Recent advances in research of cardiac calcium-activated chloride channels

Norbert Szentandrássy^{a,b}, Bence Hegyi^a, Balázs Horváth^{a,c}, Krisztina Váczi^a, Mónika Gönczi^{a,d}, Beatrix Dienes^a, Kornél Kistamás^a, Roland Veress^a, Ferenc Ruzsnavszky^a, Tamás Bányász^a, János Magyar^{a,e}, István Baczkó^f, András Varró^{f,g}, György Seprényi^h, László Csernoch^a, Péter P. Nánási^{a,b}

^aDepartment of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

^bDepartment of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.

^cFaculty of Pharmacy, University of Debrecen, Debrecen, Hungary.

^dMTA-DE Momentum, Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

^eDivision of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.

^fDepartment of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary.

^gMTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.

^hDepartment of Medical Biology, Faculty of Medicine, University of Szeged.

TMEM16A and/or Bestrophin-3 mediated Ca²⁺-activated Cl⁻ current ($I_{Cl(Ca)}$) may cause cardiac arrhythmias but others showed $I_{Cl(Ca)}$ to be antiarrhythmic. True profile of $I_{Cl(Ca)}$ during an actual ventricular action potential (AP) is poorly understood.

Profile of $I_{Cl(Ca)}$ (studied as 0.5 mM 9-anthracene carboxylic acid (9-AC)-sensitive current under whole-cell AP voltage-clamp (APVC) conditions) contained an early fast outward and a late inward component in canine left ventricular cells. Both components were reduced by ryanodine, while fully abolished by nisoldipine and BAPTA. Setting $[Ca^{2+}]_i$ to 1.1 µM decreased, while Bay K8644, isoproterenol (ISO), and faster stimulation increased $I_{Cl(Ca)}$. The early outward component of $I_{Cl(Ca)}$ was larger in *subepicardial* than in *subendocardial* cells.

9-AC generated early afterdepolarizations (EAD) recorded with sharp electrodes at low stimulation rates and their incidence was higher in ISO. 9-AC increased short-term variability of repolarization and reduced phase-1 repolarization. 9-AC increased AP duration in a reverse rate-dependent manner in all cell types except *subepicardial* ones.

Whole-cell $I_{Cl(Ca)}$ density and normalized protein expressions of TMEM16A and Bestrophin-3 did not differ significantly among left ventricular cells of various origin. TMEM16A and Bestrophin-3 showed co-localization with one another and also with Ca_v1.2 channels in both canine and human left ventricular myocytes.

 $I_{Cl(Ca)}$ activation requires Ca²⁺-entry through neighbouring L-type Ca²⁺ channels but augmented by sarcoplasmic reticulum Ca²⁺-release. $I_{Cl(Ca)}$ can be protective against cardiac arrhythmias by reducing spatial and temporal heterogeneity of cardiac repolarization and EAD formation.