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We aimed to elucidate the role of the Ca-independent PKC isoenzyme PKCdelta in the regulation of
spontaneous in vitro chondrogenesis occurring in a 6-day-long culturing period in chicken limb bud-
derived high density cell cultures (HDC). PKCdelta expression and activity were detectable throughout the
entire culturing period with a peak on days 2 and 3, when most of the chondroblasts differentiate. To inhibit
the activity of PKCdelta, either the natural compound rottlerin was transiently applied to the culture
medium of HDC in 2.5, 5 or 10 uM concentrations, or gene silencing was performed by using PKCdelta
shRNA. Rottlerin significantly reduced the overall PKC activity in enzyme activity assays of cell-free samples
of untreated control HDC, probably via the inhibition of PKCdelta. On the contrary, we were unable to detect
any consistent change of PKC enzyme activity assayed in samples of HDC treated with rottlerin during
culturing. PKCdelta gene silencing resulted in a significantly lower PKC activity. Both rottlerin and PKCdelta
shRNA caused a severe reduction in cartilage formation, further more protein and phospho-protein levels of
Sox9, the key transcription factor of chondrogenesis, were also significantly decreased. Rottlerin lowered,
while PKCdelta gene silencing elevated the phosphorylation status of ERK1/2. Our data suggest that
PKCdelta stimulates chondrogenesis via influencing Sox9 and ERK1/2 phosphorylation, but the inhibition
of cartilage formation in the rottlerin-treated HDC is probably PKCdelta independent and rottlerin might

have different effects when applied to cells or to an in vitro enzyme activity assay.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

During vertebrate limb development, at the onset of the multi-
step process of endochondral bone formation, undifferentiated

Abbreviations: BMP, bone morphogenic protein; BSA, bovine serum albumin;
CaM-KIIl, calcium/calmodulin dependent protein kinase III; CMF—PBS, calcium/
magnesium free PBS; DAG, diacyl-glycerol; DMMB, dimethyl-methylene blue; dNTP,
deoxy nucleotide triphosphate; DTT, 1,4-dithio-threitol; ERK, extracellular signal-
regulated kinase; FGF, fibroblast growth factor; HDC, high density culture; MAPK,
mitogen-activated protein kinase; MAPKAP, mitogen-activated protein Kkinase-
activated protein kinase; PAGE, polyacrilamide gel electrophoresis; PBS, phosphate
buffered saline; PBST, phosphate buffered saline and Tween-20; PI, propidium
iodide; PKB, protein kinase B; PKC, protein kinase C; PMA, phorbol-12-myristate-
13-acetate; PMSF, phenylmethylsulphonyl-fluoride; PRAK, p38-regulated/activated
protein kinase; RT, reverse transcription; SDS, sodium-dodecyl-sulphate; TAE, TRIS-
acetate-EDTA buffer.
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chondroprogenitor mesenchymal cells first undergo a condensation
phase characterised by rapid proliferation of cells. As a result,
chondrogenic mesenchymal cells become closely packed, which
initiates a complex and a yet not fully understood signalling
mechanism that governs differentiation of cells within these
condensations into chondroblasts and then mature chondrocytes
[1]. Among a number of signalling molecules, members of the
phospholipid-dependent serine/threonine protein kinase C (PKC)
family are known regulators of in vitro chondrogenesis [2,3].

PKCs, present in almost all cell types, are involved in the regu-
lation of various cellular processes. All known 11 PKC isoforms are
divided into three subgroups based on their N-terminal regulatory
domains and mechanism of activation: classical PKCs (cPKC;
PKCalpha, betal, betall and gamma), novel PKCs (nPKC; PKCdelta,
epsilon, eta and theta) and atypical PKCs (aPKC; PKCzeta, iota/
lambda and mu or PKD) [4]. The activation of PKCdelta also requires
lipid second messengers (e.g. DAG) or tumour-promoting phorbol
esters (e.g. PMA) without the requirement of Ca®'. Moreover,
PKCdelta exhibits tyrosine-phosphorylation sites, which are targets

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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for Src family kinases. Upon phosphorylation on tyrosine residues,
PKCdelta can act as a lipid-independent enzyme [5]. One of its
distinguishing characteristics is that unlike other PKC isoforms,
PKCdelta activity is also involved in negative regulation of various
cellular processes, e.g. suppression of proliferation and survival [6].
PKCdelta is also a crucial component of the cellular stress response,
since it is required for apoptotic processes, however, some data
suggest that it can also negatively influence apoptosis [7].

To identify the physiological substrates and multiple roles of
various PKC isoenzymes in cellular processes, several protein kinase
inhibitors have been developed with a variable specificity for
individual kinases. The bisindolylmaleimide GF109203X is
a general PKC inhibitor with a more potent effect on cPKC. The
indolocarbazole G66976 inhibits both cPKC and nPKC [8]. However,
the specificity of these pharmacological inhibitors is a rather
controversial issue [9]. Some protein kinase inhibitors exhibit
variable degrees of specificity for different enzymes at distinct
concentrations. A polyphenolic compound [5,7-dihydroxy-2,2-
dimethyl-6-(2,4,6-trihydroxy-3-methyl-5-acetylbenzyl)-8-cinna-
moyl-1,2-chromene], rottlerin, isolated from a common Indian rain
forest tree, Mallotus philippinensis, is reported to inhibit several PKC
isoforms, and is thought to selectively inhibit PKCdelta 5—30-fold
stronger than other PKCs at 3—6 pM concentration [4]. However,
according to the findings of an in vitro enzyme activity measure-
ment campaign conducted by the group of Davies [9], in which the
specificity of various protein kinase inhibitors were assayed, rot-
tlerin was found to inhibit many protein kinases (e.g. PRAK, MAP-
KKAP-2) much more potently than PKCdelta, and in fact it failed to
inhibit in vitro PKCdelta activity. Rottlerin was also described to
inhibit some other kinases as Akt/PKB and CaM-KIII at 500 nM [10].
Moreover, in a recent review analysing data of publications
describing controversial results gained by the application of rot-
tlerin in order to inhibit PKCdelta, it is concluded that rottlerin can
be considered as a mitochondrial uncoupler rather than a direct
inhibitor of this enzyme [11].

Rottlerin modulates a great variety of cellular processes in both
malignant and non-malignant cells, including apoptosis in lung
cancer, breast cancer, leukaemia and myeloma cells, proliferation in
glioma cells, secretory activity of pancreatic acinar cells [12—14],
and it is also known to regulate tumour cell migration [15]. Rot-
tlerin has also been described to interfere with the differentiation
process of various cell types of mesenchymal origin, exerting its
effects at least partially by inhibiting the activity of PKCdelta
[16—18]. In a recent study, Choi and his co-workers reported that
rottlerin altered the migration of prechondrogenic mesenchymal
cells in chicken limb bud high density cultures by modulating
integrin B1-signalling at focal adhesion complexes via a PKCdelta-
independent mechanism [10].

In this study we applied the same in vitro chondrogenesis
model, in which high density cell cultures are established from
chondrogenic mesenchymal cells isolated from limb buds of
chicken embryos. In HDC, formation of cartilage starts with the
condensation of chondroprogenitor mesenchymal cells on the first
day, that after nodule formation differentiate into chondroblasts
and chondrocytes predominantly on the second and third days of
culturing [19]. Steps of this differentiation process are regulated by
numerous growth factors and other soluble morphogens [20] and
differentiating cells start to secrete cartilage-specific extracellular
matrix components, such as collagen type Il and aggrecan on the
third day of culturing [21]. Expression of cartilage-specific matrix
molecules is regulated by Sox9, a high-mobility-group domain
containing transcription factor, which is started to be expressed as
soon as mesenchymal cells become committed toward the chon-
drogenic lineage [22]. Detection of the mRNA and protein expres-
sion level and the phosphorylation status of Sox9, as well as

monitoring the expression of the core protein of aggrecan and
collagen type II are reliable markers of in vitro chondrogenesis.

Here we provide evidence that PKCdelta is expressed by cells of
chondrifying chicken limb bud high density cultures throughout
their entire differentiation process. Administration of rottlerin to
cells of HDC resulted in a time and concentration dependent inhi-
bition of metachromatic cartilage matrix production and caused
amarked decrease in the phosphorylation of both Sox9 and ERK1/2,
but we failed to unambiguously demonstrate inhibition of PKCdelta
activity with this compound. PKCdelta gene silencing significantly
lowered the activity of PKC, abolished cartilage matrix production
and decreased the level of phosphorylated Sox9, but elevated the
phosphorylation of ERK1/2. Our results indicate that PKCdelta acts
as a positive regulator of in vitro chondrogenesis via modulation of
the ERK1/2 and Sox9 pathways. Nevertheless, the chondrogenesis-
inhibiting effect of rottlerin is probably exerted via a PKCdelta-
independent manner, therefore we do not recommend adminis-
tration of rottlerin for PKCdelta inhibition in high density cell
culture systems.

2. Materials and methods
2.1. Cell culturing

Distal parts of the limb buds of Ross hybrid chicken embryos
(Hamburger—Hamilton stages 22—24) were removed and primary
micromass cultures of chondrifying mesenchymal cells were
established from cell suspensions with a density of 1.5 x 107 cells/
mL. 100—100 pL droplets of the suspension were inoculated into
plastic Petri dishes (Orange Scientifique, Braine-1'Alleud, Belgium).
Day of inoculation is considered as day 0. After 2 h, colonies were
nourished with Ham’s F12 medium (Sigma, St. Louis, MO, USA),
supplemented with 10% fetal calf serum (Gibco, Gaithersburg, MD,
USA) and were kept at 37 °C in the presence of 5% CO, and 80%
humidity in a CO, incubator. The medium was changed on every
second day.

2.2. Transient gene silencing and pharmacologic inhibition of
PKCdelta

PKCdelta shRNA (GenScript USA Inc., Piscataway, NJ, USA) was
cloned into GeneSwitch™, the inducible protein expression system
from Invitrogen (Invitrogen, Carlsbad, CA, USA). Plasmids were
amplified using competent E. coli bacteria from One Shot chemical
transformation kit (Invitrogen). Ampicillin or hygromycin resistant
bacteria were grown on LB agar, and plasmids were isolated using
MaxiPrep kit (QIAGEN, Valencia, CA, USA) according to the protocol
of the manufacturer. Plasmids were delivered into cells of chon-
drifying cell cultures by using Lipofectamine 2000 (Invitrogen)
transfection reagent. Lipofection delivery system protocol was
performed on freshly isolated cell suspensions with a density of
1.5 x 107 cells/mL by decreasing the volume of the transfection
reagent by 25%. 100 or 30 uL mixtures of the transfection reagent
and cell suspension were inoculated into Petri dishes and into
24-well plates, respectively. After 2 h of transfection colonies were
nourished with Ham'’s F12 medium supplemented with 10% fetal
calf serum. On day 2 of culturing, 1 pM mifepristone was added to
the culture medium for 24 h for the induction of GeneSwitch™
System. Activity of PKCdelta was inhibited by applications of 2.5, 5
or 10 pM rottlerin (Sigma) for 4 h on different days of culturing.

2.3. Light microscopic morphology

High-density cultures established from 30 pL droplets of chon-
drogenic limb bud mesenchymal cells of different experimental

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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groups were cultured on the surface of round coverglasses (Men-
zel-Glaser, Menzel GmbH, Braunschweig, Germany) placed into
wells of 24-well culture plates. Cell cultures were fixed in a 4:1
mixture of absolute ethanol and 40% formaldehyde on day 6 of
culturing and were stained with 0.1% dimethyl-methylene blue
(DMMB, Aldrich, Germany) dissolved in 3% acetic acid, washed in
acetic acid and were mounted in gum arabic. The amount of
sulphated matrix components was determined with a semi-quan-
titative method, by measuring the optical density of extracted
toluidine blue (Reanal, Budapest, Hungary) bound to glycosami-
noglycans in mature HDC as described previously [23]. Briefly,
6-day-old cell cultures were fixed in a solution containing 28%
ethanol, 4% formalin and 2% acetic acid, stained with 0.1% toluidine
blue dissolved in glycine-HCl buffer (pH 1.8) for 15 min, and the dye
bound to highly sulphated proteoglycans and glucosaminoglycans
was extracted in 3% HCl dissolved in absolute ethanol. Absorbance
of samples containing extracted toluidine blue was measured at the
wavelength of 625 nm on a microplate reader (Chameleon, Hidex
Ltd., Turku, Finland). Optical density was measured in samples from
3 cultures of each experimental group in 3 independent experi-
ments. Data were statistically analysed with Student’s t-test.

2.4. Measurement of cell proliferation with 3H-thymidine labelling
and mitochondrial activity with MTT-assay

15 uL droplets of cell suspension were inoculated into wells of
96-well Wallac LSC microtiter plates (PerkinElmer Life and
Analytical Sciences, Shelton, CT, USA) and cells were treated simi-
larly to those cultured in Petri dishes. Medium containing 1 pCi/mL
3H-thymidine (185 GBq/mM >H-thymidine, Amersham Biosciences,
Budapest, Hungary) was added to the wells for 16 h on day 3. After
washing with PBS, proteins were precipitated with ice-cold 5%
trichloroacetic acid, and washed with PBS again. Colonies were air-
dried for 2 weeks at room temperature and radioactivity was
counted by Chameleon liquid scintillation counter (Hidex).
Measurements were carried out in 10 samples of each experimental
group in 4 independent experiments. For investigation of cellular
viability, cells cultured in wells of 96-well microtiter plates were
used. 10 pL MTT reagent [3-(4,5-dimethyl-thiazolyl-2)-2,5-diphe-
nyltetrazolium bromide; 25 mg MTT in 5 mL PBS] was pipetted into
each well on day 3. Cells were incubated for 2 h at 37 °C and
following addition of 100 pL of MTT solubilizing solution the
absorption was detected at 570 nm using a Chameleon microplate
reader (Hidex).

2.5. Measurement of apoptosis and necrosis by flow cytometry

After 24 h of transfection or treatments with rottlerin, rate of
apoptosis was measured by using AnnexinV DY 647 kit (Central
European Biosystems, Budapest, Hungary). Mock-transfected cells
(cultures treated only with the transfection reagent) or untreated
cultures were used as control. After washing twice in CMF—PBS
(calcium and magnesium free phosphate buffered saline), cells
were incubated with 10 uL AnnexinV DY 647 at room temperature
for 10 min. Before harvesting with 0.25% trypsin (Sigma) cells were
washed with Annexin binding buffer. Necrosis was measured by
using propidium-iodide (PI, Invitrogen). Cells were washed in
CMF—PBS and 2 uL PI was added at room temperature for 10 min in
a dark chamber. Cell pellets were resuspended in 500 pL FACS
buffer (PBS supplemented with 1% BSA and 0.05% NaNs) and
measured on a CyFlow® space Flow Cytometer (Partec GmbH,
Miinster, Germany). PI was monitored at 617 nm and Annexin
DY647 at 670 nm. Measurement lower threshold was set on cell-
size particles. Analysis was performed with WinMDI 2.8 freeware
(Joseph Trotter; http://facs.scripps.edu/).

2.6. Preparation of cell extracts

Chondrifying cell cultures were washed with physiological NaCl
solution and were harvested on different days of culturing. After
centrifugation cell pellets were suspended in 100 puL of a homoge-
nization buffer containing 50 mM Tris-HCl buffer (pH 7.0), 0.5 mM
1,4-dithio-threitol (DTT), 10 pg/mL Gordox, 10 pg/mL leupeptin,
1 mM phenylmethylsulphonyl-fluoride (PMSF), 5 mM benzami-
dine, 10 pg/mL trypsin inhibitor as protease inhibitors, and 0.5%
Triton X-100. Samples were snap-frozen in liquid nitrogen, then
stored at —70 °C. Suspensions were sonicated by pulsing burst for
three times 30 s by 50 cycles (Cole Palmer Ultrasonic distributor,
Illinois, USA). For Western blotting and for PKCdelta activity assays,
total cell lysates were used. For RT-PCR analysis, cartilage colonies
were washed three times with RNase-free physiological NaCl, then
the cultures were stored at —70 °C.

2.7. RT-PCR analysis

Cell cultures were dissolved in Trizol (Applied BioSystems), 20%
RNase-free chloroform was added and the samples were centri-
fuged at 4 °C at 10,000 x g for 15 min. Samples were incubated in
500 pL of RNase-free 2-propanol in —20 °C for 1 h, total RNA was
harvested in RNase-free water and stored at —20 °C. The assay
mixture for reverse transcriptase reaction contained 2 pg RNA,
0.112 uM oligo(dT), 0.5 mM dNTP, 200 units M-MLV RT in 1 x RT
buffer. The sequences of primer pairs for polymerase chain reac-
tion were as follows: for chicken PKCdelta (accession number:
NM_001006133): 5'—CTG AGG TGA CCG TGG GTG T—3’ and 5'—TTG
TGG ATG GCA GCG TTA-3’; for chicken aggrecan (accession
number: XM_001232949): 5'—CAA TGC AGA GTA CAG AGA—3' and
5'—TCT GTC TCA CGG ACA CCG—3’; for chicken Sox9 (accession
number: AB012236): 5'—CCC CAA CGC CAT CTT CAA-3’ and
5'—CTG CTG ATG CCG TAG GTA—3'; for chicken ERK1/2 (accession
number: NM_204150): 5'—CAC CTC AGC AAC GAC CAC—3' and
5'—AGG AGC CCT GTA CCA ACG-3'; and for chicken GAPDH
(accession number: NM_204305): 5'—GAG AAC GGG AAA CTT GTC
AT—3’ and 5'—GGC AGG TCA GGT CAA CAA-3'. Amplifications
were performed in a programmable thermocycler (PCR Express
Temperature Cycling System, Hybaid, UK) as follows: 94 °C, 1 min,
followed by 30 cycles (94 °C, 30 s, 54 °C, 30's, 72 °C, 30 s) and then
72 °C, 5 min. After the addition of 1/5 volume of fivefold
concentrated DNA sample buffer (0.41% bromophenol blue, 66.6%
sucrose in TAE buffer containing 0.016 M EDTA, 0.19 M acetic acid
and 0.4 M Tris-HCl; pH 8.5) PCR products were analysed by elec-
trophoresis in 1.2% agarose gel containing ethidium bromide.
Optical density of signals was measured by using Image] 1.40 g
freeware and results were normalised to the optical density of
untreated control cultures.

2.8. Western blot analysis

Total cell lysates were examined by Western blot. Samples for
SDS-PAGE were prepared by adding 1/5 volume of fivefold
concentrated electrophoresis sample buffer (310 mM Tris—HCl pH
6.8, 10% SDS, 50% glycerol, 100 mM DTT, 0.01% bromophenol blue)
to cell lysates and boiled for 10 min. About 70—80 ug of protein was
separated by 10% SDS-PAGE gel for detection of PKCdelta, Sox9,
p-Sox9, ERK1/2 and p-ERK1/2. Proteins were transferred electro-
phoretically to nitrocellulose membranes. After blocking in 5%
non-fat dry milk in PBST (phosphate buffered saline with 0.1%
Tween 20; 20 mM NayHPO4, 115 mM NaCl; pH 7.4), membranes
were washed and exposed to the primary antibodies overnight
at 4 °C. Polyclonal anti-PKCdelta antibody (Santa Cruz Inc., CA, USA)
in 1:100, polyclonal anti-Sox9 antibody (Abcam, Cambridge, UK)

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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in 1:600, polyclonal anti-p-Sox9 antibody (Sigma) in 1:600, poly-
clonal anti-ERK1/2 antibody (Sigma) in 1:1000, and polyclonal anti-
MAP kinase (diphosphorylated ERK1/2 on Thr and Tyr residues;
Sigma) in 1:600 dilution were used. After washing three times for
10 min with PBST, membranes were incubated with the secondary
antibody, anti-rabbit IgG (Bio-Rad Laboratories, CA, USA) in 1:1000
dilution in PBST containing 1% non-fat dry milk for 2 h at room
temperature. Signals were detected by enhanced chem-
iluminescence (Millipore, Billerica, MA, USA) according to the
instructions of the manufacturer. Optical density of signals was
measured by using Image] 1.40 g freeware (downloaded from:
http://rsb.info.nih.gov/ij/) and results were normalised to the
optical density of untreated control cultures.

2.9. Total PKC and PKCdelta enzyme activity measurements

For PKC activity assays, cells were harvested and after centri-
fugation at 10,000 x g for 10 min at 4 °C, supernatants were used
for enzyme activity measurements. PKC activity was assayed
by measuring the incorporation of 32P from [y->2P]-ATP (MP
Biomedicals, Solon, OH, USA) into histone IIIS (Sigma). The reaction
mixture (40 pL) contained 50 mM Tris HCI buffer (pH 7.5), 1 mg/mL
histone IIIS, 0.8 mM CaCly, 0.5 mM DTT, 1 pg/mL Gordox, 1 pg/mL
leupeptin, 0.1 mM PMSF, 0.5 mM benzamidine, 1 pg/mL trypsin
inhibitor as protease inhibitors, 100 pg/mL phosphatidylserine,
4 pg/mL PMA (Sigma), 0.12 mM ATP, 6 mM Mg-acetate and [y->2P]-
ATP adjusted to approximately 1 million cpm/reaction mixture and
appropriate amount of cell extract (2.0—2.5 mg/mL protein).
Activity measurements were performed at 30 °C. Determination of
32p incorporation into histone IIIS were carried out by pipetting
30 puL of the reaction mixture on filter paper squares (Whatman
P81, 2 x 2 cm) after 20 min reaction time. All papers were washed
three times in 0.5% phosphoric acid, dried and counted for radio-
activity in a liquid scintillation counter. For measurements of
PKCdelta activity, rottlerin (10 uM) was administered to the reac-
tion mixtures, and the difference caused by this compound in the
total PKC activity was considered to be the contribution of PKCdelta
to the overall PKC activity.

2.10. Data processing and statistical analysis

To determine the metachromatic cartilage matrix production,
optical density of toluidine blue-stained cultures (ODgy5 nm) was
measured in samples from 3 cultures of each experimental group in
3 independent experiments. For the detection of cellular prolifer-
ation rate (*H—thymidine incorporation assay) or mitochondrial
activity (MTT assay), measurements were carried out in 10 samples
of each experimental group in 4 independent experiments. Data are
mean values + standard error of the mean and were statistically
analysed with Student’s t-test (P < 0.01). Data analysis of FACS
measurement results was performed with WinMDI 2.8 freeware
(Joseph Trotter; http://facs.scripps.edu/). For RT-PCR reactions and
Western blot analyses, optical density of signals was measured by
using Image] 1.40 g freeware and results were normalised to the
optical density of untreated control cultures. Data of PKC enzyme
activity measurements were statistically analysed with Student’s
t-test (P < 0.01).

3. Results
3.1. PKCdelta expression and activity in cells of HDC
To identify the mRNA and protein expression pattern of

PKCdelta during in vitro chondrogenic differentiation of chicken
mesenchymal cells, RT-PCR reactions and Western blot analyses

were performed, respectively. The mRNA sequence of chicken
PKCdelta was downloaded from GenBank and a specific primer pair
was designed for amplification.

mRNA expression of chicken PKCdelta in cells of HDC followed
an unchanged pattern during differentiation from day 0, with
only slightly higher expression levels on days 1 and 2 (Fig. 1A). The
protein expression profile of chicken PKCdelta, however, followed
a peak-like pattern and showed an almost four-fold elevation
by days 2 and 3 compared to day O, as revealed by Western
blot analyses (Fig. 1B). Under control conditions, the enzyme
activity of PKCdelta in cells of HCD exhibited a pattern that is
closely correlated with the protein expression, i.e. the enzyme
activity was higher on days 1—4 compared to day 0. Activity of
PKCdelta then decreased toward the end of the culturing period
(Fig. 1C).

A RT-PCR Days of culturing
0 1 2 3 4 6
PKCdelta —
og3pp| T

ob 1.0 1.2 i1 10 11 1.0

GAPDH
556 bp —— e S G S —
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B Western blot

Days of culturing
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=
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80 kDa
oD 1.0 3.1 37 29 24 1.1

C PKC enzyme activity
30000

25000
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PKC enzyme activity
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Fig. 1. mRNA (A) and protein (B) expression of PKCdelta in cells of chondrifying
micromass cultures on various days of culturing. For RT-PCR reactions, GAPDH was
used as a control. Optical density of signals was measured and results were normalised
to the optical density of 0-day-old cultures. Representative data of 3 independent
experiments. Total PKC and PKCdelta enzyme activity (C) in cells of HDC on various
days of culturing. The white upper part of each bar represents the contribution of
PKCdelta enzyme activity (i.e. difference caused by rottlerin in cell-free extracts) to
total PKC enzyme activity, whereas the black lower parts represent the activity of other
PKC isoforms. Significant changes are indicated by * and # (P < 0.01) as an increase or
decrease in total PKC (¥) and PKCdelta (*) enzyme activity as compared to the
respective control (day 0). Representative data of 3 independent experiments.

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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Fig. 2. Effect of rottlerin on cartilage matrix production of high density micromass cultures on various days of culturing (A). Metachromatic cartilage areas in 6-day-old high-density
colonies visualised with DMMB dissolved in 3% acetic acid. Optical density (ODs>5) of samples containing toluidine blue extracted with 8% HCl dissolved in absolute ethanol. Data
are mean values + standard error of the mean (+6%) of each experimental group out of 10 measurements. Effects of rottlerin treatment (5 pM) on the mitochondrial activity and
cellular proliferation (B) of cells in 3-day-old HDC. Mitochondrial activity was measured by using MTT assay and cell proliferation was assessed by *H-thymidine incorporation.
Assays were carried out immediately after rottlerin treatments. Asterisks indicate significant (*P < 0.01) decrease in metachromatic cartilage matrix production, mitochondrial
activity or cellular proliferation rate as compared to the respective control (day 3). Representative data of 3 independent experiments.

3.2. Rottlerin inhibits in vitro chondrogenesis in a time and
concentration-dependent manner

To identify the effects of rottlerin on cartilage differentiation in
vitro, rottlerin at concentrations of 2.5 and 5 uM was administered
to cells of HDC on various days of culturing. Cartilage matrix
production was analysed by metachromatic staining procedures
with dimethyl-methylene blue and toluidine blue on day 6 of

culturing. As seen in Figs. 2A and 5 pM rottlerin inhibited in vitro
chondrogenesis in a time- and concentration-dependent manner
with the strongest inhibition on days 2 and 3 (12% of untreated
control cultures). When rottlerin was administered in 10 pM or
higher concentrations on either day of culturing, cartilage matrix
production was completely blocked as demonstrated by the
complete loss of metachromatic staining. Because treatments by
either 2.5 or 5 pM rottlerin resulted in similar qualitative results, in

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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A RT-PCR B Western blot to cells on days 2 and 3 caused alterations in the activity of PKCdelta
+rottlerin +rottlerin measured on day 3 of culturing in cell-free extracts of HDC, but the
C 5uM cC 5 uM direction of these changes was completely inconsistent (data not
PKCdelta PKCdelta - shown.). These ﬁndmgs sugge;t Fhat the aforementioned effects of
283 bp 80 kDa rottlerin on cartilage differentiation could have mostly been caused
oD 1.0 0.7 oD 1.0 0.9 by its aspecific, non-PKCdelta-dependent effects.
A0OreCan | pemms Sox9 E
ggso bp 56 kDa -— 3.3. Inhibition of PKCdelta by shRNA transfection inhibits in vitro
oD 10 06 oD 1.0 0.8 chondrogenesis
sox9 — — P-Sox9 o - - Although rottlerin is widely known as a selective inhibitor of
380 bp 56 kDa ; . .
PKCdelta, some data are available on its PKCdelta-independent
oD 1.0 0.7 oD 1.0 0.1 L
effects [24] and our results also suggested such a possibility.
E2F"1(1’12 I EZT(BIQ -— Therefore, we selectively inhibited PKCdelta expression using
31bp 10 10 4 Og ‘1 0‘ 0.9 specifically designed shRNA to clarify the role of PKCdelta in
oD ; : " : chondrogenesis. The PKCdelta shRNA sequence was cloned into
GAPDH —-— e P-ERK1/2 | i GeneSwitch, the inducible protein expression system from Invi-
556 bp 42 kDa trogen, and transfected into primary chondroprogenitor mesen-
ob 1.0 1.0 Oob 10 03 chymal cells on day O, prior to their attachment by using

Fig. 3. Effect of 5 uM rottlerin treatment on the mRNA expression of PKCdelta,
aggrecan, Sox9 transcription factor and ERK1/2 (A); the protein expression of PKCdelta
and ERK1/2; the protein expression and phosphorylation of Sox9 (B) in HDC on day 3
of culturing. For RT-PCR reactions GAPDH was used as a control. Optical density of
signals was measured and results were normalised to the optical density of respective
control cultures. Representative data of 3 independent experiments.

the following set of experiments we only used the concentration of
5 uM.

Since the observed decrease in metachromatic staining could
have been caused by cytotoxic and/or anti-proliferative effects of
rottlerin, mitochondrial activity and cellular proliferation assays
were performed, respectively. Rottlerin administered on days 2 and
3 for 4 h in 5 UM concentration caused a slight, but significant
decrease in metabolic activity in cells of HDC and it also caused
a significant decrease in proliferation rate as revealed by MTT and
radioactively labelled thymidine incorporation assays, respectively
(Fig. 2B). Rottlerin treatments did not result in the elevation of
apoptotic or necrotic rate in cells of HDC in either concentration
according to FACS analyses (data are shown in the Supporting
information).

To evaluate the role of rottlerin in the molecular regulation of in
vitro chondrogenesis, mRNA and protein levels of PKCdelta,
aggrecan core protein and Sox9, the major cartilage-specific tran-
scription factor, were detected by RT-PCR and Western blot reac-
tions, respectively. Exposure to rottlerin resulted in a marked
decrease in the mRNA expression of PKCdelta (Fig. 3A), however,
only a slight reduction was observed in its protein expression level
when rottlerin was applied at a concentration of 5 uM (Fig. 3B). A
significant decrease in the mRNA levels of both aggrecan core
protein and Sox9 was detected under the effect of rottlerin treat-
ments (Fig. 3A). Western blot analyses showed that exposure to
5 uM rottlerin only slightly reduced the protein level of Sox9,
whereas a significant decrease was observed in its phosphorylation
level after the administration of the inhibitor (Fig. 3B). These
findings demonstrate that rottlerin decreases cartilage formation,
at least partly, via inhibition of cartilage differentiation.

Since MAP-kinases, particularly ERK1/2 is one of the key regu-
lators that influence in vitro chondrogenesis, we examined whether
the observed decrease in cartilage matrix production was regulated
by an ERK1/2 dependent pathway. Although administration of
rottlerin did not alter the mRNA expression level of ERK1/2 and
protein expression was also only slightly modified, exposure to
5 uM rottlerin significantly reduced the level of phosphorylated
ERK1/2 (Fig. 3A—B). Furthermore, administration of 5 uM rottlerin

Lipofectamine 2000 transfection reagent. On day 2 of culturing,
1 uM mifepristone was added to the culture medium for 24 h for
the induction of GeneSwitch System. Mifepristone at the applied
concentration did not alter the amount of in vitro cartilage matrix
production by culturing day 6 (data are shown in the Supporting
information).

Introduction of empty GeneSwitch vector alone into cells of HDC
resulted in a significant decrease of metachromatic cartilage matrix
production (40% of mock-transfected control cultures) as revealed
by dimethyl-methylene blue and toluidine blue staining proce-
dures on day 6 of culturing (Fig. 4A). Introduction of PKCdelta
shRNA-containing GeneSwitch resulted in an even stronger inhi-
bition (5% of mock-transfected control cultures), and the complete
loss of the metachromatic cartilage matrix (Fig. 4A).

In spite of the pronounced inhibition of cartilage matrix
production, mitochondrial activity of cells transfected with either
empty or PKCdelta shRNA-containing GeneSwitch constructs
remained unchanged compared to mock-transfected control cells
as revealed by MTT assays, and the rate of cellular proliferation also
did not show any alterations in either case (Fig. 4B). Cellular
viability and apoptosis assays performed by measuring the ratio of
propidium iodide and Annexin V DY647 stained cells using FACS
analysis revealed that transfection with the empty vector did not
cause any change in these parameters, whereas introduction of the
PKCdelta shRNA vector resulted in a very slight elevation of
apoptotic (2%) and necrotic (1%) cell death (Fig. 4C). These findings
demonstrate that the observed decrease in cartilage matrix
production was not caused by altered cellular viability, mitochon-
drial activity, proliferation or apoptotic rate.

We also wanted to examine the signalling mechanism under-
lying the aforementioned alterations of in vitro cartilage matrix
production. To evaluate the efficiency of gene silencing, RT-PCR and
Western blot analyses were performed. Although mRNA expression
of PKCdelta decreased only to a lesser extent as a result of sShRNA
expression (Fig. 5A), however, at the protein level it exhibited
a marked inhibition (30% of cultures transfected with the empty
vector) reflecting on the efficiency of PKCdelta gene silencing
(Fig. 5B). While PKCdelta gene silencing did not change the mRNA
expression of Sox9, and the mRNA level of aggrecan core protein
only exhibited slight alterations, the protein level of Sox9 showed
a marked decrease as a result of introduction of PKCdelta shRNA, as
revealed by RT-PCR and Western blot analyses, respectively
(Fig. 5A—B). Although PKCdelta gene silencing did not affect either
the mRNA or the protein expression of ERK1/2, a significant (two-
fold) increase in its phosphorylated form was observed, implicating
the involvement of this pathway in the signal transduction

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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Fig. 4. Effect of PKCdelta gene silencing on cartilage matrix production in high density micromass cultures (A). Metachromatic cartilage areas in 6-day-old high-density colonies
visualised with DMMB dissolved in 3% acetic acid. Optical density (ODgy5) of samples containing toluidine blue extracted with 8% HCl dissolved in absolute ethanol. Data shown are
mean values + standard error of the mean (+5%) of each experimental group out of 10 measurements. Asterisk indicates significant (*P < 0.01) decrease in optical density of
extracted toluidine blue as compared to the respective control (mock-transfected cultures). Effects of PKCdelta gene silencing on mitochondrial activity and cellular proliferation (B)
of cells in 3-day-old HDC. Empty columns represent mitochondrial activity and cellular proliferation rate of cultures transfected with the empty vector (GeneSwitch), gray columns
represent mitochondrial activity and cellular proliferation of HDC transfected with the PKCdelta shRNA-containing vector. Mitochondrial activity was measured by MTT assay and
cell proliferation was assessed by *H-thymidine incorporation. Effect of PKCdelta gene silencing on apoptotic rate and cellular viability of cells in 3-day-old HDC (C). Cellular viability
was determined by FACS analysis. Quadrants 1 and 2 represent cells stained by Annexin V DY 647 (i.e. cells undergoing apoptosis), whereas quadrants 2 and 3 represent cells
containing propidium-iodide (i.e. dead cells) of various sizes. For panels (A), (B) and (C) cultures treated with the transfection reagent (Lipofectamine 2000) were used as controls.

mechanism of PKCdelta in cells of chondrifying micromass cultures.
Administration of either the empty or the PKCdelta shRNA-con-
taining vector resulted in a significant decrease in PKC activity of
cells in HDC, with a more than 50% reduction in cultures transfected
with PKCdelta shRNA (Fig. 5C) as compared to mock-transfected
cultures.

3.4. Protein expression and phosphorylation status profiles of Sox9
and ERK1/2 exhibit a time-dependent pattern in differentiating HDC

Since both the cartilage-specific transcription factor Sox9 and
the dual-specificity MAPK ERK1/2 are key regulators of in vitro

chondrogenesis, and their activity can be modified by reversible
phosphorylation, we examined their protein expression as well as
the phosphorylation status pattern in untreated control cultures
during the 6-day-long culturing period. As shown in Fig. 6, the
protein expression profiles of ERK1/2 and its dual phosphorylated
(fully active) form demonstrate that the activity of ERK1/2 is the
highest in young chondroblasts (i.e. in cells of 3-day-old HDC) and
becomes lower in differentiated chondrocytes (6-day-old HDC).
Although Sox9 is readily expressed in chondroprogenitor mesen-
chymal cells (0-day-old HDC), we detected a 5-fold elevation in
2-day-old cultures, when the cells start their differentiation
programme. In differentiated cultures, Sox9 expression shows

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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Fig. 5. Effect of PKCdelta gene silencing on the mRNA expression of PKCdelta, aggrecan
and Sox9 transcription factor (A); protein expression of PKCdelta; protein expression
and phosphorylation of Sox9 and ERK1/2 (B) in 3-day-old HDC. For RT-PCR reactions,
GAPDH was used as a control. Optical density of signals was measured and results were
normalised to the optical density of respective control cultures. Representative data of
three independent experiments. PKC activity (C) in cells of HDC after PKCdelta gene
silencing on day 3 of culturing. Asterisk indicates significant (*P < 0.01) decrease in
enzyme activity as compared to the mock-transfected control (day 3). Representative
data of 3 independent experiments. For panels (A), (B) and (C) cultures treated with
the transfection reagent (Lipofectamine 2000) were used as controls.

a decrease, but it does not reach the baseline level again. Changes in
the phosphorylation level of Sox9 are not significant, nonetheless, it
exhibits a similar pattern (Fig. 6).

4. Discussion

It has long been known that various PKC isoenzymes are
involved in the chondrogenic differentiation of chicken limb
micromass cultures. PKC enzyme activity proved to be detectable in
cells of HDC with characteristic changes during differentiation, and
conversely, exposure of cultures to long-term phorbol-12-myr-
istate-13-acetate (PMA) treatments blocked the differentiation
process and abolished in vitro cartilage matrix production [25]. In
a study conducted by Choi and his colleagues the expression
profiles of classic (PKCalpha and gamma), novel (PKCepsilon) and
atypical (PKCzeta, lambda and iota) protein kinase C isoenzymes
have been described during the differentiation of chicken

oD 1.0 0.9 1.1 1.4 1.1 1.0
P-ERK1/2
"

oD 1.0 1.0 1.1 1.3 1.2 0.9

Sox9

56 kDa | = —
oD 1.0 33 51 43 22 21

L —————t—. o—
56 kDa .

oD 10 14 1.0 1.0 0.8 07

Fig. 6. Protein expression profile and phosphorylation status of Sox9 transcription
factor and ERK1/2 in HDC during the 6-day-long culturing period. Optical density of
signals was measured and results were normalised to the optical density of 0-day-old
cultures. Representative data of 3 independent experiments.

micromass cultures and they showed that expression of various
cPKC and nPKC isoforms is mostly required at the early stages of
in vitro cartilage formation [3]. However, Choi and his group failed
to detect PKCdelta expression in cells of HDC with the antibodies
employed [3]. It has also been reported that protein kinase A sig-
nalling regulates in vitro chondrogenesis of chicken mesenchymal
cells via the PKCalpha pathway [26]. PKCdelta expression in cells of
HDC was reported for the first time by Grill and his colleagues, who
confirmed its protein expression by immunochemical and immu-
nocytochemical approaches [27]. Recently, Choi and his colleagues
demonstrated the protein expression of PKCdelta by Western blot
analyses in cells of HDC [10], when they investigated the involve-
ment of this signal molecule in the regulation of the formation of
prechondrogenic nodules. Consistent with their data, our results
also showed a marked increase in PKCdelta protein expression at
the beginning of the 6-day-long culturing period, followed by
a decrease in its expression level. We also confirmed these findings
by PKCdelta enzyme activity assays, with the maximum levels of
activity corresponding to the highest levels of protein expression
on culturing days 1—4. Correspondence of these patterns to the
onset of chondrogenic differentiation of cells in HDC supports our
idea that PKCdelta is a good candidate among PKC isoforms to be
involved in the regulation of signalling mechanisms leading to
in vitro cartilage formation.

In the subsequent set of experiments rottlerin (mallotoxin),
described as an inhibitor of PKCdelta activity in some publications
[28—30], was administered to cells of HDC. Rottlerin treatments
resulted in a decrease of cartilage matrix production in a concen-
tration and time dependent manner, including days 1 or 2 of
culturing, when condensation and nodule formation of chondro-
genic mesenchymal cells take place. These results are in agreement
with the findings of Choi and his colleagues, who reported that
rottlerin, via modulation of Akt-signalling and integrin B1-medi-
ated pathways, might be negatively involved in the regulation of
the migratory potential of chondroprogenitor cells in chicken limb
bud-derived HDC, but in a PKCdelta-independent manner [10].

Since the decrease in metachromatic cartilage matrix produc-
tion we observed might have resulted from the reduced cellular
viability and/or decreased cellular proliferation rate, mitochondrial
oxidase activity (MTT) and proliferation (radioactively labelled
thymidine incorporation) assays were performed. While the
cellular viability was only lowered to a lesser, but still significant
extent, a more pronounced decrease in the rate of proliferation was

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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observed. The latter result is consistent with the anti-proliferative
effect of rottlerin on HaCaT keratinocytes [24]. Administration of
rottlerin did not induce either apoptosis or necrosis in cells of HDC.
As rottlerin is described as a mitochondrial uncoupler of different
mammalian cell types rather than a direct PKCdelta inhibitor in
some recent publications [11,31], these findings may reflect on
a difference in mitochondrial sensitivity to rottlerin of chicken
compared to mammalian cells. mRNA and protein expression of
Sox9, the key chondrogenic transcription factor decreased after
rottlerin treatments, moreover, phosphorylation of Sox9 (resulting
in a more active form of this transcription factor) was almost
completely abolished. The observed decrease in the phosphory-
lated form of Sox9 protein could be, at least partially, accounted for
the reduced cartilage matrix production after the administration of
rottlerin.

The ERK pathway, also known as the MEK-ERK kinase cascade,
is one of the key cytoplasmic signal transduction pathways gov-
erning proliferation, survival and differentiation of eukaryotic
cells. The role of this crucial signal pathway in the regulation of
chondrogenesis is rather controversial and probably depends
either on the experimental model or/and the methods applied.
ERK1/2 was reported as a negative regulator of chondrogenesis in
both HDC [32,33] and C3H10T mouse embryonic mesenchymal
cells [34]. In these experiments the function of ERK1/2 was
assessed by the application of pharmacological inhibitors
PD098059 or U0126 [35]. On the contrary, it seemed to promote
chondrogenesis in adult human bone marrow derived multipotent
progenitor cells when the gene silencing technique was the
approach [36]. Nonetheless, we found that the protein expression
profiles of ERK1/2 and its dual phosphorylated (fully active) form
show that the activity of ERK1/2 is the highest in young chon-
droblasts (i.e. in cells of 3-day-old HDC) and becomes lower in
differentiated chondrocytes (i.e. 6-day-old HDC) (Fig. 6). In our
current experiments neither the mRNA, nor the protein expression
of ERK1/2 was altered after treatments with rottlerin, but its
phosphorylated form was almost completely diminished. Our
results correspond with that of another study conducted by Tapia
and his colleagues on pancreatic acinar cells, where rottlerin also
proved to inhibit MAPK-activation [14].

Since rottlerin has been described as a factor having both
PKCdelta dependent and independent effects often leading to
contradictory results on various tissue and cell types [14,24], we
were prompted to apply targeted PKCdelta mRNA silencing to
clarify the role of PKCdelta activity during the differentiation of
chondrogenic mesenchymal cells. Transfection with PKCdelta
shRNA and subsequent transient gene silencing of cellular PKCdelta
almost completely blocked in vitro chondrogenesis. Neither mito-
chondrial activity, nor cellular proliferation rate were significantly
affected by the introduction of either the empty or the PKCdelta
shRNA-containing vectors into cells of HDC, furthermore, PKCdelta
gene silencing did not induce significant apoptotic and/or necrotic
cell death rate of chondrogenic cells. In contrast to our results,
PKCdelta has been reported as an accelerator of proliferation in
cultured human skeletal muscle cells and C2C12 myoblast cells
during myogenic differentiation, although the authors applied
rottlerin to investigate the effects of the inhibition of PKCdelta in
these experiments [37]. In our experiments, administration of
either the empty or the PKCdelta shRNA-containing vector into
cells of HDC caused a significant decrease in PKC activity assayed on
day 3. The approximately 70% decrease in PKC activity values
detected in HDC transfected with the shRNA-containing vector may
reflect on the fact that reduction of the efficacy of chondrogenesis
itself could have led to an inhibition of PKC activity. Another
possibility is that PKCdelta might be involved in the regulation of
the activity of other members of the PKC family. This idea is based

on the theory of Toker, who proposed that some PKC isoenzymes
can activate other PKCs via phosphorylation in a cascade-like
manner [38].

Since PKCdelta gene silencing effectively decreased PKC
enzymatic activity and led to an almost complete inhibition of
in vitro cartilage matrix production, the expression of the molec-
ular regulators of chondrogenesis was also investigated. While the
mRNA expression of Sox9 was not affected, its protein expression
and phosphorylation were markedly reduced as a result of the
introduction of PKCdelta shRNA, and this reduction can partially be
accounted for the observed effects on metachromatic cartilage
matrix production. Inhibition of PKCdelta activity in osteoblasts by
using siRNA has led to a decrease in the phosphorylation and
activity of ERK1/2, which in turn has suppressed the differentia-
tion of diosmetin-induced differentiation of these cells [39]. On
the contrary, activation of PKCdelta was found to decrease the
activity of ERK1/2 in keratinocytes [40]. Moreover, PKCdelta
altered differently the phosphorylation of ERK1/2 in human
primary skeletal muscle cells and C2C12 rat myogenic cells [37].
Although neither the mRNA nor the protein expression of ERK1/2
showed any alterations as a result of PKCdelta gene silencing in
our experimental system, the level of its phosphorylated form
exhibited a two-fold increase. If the observation that younger
chondroblasts have the highest ERK activity in HDC is taken into
consideration, it seems to be plausible to conclude that the
persistently elevated ERK1/2 activity may block further differen-
tiation of chondroblasts and in this way could be a factor involved
in the complete inhibition of in vitro cartilage matrix production
following PKCdelta gene silencing. However, application of gene
silencing of PKCdelta had variable effects on MEK-ERK1/2 signal-
ling pathway in different systems [39,41,42], but the majority of
the investigations describes PKCdelta as a negative regulator of
MEK-ERK1/2 pathway [43]. As we failed to detect any elevation in
the phosphorylation of ERK1/2, instead, we found a decreasing
pattern following the application of rottlerin, therefore we
suppose that this compound is probably not a PKCdelta inhibitor
in HDC. This idea is further supported by the fact that we
were unable to detect any consistent change of PKCdelta enzyme
activity in our experiments when rottlerin was applied to the
culture medium of cells for 4—4 h on days 2 and 3. However, when
rottlerin was added to the reaction mixtures of total PKC enzyme
activity assays performed in cell free samples prepared from
untreated HDC, it resulted in significantly lower enzyme activities.
Nonetheless, the contradiction can be resolved if we hypothesise
that rottlerin might have different effects when applied to cells or
to an in vitro enzyme activity assay. As we have already mentioned,
rottlerin has been described as a mitochondrial uncoupler in
different cells [11], and a wide range of its effects (including
indirect inhibition of PKCdelta) can be regarded as a consequence
of this phenomenon.

Taken together, our results suggest that PKCdelta is a positive
regulator of in vitro chondrogenesis upstream to the protein
expression and phosphorylation of Sox9. Since the activity of
ERK1/2 was increased by PKCdelta gene silencing, PKCdelta could
also be a negative regulator of the ERK1/2 kinase pathway in HDC.
However, our results concerning the involvement of PKCdelta in the
MAPK pathway seem to be controversial, as inhibition of PKCdelta
activity by rottlerin and PKCdelta gene silencing has led to opposing
results. Nevertheless, the apparent confusion can be resolved if the
PKCdelta-independent effects of rottlerin are also taken into
consideration: rottlerin is reported to inhibit other PKC isoforms as
well as other kinases, such as p38-regulated kinase, MAPK-acti-
vated protein kinase 2, PKA or CaM-KIII and it can also modulate
mitochondrial metabolic processes [11,14]. Because of its diverse
and probably non-PKCdelta-specific effects, we do not recommend

cultures, Biochimie (2010), doi:10.1016/j.biochi.2010.09.005
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application of rottlerin as an approach for investigating the role of
PKCdelta in chondrifying high density micromass cultures.

5. Conclusions

The main findings of this work can be summarised as follows.
The continuously detectable PKCdelta expression and activity
exhibited a peak on days 2 and 3, when chondrogenic cells
differentiate into chondroblasts in HDC. Rottlerin decreased PKC
activity in a cell-free assay system, but failed to inhibit PKC activity
when it was applied to HDC during culturing. Gene silencing
resulted in a significantly lower PKC activity. Both rottlerin and
PKCdelta shRNA caused a severe reduction in cartilage formation
as well as in the protein and phospho-protein levels of Sox9.
Rottlerin reduced, while PKCdelta gene silencing elevated the
phosphorylation status of ERK1/2. On the basis of our results, we
concluded that PKCdelta stimulates in vitro chondrogenesis via
influencing Sox9 and ERK1/2 phosphorylation, but inhibition of
cartilage formation in the rottlerin-treated HDC is presumably
a PKCdelta-independent process.
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