Complimentary and personal copy

SYNLETT Accounts and Rapid Communications in Chemical Synthesis

www.thieme.com

This electronic reprint is provided for noncommercial and personal use only: this reprint may be forwarded to individual colleagues or may be used on the author's homepage. This reprint is not provided for distribution in repositories, including social and scientific networks and platforms.

Publishing House and Copyright: © 2015 by Georg Thieme Verlag KG Rüdigerstraße 14 70469 Stuttgart ISSN 0936-5214

Any further use only by permission of the Publishing House

Synlett

Letter

Synthesis of Flavonoid/Chromonoid–β-D-Ribofuranose Derivatives by Palladium-Catalyzed Cross-Coupling Reactions

888

Received: 29.06.2015 Accepted after revision: 02.11.2015 Published online: 23.12.2015 DOI: 10.1055/s-0035-1561273; Art ID: st-2015-b0486-I

Abstract Structurally novel carbohydrate–flavone and –chromone derivatives with an unsaturated carbon bridge were synthesized by a phosphine-free palladium-catalyzed cross-coupling reaction.

Key words cross-coupling, catalysis, palladium, Mizoroki–Heck reaction, isomerism

The class of natural occurring *C*-glycosyl flavonoids that contain a *C*-glucopyranosyl moiety, for example, vitexin, orientin, isovitexin, and isoorientin (Figure 1), has recently attracted considerable attention from organic chemists, because these compounds possess a wide variety of biological activities, including anti-inflammatory activities¹ and antiviral activities.² The *C*-glycosyl flavonoid antioxidants kurilensin A and B were isolated from hot-water extracts of the leaves of the bamboo *Sasa kurilensis*.³ What these compounds have common is that they all contain one or two activating groups, such as hydroxy or methoxy groups, in the 5- and 7-positions of the flavone skeleton.

C-Glycosyl compounds have an advantage over *O*-glycosides in that the C–C bond is not enzymatically degradable,⁴ a feature that could be attractive in terms of the pharmacology of these compounds. In nature, the only *C*-glycosyl flavones known are those in which the aglycone is directly bonded to the carbohydrate unit at a one-bond distance. Science has no knowledge regarding changes in the biological activity resulting from modification of the distance between the aglycone moiety and the sugar moiety, because no such compounds have previously been synthesized.

Reported syntheses of the C-glycosyl flavones often start from acetophenone derivatives that already contain a sugar moiety, and they usually require additional steps

Figure 1 Natural occurring flavone C-glycosyl flavonoids

such as a Fries rearrangement, Friedel–Crafts reaction, Claisen–Schmidt condensation, or Baker–Venkataramantype rearrangement followed by oxidative ring closure⁵⁻⁸ to obtain the target molecule. At every step there is a chance of degrading the carbohydrate moiety. Although there are a few examples of direct C-glycosylation of the aglycone moiety,^{9,10} the position of the carbohydrate unit in these transformations is usually controlled by a directing group (e.g., a hydroxy group). On the basis of these limitations, we wanted to perform a synthetic transformation in which the sugar part was introduced in the last step, and its position was controlled according to our aim.

Our goal was to synthesize *C*-glycosyl chromones and flavones by utilizing our previously acquired experience in palladium-catalyzed cross-coupling of oxygen-containing heterocycles, such as flavones or chromones. Our group has successfully developed several useful methods for the synthesis and transformation of chromones and flavones by using the Mizoroki–Heck reaction^{11,12,13a} and its phosphine-free version under Jeffery's conditions.^{13b} As a logical continuation of these studies, we wished to examine the reaction of bromoflavones or bromochromones with allyl ribo-furanose compounds to give flavone or chromene β -D-ribo-furanose derivatives containing various unsaturated linking groups. Moreover, syntheses of these new types of conjugate have not been previously investigated.

First, we used 6- and 7-bromoflavones (**1a** and **1b**, respectively) as our starting materials, and their reactions were carried out under our optimized cross-coupling reaction conditions (Scheme 1).^{11,13a} As terminal alkenes, the protected 1-allyl- β -D-ribofuranose derivatives **2a** and **2b** were used as the carbohydrate units.

Initially, we performed the Mizoroki–Heck-type reaction of 7-bromoflavone (**1a**) with the 1-allyl- β -D-ribofuranose derivative **2a** in the presence of palladium(II) acetate and triphenylphosphine to give the corresponding flavone– ribose compound **3a** in 63% yield (Table 1, entry 1). Under phosphine-free Jeffery's conditions, product **3a** was isolated in a higher yield (89%; entry 2). We therefore used the phosphine-free conditions in all our subsequent reactions. A comparison of the yields of the cross-coupling reactions of the 1-allyl- β -D-ribofuranose **2a** and the 1-allyl-2-deoxy- β -D-ribofuranose **2b** revealed that furanose **2a** gave higher yields of the corresponding product in all cases (entries 2– his is a copy of the author's personal reprint

5). This result can be explained by the easier coordination of palladium as a result of the presence, in the 2-position, of an O-benzyl group that acts as an oxygen-donor group.

Table 1Yields of Cross-Coupling Reactions of 6- and 7-Bromoflavones(1a,b) with β -D-Ribose Derivatives 2a and 2b

Entry	Substrate	Ribose (R)	Method ^a	Product	Yield (%)
1	1a	OBn	Mizoroki-Heck	3a	63
2	1a	OBn	Jeffery	3a	89
3	1a	Н	Jeffery	3b	68
4	1b	Н	Jeffery	4b	75
5	1b	OBn	Jeffery	4a	92

^a Mizoroki–Heck reaction conditions: Et₃N, PPh₃, Pd(OAc)₂, NMP, 100–110 °C, 1–2 h. Jeffery reaction conditions: KCl, TBAB, K_2CO_3 , Pd(OAc)₂, an-hyd DMF, 100–110 °C, 1–2 h.

The transformation of 3-bromoflavone (**5**) into the flavone–ribofuranose compounds **6a** and **6b** was also successful; however, unlike the previous reactions, the palladiumcatalyzed cross-coupling reaction of 3-bromoflavone (**5**) with allylribofuranoses **2a** or **2b** each gave two products **6** and **7** that were successfully separated and then characterized by means of two-dimensional NMR spectroscopy. This showed that migration of the double bond had occurred during the reaction, resulting in the formation of the two isomers **6** and **7** in approximately a 1:1 ratio (Scheme 2, Table 2). This isomerism occurred only in the case of 3-bromoflavone (**5**), and this type of phenomenon has precedents in the literature,¹⁴ as other allyl derivatives are known to undergo similar isomerizations in the presence of palladium.

Scheme 2 Reactions of 3-bromoflavone (5) with 1-allyl- β -D-ribofuranose derivatives 2a,b

To extend the scope of the oxygen-containing heteroaromatic derivatives, we treated the bromochromones **8a**,**b** with the 1-allyl-D-ribofuranoses **2a** and **2b** under Jeffery's

Syn lett

Z. Kondor et al.

890

conditions (Scheme 3 and Table 3). The reaction of 6-bromochromone (**8b**) with ribofuranose derivatives **2a** and **2b** provided compounds **10a** and **10b**, respectively, in moderLetter

ate yields (Table 3, entries 3 and 4), whereas 7-bromochromone (**8a**) gave the corresponding products **9a** and **9b**, respectively, in good yields (entries 1 and 2).

Table 2 Yields of Cross-Coupling Reactions of 3-Bromoflavone (5) with $\beta\text{-D-Riboses}$ 2a and 2b

Substrate	R	Yield (%) of 6	Yield (%) of 7
2a	OBn	21	20
2b	Н	19	18

Table 3 Yields of the Cross-Coupling Reaction of 6- and 7-Bromochromones (8a,b) with β -D-Riboses 2a and 2b

Entry	Substrate	Ribose (R)	Product	Yield (%)
1	8a	OBn	9a	79
2	8a	Н	9b	49
3	8b	OBn	10a	44
4	8b	Н	10Ь	28

Next, the cross-coupling reaction of 3-bromochromone (**11**) was carried out with terminal alkene **2a** (Scheme 4). As in the case of 3-bromoflavone (**5**), two isomers **12a** and **13a** were isolated in a ~3:1 ratio (**12a**: 50%; **13a**: 18%).

Finally, the flavone derivative **3a** and chromone derivative **12a** were deprotected by treatment with boron trichloride–dimethyl sulfide complex¹⁵ in dichloromethane at a low temperature to preserve the unsaturated linkage (Scheme 5). This protocol gave the corresponding products **14** and **15** in up to 77% yield.

In summary, treatment of bromoflavones or bromochromones with 1-allyl- β -D-ribofuranose derivatives in the presence of a palladium catalyst under phosphine-free conditions gave the expected novel structures in good yields.¹⁶ In some cases, migration of the double bond was observed, resulting in the formation of isomers that were successfully separated. These results clearly demonstrate the usefulness

891

Synlett

Z. Kondor et al.

of this method for the synthesis of interesting target molecules with possible biological activities. Biological assays of the synthesized carbohydrate–flavone and –chromone derivatives have already started. Investigations are also in progress on syntheses of other structurally novel derivatives containing carbohydrate moieties bearing various unsaturated side chains.

Acknowledgment

Financial support by the Hungarian Scientific Research Fund OTKA (grant number PD 106244) is gratefully acknowledged. M.Sc. Olena Davydova (Department of Organic Chemistry, Univ. Rostock) is thanked for performing large-scale syntheses of the *C*-glycoside starting materials.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561273.

References

- (1) Ishikura, Y.; Tsuji, K.; Nukaya, H. JP 20020194828 20020703, **2002**.
- (2) Nagai, T.; Miyaichi, Y.; Tomimori, T.; Suzuki, Y.; Yamada, H. *Chem. Pharm. Bull.* **1990**, *38*, 1329.
- (3) Hasegawa, T.; Tanaka, A.; Hosoda, A.; Takano, F.; Ohta, T. *Phytochemistry* **2008**, 69, 1419.
- (4) Jay, M. In *The Flavonoids, Advances in Research Since* 1986; Harborne, J. B., Ed.; Chapman and Hall: London, **1993**, Chap. 3, 57.
- (5) Kumazawa, T.; Kimura, T.; Matsuba, S.; Sato, S.; Onodera, J. Carbohydr. Res. 2001, 334, 183.
- (6) Sato, S.; Akiya, T.; Nishizawa, H.; Suzuki, T. *Carbohydr. Res.* **2006**, 341, 964.
- (7) Mahling, J.-A.; Jung, K.-H.; Schmidt, R. R. Liebigs Ann. Chem. 1995, 461.
- (8) Kumazawa, T.; Minatogawa, T.; Matsuba, S.; Sato, S.; Onodera, J.-i. *Carbohydr. Res.* **2000**, 329, 507.
- (9) Sato, S.; Koide, T. Carbohydr. Res. 2010, 345, 1825.
- (10) Santos, R. G. X.; Bordado, J. C.; Rauter, A. P. Eur. J. Org. Chem. **2013**, 1441.
- (11) Vasas, A.; Patonay, T.; Kónya, K.; Silva, A. M. S.; Cavaleiro, J. A. S. *Aust. J. Chem.* **2011**, *64*, 647.
- (12) Patonay, T.; Pazurik, I.; Ábrahám, A. Aust. J. Chem. 2013, 66, 646.
- (13) (a) Fekete, S.; Patonay, T.; Silva, A. M. S.; Cavaleiro, J. A. S. ARKIVOC 2012, (v), 210. (b) Jeffery, T. Tetrahedron 1996, 52, 10113.
- (14) (a) Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1964, 86, 1776.
 (b) Lim, H. J.; Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74, 4565.
- (15) Congreve, M. S.; Davison, E. C.; Fuhry, M. A. M.; Holmes, A. B.; Payne, A. N.; Robinson, R. A.; Ward, S. E. *Synlett* **1993**, 663.
- (16) Flavone–Ribose Derivatives: General Procedures Conditions A (*Jeffery's Conditions*): A stirred mixture of bromoflavone 1a or 1b (75 mg, 0.249 mmol), allyl derivative 2a or 2b

(0.249 mmol, 1.0 equiv), K_2CO_3 (52 mg, 0.375 mmol, 1.5 equiv), KCl (19 mg, 0.250 mmol, 1.0 equiv), TBAB (162 mg, 0.500 mmol, 2.0 equiv), and Pd(OAc)₂ (4 mg, 0.015 mmol, 6 mol%) in anhyd DMF (5 mL) was heated at 110 °C for 2 h under N₂. The mixture was cooled, silica gel was added, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography.

Condition B (*classic Mizoroki–Heck Conditions*): A stirred mixture of bromoflavone **1a** or **1b** (75 mg, 0.249 mmol), allyl derivative **2a** (0.249 mmol, 1.0 equiv), Et₃N (39 μ L, 0.274 mmol, 1.1 equiv), Ph₃P (7 mg, 0.025 mmol, 10 mol%), and Pd(OAc)₂ (4 mg, 0.015 mmol, 6 mol%) in anhyd DMF (5 mL) was heated at 110 °C for 2 h under N₂. The mixture was cooled, silica gel was added, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography.

7-[(1E)-3-{(2S,3S,4R,5R)-3,4-Bis(benzyloxy)-5-[(benzyloxy)methyl]tetrahydrofuran-2-yl}prop-1-en-1-yl]-2-phenyl-4Hchromen-4-one (3a)

White crystals; mp 126–127 °C; yield (conditions A): 147 mg (89%); yield (conditions B): 104 mg (63%). IR (KBr): 2922, 2903, 2856, 1639, 1624, 1450, 1372, 1101, 697 cm⁻¹. ¹H NMR (360 MHz, CDCl₃): δ = 2.45–2.63 (m, 2 H), 3.52 (m, 2 H), 3.66 (t, *J* = 6.1 Hz, 1 H), 3.93 (t, *J* = 4.6 Hz, 1 H), 4.21 (m, 2 H), 4.42–4.64 (m, 6 H), 6.44 (s, 2 H), 6.80 (s, 1 H), 7.29 (m, 15 H), 7.39 (s, 1 H), 7.52 (m, 4 H), 7.90 (m, 2 H), 8.10 (d, *J* = 8.2 Hz, 1 H). ¹³C NMR (90 MHz, CDCl₃): δ = 36.7, 70.3, 71.7, 72.0, 73.3, 79.8, 80.0, 81.6, 107.6, 114.9, 122.5, 123.1, 125.6, 126.2, 127.4, 127.6, 127.7, 128.0, 128.1, 128.3, 128.9, 130.5, 130.7, 131.4, 131.8, 137.7, 138.0, 143.2, 156.5, 163.2, 178.1. Anal. Calcd for C₄₄H₄₀O₆: C, 79.50; H, 6.06. Found: C, 79.54; H, 6.10.

6-[(1*E*)-3-{(2*S*,3*S*,4*R*,5*R*)-3,4-Bis(benzyloxy)-5-[(benzyloxy)methyl]tetrahydrofuran-2-yl}prop-1-en-1-yl]-2-phenyl-4*H*chromen-4-one (4a)

White crystals; mp 89–90 °C; yield (conditions A): 152 mg (92%). IR (KBr): 3029, 2875, 1639, 1614, 1451, 1360, 1097, 731, 697 cm⁻¹. ¹H NMR (360 MHz, CDCl₃): δ = 2.52–2.59 (m, 2 H), 3.52 (m, 2 H), 3.66 (t, *J* = 5.8 Hz, 1 H), 3.91 (t, *J* = 4.6 Hz, 1 H), 4.15–4.22 (m, 2 H), 4.43–4.62 (m, 6 H), 6.25–6.34 (m, 1 H), 6.37–6.48 (m, 1 H), 6.79 (s, 1 H), 7.28 (m, 14 H), 7.43 (t, *J* = 6.6 Hz, 1 H), 7.50 (m, 4 H), 7.59 (d, *J* = 6.6 Hz, 1 H), 7.90 (m, 2 H), 8.08 (s, 1 H). ¹³C NMR (90 MHz, CDCl₃): δ = 36.7, 70.2, 71.7, 71.9, 73.3, 77.1, 79.8, 80.1, 81.3, 107.3, 118.1, 122.6, 123.7, 126.1, 127.4, 127.6, 127.6, 127.7, 127.9, 128.2, 128.7, 128.9, 130.5, 131.0, 131.4, 131.6, 134.7, 137.6, 137.7, 138.7, 155.2, 163.1, 178.2. Anal. Calcd for C₄₄H₄₀O₆: C, 79.50; H, 6.06. Found: C, 79.55; H, 6.08.

6-[(1E)-3-{(2S,4S,5R)-4-(Benzyloxy)-5-[(benzyloxy)methyl]tetrahydrofuran-2-yl}prop-1-en-1-yl]-2-phenyl-4Hchromen-4-one (4b)

White crystals; mp 82–83 °C; yield (conditions A): 104 mg (75%). IR (KBr): 3059, 3030, 2902, 2876, 1650, 1615, 1453, 1360, 1097, 741, 698 cm⁻¹. ¹H NMR (360 MHz, CDCl₃): δ = 1.67–1.80 (m, 2 H), 2.43–2.61 (m, 2 H), 3.46–3.59 (m, 2 H), 4.00–4.04 (m, 1 H), 4.15–4.17 (m, 1 H), 4.23–4.29 (m, 1 H), 4.50 (s, 2 H), 4.56 (s, 2 H), 6.29–6.36 (m, 1 H), 6.49–6.53 (m, 1 H), 6.79 (s, 1 H), 7.31 (m, 8 H), 7.45 (m, 4 H), 7.67 (d, *J* = 8.7 Hz, 1 H), 7.89 (m, 2 H), 8.12 (d, *J* = 7.2 Hz, 1 H). ¹³C NMR (90 MHz, CDCl₃): δ = 37.6, 38.6, 70.9, 73.3, 73.3, 78.1, 81.0, 83.5, 107.3, 118.1, 122.5, 123.7, 126.1, 127.5, 128.1, 128.2, 128.7, 128.9, 130.4, 131.2, 131.5, 131.6, 134.8, 138.0, 138.1, 155.2, 163.1, 178.3. Anal. Calcd for C₃₇H₃₄O₅: C, 79.55; H, 6.13; H, 6.06. Found: C, 79.57; H, 6.09.

3-[(1E)-3-{(2S,3S,4R,5R)-3,4-Bis(benzyloxy)-5-[(benzyloxy)methyl]tetrahydrofuran-2-yl}prop-1-en-1-yl]-2-phenyl-4Hchromen-4-one (6a)

Colorless oil; yield (conditions A): 55 mg (40%). IR (KBr): 3059, 3027, 2919, 2896, 2880, 1648, 1631, 1612, 1467, 1396, 1104, 762, 696 cm⁻¹. ¹H NMR (360 MHz, CDCl₃): δ = 2.33–2.43 (m, 2 H), 3.52 (m, 2 H), 3.69 (t, *J* = 5.4 Hz, 1 H), 3.87 (t, *J* = 5.2 Hz, 1 H), 4.15 (m, 2 H), 4.48–4.57 (m, 6 H), 6.10 (d, *J* = 15.8 Hz, 1 H), 6.91 (m, 1 H), 7.24 (m, 15 H), 7.44 (m, 6 H), 7.64 (m, 2 H), 8.26 (d, *J* = 7.6 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 28.7, 70.5, 72.2, 73.4, 77.8, 77.9, 81.4, 81.5, 81.9, 118.0, 119.6, 123.0, 124.9, 125.8, 127.6, 127.7, 127.9, 128.1, 128.3, 128.4, 128.6, 129.9, 130.4, 131.4, 133.2, 133.6, 138.1, 138.3, 156.2, 162.4, 177.9. Anal. Calcd for C₄₄H₄₀O₆: C, 79.50; H, 6.06. Found: C, 79.55; H, 6.09.

3-[(1*E*)-3-{(2*S*,4*S*,5*R*)-4-(Benzyloxy)-5-[(benzyloxy)methyl]tetrahydrofuran-2-yl}prop-1-en-1-yl]-2-phenyl-4*H*chromen-4-one (6b)

Colorless oil; yield (conditions A): 29 mg (21%). IR (KBr): 2954, 2923, 2853, 1637, 1465, 1315, 1097, 758, 696 cm⁻¹. ¹H NMR (360 MHz, CDCl₃): δ = 1.61–1.68 (m, 1 H), 2.06 (dd, *J* = 13.1, 4.9 Hz, 1 H), 2.31–2.52 (m, 2 H), 3.41–3.55 (m, 2 H), 3.99–4.01 (m, 1 H), 4.08–4.10 (m, 1 H), 4.16–4.19 (m, 1 H), 4.49 (s, 2 H), 4.54 (s, 2 H), 6.16 (d, *J* = 15.8 Hz, 1 H), 6.79–6.84 (m, 1 H), 7.29 (m, 8 H), 7.38 (m, 5 H), 7.47 (m, 2 H), 7.56 (m, 3 H), 8.26 (d, *J* = 8.1 Hz, 1 H). ¹³C NMR (90 MHz, CDCl₃): δ = 37.5, 39.9, 70.9, 71.0, 73.3, 78.2, 81.2, 83.4, 117.7, 117.9, 123.1, 123.5, 124.9, 126.2, 126.3, 127.6, 128.3, 129.0, 129.7, 130.4, 133.2, 133.3, 138.2, 155.5, 162.0, 177.5. Anal. Calcd for C₃₇H₃₄O₅: C, 79.55; H, 6.13; H, 6.06. Found: C, 79.58; H, 6.15.

Chromone-Ribose Derivatives; General Procedure

A stirred mixture of bromochromone **8a** or **8b** (56 mg, 0.249 mmol), allyl derivative **2a** or **2b** (0.249 mmol, 1.0 equiv), K_2CO_3 (52 mg, 0.375 mmol, 1.5 equiv), KCl (19 mg, 0.250 mmol, 1.0 equiv), TBAB (162 mg, 0.500 mmol, 2.0 equiv), and Pd(OAc)₂ (4 mg, 0.015 mmol, 6 mol%) in dry DMF (5 mL) was heated at 110 °C for 2 h under N₂. The mixture was cooled, silica gel was added, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography.

7-[(1E)-3-{(2S,3S,4R,5R)-3,4-Bis(benzyloxy)-5-[(benzyloxy)methyl]tetrahydrofuran-2-yl}prop-1-en-1-yl]-4H-chromen-4-one (9a)

Colorless oil; yield: 115 mg (79%). IR (KBr): 3063, 3029, 2901, 2865, 1654, 1621, 1430, 1127, 1027, 736, 698 cm⁻¹. ¹H NMR (360 MHz, CDCl₃): δ = 2.43–2.57 (m, 2 H), 3.50 (m, 2 H), 3.61–3.66 (m, 1 H), 3.90 (m, 1 H), 4.19 (m, 2 H), 4.44–4.62 (m, 6 H), 6.24 (d, *J* = 5.9 Hz, 1 H), 6.38 (m, 2 H), 7.27 (m, 17 H), 7.72 (d, *J* = 5.9 Hz, 1 H), 8.05 (d, *J* = 8.2 Hz, 1 H). ¹³C NMR (90 MHz, CDCl₃): δ = 36.5, 70.1, 71.5, 71.7, 73.2, 76.8, 79.7, 79.9, 81.4, 112.7, 114.8, 122.8, 123.2, 125.5, 127.3, 127.4, 127.5, 127.6, 127.8, 127.9, 128.1, 130.4, 137.5, 137.6, 137.8, 137.9, 143.0, 155.0, 156.6, 177.0. Anal. Calcd for C₃₈H₃₆O₆: C, 77.53; H, 6.16. Found: C, 77.58; H, 6.19.

3-[(1*E*)-3-{(2*S*,3*S*,4*R*,5*R*)-3,4-Bis(benzyloxy)-5-[(benzyloxy)methyl]tetrahydrofuran-2-yl}prop-1-en-1-yl]-4*H*chromen-4-one (12a)

Colorless oil; yield: 73 mg (50%). IR (KBr): 3063, 3029, 2901, 2865, 1654, 1621, 1430, 1127, 1027, 736, 698 cm⁻¹. ¹H NMR (360 MHz, CDCl₃): δ = 2.16–2.56 (m, 2 H), 3.53 (m, 2 H), 3.68 (t, *J* = 5.6 Hz, 1 H), 3.89 (t, *J* = 4.9 Hz, 1 H), 4.16 (m, 2 H), 4.48–4.61 (m, 6 H), 6.32 (d, *J* = 15.8 Hz, 1 H), 6.47 (m, 1 H), 7.28 (m, 15 H), 7.40 (m, 2 H), 7.64 (t, *J* = 7.2 Hz, 1 H), 7.76 (s, 1 H), 8.24 (d, *J* = 7.9 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 37.4, 70.3, 71.7, 72.0, 73.3, 77.1, 79.3, 80.5, 81.2, 117.9, 121.9, 122.4, 124.0, 124.9, 126.1, 127.5, 127.6, 127.8, 128.0, 128.3, 128.4, 128.9, 133.3, 137.8, 138.1, 151.9, 155.8, 176.4. Anal. Calcd for C₃₈H₃₆O₆: C, 77.53; H, 6.16. Found: C, 77.58; H, 6.18.

3-[(2E)-3-{(2S,3S,4R,5R)-3,4-Bis(benzyloxy)-5-[(benzyloxy)methyl]tetrahydrofuran-2-yl}prop-2-en-1-yl]-4Hchromen-4-one (13a)

Colorless oil; yield: 26 mg (18%). IR (KBr): 2924, 2856, 1718, 1646, 1609, 1464, 1126, 1100, 751, 698 cm⁻¹. ¹H NMR (360 MHz, CDCl₃): δ = 3.22 (m, 2 H), 3.51–3.52 (m, 2 H), 3.66 (t, *J* = 6.1 Hz, 1 H), 3.91 (t, *J* = 4.9 Hz, 1 H), 4.00–4.21 (m, 2 H), 4.44–4.61 (m, 6 H), 5.56 (dd, *J* = 15.3, 7.3 Hz, 1 H), 5.94 (dt, *J* = 15.3, 6.8 Hz, 1 H), 7.28 (m, 15 H), 7.35 (m, 2 H), 7.65 (m, 2 H), 8.22 (d, *J* = 7.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 29.8, 70.4, 72.0, 72.2, 73.5, 77.5, 81.4, 81.5, 81.6, 118.1, 123.0, 123.8, 125.0, 126.0, 127.7, 127.8, 127.8, 128.0, 128.1, 128.3, 128.4, 130.2, 131.5, 133.5, 138.0, 138.9, 152.8, 156.5, 177.5. Anal. Calcd for C₃₈H₃₆O₆: C, 77.53; H, 6.16. Found: C, 77.55; H, 6.19.