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Research Article

Effect of the elapsed time between sampling
and formalin fixation on the N-glycosylation
profile of mouse tissue specimens

Formalin-fixed, paraffin-embedded (FFPE) samples are generally used for histology-study,
however, they also possess importantmolecular diagnostics information.While it has been
reported that the N-glycan moieties of glycoproteins is not affected by the FFPE process,
no information is available about the effect of the elapsed time between sampling and fixa-
tion on the resulting N-glycosylation profile. In this study, lung, brain, heart, spleen, liver,
kidney, and intestine mouse tissue specimens were used for N-glycan profiling analysis
and the elapsed sampling time effect was investigated with the lung tissue. N-glycan ex-
traction from the tissue samples was performed by glycoprotein retrieval from the FFPE
specimens using radioimmunoprecipitation assay (RIPA) buffer followed PNGase F di-
gestion. The released oligosaccharides were fluorophore labeled and analyzed by capillary
electrophoresis-laser induced fluorescent detection (CE-LIF). N-glycosylation profiles of
freshly collected lung-tissue samples (zero time point), as well as 1 and 2 h after sam-
pling were compared by carbohydrate profiling and exoglycosidase treatment based deep
glycomic analysis. It was found that up to two hours of room temperature storage of tis-
sue specimens apparently did not cause changes in the N-glycosylation profiles of com-
plex carbohydrates, but resulted in considerable decrease in the amount of linear glucose
oligomers and high mannose type glycans present in the samples.
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� Additional supporting information may be found online in the Supporting Infor-
mation section at the end of the article.

1 Introduction

Formalin-fixed, paraffin-embedded (FFPE) samples are
routinely prepared in hospitals and pathology laboratories
for histology, and kept for decades to archive tissue speci-
mens [1], representing an unexploited clinical information
source about biological processes and diseases. Albeit these
specimens were traditionally used for histology-study based
diagnostics, the advent of highly sensitive bioanalytical
methods enabled the utilization of FFPE samples for molec-
ular level investigation including genomics, proteomics,
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metabolomics, and glycomics [2]. However, for this latter one,
no information is available about the effect of elapsed time be-
tween sampling and fixation as glycomolecular level changes
can occur during that time. It is generally assumed that tissue
specimens are immediately fixed after sampling to prevent
any post-sampling biochemical processes, which might
change their global molecular profile. In the instance of N-
glycosylation type post-translational protein modifications,
this elapsed timemight affect some labile sugar residues such
as sialylation and fucosylation (for the latter one, antennary
and/or core), which play important structural and modula-
tory roles in many normal and pathological processes [3–5].

While postmortem degradation was extensively exam-
ined in proteomics and genomics studies, changes in N-
glycan profiles have been investigated only in living organ-
isms. It was found that protein kinase and phosphatase
inhibitors preserved actin and myosin heavy chains from
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degradation [6]. So far, alterations of biologically important
oligosaccharidesweremainly associatedwith processes in the
Golgi apparatus and in the endoplasmic reticulum (ER) [7].
It was found that in case of immunoglobulin light chains,
N-glycan degradation increased in the presence of glucosi-
dase inhibitors, however, addition of proteasome and man-
nosidase inhibitor stopped the degradation [8]. ER asso-
ciated degradation in Arabidopsis revealed that during a
chilling stress, smaller N-glycan intermediates were syn-
thetized (Man5-7GlcNAc2 instead ofMan8-9GlcNAc2) [9]. Robb
et al. analyzed N-glycosylation degradation in Streptococ-
cus pneumonia using ribonuclease B as model glycopro-
tein and showed that various mannosidases were essential
for trimming high mannose type N-glycans [10]. Cytosolic
oligosaccharide chains degrade in the proteasome by au-
tophagy, a lysosomal degradation process of cytoplasmic ma-
terials. Proteasomal degradation is controlled by N-glycans
attached to substrates of ER associated degradation [11].
Deglycosylation of unfolded proteins catalyzed by enzymes
such as cytosolic endo-β-N-acetylglucosaminidase [12] and
cytoplasmic PNGase cuts the glycans from the misfolded
proteins [13].

In complex type N-glycans, sialic acid residues are con-
sidered as the most sensitive elements for environmental
degradation effects. Kiyohara et al. found that the degrada-
tion of sialylated human milk oligosaccharides is regulated
by the expression of the exo-α-sialidase gene. Interestingly, it
kept 80% of its activity even after 30 min incubation at 80°C,
but the linkage preference of the enzyme changed from α(2,6)
and α(2,8) to α(2,3) [14]. It was reported that lyase epimerase
and kinase enzymes controlled the catabolism of sialyl-mucin
glycoproteins [15]. Sam et al. investigated the glycosylation of
Chinese hamster ovary cells where the decrease in temper-
ature reduced the level of sialylation. However, the increase
of the amount of dissolved oxygen enhanced the activity of
sialyltransferases, thus the sialic acid content of these glyco-
proteins were increased [16].

Our earlier results revealed that the N-linked carbohy-
drates of glycoproteins with neutral, sialylated and highman-
nose structures were not affected by the formalin fixation and
paraffin embedding process [17, 18]. Thus, it was considered
that the fixation process archived the N-glycan structures and
compositions of the sample at the very moment it was pre-
pared. However, the elapsed time between sampling and fix-
ation was not evaluated in respect to its effect on glycomolec-
ular level changes. To the best of our knowledge, this is the
first report examining possible time dependent degradation
of asparagine-linked glycans in tissue specimens prior to for-
malin fixation.

2 Materials and methods

2.1 Chemicals

Formaldehyde for the buffered formalin (3.7% formalde-
hyde in 10 mM phosphate buffer, pH 7.4), the paraffin for

embedding, RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM
NaCl, 1%NP-40, 1% sodiumdeoxycholate, 0.1%SDS), dithio-
threitol (DTT), iodoacetamide, xylene, ethanol, acetonitrile,
sodium cyanoborohydride (1M in THF), and glucosidase en-
zyme (EC 3.2.1.20) were from Merck and (Kenilworth, NJ,
USA). All other enzymes including PNGase F (EC 3.5.1.52),
Arthrobacter ureafaciens sialidase (ABS) (EC 3.2.1.18), and
α(1-2,3,6) mannosidase (EC 3.2.1.24) were from Prozyme
(Hayward, CA, USA). The 8-aminopyrene-1,3,6-trisulfonate
(APTS), themagnetic cleaning beads and the bracketing stan-
dards of APTS-labeled maltose and maltopentadecaose were
from the Fast Glycan Sample Preparation and Analysis kit of
SCIEX (Brea, CA, USA).

2.2 Sample preparation

The SCIDmale mice were from the National Institute of On-
cology (Budapest, Hungary) and treated in accordance with
the Guidelines for Animal Experiments by the Institutional
Ethics Committee (permission # 22.1/722/3/2010). For the
N-glycan time-degradation study, lung-tissue samples from
three SCID male mice were used. The freshly removed spec-
imens were volume aliquoted into three equal portions (par-
allel samples), followed by sample preparation for N-glycan
profile analysis. The first aliquots were immediately pro-
cessed. The second and third aliquots were stored at room
temperature and processed 1 and 2 h after the tissue removal,
respectively. In clinical practice, tissue samples are usually
fixed within 2 hours after removal, so the experiments were
planned accordingly.

The FFPE samples were washed twice by xylene and
ethanol for 20 min, respectively, followed by centrifugation
at 5000 × g for 10 min. For glycoprotein release (also re-
ferred to as antigen retrieval), 40 mg of specimens were first
homogenized in a Tapered Tissue Grinder (VWR, Budapest,
Hungary), followed by the addition of 100 µL of RIPA buffer
and 10 µL of 50 mM DTT to the homogenized samples and
kept at 100˚C for 20 min, then at 65˚C for 120 min. After
the protein extraction step, 10 µL of 50 mM iodoacetamide
was added to the reaction mixture and incubated at 37˚C for
30 min in dark to alkylate the SH groups. This was followed
by buffer exchange using 10 kDa spinfilters (VWR, Budapest,
Hungary) and theN-glycan release took place on the filter us-
ing 49 µL of 20 mM NaHCO3 buffer (pH 7.0) and 1 µL PN-
Gase F (2.5 mU). The reaction mixture was incubated at 50˚C
for 60min. To collect the released sugars, the filters were cen-
trifuged at 5000 × g for 10 min. The spinned content were
dried in a centrifugal vacuum evaporator (Thermo Fisher
Scientific, Waltham, MA, USA) followed by fluorophore la-
beling with the addition of 6 µL of 20 mM APTS and
2 µL sodium-cyanoborohydride (in 1M THF) and incubated
overnight at 37˚C. The fluorescently labeled samples were pu-
rified by magnetic bead-based technology [19] and analyzed
by CE with laser induced fluorescence detection (CE-LIF).
All experiments were done in triplicates and the RSDs were
calculated.
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Figure 1. CE separation traces of

APTS labeled N-glycan pools of

mouse lung-tissue specimens pro-

cessed at different times after sam-

pling. (A) immediately prepared,

(B) kept for 1 h at room temper-

ature before processing, (C) kept

for 2 h at room temperature before

processing. Separation conditions:

bare fused silica capillary (50 μm

i.d., 60 cm total length, 50 cm effec-

tive length) filled with NCHO sepa-

ration buffer, injection: 5 psi for 5 s,

Separation voltage: 30 kV at 25˚C.

2.3 CE

All CE separations were performed using a PA800 Plus
(SCIEX) Pharmaceutical Analysis system with laser induced
fluorescence detection (488 nm excitation wavelength and a
520 nm emission filter) providing a low fmol detection limit.
The bare fused silica capillary (effective length: 50 cm, total
length: 60 cm, internal diameter: 50 µm) was filled with N-
CHO separation gel buffer (SCIEX) and the separations were
performed in reversed polarity mode (cathode at the injection
side) by the application of 30 kV electric potential. Samples
were injected by 1 psi pressure for 5 s. APTS-labeled brack-
eting standards (maltose and maltopentadecaose) were co-
injected (10 nL) with each sample to assuremigration time re-
producibility of <0.1% RSD. GU value calculation and struc-
tural N-glycan assignment were accomplished by using the
GUcal software and database (www.GUcal.hu).

2.4 Exoglycosidase digestion based structural

elucidation

Deep structural determination of the oligosaccharides of in-
terest found in the released N-glycan pools from the mouse
lung samples were accomplished by exoglycosidase-based
studies [20]. Arthrobacter ureafaciens sialidase (ABS) was
used to remove the α(2-3,6,8,9) bound sialic acids, Jack bean
(Canavalia ensiformis) mannosidase (JBM) to cut α(1-2,3,6)
mannoses (each 0.5 U, Prozyme,) and α-glucosidase (100 U
from Merck and Co. Kenilworth, NJ, USA) to hydrolyze
terminal, non-reducing α1-4-linked D-glucose residues. The
aliquoted APTS-labeled samples were subject to exoglycosi-
dase digestions separately with the application of one en-
zyme at a time. The exoglycosidase reaction mixtures were
incubated overnight at 37°C in 50 mM ammonium ac-
etate buffer (pH 5.5) and analyzed by CE-LIF as described
above.

3 Results

For mouse lung tissue, the effect of the elapsed time between
the actual sampling and the formalin fixation, paraffin em-
bedding process has been investigated to understand its in-
fluence on N-glycosylation degradation in zero time point as
well as after 1 and 2 h of room temperature storage. All other
mouse tissue sample specimens were profiled for their N-
glycosylation since different tissue sample types have unique
N-glycan profiles, specific to that particular organ [17] con-
taining diverse proportions of high and low sialylated, high
mannose as well as neutral carbohydrate structures in differ-
ent size ranges, and interestingly a few low degree of poly-
merization glucose oligomers.

Figure 1 compares the CE-LIF separation patterns of the
APTS labeled N-glycan pool of mouse lung-tissue samples
processed at different time points after sampling (0, 1 and
2 h). All measurements were done in triplicates and the re-
sulting peak area reproducibility was 8.17% RSD. Trace A de-
picts the resulting profile of the immediately prepared sam-
ples after tissue specimen removal. Traces B and C show
the glycoanalysis results of the corresponding aliquots of the
samples kept at room temperature for one and two hours
prior to processing, respectively. The numbers above the
peaks correspond to the structures listed in Table 1. As one
can observe, peaks 1, 4, 12, 14, and 18 were significantly de-
creased after 1 and 2 h of room temperature storage prior to
processing, but with different kinetics. For example, Peaks 1
and 14 decreased gradually between 0 and 2 h, Peak 4 practi-
cally did not change up to 1 hour of room temperature stor-
age but significantly decreased between 1 and 2 h. The size of
peak 18 dropped between 0 and 1 h of storage. Quantitative
data for each of the 28 peaks at the three different times are
provided in Supporting Information Table 1.

GU values were calculated for all the peaks (zero hour
time point) (Table 1) and their corresponding structures were
suggested using the GlycoStore database (www.glycostore.
org). To verify the suggested GU value based structures and
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Table 1. Glycan structures found in FFPE mouse lung, brain, heart, spleen, liver, kidney, and intestine tissue specimens. GU: glucose unit

value

Peak Structure* GU Lung Brain Heart Spleen Liver Kidney Intestine

1 Maltotriose 3 + + + + + + +
2 A4G(4)S(6,6,6,6)4 3.650 + − − − − − −
3 A4G(4)S(3,3,3,3)4 3.850 + − - − − − −
4 Maltotetraose 4 + + + + + + +
5 A3G(4)3S(6,6,6)3 4.250 + − − + + + +
6 A2G(4)2S(6,6)2 4.549 + + + + + + +
7 A2G(4)2S(3,6)2 4.721 + + + − + + +
8 F(6)A2G(4)2S(6,6)2 4.819 + + + + + + +
9 F(6)A2G(4)2S(3,6)2 4.996 + + + + − − −
10 A1[3]G(4)2S(3)1 5.240 + − + + + + −
11 A2[6]BG(4)1S(6)1 5.490 + − + + − + −
12 M4 5.580 + + + + + + +
13 F(6)A2[3]BG(4)1S(6)1 6.200 + − + + − + −
14 M5 6.607 + − + + + + +
15 F(6)A2[6]G(4)2S(6)1 6.713 + + + + + + +
16 F(6)A2G1Ga1S1 6.936 + − + + + + +
17 F(6)A2 7.326 + + + + + + +
18 M6 7.595 + + + + + + +
19 F(6)A2[3]G(4)2S(3)1 7.691 + − − − − − −
20 A2[6]BG(4)1 8.020 + + − − − − −
21 A2G(4)2 9.039 + + + − − + +
22 A2BG(4)2 9.530 + + + + + + +
23 F(6)A2BG(4)1 9.950 + + − − − + +
24 F(6)A2G(4)2 10.106 + + + + + + +
25 F(6)A2BG(4)2 10.860 + + − − − − +
26 A(6)3G3 11.250 + − − − − − +
27 A3G(4)3 11.970 + + + − − + +
28 FA2G2Ga2 12.366 + + − − − + −
29 A1[3]G(4)2 9.039 + − − − − − −
30 F(6)A2G2Ga1 11.096 + − − − − − −

*Abbreviated structure names followed the nomenclature suggested in the GlycoStore site (www.glycostore.org). Ga: α(1-3) galactose

residue; (+) the structure was present in the tissue; (−) the structure was not present in the tissue

identify the oligosaccharides susceptible for delayed speci-
men processing, exoglycosidase digestion based structural
analysis was also accomplished for the lung specimen. Fig-
ure 2 shows the results of the specific enzymatic releases
of monosaccharide units in case of intact mouse lung-tissue
sample after glucosidase (trace A), mannosidase (trace B),
and sialidase (trace C) treatments. Structures were deter-
mined for all peaks >0.1% (peak area). Glucosidase cut off
all α-D-glucose units, apparently eliminating peaks one and
four from trace A. The mannosidase treatment released all
α(1-2,3,6) mannose residues eliminating peaks 12, 14, and
18 from trace B. Finally, the sialidase removed all α(2-3,6,8,9)
sialic acid residues, shifting most of the peaks from the early
migration time regime to the later migrating neutral species
region. The Lung column in Table 1 lists all structures found
during this exercise

All other mouse tissue samples of brain, heart, spleen,
liver, kidney, and intestine were profiled by CE-LIF for N-
glycosylation characterization only (no storage time effect)
and the results are summarized in Table 1 in the correspond-
ing columns.

4 Discussion

Elongated room temperature storage (up to 2 h) of mouse
lung-tissue specimens resulted in the decrease of peak
heights for some glucose oligomers and high mannose type
N-glycan features. GU values from public databases and ex-
oglycosidase digestion-based studies were implemented us-
ing glucosidase, mannosidase and sialidase enzymes to iden-
tify all carbohydrate structures in the lung samples. The glu-
cosidase treatment resulted in disappearance of some of the
low DP glucose oligomers of maltotriose and maltotetraose
present in the samples. On the other hand, the formalin fixa-
tion, paraffin embedding process apparently prevented their
decomposition, so these structures were readily identifiable
in the samples immediately fixed after removal. Mannosidase
treatment eliminated all high mannose type structures but
also affected the sizes of the maltotriose and maltotetraose
peaks, assumably due to its apparent nonspecific glucosidase
activity. As a first approximation, we suggest that the cause of
the time based decrease in the size of these low DP glucose
oligomers and high mannose N-linked structures was the
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Figure 2. Exoglycosidase digestion

based structural analysis of the

N-glycans and maltooligosaccha-

rides found in mouse lung-tissue

specimens. (A) α(1-4) glucosidase,

(B) α(1-2,3,6) mannosidase, and (C)

α(2-3,6,8,9) sialidase treated sam-

ples. Separation conditions were

the same as in Fig. 1.

result of non-ATP mediated enzymatic reactions, which
might still keep on working under postmortem conditions
(personal communications with Prof Tamas Freund). Siali-
dase treatment removed all α(2-3,6,8,9) bound sialic acids, re-
sulting in shifts of all sialylated structures (see list in Table 1).

Tissue specimens are supposedly formalin fixed imme-
diately after sampling at clinical and hospital facilities, but
its exact time is usually unknown, and may significantly vary.
In this paper, we investigated the effect of elapsed time be-
tween sampling and formalin fixation, paraffin embedding
on the N-linked glycan profiles of mouse tissue specimens.
In all tissue types studied, two major peaks significantly de-
creased with delayed processing, identified as maltotriose
and maltotetraose, based on their GU value and glucosidase
treatment results. It is important to note that no significant
changes were observed in the profile of complex N-linked gly-
cans including the sialylated structures up to two hours of
storage of the removed specimens at room temperature.
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