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In Search of Hidden Dimensions
The possible presence of further dimensions hidden 

in our three-dimensional-plus time world might help to 
elucidate countless physical and biological systems’ be-
haviors, from quantum entanglement to brain function. 
Nevertheless, suggestions concerning multidimensional 
arrangement of physical and biological systems do not 
deserve the role of scientific claims, unless the suggest-
ed additional dimensions can be verified via empirically 
testable hypotheses and experimental apparatus. Here 
we suggest that the widespread nonlinear dynamics and 
chaotic behavior of physical and biological collective 
systems might mirror further dimensions hidden in our 
world. Indeed, bringing together disparate knowledge 
from seemingly unrelated fields (brane cosmology, fluid 
dynamics, algebraic topology, computational topology, 
dynamic systems theory, logic and statistical mechanics), 
we show how, in logistic maps derived from nonlinear 
dynamical equations, the typical bifurcation diagrams 
might arise from linear flow paths, that intersect large-
sized hidden dimensions at the canonical phase param-
eter’s values between three and four. Therefore, chaotic 
dynamics suggests the existence of a further hidden di-
mension in our Universe. We also provide a thermody-
namic framework which suggests that the cosmic entro-
py is encompassed in a multidimensional manifold.

Introduction
In brane cosmology, strings and branes theories are 

based on the hypothetical existence of hidden dimensions 
surrounding us [1-3]. Our Universe could either lie on a 
spatial three-dimensional brane embedded in a higher 

dimensional bulk, or could be flanked by one or more 
multi-dimensional branes of different possible sizes and 
shapes [4,5]. Nothing is known about the scale of such 
extra dimensions. There is no consensus among theore-
ticians: some believe that extra-dimensions are warped 
in microns-scale manifolds, while others suggest that 
they could be of the size of millimeters, or hypothesize 
an indeterminately high hidden dimension surrounding 
us [6-8]. In order to assess the issue, we start from a re-
cently proposed topological model, which suggests that 
two particles entangled in an  n-dimensional space are 
un-entangled, when assessed in one dimension higher 
[9]. Because quantum entanglement occurs also between 
particles light-years away from each other, this means 
that, if their disentanglement occurs onto a further hid-
den dimension, the  extra-dimensional manifolds must 
be very large and must influence also our three-dimen-
sional-plus time (space-time) Universe. This observation 
points towards elusive higher dimensions surrounding 
us, able to intersect our space-time world and to interact 
with it. Such invisible (e.g., hidden by our standpoint of 
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observers embedded in a space-time structure), infinite 
curvilinear dimension(s) crosses and/or is embedded in 
the fabric of our world. In order to try to elucidate our 
rather speculative claim, we look for hints of hidden di-
mensions in natural phenomena occurring in our space-
time world, starting from the premise that extra-dimen-
sions might be emergent also in our lower-dimensional 
environment.

In particular, we evaluate the widespread complex, 
nonlinear physical and biological collective systems, 
equipped with non-equilibrium dynamics and charac-
terized by a large number of interacting and inter-depen-
dent components, spontaneous self-organization and 
self-organized criticality [10-14]. Many physical and bio-
logical collective nonlinear systems operate at the edge of 
chaos. A chaotic system displays dependence from initial 
conditions, positive Lyapunov exponents and attractors. 
They tend to live near a metastable state of second-phase 
transitions, characterized by infinite correlation length, 
countless functional dimensions [15], spontaneous ava-
lanches and universal power laws [16-18].

Here we show, based on claims from far-flung dis-
ciplines that the typical bifurcation diagram of logistic 
maps’ nonlinear dynamical equations might arise from 
the interaction of linear paths with large-sized hidden 
dimensions intersecting them. We introduce a multidi-
mensional approach that offers an explanation of some 
aspects of dynamic systems theory, in particular Hopf 
bifurcations, in terms of hidden dimensions, and also 
a method in order to evaluate the consequences of this 
strategy. We also provide a framework able to solve a 
long-standing issue. Indeed, the second law of thermo-
dynamics states that the thermodynamic entropy tends 
to increase in a closed system, so that the process is irre-
versible. We asked: why is thermodynamic entropy fre-
quently unchanged, during nonlinear phase transitions?

Materials and Methods
In order to assess and operationalize our hypothe-

sis that hidden dimensions, endowed in our space-time 
world, might give rise chaotic nonlinear dynamics, we 
need to develop the proper procedures. In search for 
hidden dimensions, we will proceed as follows: at first, 
we will provide a brief description of logistic plots. Then, 
we will describe four different approaches from far-flung 
disciplines. We will try to demonstrate that they stand 
for different clues converging towards our claim.

Premise: Chaotic bifurcations and logistic plots
As stated above, different physical and biological sys-

tems display nonlinear features. This form of dynamics is 
frequently studied through logistic maps equipped with 
bifurcations, which intervals are dictated by the Feigen-

baum constants [19]. A logistic map is a one-dimension-
al nonlinear difference equation, widely used to study 
dynamic systems theory’s issues [20]. It encompasses a 
generic variable representing an observable behavior and 
a fixed behavioral parameter (the phase parameter). Lo-
gistic maps can be plotted and visualized on a one-pa-
rameter bifurcation diagram, as a function of the scaled 
parameter r. Note that, at the edge of criticality, bifurca-
tions occur.

The first universal Feigenbaum constant stands for 
the limiting ratio of each bifurcation interval to the next, 
between every period doubling [21]. It is applicable to 
one-parameter maps, where f(x) is a function parameter-
ized by the bifurcation parameter a:

1  = ( ),i ix f x+

and also for other logistic maps, such as:

( )( )  1 ,f x ax x= −
and

( ) 2 = f x x xα −

Therefore, every chaotic system, described by maps 
with a single quadratic maximum, will bifurcate at the 
same rate, i.e., the first Feigenbaum constant [22]. The 
latter is a transcendental number, given by the limit [23]:
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converges to the first Feigenbaum constant. 

The second Feigenbaum constant, i.e,

α = 2.502907875095892822283902873218…,

is the ratio between the width of a tine and the width 
of one of its two subtines (except the tine closest to the 
fold). A negative sign is applied to α, when the ratio be-
tween the lower subtine and the tine width is measured.

The first approach: Detecting dimensions through 
flows assessment

When you watch from afar a circular structure, you 
may not be sure if it is a 2D disk or a 3D sphere, un-
less you go close and look for shadows or angles. There 
is however an indirect procedure, in order to detect ob-
jects’ dimensions and shape. If you convey a laminar 
flux towards its surface, you can assess fluxes’ trajecto-
ries (Figure 1). Therefore, looking at flows’ behavior, you 
may assess whether the circular structure displays two or 
three dimensions. In other words, we are allowed to eval-
uate what happens to a water flow when we introduce a 
solid object that, being an interposed obstacle, is able to 
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modify the liquid paths. For example, if you use a funnel, 
the water will be conveyed in a very thin flow.

In Figure 2, for sake of simplicity, we described a wa-
ter flow. Nevertheless, we are also allowed to use other 
kinds of streams, such as electromagnetic or sonic cur-
rents, and so on [24,25]. Every one of such fluxes obeys 
different types of well-established equations, following 
well-studied trajectories that could be visualized and 
quantified. For example, air fluxes on a disk have been 
widely investigated. The flux features will tell us about 
the shape of the hidden surface. Indeed, by knowing 
the disk’s radius and the strength of the uniform field, 
we may evaluate the orientation and movements of the 
disk’s surface and the presence of hidden obstacles (Fig-
ure 2), both for laminar or turbulent fluxes. As an ex-
ample of previously unrecognized classes of flows, sto-
chastic heat engines have been assessed, in particular a 
colloidal sphere diffusing in a conventional optical twee-
zer [26]. In this case, non-conservative optical forces bias 
the particle’s fluctuations into toroidal vortexes, whose 
circulation can reverse direction with temperature or la-
ser power.

These methods from fluid dynamics allows us to look 
(in physical and biological systems’ phase spaces with su-
perimposed “obstacles” to the flux) for hypothetical trac-
es left by different kinds of fluxes, in order to indirectly 
assess possible hidden dimensions and their shapes. In 
particular, we might be able to assess what happens to a 
particle trajectory traveling in a n-spatial environment, 
when it interacts with an object not endowed in a further 
spatial dimension, but instead endowed in an abstract 
“super space” [27]. Super spaces have been introduced 
in the study of super symmetry, in order to compare the 
otherwise not assessable bosons and fermions’ total be-
havior. The philosophy behind super spaces is to embed 
phase spaces both in spatial and non-spatial dimensions, 
in order to improve the detectability of otherwise invisi-
ble parameters. Here we use super spaces in guise of ab-
stract, non-spatial dimensions superimposed to spatial 
systems, able to interfere with the trajectories occurring 
in classical spatial n-dimensions.

The second approach: Topology comes into play
The Borsuk-Ulam Theorem (BUT) states that, if a 

sphere Sn is mapped continuously into an n-dimensional 
Euclidean space Rn, there is at least one pair of antipo-
dal points on Sn which map onto the same point of Rn 
[28,29]. See Tozzi and Peters [30] for further details and 
a mathematical treatment. The notation stands for an 
n-sphere [31], which is an n-dimensional, circular struc-
ture, embedded in an n + 1 space [32]. For example, a 
2-sphere (S2) is the 2-dimensional surface of a 3-dimen-
sional space. Antipodal points are, e.g., the poles of a 
sphere [33,34].

Several BUT variants have been developed in the very 

         

Figure 1: How to detect objects’ dimensions and shape 
through a laminar flux. The left side of the Figure displays 
water flows in case of the object being a 2D disk, while 
the right side 3D sphere. A water stream intersecting the 
discoidal surface of an object allows us to understand 
whether the object is two-dimensional (a disk) or three 
dimensional (a sphere), in case we are not able to detect 
such feature from afar. The pattern of the water falling on 
the surface is different, according to the dimensionality of 
the object. The upper figures depict the upper surfaces of 
the 2D and 3D objects, respectively, while the lower figures 
display their lateral view. 

         

Figure 2: Provides, as an example, geometrical arrangement 
and main parameters of the problem of fluid flow and heat 
transfer over a rotating disk in still air [45].
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may correspond to a double-covering bifurcation of a 
limit-cycle in a higher dimensional space.

The third approach: Computerized tessellation of 
the image of the logistic plot

We assessed the logistic plot “classical” image of non-
linear, chaotic dynamics through a novel image analysis 
approach [40,41]. Indeed Peters, et al. [41] introduced 
a novel method for the measurement of information 
level in data sets, based on image subdivision in small 
polygons equipped with different entropic content. This 
method, called maximal nucleus clustering, is based on 
nucleus clustering in Voronoï tessellations [42]. In brief, 
a computerized program chooses the points of the image 
with the higher difference of orientation, compared with 
the others. The choice of such points, called generating 
points, allows us to build around them small polygons, 
called Voronoi tessellation regions. Such small polygons, 
depending on the number of their sides, display different 
levels of information. In particular, the polygons with 
the higher number of sides, called Maximum Nucleus 
Clusters (MNC), together with their surrounding poly-
gons, might be an indirect clue of hidden dimensions in 
a two-dimensional Figure. Indeed, MNC reveals zones 
of the image characterized by different gradient ori-
entation and diverse functional dimensions [40]. The 
fractal structure of the logistic map is believed to come 
from the stretch-and-fold process: therefore, why, in 
our framework, do MNCs imply hidden dimensions? In 
Peters, et al. [40] we hypothesized that every parameter 
correlated with the MNCs might stand for a function-
al dimension. In the previous paragraph, we introduced 
the concept of BUT and matching signals. The basic 
form of BUT tells us that there exists a pair of antipodal 
(opposite) signals on the circumference that maps to a 
single one on a line. The two antipodal signals are as-
sessed at one level of observation, while the single one at 
a lower level. This means that, if we embed a MCN onto 
a circumference, there exist two antipodal signals with 
matching description. Therefore, BUT provides a handy 
vehicle in expressing the relationship between Voronoï 
polygons that serve as cluster nuclei. In the image tiling, 
more than one MCN can be found, all of them equipped 
with the same number of sides (i.e., these MCNs display 
matching description). Therefore, different MNCs may 
be embedded in the same circumference and may display 
matching functional description. In other words, sys-
tems features could be characterized as antipodal signals 
with matching description, in order that the functions of 
signal shapes can be compared. It might be speculated 
that changes in morphological features could be correlat-
ed with variations in physical functions. Thus, gradient 
differences might be linked with different functional and 
dimensional counterparts.

last years. For example, we can consider regions on an 
n-sphere that are either adjacent or far apart. This means 
that pairs of points need not be antipodal, in order to 
have matching descriptions [35]. This BUT variant has 
utility, provided there are a pair of regions on an n-sphere 
which are similar. The concept of antipodal points can 
be used not just for the description of points, but also 
for more complicated structures, such as shapes of space 
(object contours), temporal intervals (temporal oscilla-
tions), functions, vectors and symmetries [36,37]. This 
leads to a particularly useful region-based BUT, dubbed 
re-BUT [35]. We are allowed to describe brain features 
on an n-sphere either as antipodal points, or antipodal 
regions. This means that antipodal signal shapes can be 
compared [35]. That is, feature-based descriptions of an-
tipodes can be assessed at one level of observation, while 
their projections into a single shape can be analyzed at a 
lower level [37].

Although BUT was originally limited to an n-sphere 
where n is a natural number, nevertheless n can also be 
regarded as rational or irrational number [37]. For ex-
ample, we might regard functions or shapes as embed-
ded in a sphere in which n stands for number of instants 
in time. Hence, the parameter n becomes useful in the 
description of nonlinear and fractal dynamical systems.

The original formulation of BUT describes the pres-
ence of antipodal points on spatial manifolds in every 
dimension, provided the manifold is a convex, posi-
tive-curvature structure (e.g., a ball). However, the kind 
of geometry that best describes world dynamics is a 
matter of debate. Theoretical contenders include Euclid-
ean, elliptic and hyperbolic geometry. This means that 
systems functions might occur on manifolds endowed 
with different types of geometry, for example the hyper-
bolic one encloses complete Riemannian n-manifolds of 
constant sectional curvature-1 and concave shape [38]. 
We are thus allowed to look for antipodal points also on 
structures equipped with kinds of curvature other than 
the convex one [39]. Or, in other words, whether the sys-
tem under examination displays a concave, convex or flat 
functional appearance, it does not matter: we may always 
find the points with matching description predicted by 
BUT. For further details, see also Peters and Tozzi [37].

In sum, the BUT displays versatile features which 
can be modified in different guises: last but not least, the 
mapping of antipodal points into the lower level of a n - 1 
sphere. In our case, we are allowed to use BUT in order to 
describe Hopf bifurcations, because the latter cannot oc-
cur in discrete-time systems or maps. However, because 
the intended meaning is related to a Poincare section, the 
argument about the hidden dimensions holds true. Pre-
cisely, a period-doubling bifurcation in the logistic map 
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as “at least one exists” and the universal ∀ as “for all”. 
The quantifiers are based on (the misattributed) Aristot-
le’s Square of Opposition which provably is not bivalent 
(not exact).

However, propositional logic has two modal opera-
tors that provably are bivalent (exact) and generally in-
terchange with the two quantifiers, ◊ for ∃ and [] for ∀.

We also mapped expressions into the format of:

a) Named types in order of literal, operator, literal 
such as p & q;

b) Named parts in order of antecedent, connective, 
consequent.

Results
Here we show how the bifurcation diagram of 2D 

logistic maps’ nonlinear dynamical equations might be 
shaped and deformed by an intersecting hidden dimen-
sion, e.g., a super space containing the first Feigenbaum 
constant.

The first approach: Detecting dimensions through 
flows assessment

In this logistic plot, x stands for the detectable trajec-
tory followed by a particle in a space-time, and r stands 
for possible hidden dimensions. When the scaled param-
eter r is measured between 1 and 3, the particle behavior 

Although we live in a space-time world with no im-
mediate perception that hidden spaces exists at all, the 
hints of a further dimension can be identified through 
their “cross section” movements on a more accessible 
three-dimensional surface, as if you recognized some 
object from its shadow projected on a screen. In such a 
vein, MNCs might be able to evaluate indirect clues of 
the undetectable fourth dimension, e.g., the hallmarks or 
signs on a familiar space-time surface.

The fourth approach: Logical validation
Here we asked whether it is feasible to validate as true, 

through logic tools, the possibility that a logistic plot is 
correlated with a hidden dimension that intersects linear 
behaviors of collective systems, when they phase param-
eter changes from 3 to 4. In general terms, we described 
a logical question in the format of: “if possibly A (with 
its logical parts), then B” to be validated true or validated 
not true. In our specific case, we asked whether the fol-
lowing two questions are logically tenable:

a) Is it possible that laminar fluxes can be unobstruct-
ed or bifurcated by interposition of the necessity of hid-
den dimensions implying visible dimensions?

b) The necessity of non-visible dimensions imply the 
possibility of laminar fluxes as either: 1) Not obstructed; 
or 2) Bifurcated by non-visible dimensions implying vis-
ible dimensions?

We used the following logic procedure. We mapped 
categorical subject parts into “literal” variables. The vali-
dation was performed by the logic model checker Meth8 
(U.S. Patent pending). Meth8 is a logic model checker 
which requires each expression as a numbered equation 
to be validated true/not validated true in each case to 
constitute a well-formed and satisfiable proof. It is based 
on VŁ4, the variant that corrects and resuscitates the 
quaternary logic Ł4 of Łukasiewicz.

We used the 4 propositions < p, q, r, s >. We mapped 
action relations into respective lists for:

a) Connectives < And; Not and; Or; Not or; Equiva-
lent; Not equivalent; Imply; Not imply >;

b) Common symbols with ~ for Not as the set { &, 
~&, V, ~V, ↔, [ ], →, ← };

c) One letter symbols in Meth8 as the set { & , \ , + , - , 
= , @ , > , < }.

We also mapped modifiers in modal operators for 
possibility and necessity, using the following symbols:

a) Common symbols of the lozenge ◊ and box [];

b) One letter characters in Meth8 as % and #.

Predicate logic has two quantifiers, the existential ∃ 

         

Figure 3: The hypothetical case of an obstacle hidden in the 
logistic map’s bifurcations able? Is this a word? To modify 
water flows. 
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is linear. When the value 3 is reached, it looks like an 
obstacle to the flow occurs (Figure 3). At phase param-
eter’s values between 3 and 4, the super space (e.g., one 
or more hidden dimensions) interferes with the plot and 
interacts with the traveling particles. When linear trajec-
tories cross the super space, they split into progressively 
increasing fractal bifurcations, until a totally chaotic pat-
tern is achieved. Interestingly, this further dimension(s) 
is somewhat correlated with the first Feigenbaum con-
stant (Figure 4).

The second approach: Topology comes into play
Tozzi and Peters [30] demonstrated that embracing sys-

tems non-linearity in the framework of the Borsuk-Ulam 
theorem means that nervous bifurcation transformations 
(the antipodal points) can be described as paths or trajec-
tories on abstract spheres equipped with Feigenbaum di-
mensions (Figure 5). Note that, from linearity to non-lin-
earity, the number of points with matching description 
increases. This means, for the BUT theorem and its vari-
ants, that, going from phase parameter 3 to 4, it occurs 
an increase of n-dimensions. However, in this case, the 
term n does not stand for a natural number as in the clas-
sic BUT, but for an irrational number (the Feigenbaum 
constant). We could state that, in a logistic plot equipped 
with a hypothetical hidden dimension, the increase of 
bifurcations is given by the BUT dictates (e.g., a single 
feature in n-dimensions maps to two features or more in 
n + 1 dimensions). The concave trajectories are caused 
by the shape of the hidden dimension(s), because the 
bifurcation distortion could be due to a negative-curva-
ture superimposed manifold(s). There must be a concave 
manifold that modifies the original linear curve, when, 
at the proper values of the phase parameter, trajectories 
pass through it. In sum, chaotic behavior might be cor-
related with the intersection between the linear path and 
a hidden dimension(s).

The third approach: Computerized tessellation of 
the image of the logistic plot

Figure 6 depicts MNCs in a tessellated logistic plot 
at different magnifications. Note that in this case MNCs 
and their surrounding polygons stand for the possible 
location of the hidden dimension interfering with linear 
trajectories.

The fourth approach: Logical validation
Our first question was:

“Is it possible that laminar fluxes can be unobstructed 
or bifurcated by interposition of the necessity of hidden 
dimensions implying visible dimensions?”
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Figure 4: Illustrates how a Feigenbaum multi space 
might modify the trajectories in a logistic plot, leading to 
bifurcations when it interferes with the flow. 
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Figure 5: Bifurcation diagram of a simulated logistic map’s 
nonlinear dynamical equation. The axis x displays a hypo-
thetical phase parameter r, the axis y the probability of a ge-
neric variable. At the first Hopf bifurcation, the exponent n of 
the n-sphere stands for the first Feigenbaum constant. The 
same operation can be repeated at each of the following 
bifurcations: just the first one is displayed in Figure. Each 
n-sphere is equipped with two antipodal points which inter-
sect the curves of the corresponding bifurcation and display 
the same value on the axis x. In sum, the irrational number 
of the Feigenbaum constant can be used in guise of a super 
space superimposed to a 2D chaotic logistic plot. Such su-
per space is able to modify the linear trajectories, leading to 
a cascade of fractal bifurcations.
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Model 2.3.1 	EEEEEEEEEEEEEEEE

Model 2.3.2 	EEEEEEEEEEEEEEEE

The answer to the two questions is "yes", as proved by 
the truth table for Q1 with Q2 in Model 1.1.

In sum, we indirectly suggested, summoning clues 
from completely different approaches, the presence of 
an invisible, extra-large dimension intertwined with our 
space-time world and able to interact with it.

Conclusions
Claims from theoretical physics and, recently, also 

from neuroscience [30], suggest the possible presence 
of extra dimensions interacting with our three-dimen-
sional-plus time physical and biological world. It has 
been hypothesized that  elusive, higher dimensions of 
unknown curvature (either flat, or curved, or warped, 
and so on) surround us, intersecting our space-time 
world and interacting with it. Our aim was to propose 
a method in order to detect such hidden dimensions. 
We showed how their presence can be proofed by the 
occurrence of bifurcations, while their shape can be ex-

p = dimensions; q = visibility; r = fluxes; s = laminar; 
~ Not (negation);

% possibility; # necessity;

> Imply; < Not Imply; = Equivalent; @ Not Equiva-
lent; + Or; & And;

(p@p) False (obstructed); ~(p@p) = (p = p) True (un-
obstructed); vt Validated true true.

Our second question was:

“Does the necessity of non-visible dimensions imply 
the possibility of laminar fluxes in Eq Q1 as either: 1. Not 
obstructed; or 2. Bifurcated by non-visible dimensions 
implying visible dimensions?” 				  
						           (Q2)

#(p&~q) > %(((r&s) > ~(p@p)) + ((r&s) > ((p&~q) > 
(p&q)))); vt

Model 1        TTTTTTTTTTTTTTTT

Model 2.1 	 EEEEEEEEEEEEEEEE

Model 2.2 	 EEEEEEEEEEEEEEEE

         

Figure 6: MNCs in logistic plots at different magnification levels (upper and lower figures). The figures on the left depict the 
MNCs, the figures on the right the MNCs plus their surrounding polygons. 
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× 101 metre/tesla, a value that parallels the first four 
numbers of the first Feigenbaum constant, in particular 
for the highest values of bifurcations in logistic plots. Of 
course, caution is needed, for two reasons: a) We did not 
assess standard deviation or correlation statistic to show 
the corresponding similarity; b) The Zeeman constant 
depends on the arbitrary chosen unit system, while the 
Feigenbaum constant is a ratio; therefore, it could simply 
mean that such concurrence is purely random. Never-
theless, the coincidence is remarkable, and might point 
towards a hypothetical correlation between two wide-
spread features of our world: nonlinear chaotic bifurca-
tions and magnetic fields.

The phase transitions described in chaotic nonlinear 
logistic plot do not lead to changes in thermodynamic 
entropy. Our framework helps to better elucidate such 
issue, by providing a multidimensional account of ther-
modynamic entropy able to elucidate the second law of 
thermodynamics and to answer to a long-standing ques-
tion: why does the thermodynamic entropy increase in 
our three-dimensional (plus time) Universe? Where the 
increase of entropy does comes from? Here the Beken-
stein inequality comes into play. Let k be Boltzmann’s 
constant, R the radius of a sphere that can encompass a 
given system, E the total mass energy (including any rest 
masses), ħ the reduced Planck constant and c the speed 
of light. The Bekenstein bound is an upper limit on the 
entropy S (or information I) encompassed into a finite 
region of space equipped with a finite amount of ener-
gy. In other words, the Bekenstein bound stands for the 
maximum amount of information required to describe a 
physical system down to the quantum level. This means 
that the information of a physical system, or the infor-
mation necessary to describe it, must be finite, in case of 
both the region of space and the energy being finite. The 
universal form of the bound can be described as follows 

[43,44]: 
2

2 2 ( )      

hcRk
RkE Rk hfS
c c c

π
π π λ
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, Where 

f is the wave frequency of the particulate photon energy E 
and h is the quantum of action (Planck’s constant).

A noteworthy consequence of the Berkenstein bound, 
i.e., that the entropy contained in our space-time Uni-
verse is proportional to the two-dimensional border of 
the sphere enclosing the system, led some theoreticians 
to hypothesize the holographic principle. The latter states 
that the entire universe can be seen as two-dimensional 
information on the cosmological horizon, such that the 
three dimensions (plus time) we observe are an effective 
description only at macroscopic scales and low energies. 
The holographic principle was inspired by black hole 
thermodynamics, which conjectures that the maximal 
entropy in any region scales with the radius squared, 

trapolated from the curves’ deformation after every bi-
furcation. In particular, in logistic plots from nonlinear 
chaotic collective dynamics, we showed how it is possible 
to detect the hints of an unknown factor, able to vary the 
otherwise linear particle trajectories. The interaction be-
tween the usual space-time trajectories and the further 
dimension(s) occurs just when the proper angles allow 
their superimposition. Therefore, we find trajectory di-
vergences that are detectable in our world.

Due to the current lack of knowledge, we were not 
able to elucidate the features of such a hidden dimension. 
Although we stated that possible hidden dimensions in-
terfere with physical and biological processes, giving 
rise to nonlinear dynamics in our world, nevertheless 
we never talked about the nature of such dimension and 
about “spatial” features. Indeed, we are not allowed to 
say whether we are in front of one, or more than one, 
further spatial dimension. The concave shape of trajecto-
ries could also be provided by the curvature of a complex 
(real and imaginary) space, that displays, in a physical 
geometry, a dual mapping between: a) Visible regions 
embedded in an n dimensional real space and b) Hidden 
regions mapping to an n + 1 - dimensional imaginary 
space. Another possibility is that the hidden dimension 
stands for a “temporal” dimension, instead of a spatial 
one. Due to our above described quantum entanglement 
account; we might speculate that (in our space-time, zero 
curvature Universe) a further hidden, infinite dimension 
is endowed, in guise of an invisible rolled, tangled thread, 
or wire. We might hypothesize that a sort of one-dimen-
sional rope surrounds us. Differently from other models 
that suggest particles trajectories travelling along differ-
ent dimensions of a multidimensional phase space, we 
propose that particles move into our space-time phase 
space, but collide with such one-dimensional rope en-
dowed in the cosmos. A one-dimensional rope cannot 
encompass a two-dimensional oscillation, but just a 
uni-dimensional force. Nevertheless, if such hypothet-
ical one-dimensional force propagates into our space 
time cosmic dimensions, it would give rise to pluri-di-
mensional oscillations detectable by us. Which kind of 
force can be encompassed in a mono-dimensional rope? 
If we hypothesize that this dimension is made of negative 
time (an inverted arrow of our usual time), we solve a lot 
of puzzling experimental observations, with no need to 
further, problematic forces.

Is also feasible that the hidden dimension has some-
thing to do with the Feigenbaum constant, e.g., with an 
irrational number. In such a speculative vein, we need to 
remember an astonishing, unnoticed similarity between 
the numbers of the first Feigenbaum constant and the 
Zeeman Effect, which is correlated with magnetic fields. 
Indeed, the value of Zeeman Effect’s constant is 4.66860 
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and not cubed as might be expected. Indeed, the Beken-
stein-Hawking formula states that the black hole entropy 
is proportional to the area of its event horizon. The fact 
that the black hole entropy is also the maximal entropy 
that can be obtained by the Bekenstein bound (wherein 
the Bekenstein bound becomes equality) was the main 
observation that led to the holographic principle. Sum-
marizing, the holographic model hypothesizes that the 
entropy endowed in our space-time Universe might be 
encompassed in a two-dimensional surface, because, in 
the case of a black hole, the informational content of the 
objects fallen into the hole might be entirely contained 
in surface fluctuations of the event horizon. Our goal is 
to “reverse” such idea: if we place a three-dimensional 
sphere instead of a two-dimensional one on the right 
side of the equation, we achieve on the left side the value 
of the entropy encompassed in FOUR dimensions. Put 
another way, the Bekenstein bound is the upper limit of 
the energy of a system at a particular time t defined by
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Therefore, if we achieve thermodynamic entropy en-
compassed in a multidimensional Universe instead of 
the space-time one, we are able to explain why the entro-
py S seems to increase in our detectable Universe’s linear 
paths, while it is kept invariant during nonlinear chaotic 
phase transitions. Indeed, if we keep the Universe enthal-
py constant, we might hypothesize that the free-energy 
flows towards the further dimension, leaving in our space-
time dimensions an apparent, relative increase in entropy. 
Therefore, free energy is “sucked” by, “drained” towards the 
hidden dimension. This apparent phenomenon disappears 
at the observation level of a higher dimension, where the 
entropy is left unchanged: this is the case of the logistic plot 
after bifurcations and of an hypothetical thermodynamic 
entropy embedded in a further, hidden dimension.

Our findings pave the way to future works and de-
velopments. Further mathematical studies are needed, in 
order to assess the shape of the hidden dimension(s). Our 
procedure allows not just to look for hints of veiled di-
mensions in our microscopic or macroscopic Universe, 
but also to use abstract dimensions in order to evaluate 
natural paths. Although we took into account the ex-
ample of the Feigenbaum multi space, we can also use 
other multi spaces, e.g., dimensions containing physical 
constants, in order to evaluate happens when a dynamic 
system interferes with such dimensions. Furthermore, 
by measuring the curvature of laminar fluxes when they 
approach cosmic bodies, we could study solar winds, 
electromagnetic waves or cosmic wave’s background, in 
order to assess whether hidden dimensions are endowed 
in our Universe, and where they are located.
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