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Abstract. Some years ago at the MIDK2013 Conference (Takács, 2013) we presented a concept regarding the use of 

a new generation of computer programming novice languages (in fact, an environment, called ‘block languages’). 

We showed how we imagine the use of this kind of language for different ages and at different levels of education. 

Now we would like to present the results of our projects related to this concept and our psychological and 

pedagogical experiences. Furthermore we would like to present further tools to develop end-user programming 

skills from primary school to higher education. 
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INTRODUCTION 

Block programming languages are becoming more and more popular among young and hobby 

programmers. Some years ago at the MIDK2013 Conference (Takács, 2013) we presented a concept 

regarding the use of a new generation of computer programming novice languages (in fact, an 

environment, called ‘block languages’). We showed how we imagine the use of this kind of language for 

different ages and at different levels of education. The aim of this paper is to present the results of our 

psychological and pedagogical experiences. Furthermore we would like to present further tools to 

develop end-user programming skills from primary school to higher education. 

ABOUT BLOCK PROGRAMMING LANGUAGES 

There were several block programming projects available from the 2000s, but the most popular for 

educational use were Scratch (created and supported by MIT) (Resnick, 2003) and LabView (created 

and supported by National Instruments) (LabView, 2015). In 2010 a new giant IT company, Google, 

entered the ring and created a third programming language, which has proved (after Labview) that 

block programming languages are suitable for developing people’s computational thinking at any age 
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or in any sphere of interest. This new programme was App Inventor for Android. Compared to 

traditional developing environments the technical and syntactical problems were reduced to a 

minimum, and several hobby programmers began to develop mobile applications for their own 

devices. Google’s timing was perfect: it was the beginning of the mobile world. Before App Inventor 

only programmers could develop applications for Android mobile devices; now this option became 

available to laymen as well. 

After a few years MIT took over the project, and they began to develop and host App Inventor 2 (MIT, 

2012). 

However, in the meantime, another avalanche had begun. Thanks to the development policy of Google, 

they published and shared the soul of the project, i.e. the Blockly programming library (Fraser, 2012). 

With Blockly we can develop new programming languages (environments) in different domains. In 

blockly.com several interesting projects are listed. We have created two as well, the first being 

BlockImpress (Takács, 2014), a tool for web presentation, and the second Blocklino, which encourage 

Arduino based development (both hardware and software) 

DESCRIBING BLOCK LANGUAGES 

Describing new developing tools is a difficult challenge. Block languages are mostly end-user 

programming languages. If we want to evaluate programming languages, we often use Robert 

Sebesta’s criteria (Sebesta, 2010) which is an excellent tool for the scientific analysis of programming 

languages and environments. With this criteria we can decide with reasonable certainty whether a 

programming language is worthy of attention or not. In this section we describe the criteria we use to 

describe influences on the programming environment, with their advantages and disadvantages. 

 Criteria 

Characteristic Readability Writeability Reliability 

Simplicity ● ● ● 

Orthogonality ● ● ● 

Data types ● ● ● 

Syntax designs ● ● ● 

Support for abstraction  ● ● 

Expressivity  ● ● 

Type checking   ● 

Exception handling   ● 

Restricted Aliasing   ● 

Table 1 Language evaluation criteria and the characteristics that affect them. 
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Simplicity and Orthogonality 

Block languages have just a few blocks, because these are designed as easy-to-learn, end-user 

programming languages. Regarding advanced users, block languages offer both basic and advanced 

methods, e.g. mutations of blocks or using component collections for each. 

Mutation has a special relation to Simplicity and Orthogonality; a block with mutation(s) can be used 

in two ways. Beginners can use the block without mutation(s) easily, but advanced users can also 

benefit from the optional parameters of the block. 

Component collections can be used in abstract programming when we want to set the width property 

of every button in a screen, instead of setting the property of the buttons one-by-one, which leads to a 

higher abstraction level of planning and development. 

Data types 

Block languages usually work only with basic data types e.g. string, number and Boolean. These types 

are sometimes expanded with color or any domain specific types, but do not contain any subtype, such 

as integer or char. This design consideration helps greatly in the beginning of learning a new 

developing environment, and will not be confusing if the user becomes a professional later on. 

Syntax designs 

Block languages have a great advantage over common programming languages; we can use different 

colours for the different block groups, and we can also play with the shapes of the blocks related to 

their different stacking and embedding types. These methods are very helpful for beginners in 

developing codes; they have clues as to how to stack the blocks on each other, which is the main 

element in syntax considerations and can avoid the irritating “syntax error” message. The other 

advantage of block language syntax consideration is the background type checking method; we cannot 

stack a string to a plus block, and the user has a real-time visual response, unlike in the common 

programming languages. 

Support for abstraction 

Most block languages are intended to support process abstraction, but we can also find some data 

abstraction support, e.g. colours. Process abstraction is highly important in block languages, and the 

development method depends on the level of the abstraction. App Inventor 2 contains the Acceleration 

sensor component which has a shaking event. This event arises based on a relatively complex 

background computation of three dimensional movement with a Boolean value output. 

We can say that a higher level of process abstraction is a great help for the beginner, as is the language, 

which is simple up to a specific level, since too many abstract processes could be confusing for a 

beginner, and also orthogonality is a disadvantage. 

Expressivity 
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Most block languages were created to make it convenient for the wider public to use APIs. They offer 

simple blocks for using sensors, a camera, or a canvas, etc. which also means that the “programmer” 

does not have full freedom in using these APIs; however, they accelerate the learning process for 

beginners as they move towards the intermediate level. 

Type checking 

There is strong type checking to stack blocks on each other in BlockImpress (Takács, 2014). 

Exception handling 

Exception handling is usually an important part of block languages, but beginners are not really 

interested in this, although when the program allows the user to input, this is unavoidable. Exception 

handling is a tool for advanced users. 

Restricted Aliasing 

This is usually not a relevant problem for block languages. 

END-USER PROGRAMMING TOOLS 

The main concept of the described end-user programming tool family is problem solving from early 

ages while we can concentrate on the methods and not on the syntax. 

Google Blockly 

The first idea was presented in (Bubnó, 2014)], as well. We use it mostly in classrooms, in Computer 

Science lessons on the subjects of algorithms and computer programming, for teaching basic 

programming tools as declarations, and making mathematical operations with variables, using loops, 

conditional statements and simple data structures, such as lists. Our hypotheses were that  

 mathematical word problems are suitable for novice programming exercises and, 

 with the application of block programming languages as novice languages we can rapidly develop 
computational abilities and computational thinking (Papert, 1993) between the ages of 12 and 16. 

App Inventor 2 (MIT App Inventor) 

Mobile programming is always motivating for children and for teachers, too. It became our habit that 

the first lesson for incoming classes is about developing a rapid mobile application in the Secondary 

School. There is a concept regarding the economy of attention (Hámori-Szabó, 2005), in the digital age 

things that do not attract consumers’ interest in the first five minutes are probably not viable. In the 

school we, the teachers, are sellers and our consumers are children. So we have to show them 

something cool, like mobile programming (Wolber, 2011) to arouse their interest in algorithms. 
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At first sight block languages are similar to Scratch, which was the Massachusetts Institute of 

Technology Media Lab’s project from 2003, and is a very popular self-study programming 

environment among children all over the world. Scratch is used in more than 150 different countries 

and is available in more than 40 languages. With Scratch children can program their own interactive 

stories, games, and animations, and share their creations with others in the online community 

(scratch.mit.edu). Formerly, Scratch worked as desktop software; nowadays it can be used via the 

Internet as a cloud service hosted by MIT, similar to other block programming environments. 

We have been organising successful study circles and talent development programs in mobile 

programming with MIT App Inventor since 2013. (Bécsi, 2016), (Bécsi, 2015). 

Although in 2013 we also planned to work with Lego Mindstorm NXT, we realized it was not 

interesting for children. They are much more interested in mobile programming than controlling 

robots. Mobile technology was new and trendy, while robots were already familiar to them. 

Blocklino 

In the next semester our talent program was linked to the “Year of the Light”. We introduced Arduino 

and LED-controlling combined with mobile programming. It was a huge success, surprisingly also 

among girl users. 

There was a new attempt in this field. One of our talented boys, Máté (16), was involved in computer 

programming in developing the user interface of a new block language, called Blocklino (Bécsi, 2015). 

He worked with a mentor engineer teacher’s help, and he surpassed all our previous expectations. 

Blocklino is a Blockly based programming environment which can control various self-developed LED-

based hardware devices. Blocklino and App Inventor are compatible, so students in talent programs 

can develop applications to control an LED-series from their own mobile phones. 

EDUCATION CONCEPT 

In (Takács, 2013) we described a concept regarding the use of block programming languages in 

education. 

Educational level Applications 

Primary School novice programming, basic concepts, solving word problems, making 

easy applications, web-programming 

Secondary School mobile programming, web-programming, graphical interfaces, 

graphical programming, introducing serious programming via built-in 

translators, detecting end-user talents 

Higher education 

(not IT professional 

education) 

developing IT skills (hacking), mobile programming, web-

programming, graphical programming, end user development, labor 

tool in introductory courses 

Higher education (business mobile programming, web-programming, graphical programming, end 
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education) user development, business presentation 

Higher education 

(IT professional education) 

DSL programming, code optimizing, cross and multi-platform 

developing (writing automated translator), user interface programming 

(ergonomy and design) 

Hobby activity anything from the above 

Table 2. Usage of block languages in different educational levels.. 

Primary school project 

In primary school we carried out one project involving mobile programming with App Inventor for 

Android, beginning in 2012. It involved a study group of children from the ages of 10 to 13. We 

encountered many problems with the differences in children’s knowledge and in their maturity. 

Mobile computing was very interesting for children. Of the 14 pupils there were 3 boys (Dávid (11), 

Tamás (10) and Péter (13)) and 1 girl (Vera (10)) who proved to be very talented. It was a normal a 

primary school class, with no speciality in the subject classes. At that time Tamás and Vera 

simultaneously learned to program in Scratch by themselves (individually). Two years later both of 

them were admitted to a six-grade secondary school with a science orientation. Péter, who was 

already 13 years old, was older than the others. He chose a secondary technical school to develop his 

education in the following year. Dávid was the most important experience for us, because he had 

learning difficulties, he was somewhat dyslexic, and with each subject he needed more time to learn or 

solve exercises. But now, with bock languages he can work not just at the same pace as the others, but 

even more rapidly than them, and he had a great sense of achievement because of this. 

So, we think with the App Inventor study group we have found four talented children. We can state 

that a motivating block language can be suitable for detecting talented children in informatics as early 

as the primary school. 

Secondary School projects 

Since 2013 at the Kossuth Grammar School of the University of Debrecen we have been trying out 

more than one block programming language in the classroom, both in study groups and in talent 

programs. We solved mathematical word problems with Blockly Code and made several android 

application with App Inventor 2. 

Higher Education projects 

Since 2014 at the University of Debrecen Faculty of Economics and Business we had several student 

thesis in the field of android application development via Appinventor. The students have various 

programming skills, they are mainly practice oriented persons. They prefer App Inventor2 because 

they imagined that applications can be develop faster and required less programming skills. In every 

week students has a special course where they can ask teachers for the actual development step. 
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In the Faculty of Economics and Business the following applications created by students in the last 

semesters:  

 „How the bread made” Multimedia mobile learning materials for children, 

 AgrInfo Android land information application  

 FarmGPS mobile application for farmers 

Instead of benefits the App Inventor2 has some limitations. The complex applications required to use 

another solutions. The AI2 was popular because most of the students has some software development 

background, but the application development were less popular earlier.  

End User Development in higher business education 

We have two type C courses and an informal talent program. 

On the Mobile Technologies in Business course, we teach some basics about the technology and 

development of mobile applications with App Inventor 2, such as a QR-code based shopping app, a 

simple ordering app, and an informational app. 

On the Web technologies in Business course, we teach some basic web technologies and create web 

based presentations with BlockImpress. 

In our talent program we are working on various topics related to planning and developing databases, 

analysing and visualizing data from a data warehouse, and creating mobile apps or web presentations. 

We organise an Android Teahouse once a semester, when we show our work to the public and involve 

new participants in our program. 

End-Users and the Sebesta criteria 

The easy readability and writeability of codes are key factors if we want to create end-user coding in 

an exploratory and creative way. It most cases it is not the best looking code, and it is not even the best 

performing code, but it gets the job done. The reliability of the code is often not important for end-

users, although fortunately, most block languages contain reliable code behind the blocks. End-users 

programmers’ coding skills that others mention as hacking skills (Press, 2013) is about the ability to 

break down messy problems and recompose them in ways that are solvable. It is nothing more than 

discussion, the last and highest step in Polya’s problem solving method (Polya, 1957) when applied to 

information technology tools. 

We are convinced that end-users can be developed from early childhood through to adulthood with 

teaching domain specific visual programming environments, like App Inventor and the others 

described above. 

We are also convinced that developing this skill is not only useful in business education but in many 

other professions where informatics needs to be applied. 

Mental transformation 
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What we miss in the literature on the education of Business Informatics is the ability referred to in 

psychology as mental transformation. We think developing this skill is as important as developing end-

user coding skills. Developing mental transformation occurs mostly in geometry, for example when 

primary school children already need to imagine whether or not a planar lattice could be a lattice of a 

3D solid. When business students encounter matrices and accompanying transformations on a 

university mathematics course, they hardly (or never) recognize the connection. And they hardly ever, 

or never, recognize the connection in their work with Excel. It would be very useful to develop the 

mental transformation skill because they support the teaching of business intelligence, as well as 

monitoring and analytical skills. 

We found a good tool to support this skill – Sprego programming. Sprego is a method for teaching 

spreedsheets which is more conscious than other methods, which mostly teach Excel (or other 

spreedsheets) only technically. In (Csernoch, 2015) we read about the important result, i.e. that 

knowledge about spreadsheets can be sustained for a much longer period when we teach it with the 

Sprego-method. 

Sprego is a non-traditional functional language and is modular, so it also fits with our concept of 

developing coding skills. It is also based on the development of the mental transformation skill, and 

after presenting it in introductory courses we can continue pivoting, reporting and using later self-

service business informatics tools, such as Excel Power Pivot, on which we have reported in (Takács, 

2012); it can also help us develop macros and introduce script languages. 

BENEFITS OF THE METHOD 

We must strengthen self-sufficient problem solving capabilities, instead of copying from tables. 

Moreover, the future challenge - and the growing expectation on the part of society - is to realize these 

abilities in a computer science classroom environment, rather than in the traditional paper based 

environment. 

Exercises involving different kinds of sorting or examining anagrams are extremely boring for today’s 

children, and do not seem useful for them at all. Consequently, there is a big problem with students’ 

motivation in computer science lessons. 

Traditional computer science education already teaches programming languages in primary school. In 

Hungarian curricula teachers have a lot of freedom to choose any kind of programming language they 

want to teach within the subject of algorithms and programming, including the option to teach only 

block diagrams to make algorithms, and nothing else. And, to tell the truth, the lessons available for 

any discussion of this topic hardly allow anything else. Block languages facilitate teachers in teaching 

not just a language, but a family of languages, including different types of programming methodologies, 

ranging from sequential to event-driven methods. We can show students much more about the 

diversity of programming skills and computational thinking. 

Blockly has a translator for many other programming languages, so pupils seriously interested in 

computer programming can also be introduced to “serious” computer programming. We have given 

them a “vocabulary” to study a language by themselves. 
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FUTURE QUESTIONS 

We are very committed to teaching this new technology, but to tell the truth, we also have doubts and 

many questions for the future. 

Is teaching a family of programming languages (or related programming environments) instead of 1-2 

concrete languages which are not used in computer science today a good direction to follow in 

computer science education or not? It is modern and can present a fuller picture of today’s computer 

science, but is it not too difficult for children? 

Sorting is boring. But how long will mobile programming be interesting and motivating for children: 

for 5 or at most 10 years? And after that? 

The future direction of technology is unpredictable. Can an information technology teacher follow it? 

Is it a realistic expectation that technology teachers can follow and teach technologies which are 

always new? How can we prepare the next teacher generation for this challenge? 
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