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Abstract. In 1999 A. Behera and G. K. Panda defined balancing numbers as
follows. A positive integer n is called a balancing number if 1+2+. . .+(n−1) =

(n+1)+(n+2)+. . .+(n+k) for some k ∈ N. The sequence of balancing numbers

is denoted by Bm for m ∈ N. In this paper we show that the Diophantine
equation Bm = x(x + 1)(x + 2)(x + 3)(x + 4) has no solution with m ≥ 0 and

x ∈ Z. We follow ideas described in [11], that is we combine Baker’s method

and the so-called Mordell-Weil sieve to obtain all solutions.

1. introduction

Behera and Panda [3] proved many interesting results related to the sequenceBm.
They showed that the balancing numbers fulfill the following recurrence relation

Bm+1 = 6Bm −Bm−1 (m > 1)

where B0 = 1 and B1 = 6. Later several authors investigated balancing numbers
and their various generalizations. In [21] Liptai proved that there are no Fibonacci
balancing numbers and in [22] he showed that there are no Lucas balancing numbers.
He used a method by Baker and Davenport [2]. Szalay [31] obtained the same
results by using different techniques. In [25] Panda introduced sequence balancing
numbers. Let {sm}∞m=1 be a sequence such that sm ∈ R. An element sm of this
sequence is called sequence balancing number if

s1 + s2 + . . .+ sm−1 = sm+1 + sm+2 + . . .+ sm+k

for some k ∈ N. Further generalization in this direction is due to Bérczes, Liptai
and Pink [4]. Let a, b be non-negative coprime integers. The following definition is
from [19]. A positive integer an+ b is called (a, b)-type balancing number if

(a+ b) + (2a+ b) + . . .+ (a(n− 1) + b) = (a(n+ 1) + b) + . . .+ (a(n+ k) + b)

for some k ∈ N. Denote by B
(a,b)
m the m-th positive integer an+ b among the (a, b)-

type balancing numbers. Kovács, Liptai and Olajos proved some general finiteness
results concerning the equation

B(a,b)
m = f(x),

where f is a monic polynomial with integral coefficients. They also resolved some
related Diophantine equations. Liptai, Luca, Pintér and Szalay [23] introduced
the concept of (k, l)-power numerical center as follows. Let y, k, l be fixed positive
integers with y ≥ 2. A positive integer x with x ≤ y − 2 is called a (k, l)-power
numerical center for y if

1k + . . .+ (x− 1)k = (x+ 1)l + . . .+ (y − 1)l.
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In [23] the authors obtained certain effective and ineffective finiteness results for
(k, l)-power numerical centers.

For positive integers k, x let

Πk(x) = x(x+ 1) · · · (x+ k − 1).

That is, Πk(x) is a polynomial in x of degree k. In [19] it was proved that the
equation

Bm = Πk(x)

for fixed k ≥ 2 has only finitely many solutions and for k ∈ {2, 3, 4} all solutions
were determined. We note that in [19] the ”small” solutions of the above equation
with k ∈ {6, 8} were also computed.

In this paper we deal with the case k = 5. That is we consider the equation

Bm = x(x+ 1)(x+ 2)(x+ 3)(x+ 4).

We prove the following theorem.

Theorem 1. The Diophantine equation

Bm = x(x+ 1)(x+ 2)(x+ 3)(x+ 4) m ≥ 0, x ∈ Z

has no solution.

2. auxiliary results

Consider the hyperelliptic curve

(1) C : y2 = F (x) := x5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0,

where bi ∈ Z. Let α be a root of F and J(Q) be the Jacobian of the curve C. We
have that

x− α = κξ2

where κ, ξ ∈ K = Q(α) and κ comes from a finite set. By knowing the Mordell-Weil
group of the curve C it is possible to provide a method to compute such a finite set.
To each coset representative

∑m
i=1(Pi −∞) of J(Q)/2J(Q) we associate

κ =

m∏
i=1

(
γi − αd2i

)
,

where the set {P1, . . . , Pm} is stable under the action of Galois, all y(Pi) are non-
zero and x(Pi) = γi/d

2
i where γi is an algebraic integer and di ∈ Z≥1. If Pi, Pj are

conjugate then we may suppose that di = dj and so γi, γj are conjugate. We have
the following lemma (Lemma 3.1 in [11]).

Lemma 1. Let K be a set of κ values associated as above to a complete set of coset
representatives of J(Q)/2J(Q). Then K is a finite subset of OK and if (x, y) is an
integral point on the curve (1) then x− α = κξ2 for some κ ∈ K and ξ ∈ K.

As an application of his theory of lower bounds for linear forms in logarithms,
Baker [1] gave an explicit upper bound for the size of integral solutions of hyperel-
liptic curves. This result has been improved by many authors (see e.g. [5], [6], [8],
[12], [27], [29], [30] and [33]).

In [11] an improved completely explicit upper bound were proved combining
ideas from [12], [13], [14], [20], [24], [26], [33], [32]. Now we will state the theorem
which gives the improved bound. We introduce some notation. Let K be a number
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field of degree d and let r be its unit rank and R its regulator. For α ∈ K we denote
by h(α) the logarithmic height of the element α. Let

∂K =


log 2
d if d = 1, 2,

1
4

(
log log d
log d

)3
if d ≥ 3

and

∂′K =

(
1 +

π2

∂2K

)1/2

.

Define the constants

c1(K) =
(r !)2

2r−1dr
, c2(K) = c1(K)

(
d

∂K

)r−1
,

c3(K) = c1(K)
dr

∂K
, c4(K) = rdc3(K),

c5(K) =
rr+1

2∂r−1K

.

Let

∂L/K = max

{
[L : Q] , [K : Q]∂′K ,

0.16[K : Q]

∂K

}
,

where K ⊆ L are number fields. Define

C(K,n) := 3 · 30n+4 · (n+ 1)5.5 d2 (1 + log d).

The following theorem will be used to get an upper bound for the size of the integral
solutions of our equation. It is Theorem 3 in [11].

Theorem 2. Let α be an algebraic integer of degree at least 3 and κ be an integer
belonging to K. Denote by α1, α2, α3 distinct conjugates of α and by κ1, κ2, κ3
the corresponding conjugates of κ. Let

K1 = Q(α1, α2,
√
κ1κ2), K2 = Q(α1, α3,

√
κ1κ3), K3 = Q(α2, α3,

√
κ2κ3),

and

L = Q(α1, α2, α3,
√
κ1κ2,

√
κ1κ3).

In what follows R stands for an upper bound for the regulators of K1, K2 and K3

and r denotes the maximum of the unit ranks of K1, K2, K3. Let

c∗j = max
1≤i≤3

cj(Ki)

and

N = max
1≤i,j≤3

∣∣NormQ(αi,αj)/Q(κi(αi − αj))
∣∣2

and

H∗ = c∗5R+
logN

min1≤i≤3[Ki : Q]
+ h(κ).

Define

A∗1 = 2H∗ · C(L, 2r + 1) · (c∗1)2∂L/L ·
(

max
1≤i≤3

∂L/Ki

)2r

·R2,

and

A∗2 = 2H∗ +A∗1 +A∗1 log{(2r + 1) ·max{c∗4, 1}}.
If x ∈ Z\{0} satisfies x− α = κξ2 for some ξ ∈ K then

log|x| ≤ 8A∗1 log(4A∗1) + 8A∗2 +H∗ + 20 log 2 + 13 h(κ) + 19 h(α).
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To obtain a lower bound for the possible unknown integer solutions we are going
to use the so-called Mordell-Weil sieve. The Mordell-Weil sieve has been successfully
applied to prove the non-existence of rational points on curves (see e.g. [9], [10],
[18] and [28]).

Let C/Q be a smooth projective curve (in our case a hyperelliptic curve) of
genus g ≥ 2. Let J be its Jacobian. We assume the knowledge of some rational
points on C, so let D be a fixed rational point on C and let  be the corresponding
Abel-Jacobi map:

 : C → J, P 7→ [P −D].

Let W be the image in J of the known rational points on C and D1, . . . , Dr gen-
erators for the free part of J(Q). By using the Mordell–Weil sieve we are going to
obtain a very large and smooth integer B such that

(C(Q)) ⊆W +BJ(Q).

Let

φ : Zr → J(Q), φ(a1, . . . , ar) =
∑

aiDi,

so that the image of φ is the free part of J(Q). The variant of the Mordell-Weil
sieve explained in [11] provides a method to obtain a very long decreasing sequence
of lattices in Zr

BZr = L0 ) L1 ) L2 ) · · · ) Lk

such that

(C(Q)) ⊂W + φ(Lj)

for j = 1, . . . , k.
The next lemma [11, Lemma 12.1] gives a lower bound for the size of rational

points whose image are not in the set W.

Lemma 2. Let W be a finite subset of J(Q) and L be a sublattice of Zr. Suppose

that (C(Q)) ⊂W + φ(L). Let µ1 be a lower bound for h− ĥ and

µ2 = max

{√
ĥ(w) : w ∈W

}
.

Denote by M the height-pairing matrix for the Mordell–Weil basis D1, . . . , Dr and
let λ1, . . . , λr be its eigenvalues. Let

µ3 = min
{√

λj : j = 1, . . . , r
}

and m(L) the Euclidean norm of the shortest non-zero vector of L. Then, for any
P ∈ C(Q), either (P ) ∈W or

h((P )) ≥ (µ3m(L)− µ2)
2

+ µ1.

3. Proof of Theorem 1

It was shown by Liptai that the integers Bm satisfy the following equation

z2 − 8y2 = 1

for some integer z. So one has to determine all solution of the equation

z2 = 8(x(x+ 1)(x+ 2)(x+ 3)(x+ 4))2 + 1.

Rewrite the latter equation as follows

z2 = 8(x2 + 4x)2(x2 + 4x+ 3)2(x2 + 4x+ 4) + 1.

Let X = 2x2 + 8x. We obtain that

(2) C : Y 2 = X2(X + 6)2(X + 8) + 4,
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where Y = 2z. It remains to find all integral points on C. The rank of the Jacobian
of C is 3, so classical Chabauty’s method [15],[16],[17] cannot be applied. In this
paper we combine Baker’s method and the so-called Mordell-Weil sieve to obtain
all integral solutions of equation (2).

Lemma 3. The only integral solutions to the equation (2) are

(0,±2), (−6,±2), (−8,±2).

Proof. Let J(Q) be the Jacobian of the genus two curve (2). Using MAGMA [7]
we determine a Mordell-Weil basis which is given by

D1 = (0, 2)−∞,
D2 = (−6, 2)−∞,
D3 = (ω,−ω − 10) + (ω,−ω − 10)− 2∞,

where ω is a root of the polynomial x2 + 7x+ 4. Let f = x2(x+ 6)2(x+ 8) + 4 and
α be a root of f. We will choose for coset representatives of J(Q)/2J(Q) the linear

combinations
∑3
i=1 niDi, where ni ∈ {0, 1}. We have

x− α = κξ2,

where κ belongs to a finite set (having 8 elements). This set can be constructed as
described in Lemma 1. Many values can be eliminated by local computations in Qp,
for same small primes p. We apply Theorem 2 to get a large upper bound for log |x|.
A MAGMA code were written to obtain the bounds appeared in [11], it can be
found at http://www.warwick.ac.uk/∼maseap/progs/intpoint/bounds.m. We
used the above MAGMA functions to compute an upper bound for log |x|, the
results are summarized in the following table

κ bound for log |x|
1 1.51 · 10246

−α 3.21 · 10512

−6− α 6.25 · 10531

The set of known rational points on the curve (2) is {∞, (0,±2), (−6,±2), (−8,±2)}.
Let W be the image of this set in J(Q). Applying the Mordell-Weil sieve imple-
mented by Bruin and Stoll we obtain that

(C(Q)) ⊆W +BJ(Q),

where

B = 2
6 · 34 · 53 · 73 · 112 · 132 · 17 · 192 · 29 · 31 · 41 · 43 · 47 · 61 · 67 · 73 · 79 · 83 · 89 · 97 · 107 · 109 · 113,

that is

B = 46247720065121846143591520774334300410472000.

Now we use an extension of the Mordell-Weil sieve due to Samir Siksek to obtain
a very long decreasing sequence of lattices in Z3. After that we apply Lemma 2 to
obtain a lower bound for possible unknown rational points. We get that if (x, y) is
an unknown integral point, then

log |x| ≥ 1.03× 10580.

This contradicts the bound for log |x| we obtained by Baker’s method. �

Now we prove Theorem 1.
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Proof of Theorem 1. By Lemma 3 we have that

X ∈ {0,−6,−8}

and we also have that X = 2x2 + 8x. That is it remains to solve three quadratic
equations in x. We obtain that x ∈ {−4,−3,−2,−1, 0}. Therefore the equation

Bm = x(x+ 1)(x+ 2)(x+ 3)(x+ 4)

has no solution with m ≥ 0 and x ∈ Z. �
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