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We consider the general Liénard-type equation ü = ∑n
k=0 fku̇k for n ≥ 4. This equation naturally admits the Lie

symmetry ∂
∂ t

. We completely characterize when this equation admits another Lie symmetry, and give an easily

verifiable condition for this on the functions f0, . . . , fn. Moreover, we give an equivalent characterization of this

condition. Similar results have already been obtained previously in the cases n = 1 or n = 2. That is, this paper

handles all remaining cases except for n = 3.

Keywords: second order ordinary differential equation; Liénard-type equation; Levinson–Smith-type equation;
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1. Introduction

In this paper we consider the Liénard-type second order ordinary differential equation

ü =
n

∑
k=0

fk(u)u̇
k
, (1.1)

where the dot denotes differentiating by the independent variable t representing the time. Eq. (1.1) is

a special case of the Levinson–Smith-type equation ü = g1 (u, u̇) u̇+g0(u) [1, G.3, p. 198–199], for

which existence and uniqueness of a limit cycle have been established under certain conditions [2,3].

Eq. (1.1) is a common generalization of the Rayleigh-type equation ü+F(u̇)+ u = 0 when F

is a polynomial, the classical Liénard-type equation ü = f1(u)u̇+ f0(u), and the quadratic Liénard-

type equation ü = f2(u)u̇
2 + f1(u)u̇ + f0(u). These equations come up quite often in Physics or

Biology. Rayleigh-type systems play an important role in the theory of sound [4] or in the theory

of non-linear oscillations [5, Chapter 2.2.4]. Classical Liénard-type equations arise in the model of

the van der Pol oscillator applied in physical and biological sciences [6], but electric activity of the

heart rate [7] or nerve impulses are modelled by a Liénard-type model, as well [8,9] or [10, Chapter

7]. In [11] the population of Easter Island is modelled, and the system of differential equations is

then reduced to a second order quadratic Liénard-type equation. One can even find applications in

economy [12–15].

Symmetry analysis is a very useful tool developed to understand and solve differential equations.

Several examples come from Physics (see e.g. [16,17] for comprehensive studies on the topic), and

an increasing number of examples from Biology (see e.g. [11, 18–20]). Finding some symmetries

for a differential equation can be used to derive an appropriate change of coordinates which then

helps to eliminate the independent variables or to decrease the order of the system.
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In many cases mentioned above (e.g. the Fitzhugh–Nagumo model [8, 9] or the model for the

population of Easter Island [11]) the model is based on a first order system of two equations equiva-

lent to a second order Liénard equation. In such a case, one might benefit to consider the equivalent

second order system, which would only admit a finite dimensional Lie symmetry group instead of

an infinite one. If this Lie group is at least two-dimensional, then pulling the symmetries back to

the original system could yield two independent symmetries of the original system, and solutions

can be determined by quadratures. This method has been applied successfully in several situations

in the past (see e.g. [11, 18, 20] for some recent examples in Biology). This motivates to study the

Lie symmetries of (1.1).

Pandey, Bindu, Senthilvelan and Lakshmanan [21,22] considered the classical Liénard equation

ü = f1(u)u̇+ f0(u), (1.2)

where f1 and f0 are arbitrary, infinitely many times differentiable functions. They classified when

(1.2) has a 1, 2, 3, or 8 dimensional Lie symmetry group depending on f0 and f1. Then Ti-

wari, Pandey, Senthilvelan and Lakshmanan [23, 24] classified the dimension of the Lie symmetry

group of quadratic Liénard-type equations without u̇ term, and then more generally [25] the mixed

quadratic Liénard-type equation

ü = f2(u)u̇
2 + f1(u)u̇+ f0(u), (1.3)

where f0, f1 and f2 are arbitrary, infinitely many times differentiable functions. Further, Paliathana-

sis and Leach [26] showed how one can simplify (1.3) by removing f2 from (1.3) in the case f1 = 0.

The question naturally arises: what are the Lie symmetries if the right-hand side of (1.3) is a higher

order polynomial in u̇?

In this paper we consider (1.1) for n ≥ 4 and for differentiable functions fk depending only on u,

and not on t. Note, that (1.1) is autonomous, therefore the tangential Lie algebra L of the Lie group

of all its symmetries always contains the 1-dimensional subalgebra generated by the vector field
∂
∂ t

. Determining another generator of L would then lead to a solution by quadratures of (1.1), and

of any first order system equivalent to it. In Theorem 3.1 (see Section 3 for details) we completely

characterize the case when (1.1) admits a more than 1 (in fact, 2) dimensional symmetry group. In

particular, we give conditions (3.1–3.4) such that the symmetry group is 2-dimensional if and only

if these conditions hold.

Here, conditions (3.1–3.3) are natural, but the meaning of the system (3.4) seems less intuitive,

even though the system (3.4) is easily verifiable for a particular choice of F . In Theorem 4.1 (see

Section 4 for details) we provide a necessary and sufficient condition for f0, . . . , fn to satisfy (3.4).

It turns out that f0, . . . , fn satisfy (3.4) if and only if they are expressible by F and some constants.

2. The symmetry condition

We formulate the symmetry condition for (1.1) in this section. Consider (1.1) on the plane (t,u),

where t is the independent variable, and u is the dependent variable. Further, the computations will

be slightly easier if we consider the right-hand side as an infinite sum ∑k fku̇k = ∑∞
k=−∞ fku̇k, where

fk = 0 if k < 0 or k > n.
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The general form of an infinitesimal generator of a symmetry of (1.1) has the form

X = ξ (t,u)
∂

∂ t
+η(t,u)

∂

∂u
. (2.1)

Let D denote the total derivation by t, that is Dξ = ξt + u̇ξu, Dη = ηt + u̇ηu. We use the convention

of writing partial derivatives into the lower right index. Then the first prolongation of X is

X1 = ξ
∂

∂ t
+η

∂

∂u
+(Dη − u̇Dξ )

∂

∂ u̇
= ξ

∂

∂ t
+η

∂

∂u
+
(

ηt +(ηu −ξt) u̇−ξuu̇2
) ∂

∂ u̇
.

Further, let

S1 =
∂

∂ t
+ u̇

∂

∂u
+

(

∑
k

fku̇k

)

∂

∂ u̇
,

be the spray corresponding to the differential equation (1.1). The vector field (2.1) is an infinitesimal

symmetry of (1.1) if and only if its first prolongation X1 satisfies the Lie bracket condition

[X1 −ξ S1
,S1] = 0 (2.2)

on the space (t,u, u̇) (cf. [16, Chapter 4, §3]). Substituting X1 and S1 into (2.2) we obtain

0 =
[

X1 −ξ S1
,S1
]

=
(

(η −ξ u̇)
(

∑
k

fku̇k
)

u
+
(

ηt +(ηu −ξt) u̇−ξuu̇2 −ξ
(

∑
k

fku̇k
)

)(

∑
k

fku̇k
)

u̇

−
(

ηt +(ηu −ξt) u̇−ξuu̇2 −ξ
(

∑
k

fku̇k
))

t
− u̇
(

ηt +(ηu −ξt) u̇−ξuu̇2 −ξ
(

∑
k

fku̇k
))

u

−
(

∑
k

fku̇k
)(

ηt +(ηu −ξt) u̇−ξuu̇2 −ξ
(

∑
k

fku̇k
))

u̇

) ∂

∂ u̇

=
(

−ηtt +(ξtt −2ηtu) u̇+(2ξut −ηuu) u̇2 +ξuuu̇3

+∑
k

(

f ′kη +(k+1) fk+1ηt +(k−1) fkηu +(2− k) fkξt +(4− k) fk−1ξu

)

u̇k
) ∂

∂ u̇
,

therefore the symmetry condition is

−ηtt + f ′0η + f1ηt − f0ηu +2 f0ξt

+
(

ξtt −2ηtu + f ′1η +2 f2ηt + f1ξt +3 f0ξu

)

· u̇

+
(

2ξtu −ηuu + f ′2η +3 f3ηt + f2ηu +2 f1ξu

)

· u̇2

+
(

ξuu + f ′3η +4 f4ηt +2 f3ηu − f3ξt + f2ξu

)

· u̇3

+∑n−1
k=4

(

f ′kη +(k+1) fk+1ηt +(k−1) fkηu +(2− k) fkξt +(4− k) fk−1ξu

)

· u̇k

+
(

f ′nη +(n−1) fnηu +(2−n) fnξt +(4−n) fn−1ξu

)

· u̇n

+(3−n) fnξu · u̇
n+1= 0. (2.3)

3. Lie symmetry algebra

We consider (1.1) for n ≥ 4 and for differentiable functions fk depending only on u, and not on t.

In Theorem 3.1 we completely characterize the case when (1.1) admits more than 1 (in fact, 2)

dimensional symmetry group. We prove following
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Theorem 3.1. Consider (1.1) for some n ≥ 4 and for f0, . . . , fn : I → R being differentiable func-

tions such that fn is not constant zero on the open interval I ⊆ R. Then the Lie symmetry algebra

L of (1.1) is exactly 1 dimensional, unless there exists a constant a ∈ R, an open interval U ⊆ I,

and a three-times differentiable function F : U → R such that for all u ∈U we have

fn(u) 6= 0. (3.1)

F(u) 6= 0, (3.2)

F ′(u) = | fn(u)|
1

n−1 , (3.3)

and with the notation g(u) = (n−2)F(u)
(n−1)F ′(u) the following hold:

−a2g+ f ′0g+a f1g+(−1) f0g′+2 f0 = 0, (3.4a)

a
(

1−2g′
)

+ f ′1g+2a f2g+ f1 = 0, (3.4b)

−g′′+ f ′2g+3a f3g+ f2g′ = 0, (3.4c)

f ′kg+(k+1)a fk+1g+(k−1) fkg′+(2− k) fk = 0, 3 ≤ k ≤ n−1. (3.4d)

Further, if both F1 and F2 satisfy conditions (3.1–3.4), then F1 = F2.

Remark 3.1. (Generator of the symmetry algebra L of (1.1).) In case conditions (3.1–3.4)

1. do not hold, then the symmetry algebra L is generated by ∂
∂ t

,

2. hold, then the 2 dimensional Lie symmetry algebra L is generated

(a) by ∂
∂ t

and t ∂
∂ t
+g(u) ∂

∂u
if a = 0, or

(b) by ∂
∂ t

and eat ∂
∂ t
+aeatg(u) ∂

∂u
if a 6= 0.

Proof. The left-hand side of (2.3) has to be zero for all (t,u, u̇). As ξ , η , fk (0 ≤ k ≤ n) do not

depend on u̇, (2.3) is a polynomial in u̇. Thus, (2.3) holds if and only if each of its coefficients

is zero. Since fn is not constant 0 on the interval I, there exists an open interval U ′ ⊆ I such that

fn(u) 6= 0 for u ∈U ′. Thus, from the coefficient of u̇n+1 by n ≥ 4 we obtain

ξu = 0.

In particular, ξ only depends on t and not on u. Substituting ξu = 0 into (2.3) and considering the

coefficients, we obtain that

−ηtt + f ′0η + f1ηt +(−1) f0ηu +2 f0ξt = 0, (3.5a)

(ξtt −2ηtu)+ f ′1η +2 f2ηt + f1ξt = 0, (3.5b)

−ηuu + f ′2η +3 f3ηt + f2ηu = 0, (3.5c)

f ′kη +(k+1) fk+1ηt +(k−1) fkηu +(2− k) fkξt = 0, 3 ≤ k ≤ n−1 (3.5d)

f ′nη +(n−1) fnηu +(2−n) fnξt = 0. (3.5e)

In the following we analyze the system (3.5). Note, that ξ = c, η = 0 (for any c ∈R) satisfies (3.5).

Further, if η = 0 then from (3.5e) we have ξt = 0 and ξ = c for some c ∈ R. Thus, in the following

we assume that η is not constant 0.
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Consider (3.5e) first. Now, fn is nonzero on the open interval U ′, therefore either fn(u) > 0 for

all u ∈U ′ or fn(u) < 0 for all u ∈U ′. Choose ε ∈ {1,−1} such that ε fn(u) > 0 for all u ∈U ′, that

is | fn|= ε fn. Then we have

| fn|
′ η +(n−1) | fn|ηu +(2−n) | fn|ξt = 0.

Multiplying by 1
n−1

| fn|
2−n
n−1 yields

| fn|
′ · | fn|

2−n
n−1

(n−1)
η + | fn|

1
n−1 ηu =

n−2

n−1
| fn|

1
n−1 ξt .

Here, the left-hand side is the u-derivative of | fn|
1

n−1 η , hence

(

| fn|
1

n−1 η
)

u
=

n−2

n−1
| fn|

1
n−1 ξt ,

| fn|
1

n−1 η =
n−2

n−1
ξt

∫

| fn|
1

n−1 du,

η = ξt

(n−2)
∫

| fn|
1

n−1 du

(n−1) | fn|
1

n−1

.

Let F : U ′ → R be a function defined as in (3.3), that is

F ′(u) := | fn(u)|
1

n−1 ,

and let g be defined as in Theorem 3.1, that is

g(u) :=
(n−2)F(u)

(n−1)F ′(u)
.

Thus we obtained that

η = g(u) ·ξt(t). (3.6)

Note, that g(u) cannot be constant 0 on U ′ (otherwise both F and F ′ = | fn|
1

n−1 were constant 0), thus

there exists an open interval U ⊆U ′ such that F(u) 6= 0 for all u ∈U , and hence g(u) 6= 0 (u ∈U ).

By substituting (3.6) into (3.5d) we have

−(k+1) fk+1gξtt =
(

f ′kg+(k−1) fkg′+(2− k) fk

)

ξt .

In particular, for k = n−1 we have fn(u)g(u) 6= 0 for all u ∈U , thus

ξtt =−
f ′n−1g+(n−2) fn−1g′+(3−n) fn−1

n fng
ξt .

Now, fn, fn−1, and g only depend on u, and ξtt and ξt only depend on t. Therefore there exists a ∈R

such that

a =−
f ′n−1g+(n−2) fn−1g′+(3−n) fn−1

n fng
, (3.7)

ξtt = aξt , (3.8)
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or else ξt = 0 implying η = 0 by (3.6), a contradiction. Thus,

ξt = ceat
, (3.9)

η = ceatg(u) (3.10)

for some c ∈R. Substituting (3.9) and (3.10) into (3.5), one obtains

(−a2g+ f ′0g+a f1g+(−1) f0g′+2 f0) · ceat = 0,

(a
(

1−2g′
)

+ f ′1g+2a f2g+ f1) · ceat = 0,

(−g′′+ f ′2g+3a f3g+ f2g′) · ceat = 0,

( f ′kg+(k+1)a fk+1g+(k−1) fkg′+(2− k) fk) · ceat = 0, 3 ≤ k ≤ n−1.

Thus, either f0, f1, f2, . . . fn,g,F satisfy the conditions (3.1–3.4), or else c = 0, implying ξt = 0 and

η = 0, a contradiction.

Finally, assume that F1 and F2 both satisfy conditions (3.2–3.3) on U . Then let g1 and g2 be

defined from F1 and F2, and let a1 and a2 be defined using (3.7). Let ξ1, ξ2 be such that (ξi)t = eait ,

let ηi = eaitgi(u), and let Xi = ξi
∂
∂ t
+ηi

∂
∂u

for i = 1,2. Further, let ξ = ξ1 − ξ2, η = η1 −η2, and

X = ξ ∂
∂ t
+η ∂

∂u
. Now, if F1 and F2 both satisfy conditions (3.2–3.3) and (3.4), then both X1 and X2 are

elements of the Lie symmetry algebra L , and thus X = X1−X2 = (ξ1 −ξ2)
∂
∂ t
+(η1 −η2)

∂
∂u

∈L ,

as well. However, we have proved that if either ξt 6= 0 or η 6= 0, then they are of the form (3.9) and

(3.10). Thus, ea1t − ea2t is of the form ceat for some a,c ∈R, that is a1 = a2 and c = 0. Then ξt = 0,

implying η = 0 by (3.6), which yields g1 = g2. Finally, by F ′
1 = F ′

2, the definition of g immediately

implies

0 = g1 −g2 =
n−2

(n−1)F ′
1

(F1 −F2) ,

and hence F1 = F2. This finishes the proof of Theorem 3.1. �

4. Equivalent description of the conditions

In this paragraph we provide a necessary and sufficient condition for f0, . . . , fn to satisfy (3.4). We

have the following

Theorem 4.1. Let U ⊆ R be an open interval, f0, . . . , fn,F : U → R be functions satisfying (3.1–

3.3), g as introduced in Theorem 3.1 and let ε , ν ∈ {1,−1}, a ∈ R be real constants such that

| fn|= ε fn, |F|= νF. Then f0, . . . , fn,F,g satisfy (3.4) if and only if there exist real constants bk and

functions Ak, Bk : U → R (0 ≤ k ≤ n) where bn = ε
(

n−1
n−2

)1−n
, An is constant 0,

Ak(u) =
n−k

∑
i=1

(−ν)i

(

k+ i

i

)

aibk+i |F(u)|
i(n−1)

n−2 , (0 ≤ k ≤ n−1), (4.1)
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Á. Figula et al. / The Lie group of the general Liénard-type equation

and

Bk(u) = Ak(u), (3 ≤ k ≤ n) (4.2a)

B2(u) = νA2(u), (4.2b)

B1(u) = A1(u)−a |F(u)|
n−1
n−2 (2b2(1−ν)+1), (4.2c)

B0(u) = A0(u)+a2 (1+b2(1−ν))ν |F(u)|
2(n−1)

n−2 , (4.2d)

such that f0, . . . , fn are of the form

fk(u) = (bk +Bk(u)) ·

(

n−1

n−2

)k−1

· |F(u)|
k−n
n−2 ·

(

F ′(u)
)k−1

, (0 ≤ k ≤ n, k 6= 2) (4.3a)

f2(u) = (b2 +B2(u)) ·
n−1

n−2
·

F ′(u)

F(u)
+

F ′(u)

F(u)
−

F ′′(u)

F ′(u)
. (4.3b)

In particular, if a = 0, then Bk(u) = 0 for all u ∈U (0 ≤ k ≤ n), and thus f0, . . . , fn,F,g satisfy (3.4)

if and only if there exist real constants b′k (0 ≤ k ≤ n) such that

fk(u) = b′k · |F(u)|
k−n
n−2 ·

(

F ′(u)
)k−1

, (0 ≤ k ≤ n,k 6= 2)

f2(u) = b′2 ·
F ′(u)

F(u)
−

F ′′(u)

F ′(u)
.

Further, if F is positive on U, then

Bk(u) = Ak(u), (2 ≤ k ≤ n)

B1(u) = A1(u)−a(F(u))
n−1
n−2 ,

B0(u) = A0(u)+a2 (F(u))
2(n−1)

n−2 .

First, in Section 4.1 we show that Ak (0 ≤ k ≤ n) defined by (4.1) satisfy a recursive system

of differential equations. The details are contained in Lemma 4.1. Then in Section 4.2 we consider

the case a = 0, when (3.4) results in homogeneous equations for fk. Finally, in Section 4.3 we

prove Theorem 4.1 by considering the general case a 6= 0 and applying the method of variation of

parameters.

4.1. Auxiliary functions

Let us use the notations of Theorem 4.1.

Lemma 4.1. Let An(u) = 0. For all 0 ≤ k ≤ n−1 a particular solution of the ordinary differential

equation

Ak(u)
′ =−(k+1)a

(

n−1

n−2

)

|F(u)|
1

n−2 F(u)′ (bk+1 +Ak+1(u)) , (4.6)

where bk+1 is an arbitrary real constant, is the function Ak defined by (4.1) in Theorem 4.1.
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Proof. We prove (4.1) by induction on m = n− k. For m = 1 we have

A′
n−1 =−nabn

(

n−1

n−2

)

|F|
1

n−2 F ′
,

and a particular solution is

An−1 =−νnabn |F|
n−1
n−2 .

This proves (4.1) for k = n−1. Assume now, that (4.1) holds for an integer m = n− k, 1 ≤ m ≤ n,

that is

An−m =

(

m

∑
i=1

(−ν)i

(

n−m+ i

i

)

aibn−m+i |F|
i(n−1)

n−2

)

.

Putting this into (4.6) for k = n− (m+1) one obtains

A′
n−(m+1) =−(n−m)a

(

n−1

n−2

)

|F|
1

n−2 F ′ ·

(

bn−m +

(

m

∑
i=1

(−ν)i

(

n−m+ i

i

)

aibn−m+i |F|
i(n−1)

n−2

))

.

By integrating, one can obtain a particular solution as

An−(m+1) =−ν(n−m)abn−m |F|
n−1
n−2 −ν

m

∑
i=1

(−ν)i n−m

i+1

(

n−m+ i

i

)

ai+1bn−m+i |F |
(i+1)(n−1)

n−2

=−ν(n−m)abn−m |F|
n−1
n−2 +

m+1

∑
j=2

(−ν) j n−m

j

(

n−m−1+ j

j−1

)

a jbn−m−1+ j |F|
j(n−1)
n−2

=
m+1

∑
i=1

(−ν)i

(

n− (m+1)+ i

i

)

aibn−(m+1)+i |F|
i(n−1)

n−2 .

Hence, (4.1) holds for k = n− (m+1) and by induction it holds for all integers 0 ≤ k ≤ n−1. �

4.2. The homogeneous case

Assume a = 0. Now, (3.4) takes the form

f ′0g+(−1) f0g′+2 f0 = 0, (4.7a)

f ′1g+ f1 = 0, (4.7b)

−g′′+ f ′2g+ f2g′ = 0, (4.7c)

f ′kg+(k−1) fkg′+(2− k) fk = 0, (3 ≤ k ≤ n−1). (4.7d)
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Note, that (4.7d) for k = 0,1 gives (4.7a) and (4.7b). Now, g(u) 6= 0 for u ∈U , hence the solution of

(4.7d) is

fk = exp

(

∫

(1− k)g′+(k−2)

g

)

= exp

(

(1− k) ln |g|+(k−2)

∫

1

g

)

= |g|1−k · exp

(

(k−2)

∫

(n−1)F ′

(n−2)F

)

= |g|1−k · exp

(

(k−2) (n−1)

n−2

∫

(ln |F |)′
)

= bk · |g|
1−k · |F|

(k−2)(n−1)
n−2 = bk ·

(

n−1

n−2

)k−1

·
(

F ′
)k−1

· |F|
k−n
n−2 (4.8)

for some bk ∈ R (0 ≤ k ≤ n−1, k 6= 2). For k = 2 eq. (4.7c) has the form (−g′+ f2g)′ = 0, thus

f2 =
g′+b2

g
=

(

1+b2

n−1

n−2

)

·
F ′

F
−

F ′′

F ′
(4.9)

for some b2 ∈ R. This proves Theorem 4.1 in the case a = 0 by selecting b′k = bk ·
(

n−1
n−2

)k−1
(0 ≤

k ≤ n,k 6= 2) and b′2 = 1+b2
n−1
n−2

.

4.3. The general (inhomogeneous) case

Proof. [Proof of Theorem 4.1] If a 6= 0, then (3.4d) is an inhomogeneous linear differential equation

for fk, and by (4.8) its general solution (by variation of parameters) is

fk = (bk +Bk) ·

(

n−1

n−2

)k−1

· |F|
k−n
n−2 · (F ′)k−1

, (4.10)

for some function Bk = Bk(u) and constant bk ∈ R. Write fk in the form fk = (bk +Bk)hk, where

hk =

(

n−1

n−2

)k−1

· |F |
k−n
n−2 · (F ′)k−1

.

Putting (4.10) into (3.4d) we obtain

(

(bk +Bk)h′kg+(k−1) (bk +Bk)hkg′+(2− k)(bk +Bk)hk

)

+B′
khkg+(k+1)a fk+1g = 0.

Now, hk is a particular solution of the homogeneous differential equation (4.7d), thus

(bk +Bk)h
′
kg+(k−1)(bk +Bk)hkg′+(2− k)(bk +Bk)hk = 0.

Since hk(u) 6= 0 for all u ∈U , Bk is a particular solution of the differential equation

B′
k =−

(k+1)a fk+1

hk

=−(k+1)a fk+1

(

n−1

n−2

)1−k

|F|
n−k
n−2 (F ′)1−k

, (3 ≤ k ≤ n−1). (4.11)

We prove by induction on m = n− k that Bk = Ak (3 ≤ k ≤ n− 1) by showing that Bk satisfies the

recursive system of differential equations (4.6) of Lemma 4.1. Let m = 1, that is k = n− 1. From
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(3.3) we have fn = ε(F ′)n−1. Applying (4.11) we obtain

B′
n−1 =−na fn

(

n−1

n−2

)2−n

(F ′)2−n |F |
1

n−2 =−naε

(

n−1

n−2

)2−n

|F|
1

n−2 F ′
. (4.12)

Comparing (4.12) and (4.6) for m = 1, we find B′
n−1 = A′

n−1 by choosing bn = ε
(

n−1
n−2

)1−n
. Hence,

a particular solution Bn−1 of the differential equation B′
n−1 = A′

n−1 is An−1. Therefore, for k = n−1

we have Bk = Ak.

Assume that for an integer 4 ≤ k ≤ n−1 Bk = Ak holds, thus from (4.10) for k = n−m+1 we

have

fn−m+1 = (bn−m+1 +An−m+1) ·

(

n−1

n−2

)n−m

· |F|
1−m
n−2 · (F ′)n−m

.

Putting this into (4.11) for k = n−m we obtain

B′
n−m(u) =−(n−m+1)a fn−m+1 ·

(

n−1

n−2

)1−n+m

· |F |
m

n−2 · (F ′)1−n+m

=−(n−m+1)a ·
n−1

n−2
· |F|

1
n−2 · (F ′)(bn−m+1 +An−m+1). (4.13)

Comparing (4.6) for k = n−m and (4.13) we see that B′
n−m = A′

n−m. Hence a particular solution

Bn−m of the differential equation B′
n−m = A′

n−m is An−m. Therefore for k = n−m one has Bk = Ak.

By induction, for all 3 ≤ k ≤ n−1 one has Bk = Ak. Thus (4.3a) holds for 3 ≤ k ≤ n−1, and (4.2a)

is proved.

We continue by proving (4.3b) and (4.2b), that is we show the condition on fk for k = 2. Now,

f2 is the solution of the inhomogeneous linear differential equation (3.4c). The general solution of

(3.4c) by (4.9) and by variation of parameters has the form

f2 =
g′+(b2 +B2)

g
(4.14)

for some function B2 = B2(u) and constant b2 ∈ R. Putting (4.14) into (3.4c), then using
(

1
g

)′
g =

− g′

g
, and the fact that

g′+b2

g
is the solution to the homogeneous differential equation (4.7c), one has

0 =−g′′+

(

g′+b2

g

)′

g+B′
2 +B2

(

1

g

)′

g+3a f3g+
g′+b2

g
g′+

B2

g
g′

=−g′′+

(

g′+b2

g

)′

g+
g′+b2

g
g′+B2

((

1

g

)′

g+
g′

g

)

+B′
2 +3a f3g

= B′
2 +3a f3g,

that is B′
2 =−3a f3g. Using the form of f3 given by (4.10) and the definition of g we obtain

B′
2 =−3a(b3 +B3)

n−1

n−2
ν |F|

1
n−2 F ′

. (4.15)

Now, A3 = B3 by (4.2a), thus comparing (4.15) and (4.6) for k = 2 yields B′
2 = νA′

2. Hence, a

particular solution B2 of the differential equation B′
2 = νA′

2 has the form B2 = νA2. Thus, (4.3b)

and (4.2b) hold.
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Now, we obtain the condition on fk for k = 1. The function f1 is the solution of the inhomoge-

neous linear differential equation (3.4b). The general solution of (3.4b) by (4.8) and by variation of

parameters is

f1 = (b1 +B1) |F|
1−n
n−2 (4.16)

for some function B1 = B1(u) and constant b1 ∈R. Putting (4.16) into (3.4b), and using the fact that

|F|
1−n
n−2 is the solution to the homogeneous differential equation (4.7b), one obtains

0 = a
(

1−2g′
)

+(b1 +B1)
(

|F |
1−n
n−2

)′
g+B′

1 |F|
1−n
n−2 g+2a f2g+(b1 +B1) |F|

1−n
n−2

= (b1 +B1)

(

(

|F|
1−n
n−2

)′
g+ |F|

1−n
n−2

)

+B′
1 |F|

1−n
n−2 g+a

(

1−2g′
)

+2a f2g

= B′
1 |F |

1−n
n−2 g+a(1−2g′)+2ag f2.

As f2 has the form (4.14) and B2 = νA2 by (4.2b), we obtain that

B′
1 =

|F|
n−1
n−2

g
a
(

2g′−1−2
(

g′+b2 +B2

))

=−a

(

n−1

n−2

)

ν |F|
1

n−2 F ′ (1+2b2 +2νA2)

=−2a(b2 +A2)

(

n−1

n−2

)

|F|
1

n−2 F ′−a(2b2 (ν −1)+ν)

(

n−1

n−2

)

|F |
1

n−2 F ′
. (4.17)

Comparing (4.17) and (4.6) for k = 1 we obtain

B′
1 = A′

1 −a(2b2(ν −1)+ν)
n−1

n−2
|F |

1
n−2 F ′

. (4.18)

Hence a particular solution B1 of the differential equation (4.18) has the form

B1 = A1 −a(2b2(1−ν)+1) |F|
n−1
n−2 . (4.19)

Therefore, (4.3a) holds for k = 1, and (4.2c) is proved.

Finally, we prove that (4.3a) holds for k = 0. For k = 0 the function f0 is the solution of the

inhomogeneous linear differential equation (3.4a). The general solution of (3.4a) by (4.8) and by

variation of parameters is

f0 = (b0 +B0)

(

n−2

n−1

)

|F |
−n
n−2
(

F ′
)−1

(4.20)

for some function B0 = B0(u) and constant b0 ∈R. Putting (4.20) into (3.4a), and using the fact that
(

n−2
n−1

)

|F|
−n

n−2 (F ′)−1
is the solution to the homogeneous differential equation (4.7a), we obtain

0 =−a2g+(b0 +B0)

(

n−2

n−1

)

(

|F|
−n

n−2
(

F ′
)−1
)′

g+B′
0

(

n−2

n−1

)

|F|
−n

n−2
(

F ′
)−1

g

+a f1g− (b0 +B0)

(

n−2

n−1

)

|F|
−n

n−2
(

F ′
)−1

g′+2(b0 +B0)

(

n−2

n−1

)

|F|
−n
n−2
(

F ′
)−1

= B′
0

(

n−2

n−1

)

|F|
−n

n−2
(

F ′
)−1

g−a2g+a f1g.
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As f1 has the form (4.16), and B1 has the form (4.19), we obtain

B′
0 =

(

a2 −a f1

)

(

n−1

n−2

)

|F|
n

n−2 F ′ =
(

a2 −a(b1 +B1) |F|
1−n
n−2

)

(

n−1

n−2

)

|F|
n

n−2 F ′

=
(

a2 −a
(

b1 +A1 −a(2b2 (1−ν)+1) |F |
n−1
n−2

)

|F|
1−n
n−2

)

(

n−1

n−2

)

|F|
n

n−2 F ′

=−a(b1 +A1)

(

n−1

n−2

)

|F |
1

n−2 F ′+a2 (2+2b2 (1−ν))

(

n−1

n−2

)

|F|
n

n−2 F ′

=−a(b1 +A1)

(

n−1

n−2

)

|F |
1

n−2 F ′+2a2 (1+b2 (1−ν))

(

n−1

n−2

)

|F|
n

n−2 F ′
. (4.21)

Comparing (4.21) and (4.6) for k = 0 we have

B′
0 = A′

0 +2a2 (1+b2 (1−ν))

(

n−1

n−2

)

|F|
n

n−2 F ′
. (4.22)

Therefore, a particular solution B0 of (4.22) is

B0 = A0 +a2(1+b2(1−ν))ν |F|
2(n−1)

n−2 .

Hence, (4.3a) holds for k = 0, and (4.2d) is proved. This finishes the proof of Theorem 4.1 �

5. Open problems

Several questions arise after determining the symmetries of (1.1). Indeed, if the Lie group of sym-

metries is at least two dimensional, then one can apply the two-dimensional solvable Lie group to

obtain the solutions of (1.1).

Problem 5.1. Determine the solutions of (1.1) provided fk (0 ≤ k ≤ n, n ≥ 4) satisfy the conditions

of Theorem 3.1.

The only remaining case for (1.1) not covered by Theorem 3.1 or by [21–26] is when n = 3.

Then one cannot immediately conclude ξu = 0 from (2.3), because the u̇4 term of (2.3) is identically

0. In fact, for n = 3 the symmetry condition translates to

−ηtt + f ′0η + f1ηt − f0ηu +2 f0ξt = 0,

(ξtt −2ηtu)+ f ′1η +2 f2ηt + f1ξt +3 f0ξu = 0,

(2ξtu −ηuu)+ f ′2η +3 f3ηt + f2ηu +2 f1ξu = 0,

ξuu + f ′3η +2 f3ηu − f3ξt + f2ξu = 0. (5.1)

A potential simplification of the system (5.1) might be to eliminate f2 from (5.1) by using a coordi-

nate change v= G(u), for some bijective, two-times differentiable G, for which G′′(u) = G′(u) f2(u)

is satisfied (see e.g. [26]). This, however, still does not give an immediate answer as to what the so-

lutions of (5.1) are.

Problem 5.2. Determine all symmetries (and solutions) of the autonomous differential equation

ü = f0 (u)+ u̇ f1 (u)+ u̇2 f2 (u)+ u̇3 f3 (u) ,

where f0, f1, f2, f3 are arbitrary continuous functions in u.
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059901, 2.

[25] A.K. Tiwari, S.N. Pandey, M. Senthilvelan and M. Lakshmanan, Lie point symmetries classification of

the mixed Liénard-type equation, Nonlinear Dynamics 82 (4) (2015) 1953–1968.

[26] A. Paliathanasis and P.G.L. Leach, Comment on “Classification of Lie point symmetries for quadratic

Liénard type equation ẍ+ f (x)ẋ2 + g(x) = 0” [J. Math. Phys. 54, 053506 (2013)] and its erratum [J.

Math. Phys. 55, 059901 (2014)]., J. Math. Phys. 57 (2) (2016) 024101, 2.

Co-published by Atlantis Press and Taylor & Francis

Copyright: the authors

198


