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Occurrence of bi- and trirhythmicities (coexistence of two or three stable limit cycles,

respectively, with distinctly different periods) has been studied experimentally by applying

delayed feedback control to the copper-phosphoric acid electrochemical system oscillating close

to a Hopf bifurcation point under potentiostatic condition. The oscillating electrode potential is

delayed by s and the difference between the present and delayed values is fed back to the cir-

cuit potential with a feedback gain K. The experiments were performed by determining the pe-

riod of current oscillations T as a function of (both increasing and decreasing) s at several

fixed values of K. With small delay times, the period exhibits a sinusoidal type dependence on

s. However, with relatively large delays (typically s � T) for each feedback gain K, there

exists a critical delay scrit above which birhythmicity emerges. The experiments show that for

weak feedback, Kscrit is approximately constant. At very large delays, the dynamics becomes

even more complex, and trirhythmicity could be observed. Results of numerical simulations

based on a general kinetic model for metal electrodissolution were consistent with the experi-

mental observations. The experimental and numerical results are also interpreted by using a

phase model; the model parameters can be obtained from experimental data measured at small

delay times. Analytical solutions to the phase model quantitatively predict the parameter

regions for the appearance of birhythmicity in the experiments, and explain the almost constant

value of Kscrit for weak feedback. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921694]

Although all isolated systems tend towards a unique,

stationary state (thermodynamic equilibrium state),

open systems can exhibit multiple states, whose real-

ization depends on the initial condition. In chemical

systems, multiplicity is often observed with stationary

states, or with a single oscillatory and many station-

ary states. Nonetheless, multiplicity can also occur

with oscillatory chemical reactions, where depending

on initial conditions, two different types of oscillations

can be obtained. Such birhythmicity can often be

observed with two coupled chemical systems, where

different synchronization patterns could produce dif-

ferent periods for the oscillatory cycles. However,

another form of birhythmicity can also be observed

when a single oscillatory chemical reaction is coupled

to “itself” through a sufficiently large delay via a self-

feedback mechanism. This paper explores the emer-

gence of such multirhythmic dynamics with an elec-

trochemical reaction (Cu electrodissolution in

phosphoric acid) where the measured electrode poten-

tial, which determines the rate of the dissolution, is

fed back with a delay to the circuit potential, which

drives the dissolution reaction. Through experiments,

numerical simulations, and a phase-model analysis,

we show that the feedback mechanism can provide an

efficient way for generating robust, finely tuned peri-

ods for the oscillations. Such mechanism could be

implemented to construct versatile timers in biological

and engineering applications.

I. INTRODUCTION

Systems of rhythmic processes often interact with the

environment in a complex manner, and changes induced in

the environment, in turn, affect the inherent dynamics of the

system. One approach to a simplified description of such sys-

tems is based on the application of delayed differential equa-

tions. Examples include physiological systems,1 metabolic

feedback to circadian system,2 or laser dynamics.3 Delayed

feedback is also a fundamental method by which control of

complex dynamics can be achieved.4–6 In chemical systems,

delayed feedback was applied to a variety of simple oscilla-

tory and chaotic systems7,8 in homogenous reactions,9,10 het-

erogeneous catalysis,11 and electrochemical systems.12

Chaotic systems were controlled,10,11,13,14 spiral waves were

tamed,15 synchronous behavior was finely tuned,16 and clus-

tering and other types of complex spatiotemporal structures

were induced17–20 by the delayed feedback.

Comprehensive theoretical treatment of delayed equa-

tions is a challenging task; however, phase and Stuart-

Landau models provide an efficient framework for descrip-

tion of oscillatory behavior as a function of feedback delay
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and strength.16,21,22 Analytical studies about the period of

oscillations predicted possible occurrence of birhythmicity
(co-existence of two stable periodic orbits) with relatively

strong feedback and with a large delay.21,22 With weak

feedback and small delay, the period of oscillations changes

as a function of feedback delay in a harmonic manner; how-

ever, at large coupling strength/delay, the harmonic shape

transforms to a Z-shape creating two stable and one unstable

periodic orbits with different periods at the same feedback

delay. Theoretical predictions also showed that the number

of stable periodic solutions grows as delay increases.21

Feedback induced birhythmicity was found in experiments

with the minimal bromate oscillator in a continuous flow

stirred tank reactor.23 Indication of birhythmicity (discontin-

uous and abrupt change of period as a function of feedback

gain) was also found in CO oxidation on Pt with externally

imposed feedback.24 We note that birhythmicity can also

appear without any apparent external feedback; for example,

in a system of coupled bromate oscillators,25 in the

hydrogen-oxygen reaction in a continuous-flow reactor at

low pressures,26 and in models of glycolytic oscillations.27

In these systems, the origin of birhythmicity is related to

some positive or negative feedbacks that are inherent in the

system.

In this paper, we investigate an oscillating electrochemi-

cal process (the electrodissolution of copper in phosphoric

acid electrolyte28,29) under the effect of externally imposed

delayed feedback in order to explore the dynamical features

as a function of both the feedback gain and delay. We have

chosen an electrochemical process because of the possibility

of extensive experimental characterizations with delayed

feedback;29 in addition, phase model descriptions (with rela-

tively small delay) have been successful in describing the dy-

namics of synchronization of electrochemical oscillators.30

The system thus allows us to test to what extent a phase

model description can be applied to predicting the appear-

ance of multirhythmicity in an experimental system at small

and large values of feedback delays (e.g., multiple times the

oscillatory period of the unperturbed, autonomous system).

The paper is structured as follows. We start with show-

ing the characteristics of delay induced birhythmicity that

emerges in a general model for current oscillations during

metal electrodissolution. Then a simple phase model is con-

structed to characterize the observed dynamics. We derive a

relationship between the feedback gain and the critical delay

at which birhythmicity may occur. Finally, experimental

results are shown that verify the “birth” of birhythmicity at

the predicted values of feedback gain and delay; in addition,

experimental evidence for the appearance of an even higher

order multirhythmicity (i.e., trirhythmicity) is also presented.

II. RESULTS AND DISCUSSION

A. Feedback induced birhythmicity in a general model
for metal electrodissolution: Numerical results

For understanding the emergence of delay induced mul-

tirhythmicity in an oscillating electrochemical system, we

consider the following general model for a negative

differential resistance (N-NDR) type electrochemical oscilla-

tor, such as the Cu-o-phosphoric acid system:31

de

dt
¼ v� e

r
� 120n eð Þu; (1)

du

dt
¼ �1:25d1=2n eð Þuþ 2d w� uð Þ; (2)

dw

dt
¼ 1:6d 2� 3wþ uð Þ: (3)

In Eqs. (1)–(3), e is the dimensionless electrode potential, u
is the dimensionless concentration of an electroactive species

in the near-surface diffusional layer (Nernst layer), w is the

dimensionless concentration of the same electroactive spe-

cies in the secondary diffusional layer, while t is dimension-

less time. Equation (1) defines the charge balance during the

anodic process, Eq. (2) is the reaction-diffusion equation for

the electroactive species in the Nernst layer, while Eq. (3)

gives the change in the concentration (w) due to only diffu-

sion between the layers. Further details of the model, includ-

ing exact definitions of the dimensionless variables, are

described by Koper and Gaspard.31

The dimensionless parameters of the model are the total

series resistance r, the circuit potential v, the rotation rate d,

and the potential dependent rate constant n(e) for the

N-NDR system31,32

nðeÞ ¼ 2:5 H2 þ 0:01 exp½0:5 ðe� 30Þ�; (4)

where H is the surface coverage of the electrode

H ¼
1 if e � 35

exp ½�0:5ðe� 35Þ2� if e > 35

� �
: (5)

We note that Eqs. (1)–(3) are considered as a general kinetic

model for a class of electrochemical oscillations. In this

model, positive feedback to the electrochemical reaction in

Eq. (1) is caused by the negative differential resistance

(decreasing current with increasing electrode potential) due

to some inhibiting chemical process. This positive feedback,

when combined with a slow negative feedback caused by

diffusion is the source of the instability that may lead to

oscillations. In the original derivation of the equations, the

electroactive species was In3þ ion, while the negative differ-

ential resistance was caused by the desorption of the catalyst,

SCN�, with coverage H.31,32

In this work, we use Eqs. (1)–(3) to demonstrate the

effect of feedback to the wide class of electrochemical oscil-

lations generated by N-NDR mechanism. During copper

electrodissolution at large overpotential, where the oscilla-

tions occur, the limiting current is due to the diffusion of

water to the electrode;33,34 therefore, when the general model

of electrochemical oscillations (Eqs. (1)–(3)) is applied to

copper electrodissolution, u and w may correspond to water

concentrations in the diffusional layers. The inhibiting step

causing N-NDR kinetic features is likely related to the for-

mation of copper oxides35 on the electrode surface. The va-

lidity of Eqs. (1)–(3) has been extensively verified for

description the dependence of oscillatory features, for
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example, on series resistance, electrode size and capacitance,

and rotation rate of the disk.12,36–38 For our calculations

here, we chose parameter values that set the system close to

a Hopf bifurcation point in the bifurcation diagram and apply

a delayed feedback.

For simulations, we applied the differential delayed

feedback (DDF) formula introduced by Pyragas4 as follows.

The circuit potential is set by a real time controller

vðtÞ ¼ v0 þ dvðtÞ; (6)

where v0 is the dimensionless base (constant) circuit poten-

tial when no feedback is applied, and dv(t) is the potential

perturbation (feedback) calculated as follows:

dvðtÞ ¼ k½eðtÞ � eðt� sÞ�; (7)

where k and s are the feedback gain and delay, respectively.

Without feedback, the calculated current oscillations have an

angular frequency X¼ (2p/T)¼ 4.25. The effect of feedback

(with gain k¼ 0.05) on the frequency is shown in Figure 1.

The value of s has been varied between 0 and 10; for each

simulation, the initial conditions were taken from the last

point of the preceding one.

Birhythmicity (the coexistence of two oscillatory solu-

tions with different periods) can be detected by the following

procedure (Figure 1): the delay time s first is increased from

0 to 10 in an upward scan then it is decreased back to 0 in

the backward scan, both under control. The upper branch

(backward scan) can be approached by an appropriate pa-

rameter perturbation (for example, slightly changing v) of

the lower branch. Note that for relatively large delay, there

appears a “splitting,” and no overlapping is possible for the

forward and backward scans. The figure also indicates that

by increasing the delay time, the width of the hysteresis

loops increases.

With relatively large delay, trirhythmicity can be

observed. It is the result of the coexistence of three periodic

solutions. It means that there exist three limit-cycles with

different periods in the phase space of the system. The mid-

dle branch can be approached by slightly perturbing the os-

cillatory system at either the upper or the lower branches.

The periodic oscillations of the middle branch can then be

traced by either increasing or decreasing the delay time.

These numerical results are consistent with the results of

previous analytical studies and numerical modeling with

general model equations.21,22 Our present numerical model-

ing predicts that multirhythmic behavior may occur in the

experimental system, when the feedback is constructed from

the oscillating electrode potential, while the control (per-

turbed) parameter is the circuit potential.

B. Phase model interpretation of multirhythmicity

For a deeper understanding of the laws of dynamics

resulting in the emergence of multirhythmicity, we now ana-

lyze a general phase model39 of an oscillating system subject

to a weak feedback. The phase dynamics can be described as

follows:

dU tð Þ
dt
¼ xþ jf U tð Þ � U t� sð Þð Þ; (8)

where U(t) is the phase, t is time, x is the natural angular fre-

quency of the oscillations, j� 0 and s� 0 are, respectively,

the feedback gain and delay, while f is the functional form of

the feedback. For a system close to a Hopf bifurcation point

(where the waveform of oscillations is almost sinusoidal),

this function–by considering a simple proportional feed-

back40–can be given as follows:

f ðUÞ ¼ sinðUþ aÞ � sinðaÞ; (9)

where a is a parameter that depends on the type of oscilla-

tions. In the given example, the effect of a on the observed

dynamics is small; therefore, we consider a¼ 0, thus we can

write

dU tð Þ
dt
¼ xþ j sin U tð Þ � U t� sð Þð Þ: (10)

Equation (10) has a periodic solution U(t)¼Xt with a con-

stant angular frequency X¼ 2p/T (where T is the period of

oscillations) satisfying the following relation:

X ¼ xþ j sinðXsÞ � gðXÞ: (11)

In general, there might be multiple solutions to this implicit

equation depending on x, j, and s. For sufficiently small s,

there is only one solution, and the system exhibits oscilla-

tions with the given value of the angular frequency only.

However, by increasing the delay time s, a pair of new solu-

tions may appear via a saddle-node bifurcation at a critical

delay time scrit. Such a saddle-node bifurcation can result in

birhythmicity, and further saddle-node bifurcations of the

periodic solutions can bring about even higher order

multirhythmicities.

FIG. 1. Simulations with kinetic model: dynamical birhythmicity and

trirhythmicity. Birhythmicity and trirhythmicity are shown in the angular

frequency X (¼2p/T) vs. delay time s plot. The delay time s is first increased

(�) then decreased back (�) while control is applied with k¼ 0.05 at

v0¼ 36.6909, r¼ 0.02856, and d¼ 0.11913. Trirhythmicity exists between

s¼ 6.8 and 8. The middle branch can be approached by slightly perturbing

the oscillating system at the upper or lower branches, then it can be traced

by either increasing or decreasing the delay time s.
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The frequency of the solution at the critical point can be

obtained by realizing that at the saddle-node bifurcation,

dg(X)/dX¼ 1, therefore,

jscrit cosðXscritÞ ¼ 1: (12)

Because cos(Xscrit)� 1, we can define a lower bound condi-

tion that should be satisfied for the emergence of the

bifurcation

1 � jscrit: (13)

By further increasing s to s* (s*> scrit), there will be a new

solution at which X¼x; at this point

xs� ¼ 2n�p; (14)

where n* is the minimum integer that satisfies j 2n* p /x� 1.

Therefore,

js� ¼ j
2n�p
x

: (15)

The value of s* provides an upper bound for the bifurcation.

By the combination of Eqs. (13) and (15), we can define the

lower and upper bounds for s values at which birhythmicity

may occur

1 � jscrit � j
2n�p
x

: (16)

For very weak feedback (j is small), n* must be large, so

that the upper bound is approximately unity for any small j
value; therefore,

jscrit 	 1: (17)

Equation (17) implies that at the critical value, where

birhythmicity appears, the product of the feedback gain and

delay is nearly a constant value. When the feedback gain is

increased, the upper bound of jscrit will increase unless

2ðn � � 1Þpj=scrit < 1; (18)

i.e.,

n� <
x

2pj
þ 1: (19)

By substituting Eq. (19) into Eq. (15), we obtain an approxi-

mate formula for the dependence of feedback strength j of

the upper bound on the critical feedback delay smax:

1þ j
2p
x
� jsmax: (20)

Analytical predictions of the phase model are confirmed

by numerical simulations using Eq. (10) with x¼ 8.2 rad/s

(see Figure 2). This angular frequency is similar to the exper-

imentally observed frequencies of the electrochemical oscil-

lations. Witch increasing s (at j¼p/6 in panel a), the

angular frequency X initially changes in a sinusoidal man-

ner; however at large delays, the variation is distorted, and

the overlapping of two branches of periodic solutions

indicates the presence of birhythmicity. In this example, the

first bifurcation resulting in birhythmicity occurs at

scrit¼ 2.3 s, as expected from the theory (1 rad� j
scrit� 1.20 rad; the upper bound is calculated from Eq. (16)

with n*¼ 3). Note that in the phase model, we define the

unit of j as rad/s. For large delay (s> 9.5 s), similar to the

experiments, trirhythmicity can occur because of the over-

lapping of multiple curves of periodic solutions. Common

points of the two functions in Eq. (11), X, and g(X) exist in

the range of x�j�X�xþj. The number of common

points (that gives the degree of multirhythmicity) increases

with s, and the multiplicity of solutions can be roughly esti-

mated by considering the difference D of the phases (Xs)

between the edges, i.e., D¼ (xþj) s� (x�j) s¼ 2js. The

degree of multiplicity increases when D is increased approxi-

mately by 2p. This corresponds to an increase in s by p/j,

which is 6 s for j¼ p/6. In Figure 2(a), birhythmicity occurs

at scrit¼ 2.3 s, while trirhythmicity at 9.5 s, which is close to

the expected value (scritþ 6¼ 8.3 s).

Figure 2(b) shows that the numerically determined value

of the critical delay for birhythmicity decreases with increas-

ing the coupling strength, as it is expected from Eq. (16).

The same data are applied to plot jscrit vs. j in Figure 2(c).

Since the feedback gain is relatively small, all values are

close to jscrit	 1. The larger jscrit values (where n* changes

by 1) align with the theoretically predicted Eq. (20).

We have shown that simple geometric arguments can

explain the appearance of bi- and trirhythmicities, and the

phase model can be applied to predict the critical feedback

delays where the bifurcations occur. We note that the feed-

back gains in the phase model (j) and in the experiments (K)

are quantities that differ only by a constant multiplier. For

simplicity, we suppose that j¼ bK, therefore, the lower

bound condition for the appearance of birhythmicity in the

experiments can be defined as follows:

jscrit ¼ bKscrit ¼ 1! Kscrit ¼
1

b
: (21)

The conversion factor b can be determined experimentally at

small values of s, where birhythmicity does not appear yet.

For small s, the solutions for X in Eq. (11) are sinusoidal

functions of s. Since the difference between the maximal and

minimal values of angular frequencies is defined as follows:

DX ¼ Xmax � Xmin ¼ 2j ¼ 2bK; (22)

the lower bound condition Kscrit¼ 1/b in the experiments

can be determined (and predicted) as the slope of a straight

line fitted to experimental data (plotted as DX vs. K).

C. Experimental results

A standard three-electrode electrochemical cell was

applied to study the dynamics of current oscillations during

the electrodissolution of copper in o-phosphoric acid electro-

lyte under potentiostatic condition without and with feed-

back. The reference electrode was either a saturated calomel

or Hg/Hg2SO4/sat. K2SO4 electrode, the counter electrode

was a Radelkis OH-9437 Pt-sheet electrode (area 5 cm2), and
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the working electrode was a rotating copper disk (99.99%,

diameter 5 mm, rotation rate 1500 rpm). All potentials are

given with respect to the Hg/Hg2SO4/sat. K2SO4 electrode.

In all experiments, we applied 70 ml 85% o-phosphoric acid

at constant temperature (20 6 0.1 
C).

A computer controlled potentiostat (Electroflex EF451)

was applied to set the circuit potential (resolution 0.01 mV)

between the working and reference electrodes. An adjustable

external resistor in series with the working electrode was

applied to provide the ohmic drop necessary for the appear-

ance of current oscillations. Unless otherwise stated, the re-

sistance was set to R¼ 85 X. The current I was measured

with an ammeter (accuracy: 0.001 mA) built in the potentio-

stat. The sampling frequency for data acquisition was

200 Hz. Further details about the experiments can be found

in our previous reports.13,14

Delayed-feedback is applied to the circuit potential V(t)

using the electrode potential E(t) calculated as follows:

EðtÞ ¼ VðtÞ � IðtÞR: (23)

The circuit potential is set by a real time controller

VðtÞ ¼ V0 þ dVðtÞ; (24)

where V0 is the base circuit potential when no feedback is

applied and dV(t) is the potential perturbation (feedback) cal-

culated as follows:

dVðtÞ ¼ K½EðtÞ � Eðt� sÞ�; (25)

where K and s are the feedback gain and delay time, respec-

tively. Experiments have been carried out to determine the

angular frequency X ¼ 2p/T (rad/s) of the oscillating current

as a function of K and s.

Figure 3 shows typical smooth oscillations (T0 ¼ 0.79 s)

of current I and electrode potential E when no feedback is

applied (autonomous system). In the experiments, the circuit

FIG. 2. Phase model simulations:

birhythmicity and trirhythmicity. (a)

Angular frequency X vs. feedback

delay s in the phase model with

x¼ 8.2 rad/s and j¼p/6. Arrows indi-

cate expected transitions between the

lower and upper branches of the oscil-

lations by increasing and decreasing s
in the given range. (b) Critical delay

scrit at which birhythmicity first

appears as a function of feedback gain

j. It has been determined numerically

from sets of simulations similar to

those in panel (a). (c) Dependence of

jscrit on feedback gain j calculated

from data of panel (b). The plotted

lines show the theoretically predicted

values for minimal and maximal delay

times calculated, respectively, accord-

ing to Eqs. (17) and (20).

FIG. 3. Experiments: Oscillations of the system without feedback. Typical

smooth oscillations of (a) the current I and (b) the electrode potential E in

the o-phosphoric acid electrolyte/rotating disk copper electrode system with-

out feedback (K¼ 0). The measured period of oscillations is T0¼ 0.79 s. The

applied circuit potential is V0¼ 64 mV, slightly above the potential where

the Hopf bifurcation occurs (VH¼ 54 mV).
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potential was set by the potentiostat (V0¼ 64 mV) just

slightly above the critical circuit potential where the Hopf-

bifurcation took place (VH¼ 54 mV).

Figure 4 shows the effect of delayed feedback on the

angular frequency of current oscillations for different values

of feedback gain K ranging between 0.01 and 0.08. In Figure

4(a), the feedback is very weak (K¼ 0.01); as the feedback

delay s is increased, the angular frequency changes in a har-

monic manner. When s¼ T0¼ 0.77 s, the feedback has no

effect on the dynamics, and the frequency of the oscillations

is the same as the natural frequency. With further increasing

the feedback delay, there is a cyclic variation of the angular

frequency with respect to s for about three cycles without

change, and three more cycles with only a small change in

the amplitude of the X vs. s curves. With these relatively

small feedback delays (s< 4 s), there is no hysteresis; the

angular frequencies obtained with increasing or decreasing

the s values are almost identical. However, at s> 4 s, instead

of the expected next cyclic variation, birhythmicity emerges

(scrit¼ 4.85 s) for a small region of feedback delays. The

region of birhythmicity becomes wider for the larger delays

FIG. 4. Experiments: delayed-feedback

induced birhythmicity. Angular fre-

quency of oscillations X at different con-

trol gains K when the delay time s is first

increased stepwise (�) from 0 to 6 s

then decreased back to 0 (�). Note that

the critical delay time scrit for the first

appearance of birhythmicity decreases as

the control gain is increased: (a)

K¼ 0.01, scrit¼ 4.85 s, VH¼ 40 mV,

V0¼ 50 mV, R¼ 86 Ohm; T0¼ 0.77 s.

(b) K¼ 0.02, scrit¼ 2.5 s, VH¼ 54 mV,

V0¼ 64 mV, R¼ 85 Ohm; T0¼ 0.77 s.

(c) K¼ 0.04, scrit¼ 1.5 s, VH¼ 54 mV,

Vo¼ 64 mV, R¼ 85 Ohm; To¼ 0.77 s.

(d) K¼ 0.06, scrit¼ 1 s, VH¼ 54 mV,

V0¼ 64 mV, R¼ 85 Ohm; T0¼ 0.78 s.

(e) K¼ 0.08, scrit¼ 0.9 s, VH¼ 40 mV,

V0¼ 50 mV, R¼ 86 Ohm; T0¼ 0.76 s.

At s¼ 0.3 s, amplitude death (AD) is

observed.

FIG. 5. Experiments: current oscillations during birhythmicity. Periodic cur-

rent oscillations in the range of birhythmicity at V0¼ 64 mV (VH¼ 54 mV)

with control gain K¼ 0.02 (see Figure 4(b)) and feedback delay s¼ 4.7 s.

Thick curve shows the current oscillations (T¼ 0.79 s) observed during the

forward scan of s, while the thin curve shows the current oscillations

(T¼ 0.71 s) observed during reverse scan of s.
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(e.g., s> 5.5 s). Nonetheless, with the weakest feedback gain

(K¼ 0.01), the regions of birhythmicity are very small.

For the stronger feedbacks in Figure 4(b) (K¼ 0.02) and

4(c) (K¼ 0.04), we observed that as the feedback gain is

increased, the first critical value of the feedback delay is

decreased (scrit¼ 2.5 s and 1.5 s, respectively), and the region

of birhythmicity is becoming increasingly wider. At even

larger feedback gains, “splitting” of the lower and upper

branches takes place (see Figures 4(c)–4(e)). The larger the

gain the smaller the feedback delay where the first splitting

occurs. As a consequence of the splitting of the two

branches, during forward scan of s, instead of the transition

from the lower branch (slower oscillations) to the upper

branch (faster oscillations), the system rather jumps to the

next lower branch (slower oscillations). Similarly, during a

reverse scan of s, the transition from the upper branch (faster

oscillations) does not take the system to the lower branch

(slower oscillations) but to the previous upper branch (faster

oscillations). Notice that similar splitting was also found in

the numerical modeling (see Figure 1) at large delays.

Birhythmicity is the result of the coexistence of two sta-

ble limit cycles with different periods. The two co-existence

current oscillations, shown in Figure 5, were measured in the

range of birhythmicity at exactly the same conditions (corre-

sponding to Figure 4(b)). The thick curve belongs to the lower

branch (slower oscillations, T¼ 0.79 s), while the thin curve

shows the faster oscillations (T¼ 0.71 s) observed during the

reverse scan of s. Note that the applied delayed feedback has

only a small effect on the amplitude of oscillations (about 3%

variation). However, there is a pronounced, about 11% differ-

ence between the periods of the oscillatory curves. This find-

ing indicates that as outlined earlier, a simple phase model

could be justifiably applied to explain and characterize the ori-

gin of multirhythmicity, at least, with weak feedback gains.

According to Eq. (22), the difference between the maxi-

mal and minimal values of the angular frequencies

(DX¼Xmax�Xmin) is linearly proportional to the (weak)

feedback gain K. This relationship is tested with the experi-

mental data in Figure 6(a). The slope of the straight line is

2b¼ 48.38 rad/s, that is, the conversion factor b¼ 24.19 rad/

s. In Figure 6(b), we plot the critical value of feedback delay

scrit as a function of the control gain K (data are taken from

Figure 4). Figure 6(b) shows an inverse (hyperbolic) relation-

ship between scrit and K, suggesting that Kscrit is nearly con-

stant, as it has been predicted by the phase model. Figure 6(c)

shows the Kscrit values as a function of K. While the K values

are increased almost tenfold (from 0.01 to 0.08), the values of

Kscrit increase by �50% only; therefore, it is possible to ap-

proximate the critical feedback delay by determining the

value of Kscrit at a given feedback gain only. Figure 6(c) also

shows that the Kscrit varies nearly linearly as a function of K.

The intercept of a linear fit predicts a lower limit

Kscrit¼ 0.045 s for week feedback. This limiting value can be

also approximated from the slope of DX vs. K graph shown

in Figure 6(a), that is 1 rad/b¼ 0.0413 s. As we have dis-

cussed earlier, the value of Kscrit may slightly depend on the

value K, too. The lower bound approximation according to

Eq. (17) predicts a zero slope for the Kscrit vs. K graph, while

the upper bound approximation according to Eq. (20) gives a

slope that is equal to T0. When changing the delay, sometimes

the lower, sometimes the upper bound approximation works

better (see Figure 2(c)). Accordingly, the experimentally

determined slope (0.32 s) is between 0 and T0	 0.75� 0.8 s

(Figure 6(c)). These quantitative agreements between predic-

tions and experiments indicate that a simple phase model

approximation is an effective tool (with excellent predictive

power) for characterizing the emergence of birhythmicity.

Both modeling studies predicted (see Figures 1 and 2(a))

that at strong feedback and large delay, there is a possibility

FIG. 6. Experiments: testing the correlations (as predicted by the phase

model) between DX, K, and scrit for birhythmicity at weak feedback. (a) The

difference between the maximum and minimum of the angular frequencies

of the oscillations (DX¼Xmax�Xmin) as a function of the control gain K.

The slope of the straight line is 2b¼ 48.38 rad/s. (b) Critical value of delay

time scrit as a function of the control gain K. (c) Kscrit as a function of feed-

back gain K. The slope and the intercept of the fitted line are, respectively,

0.32 s and 0.045 s.

FIG. 7. Experiments: trirhythmicity. Angular frequency of oscillations X at

large control gain (K¼ 0.12) when the delay time is first increased (�) from

0 to 6 s then decreased back to 0 s (�). VH¼ 120 mV, V0¼ 130 mV,

R¼ 87 Ohm; T0¼ 1.24 s. Three different oscillatory modes were observed at

large feedback delay (s> 4 s). Oscillations with angular frequencies corre-

sponding to the middle branch of the diagram (trirhythmicity, �) could be

approached by perturbing the system from either the upper or lower

branches. The points of the middle branch were traced by either increasing

or decreasing the feedback delay s after the perturbation.

064608-7 Nagy et al. Chaos 25, 064608 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

193.6.129.165 On: Fri, 29 May 2015 12:02:54



for trirhythmicity. Following the strategy developed by the

numerical simulations, we have found the trirhythmicity in

the experiments (see the middle branch in Figure 7). The

third mode of oscillations could be found by perturbing the

system (by slightly changing the circuit potential for a short

period of time) from either the upper or lower branches of

the oscillations in the region where splitting of the branches

occurs; after establishing the new stable oscillations, the

middle branch could be traced by increasing and decreasing

the feedback delay s (see Figure 7).

III. CONCLUDING REMARKS

The experiments revealed that the oscillatory electrodis-

solution of copper under potentiostatic conditions can exhibit

multirhythmic behavior when delayed feedback is applied to

the circuit potential. With small feedback gain (K) and delay

(0< s< T), the frequency of oscillations changes only in a

nearly harmonic manner. In this region, the difference

between the maximum and minimum values of the frequen-

cies can be used to predict the critical delay scrit that should

be applied to induce birhythmicity when high and low fre-

quency oscillations co-exist for the same K and s. The nearly

constant value of Kscrit implies that a simple phase model

approximations can be used predictively for the experiments

even at larger delays and gains. We have also showed that

feedback could also generate trirhythmicity when three sta-

ble periodic orbits with different frequencies can co-exist.

Although birhythmicity has been reported in oscillating

chemical systems,25 higher order rhythmicities with single

chemical oscillators are difficult to obtain without feedback.

The feedback systems thus could provide a convenient way

for generating multiple attractors in a chemical system; other

possibilities include the application of a forced oscillator

with multiple frequency waveforms,41 or oscillators could be

coupled in a mechanism dependent specific manner that pro-

duces a phenomenon of extreme multistability.42

Because of the generality of the applied phase model, it is

expected that multirhythmic behavior can also occur in a wide

variety of chemical and biological systems oscillating close to

a Hopf bifurcation and subjected to weak, but largely delayed

feedback. Most notably, the validity of the phase model

approximation at large delays could open a way of extension

of synchronization engineering16,39,43,44 methods to large

delays, and, for example, to generate a system with large num-

ber of periodic solutions whose frequencies cover a relatively

large range. Such system could exhibit entrainment to large

range of external signal frequencies, a property of which is an

important characteristic of adaptive biological systems, such

as the self-tuned oscillator in the human auditory system.45
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