BALANCING NUMBERS WHICH ARE PRODUCTS OF CONSECUTIVE INTEGERS

SZ. TENGELY

ABSTRACT. In 1999 A. Behera and G. K. Panda defined balancing numbers as follows. A positive integer n is called a balancing number if $1+2+\ldots+(n-1)=(n+1)+(n+2)+\ldots+(n+k)$ for some $k\in\mathbb{N}$. The sequence of balancing numbers is denoted by B_m for $m\in\mathbb{N}$. In this paper we show that the Diophantine equation $B_m=x(x+1)(x+2)(x+3)(x+4)$ has no solution with $m\geq 0$ and $x\in\mathbb{Z}$. We follow ideas described in [11], that is we combine Baker's method and the so-called Mordell-Weil sieve to obtain all solutions.

1. Introduction

Behera and Panda [3] proved many interesting results related to the sequence B_m . They showed that the balancing numbers fulfill the following recurrence relation

$$B_{m+1} = 6B_m - B_{m-1} \quad (m > 1)$$

where $B_0 = 1$ and $B_1 = 6$. Later several authors investigated balancing numbers and their various generalizations. In [21] Liptai proved that there are no Fibonacci balancing numbers and in [22] he showed that there are no Lucas balancing numbers. He used a method by Baker and Davenport [2]. Szalay [31] obtained the same results by using different techniques. In [25] Panda introduced sequence balancing numbers. Let $\{s_m\}_{m=1}^{\infty}$ be a sequence such that $s_m \in \mathbb{R}$. An element s_m of this sequence is called sequence balancing number if

$$s_1 + s_2 + \ldots + s_{m-1} = s_{m+1} + s_{m+2} + \ldots + s_{m+k}$$

for some $k \in \mathbb{N}$. Further generalization in this direction is due to Bérczes, Liptai and Pink [4]. Let a, b be non-negative coprime integers. The following definition is from [19]. A positive integer an + b is called (a, b)-type balancing number if

$$(a+b) + (2a+b) + \ldots + (a(n-1)+b) = (a(n+1)+b) + \ldots + (a(n+k)+b)$$

for some $k \in \mathbb{N}$. Denote by $B_m^{(a,b)}$ the *m*-th positive integer an+b among the (a,b)-type balancing numbers. Kovács, Liptai and Olajos proved some general finiteness results concerning the equation

$$B_m^{(a,b)} = f(x),$$

where f is a monic polynomial with integral coefficients. They also resolved some related Diophantine equations. Liptai, Luca, Pintér and Szalay [23] introduced the concept of (k,l)-power numerical center as follows. Let y,k,l be fixed positive integers with $y \geq 2$. A positive integer x with $x \leq y-2$ is called a (k,l)-power numerical center for y if

$$1^k + \ldots + (x-1)^k = (x+1)^l + \ldots + (y-1)^l.$$

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \textit{Primary 11D61}; \ \textit{Secondary 11Y50}.$

Key words and phrases. Diophantine equations.

Research supported in part by OTKA PD75264 and János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

In [23] the authors obtained certain effective and ineffective finiteness results for (k, l)-power numerical centers.

For positive integers k, x let

$$\Pi_k(x) = x(x+1)\cdots(x+k-1).$$

That is, $\Pi_k(x)$ is a polynomial in x of degree k. In [19] it was proved that the equation

$$B_m = \Pi_k(x)$$

for fixed $k \geq 2$ has only finitely many solutions and for $k \in \{2,3,4\}$ all solutions were determined. We note that in [19] the "small" solutions of the above equation with $k \in \{6,8\}$ were also computed.

In this paper we deal with the case k = 5. That is we consider the equation

$$B_m = x(x+1)(x+2)(x+3)(x+4).$$

We prove the following theorem.

Theorem 1. The Diophantine equation

$$B_m = x(x+1)(x+2)(x+3)(x+4) \quad m \ge 0, x \in \mathbb{Z}$$

has no solution.

2. Auxiliary results

Consider the hyperelliptic curve

(1)
$$\mathcal{C}: \quad y^2 = F(x) := x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0,$$

where $b_i \in \mathbb{Z}$. Let α be a root of F and $J(\mathbb{Q})$ be the Jacobian of the curve C. We have that

$$x - \alpha = \kappa \xi^2$$

where $\kappa, \xi \in K = \mathbb{Q}(\alpha)$ and κ comes from a finite set. By knowing the Mordell-Weil group of the curve \mathcal{C} it is possible to provide a method to compute such a finite set. To each coset representative $\sum_{i=1}^m (P_i - \infty)$ of $J(\mathbb{Q})/2J(\mathbb{Q})$ we associate

$$\kappa = \prod_{i=1}^{m} \left(\gamma_i - \alpha d_i^2 \right),\,$$

where the set $\{P_1, \ldots, P_m\}$ is stable under the action of Galois, all $y(P_i)$ are non-zero and $x(P_i) = \gamma_i/d_i^2$ where γ_i is an algebraic integer and $d_i \in \mathbb{Z}_{\geq 1}$. If P_i , P_j are conjugate then we may suppose that $d_i = d_j$ and so γ_i , γ_j are conjugate. We have the following lemma (Lemma 3.1 in [11]).

Lemma 1. Let K be a set of κ values associated as above to a complete set of coset representatives of $J(\mathbb{Q})/2J(\mathbb{Q})$. Then K is a finite subset of \mathcal{O}_K and if (x,y) is an integral point on the curve (1) then $x - \alpha = \kappa \xi^2$ for some $\kappa \in K$ and $\xi \in K$.

As an application of his theory of lower bounds for linear forms in logarithms, Baker [1] gave an explicit upper bound for the size of integral solutions of hyperelliptic curves. This result has been improved by many authors (see e.g. [5], [6], [8], [12], [27], [29], [30] and [33]).

In [11] an improved completely explicit upper bound were proved combining ideas from [12], [13], [14], [20], [24], [26], [33], [32]. Now we will state the theorem which gives the improved bound. We introduce some notation. Let K be a number

field of degree d and let r be its unit rank and R its regulator. For $\alpha \in K$ we denote by $h(\alpha)$ the logarithmic height of the element α . Let

$$\partial_K = \begin{cases} \frac{\log 2}{d} & \text{if } d = 1, 2, \\ \frac{1}{4} \left(\frac{\log \log d}{\log d} \right)^3 & \text{if } d \ge 3 \end{cases}$$

and

$$\partial_K' = \left(1 + \frac{\pi^2}{\partial_V^2}\right)^{1/2}.$$

Define the constants

$$c_1(K) = \frac{(r!)^2}{2^{r-1}d^r}, \qquad c_2(K) = c_1(K) \left(\frac{d}{\partial_K}\right)^{r-1},$$

$$c_3(K) = c_1(K) \frac{d^r}{\partial_K}, \qquad c_4(K) = rdc_3(K),$$

$$c_5(K) = \frac{r^{r+1}}{2\partial_K^{r-1}}.$$

Let

$$\partial_{L/K} = \max \left\{ [L:\mathbb{Q}] \; , \; [K:\mathbb{Q}] \partial_K' \; , \; \frac{0.16[K:\mathbb{Q}]}{\partial_K} \right\},$$

where $K \subseteq L$ are number fields. Define

$$C(K, n) := 3 \cdot 30^{n+4} \cdot (n+1)^{5.5} d^2 (1 + \log d).$$

The following theorem will be used to get an upper bound for the size of the integral solutions of our equation. It is Theorem 3 in [11].

Theorem 2. Let α be an algebraic integer of degree at least 3 and κ be an integer belonging to K. Denote by α_1 , α_2 , α_3 distinct conjugates of α and by κ_1 , κ_2 , κ_3 the corresponding conjugates of κ . Let

$$K_1 = \mathbb{Q}(\alpha_1, \alpha_2, \sqrt{\kappa_1 \kappa_2}), \quad K_2 = \mathbb{Q}(\alpha_1, \alpha_3, \sqrt{\kappa_1 \kappa_3}), \quad K_3 = \mathbb{Q}(\alpha_2, \alpha_3, \sqrt{\kappa_2 \kappa_3}),$$

and

$$L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \sqrt{\kappa_1 \kappa_2}, \sqrt{\kappa_1 \kappa_3}).$$

In what follows R stands for an upper bound for the regulators of K_1 , K_2 and K_3 and r denotes the maximum of the unit ranks of K_1 , K_2 , K_3 . Let

$$c_j^* = \max_{1 \le i \le 3} c_j(K_i)$$

and

$$N = \max_{1 \le i, j \le 3} \left| \text{Norm}_{\mathbb{Q}(\alpha_i, \alpha_j)/\mathbb{Q}} (\kappa_i (\alpha_i - \alpha_j)) \right|^2$$

and

$$H^* = c_5^* R + \frac{\log N}{\min_{1 \le i \le 3} [K_i : \mathbb{Q}]} + h(\kappa).$$

Define

$$A_1^* = 2H^* \cdot C(L, 2r + 1) \cdot (c_1^*)^2 \partial_{L/L} \cdot \left(\max_{1 \le i \le 3} \partial_{L/K_i} \right)^{2r} \cdot R^2,$$

and

$$A_2^* = 2H^* + A_1^* + A_1^* \log\{(2r+1) \cdot \max\{c_4^*, 1\}\}.$$

If $x \in \mathbb{Z} \setminus \{0\}$ satisfies $x - \alpha = \kappa \xi^2$ for some $\xi \in K$ then

$$\log|x| \le 8A_1^* \log(4A_1^*) + 8A_2^* + H^* + 20\log 2 + 13h(\kappa) + 19h(\alpha).$$

To obtain a lower bound for the possible unknown integer solutions we are going to use the so-called Mordell-Weil sieve. The Mordell-Weil sieve has been successfully applied to prove the non-existence of rational points on curves (see e.g. [9], [10], [18] and [28]).

Let C/\mathbb{Q} be a smooth projective curve (in our case a hyperelliptic curve) of genus $g \geq 2$. Let J be its Jacobian. We assume the knowledge of some rational points on C, so let D be a fixed rational point on C and let j be the corresponding Abel-Jacobi map:

$$j: C \to J, \qquad P \mapsto [P-D].$$

Let W be the image in J of the known rational points on C and D_1, \ldots, D_r generators for the free part of $J(\mathbb{Q})$. By using the Mordell–Weil sieve we are going to obtain a very large and smooth integer B such that

$$\jmath(C(\mathbb{Q})) \subseteq W + BJ(\mathbb{Q}).$$

Let

$$\phi: \mathbb{Z}^r \to J(\mathbb{Q}), \qquad \phi(a_1, \dots, a_r) = \sum a_i D_i,$$

so that the image of ϕ is the free part of $J(\mathbb{Q})$. The variant of the Mordell-Weil sieve explained in [11] provides a method to obtain a very long decreasing sequence of lattices in \mathbb{Z}^r

$$B\mathbb{Z}^r = L_0 \supsetneq L_1 \supsetneq L_2 \supsetneq \cdots \supsetneq L_k$$

such that

$$j(C(\mathbb{Q})) \subset W + \phi(L_i)$$

for j = 1, ..., k.

The next lemma [11, Lemma 12.1] gives a lower bound for the size of rational points whose image are not in the set W.

Lemma 2. Let W be a finite subset of $J(\mathbb{Q})$ and L be a sublattice of \mathbb{Z}^r . Suppose that $j(C(\mathbb{Q})) \subset W + \phi(L)$. Let μ_1 be a lower bound for $h - \hat{h}$ and

$$\mu_2 = \max\left\{\sqrt{\hat{h}(w)} \ : \ w \in W\right\}.$$

Denote by M the height-pairing matrix for the Mordell-Weil basis D_1, \ldots, D_r and let $\lambda_1, \ldots, \lambda_r$ be its eigenvalues. Let

$$\mu_3 = \min \left\{ \sqrt{\lambda_j} : j = 1, \dots, r \right\}$$

and m(L) the Euclidean norm of the shortest non-zero vector of L. Then, for any $P \in C(\mathbb{Q})$, either $j(P) \in W$ or

$$h(j(P)) \ge (\mu_3 m(L) - \mu_2)^2 + \mu_1.$$

3. Proof of Theorem 1

It was shown by Liptai that the integers B_m satisfy the following equation

$$z^2 - 8y^2 = 1$$

for some integer z. So one has to determine all solution of the equation

$$z^{2} = 8(x(x+1)(x+2)(x+3)(x+4))^{2} + 1.$$

Rewrite the latter equation as follows

$$z^{2} = 8(x^{2} + 4x)^{2}(x^{2} + 4x + 3)^{2}(x^{2} + 4x + 4) + 1.$$

Let $X = 2x^2 + 8x$. We obtain that

(2)
$$C: Y^2 = X^2(X+6)^2(X+8) + 4,$$

where Y = 2z. It remains to find all integral points on C. The rank of the Jacobian of C is 3, so classical Chabauty's method [15],[16],[17] cannot be applied. In this paper we combine Baker's method and the so-called Mordell-Weil sieve to obtain all integral solutions of equation (2).

Lemma 3. The only integral solutions to the equation (2) are

$$(0,\pm 2), (-6,\pm 2), (-8,\pm 2).$$

Proof. Let $J(\mathbb{Q})$ be the Jacobian of the genus two curve (2). Using MAGMA [7] we determine a Mordell-Weil basis which is given by

$$D_1 = (0, 2) - \infty,$$

$$D_2 = (-6, 2) - \infty,$$

$$D_3 = (\omega, -\omega - 10) + (\overline{\omega}, -\overline{\omega} - 10) - 2\infty,$$

where ω is a root of the polynomial $x^2 + 7x + 4$. Let $f = x^2(x+6)^2(x+8) + 4$ and α be a root of f. We will choose for coset representatives of $J(\mathbb{Q})/2J(\mathbb{Q})$ the linear combinations $\sum_{i=1}^{3} n_i D_i$, where $n_i \in \{0,1\}$. We have

$$x - \alpha = \kappa \xi^2$$

where κ belongs to a finite set (having 8 elements). This set can be constructed as described in Lemma 1. Many values can be eliminated by local computations in \mathbb{Q}_p , for same small primes p. We apply Theorem 2 to get a large upper bound for $\log |x|$. A MAGMA code were written to obtain the bounds appeared in [11], it can be found at http://www.warwick.ac.uk/~maseap/progs/intpoint/bounds.m. We used the above MAGMA functions to compute an upper bound for $\log |x|$, the results are summarized in the following table

κ	bound for $\log x $
1	$1.51 \cdot 10^{246}$
$-\alpha$	$3.21 \cdot 10^{512}$
$-6-\alpha$	$6.25 \cdot 10^{531}$

The set of known rational points on the curve (2) is $\{\infty, (0, \pm 2), (-6, \pm 2), (-8, \pm 2)\}$. Let W be the image of this set in $J(\mathbb{Q})$. Applying the Mordell-Weil sieve implemented by Bruin and Stoll we obtain that

$$\jmath(C(\mathbb{Q})) \subseteq W + BJ(\mathbb{Q}),$$

where

$$B = 2^6 \cdot 3^4 \cdot 5^3 \cdot 7^3 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19^2 \cdot 29 \cdot 31 \cdot 41 \cdot 43 \cdot 47 \cdot 61 \cdot 67 \cdot 73 \cdot 79 \cdot 83 \cdot 89 \cdot 97 \cdot 107 \cdot 109 \cdot 113,$$

that is

$$B = 46247720065121846143591520774334300410472000.$$

Now we use an extension of the Mordell-Weil sieve due to Samir Siksek to obtain a very long decreasing sequence of lattices in \mathbb{Z}^3 . After that we apply Lemma 2 to obtain a lower bound for possible unknown rational points. We get that if (x, y) is an unknown integral point, then

$$\log |x| > 1.03 \times 10^{580}$$
.

This contradicts the bound for $\log |x|$ we obtained by Baker's method.

Now we prove Theorem 1.

Proof of Theorem 1. By Lemma 3 we have that

$$X \in \{0, -6, -8\}$$

and we also have that $X = 2x^2 + 8x$. That is it remains to solve three quadratic equations in x. We obtain that $x \in \{-4, -3, -2, -1, 0\}$. Therefore the equation

$$B_m = x(x+1)(x+2)(x+3)(x+4)$$

has no solution with $m \geq 0$ and $x \in \mathbb{Z}$.

Acknowledgement. The work was supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project. The project is implemented through the New Hungary Development Plan, co-financed by the European Social Fund and the European Regional Development Fund.

References

- [1] A. Baker. Bounds for the solutions of the hyperelliptic equation. *Proc. Cambridge Philos.* Soc., 65:439–444, 1969.
- [2] A. Baker and H. Davenport. The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$. Quart. J. Math. Oxford Ser. (2), 20:129–137, 1969.
- [3] A. Behera and G. K. Panda. On the square roots of triangular numbers. Fibonacci Quart., 37(2):98–105, 1999.
- [4] A. Bérczes, K. Liptai, and I. Pink. On generalized balancing sequences. Fibonacci Quart., 48(2):121–128, 2010.
- [5] Yu. Bilu. Effective analysis of integral points on algebraic curves. Israel J. Math., 90(1-3):235–252, 1995.
- [6] Yuri F. Bilu and Guillaume Hanrot. Solving superelliptic Diophantine equations by Baker's method. Compositio Math., 112(3):273–312, 1998.
- [7] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
- [8] B. Brindza. On S-integral solutions of the equation $y^m = f(x)$. Acta Math. Hungar., 44(1-2):133–139, 1984.
- [9] Nils Bruin and Michael Stoll. Deciding existence of rational points on curves: an experiment. Experiment. Math., 17(2):181–189, 2008.
- [10] Nils Bruin and Michael Stoll. The Mordell-Weil sieve: proving non-existence of rational points on curves. LMS J. Comput. Math., 13:272–306, 2010.
- [11] Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll, and Sz. Tengely. Integral points on hyperelliptic curves. Algebra Number Theory, 2(8):859–885, 2008.
- [12] Yann Bugeaud. Bounds for the solutions of superelliptic equations. Compositio Math., 107(2):187–219, 1997.
- [13] Yann Bugeaud and Kálmán Győry. Bounds for the solutions of unit equations. Acta Arith., 74(1):67–80, 1996.
- [14] Yann Bugeaud, Maurice Mignotte, and Samir Siksek. Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers. *Ann. of Math.* (2), 163(3):969–1018, 2006.
- [15] J. W. S. Cassels and E. V. Flynn. Prolegomena to a middlebrow arithmetic of curves of genus 2, volume 230 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996.
- [16] C. Chabauty. Sur les points rationnels des courbes algébriques de genre supérieur à l'unité. C. R. Acad. Sci. Paris, 212:882–885, 1941.
- $[17]\,$ R. F. Coleman. Effective Chabauty. Duke Math. J., $52(3):765-770,\,1985.$
- [18] E. V. Flynn. The Hasse principle and the Brauer-Manin obstruction for curves. Manuscripta Math., 115(4):437–466, 2004.
- [19] T. Kovács, K. Liptai, and P. Olajos. On (a, b)-balancing numbers. Publ. Math. Debrecen, 77(3-4):485-498, 2010.
- [20] E. Landau. Verallgemeinerung eines Pólyaschen satzes auf algebraische zahlkörper. 1918.
- [21] K. Liptai. Fibonacci balancing numbers. Fibonacci Quart., 42(4):330–340, 2004.
- [22] K. Liptai. Lucas balancing numbers. Acta Math. Univ. Ostrav., 14(1):43-47, 2006
- [23] K. Liptai, F. Luca, A. Pintér, and L. Szalay. Generalized balancing numbers. Indag. Math. (N.S.), 20(1):87–100, 2009.

- [24] E. M. Matveev. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat., 64(6):125–180, 2000.
- [25] G. K. Panda. Sequence balancing and cobalancing numbers. Fibonacci Quart., 45(3):265–271 (2008), 2007.
- [26] A. Pethö and B. M. M. de Weger. Products of prime powers in binary recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation. *Math. Comp.*, 47(176):713–727, 1986.
- [27] Dimitrios Poulakis. Solutions entières de l'équation $Y^m = f(X)$. Sém. Théor. Nombres Bordeaux (2), 3(1):187–199, 1991.
- [28] V. Scharaschkin. Local-global problems and the Brauer-Manin obstruction. PhD thesis, University of Michigan, 1999.
- [29] Wolfgang M. Schmidt. Integer points on curves of genus 1. Compositio Math., 81(1):33-59, 1992.
- [30] V. G. Sprindžuk. The arithmetic structure of integer polynomials and class numbers. Trudy Mat. Inst. Steklov., 143:152–174, 210, 1977. Analytic number theory, mathematical analysis and their applications (dedicated to I. M. Vinogradov on his 85th birthday).
- [31] L. Szalay. On the resolution of simultaneous Pell equations. Ann. Math. Inform., 34:77–87, 2007.
- [32] Paul Voutier. An effective lower bound for the height of algebraic numbers. Acta Arith., 74(1):81–95, 1996.
- [33] Paul M. Voutier. An upper bound for the size of integral solutions to $Y^m = f(X)$. J. Number Theory, 53(2):247–271, 1995.

MATHEMATICAL INSTITUTE UNIVERSITY OF DEBRECEN P.O.BOX 12 4010 DEBRECEN HUNGARY

 $E ext{-}mail\ address: tengely@science.unideb.hu}$