δ(1, 2)) = δ(1, 3) = 1,

a′
2 = δ(a2, δ(a3, δ(a′

1, x2))) = δ(1, δ(0, δ(1, 1))) = δ(1, δ(0, 0)) = δ(1, 1) = 0,
a′
3 = δ(a3, δ(a′

1, δ(a
′
2, x3))) = δ(0, δ(1, δ(0, 0))) = δ(0, δ(1, 1)) = δ(0, 0) = 1.

Then, the first pseudorandom number will be the three-digit quaternary number 101.
Then, we either finish our procedure or generate the second pseudorandom number.When

the second pseudorandom number is generated, the procedure is repeated with one and the
same state a1a2a3 = 123 of the key automaton, and its input signal st+2 = st+1 + 1(
mod 1000) = 210 + 1( mod 1000) = 211 (given in quaternary number system), etc.

5 Experimental results

We implemented Algorithm SCARNG in C++ in order to measure the actual running time
and statistical properties of the generator. The test environment was a 2017 MacBook Pro
equipped with 7th Generation Kaby Lake 2.9 GHz Intel Core i7 processor (7820HQ) using
16 GB RAM. We have generated 1 GB of random data and applied the NIST statistical
randomness test.

5.1 NIST test

The National Institute of Standards and Technology (NIST) published a statistical package
consisting of 15 statistical tests that were developed to test the randomness of arbitrarily long
binary sequences produced by either hardware- or software-based cryptographic random or
pseudorandom number generators [18]. In case of each statistical test, a set of p-values is
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produced. Given a significance level α, if the p-value is less than or equal to α, then the test
suggests that the observed data are inconsistent with our null hypothesis, i.e., the ’hypothesis
of randomness,’ so we reject it.

A significance level of α = 0.01was used, as it is a standard value for such problems in the
field of cryptography and PRNG testing. If the significance level, α, is set to 0.01, it implies
that one can expect to reject one sequence out of 100 sequences under the null hypothesis.
Therefore, a p-value greater than 0.01 would suggest that the sequence is random, while a
p-value less than or equal to 0.01 would indicate that the sequence is non-random.

One of the most important characteristics of a PRNG is the indistinguishability from true
random sources. This means that any statistical tests applied to the output of the PRNG
should not reveal any computational differences between it and a truly random source. In
order to test the quality of SCARNG, the NIST SP-800-22 SP statistical tests were performed
using the same parameters as for the AES candidates in order to achieve the most reliable and
comparable results. All parameters such as the sequence length, sample size, and significance
level were fixed. Namely, these parameters were set to 220 bits, 300 binary sequences, and
α = 0.01, respectively. The other input parameters are shown in Table 1.

5.2 Minimum number of rounds

Applying only 3 rounds, it was found that the SCARNG algorithm successfully met all of
the requirements outlined by the NIST statistical test suite. It has turned out that the NIST
statistical test suite is unable to distinguish the output of the algorithm (when usingROUND=
3) from true random sources. Without precise parallelization, the algorithm running time was
27s to generate 1GBof randomdata. The exact p-values of the evaluation of the SCARNG for
ROUND = 3 are shown in Table 2.We also tested the uniformity of the distribution of the p-
values obtained by the statistical tests included in NIST. The uniformity of p-values provided
no additional information about the applied PRNG. We have also shown that the proportions
of binary sequences which passed the 0.01 level lie in the required confidence interval. For
further reading about the testing methodology, we refer to the NIST documentation [18].
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