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We investigate the stability and self-consistency of the SU(3) symmetry and quadrupole deformation 
in light nuclei in terms of the Nilsson model and quasi-dynamical symmetry. It turns out that SU(3) 
is a remarkably good symmetry for commensurable major axes, similarly to the finding of the simple 
harmonic oscillator interaction. The method serves as an alternative to the well-known energy-minimum 
calculation for the determination of the shape isomers. In case of the 16O, 20Ne, and 24Mg nuclei the 
results of the two different procedures are in good agreement with each other.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The coexistence of different shapes is a typical phenomenon of 
the many body systems. For atomic nuclei it has been investigated 
extensively from the theoretical side, and in several cases it has 
been observed experimentally as well [1]. The nuclear shape iso-
mers are usually determined from an energy-surface calculation. 
One applies a structure model, calculates the energy surface as 
a function of the deformation parameters, and its local minima 
correspond to the shape isomers. The absolute minimum contains 
the ground state region, and further local minima determine e.g. 
the superdeformed (SD) and the hyperdeformed (HD) states (with 
ratios of main axes 2:1:1, and 3:1:1, respectively). A schematic il-
lustration is presented in the upper panel of Fig. 1.

In this Letter we discuss an alternative way for the determi-
nation of the shape isomers. It is not based on the calculation of 
the energy surface, rather we investigate the stability and the self-
consistency of the quadrupole deformation. In fact we investigate 
the stability and the self-consistency of the SU(3) symmetry of the 
nucleus (therefore, we call it SCS-method), but this symmetry is 
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uniquely related to the quadrupole deformation. A detailed discus-
sion of this relation is presented in [2].

The investigation of the stability and self-consistency of the 
SU(3) symmetry is of great interest from two different aspects. 
From the theoretical side it gives an interesting contribution to the 
long-standing question of the validity of the SU(3) symmetry (as 
discussed more in detail in the concluding part). From the practical 
viewpoint it provides us with a new method for the determination 
of the shape isomers, which is an alternative to the well-known 
energy-minimum calculations, as mentioned above. In particular, 
the stability regions of the SU(3) symmetry, or quadrupole defor-
mation, which usually satisfy to a good approximation the require-
ment of self-consistency, provide us with the shape isomers (see 
lower part of Fig. 1).

The new SCS method results in the U(3) symmetry of the 
shape isomers, therefore, a U(3) selection rule can be applied for 
the determination of its allowed and forbidden cluster configura-
tions. Furthermore, since a cluster configuration is defined by a 
reaction channel, one has a direct tool to find the favoured and 
unfavoured reaction channels for the population or decay of the 
isomeric states.

The SU(3) we apply here is not the original symmetry by Elliott 
[3], rather its generalized version, called quasi-dynamical symme-
try [4]. It is more widely applicable, but when the simple SU(3) 
symmetry is still well-defined, they are identical.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Schematic illustration of the appearance of the SD and HD shapes in the 
energy-minimum and in the deformation stability and self-consistency calculation.

In what follows first we recall the main features of the quasi-
dynamical SU(3) symmetry, then present the method of calculation 
and its application to the 16O, 20Ne, and 24Mg nuclei, and finally 
some conclusions are drawn.

2. The quasi-dynamical SU(3) symmetry

The quasi-dynamical or effective symmetry [4,5] is one of the 
most general symmetry in quantum mechanics. It is a symmetry of 
the eigenvalue-equation, when neither the (Hamiltonian) operator 
is symmetric (scalar), nor its eigenvectors (transform according to 
some irreducible transformations) [6].

The mathematical reason for this surprising situation is pro-
vided by the embedded representation [4]. An embedded repre-
sentation is obtained (for a subspace of the total Hilbert space) by 
calculating the matrix elements of the operators between vectors 
which are special linear combinations of those belonging to irre-
ducible representations (irrep). The irreps may be, and in the inter-
esting cases are, inequivalent. The linear combinations are special 
in the sense that their coefficients are the same for several vec-
tors. When the summation and the internal product operations are 
exchangeable (either exactly, or approximately), then the matrices 
give (exactly or approximately) a representation, called embedded.

Lie-algebras of rotor model kind (semi-direct sums with Abelian 
ideals) have exact embedded representations [4]. Some other Lie-
algebras, e.g. SU(3), contract to this kind of algebra in limiting 
cases, consequently they have good approximate embedded repre-
sentations. E.g. let φδλμK J M denote an SU(3) basis state, belonging 
to the (λμ) irrep, with δ labelling the additional quantum num-
bers needed to specify the wavefunction. An arbitrary ψα J M shell 
model wavefunction can be expanded in this basis:

ψα J M = �δλμK CαδλμK J MφδλμK J M . (1)

For a rotationally invariant Hamiltonian the expansion coefficients 
are independent of M . When they are also independent of J , one 
has an approximate quasi-dynamical SU(3) symmetry. In such a 
case the states with different J are said to form a soft SU(3) band.
In physical terms the embedded representation describes the 
adiabatic separation of variables, e.g. rotational and intrinsic de-
grees of freedom. The embedded representation and the related 
quasi-dynamical symmetry explains why some models can be suc-
cessful, when they (seemingly) have no right to be so, e.g. due to 
the presence of symmetry-breaking interactions.

3. The method of calculation

The method of calculation is based on the observation that the 
asymptotic Nilsson-state (see below for more details) of the many 
nucleon system (| ϕ0 >) is an intrinsic state of a soft SU(3) band 
[5]. It is a Q 0 highest weight state in the sense:

a†
za+ | ϕ0 > = a†

za− | ϕ0 >= 0

Q 0 | ϕ0 > = (2nz − n+ − n− + 3) | ϕ0 > . (2)

Here (Q 0 − 3) is the (M = 0) component of the SU (3) quadrupole 
operator [5], a†

i , and a j are the creation and annihilation opera-
tors of the oscillator quanta in cylindrical coordinates, and ni is 
the corresponding number operator. The authors of Ref. [5] prove 
explicitly, based on the order of filling of the asymptotic single-
particle states, that this condition is fulfilled for large (ε ≥ 0.3) 
deformation.

Jarrio et al. proposed a method for the determination of the 
effective quantum numbers for large prolate deformation [5]. In 
Ref. [7] the procedure was extended to oblate shapes and to small 
deformation. For small deformation the states are expanded in 
terms of asymptotic basis. Using these results the scenario of the 
calculation is as follows.

i) Determine the Nilsson-orbitals as a function of the quadrup-
ole deformation parameters.

ii) Obtain the many-particle state by filling in the Nilsson or-
bitals according to the energy minimum and Pauli-exclusion prin-
ciple.

iii) Expand the single particle orbitals in terms of the asymp-
totic Nilsson-states.

iv) Determine the effective SU(3) quantum numbers from the 
linear combinations of iii) and from the relations of the large de-
formation [5].

v) The effective quantum numbers can be translated to the pa-
rameters of the quadrupole deformation. Therefore, the stability 
and the self-consistency can be investigated both for the effective 
SU(3) quantum numbers, and for the deformation.

The details of this procedure are as follows. The asymptotic 
Nilsson-state is defined by the eigenvalue equation of the de-
formed Hamiltonian with cylindrical symmetry [8]:

H = − h̄2

2M

 + M

2
[ω2⊥(x2 + y2) + ω2

z z2] − C(�l · �s) − D�l 2, (3)

which contains in addition to the deformed harmonic oscillator po-
tential spin-orbit, and angular momentum terms. The elongation 
parameter ε is introduced by

ωz = ω0(1 − 2

3
ε), ω⊥ = ω0(1 + 1

3
ε), ε = ω⊥ − ωz

ω0
. (4)

Note, that the usual β parameter of deformation is related to ε: 
ε ≈ 0.95β .

For large deformations (|ε| > 0.3) the Nilsson orbitals approach 
straight lines [8]. These asymptotic states are characterized by the 
quantum numbers: |Nnz
� >, where N is the total number of 
oscillation quanta, nz is the number of oscillation quanta in the 
z direction (nz = N, N − 1, ..., 0; n⊥ = N − nz = nx + ny). 
 is 
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the projection of the orbital angular momentum on the z-axis 
(|
| = n⊥, n⊥ − 2, ..., 1 or 0), and � is the projection of the spin 
[8]. 
 and � are coupled to �.

For a triaxial shape the deformed harmonic oscillator potential 
is:

Vosc = M

2
(ω2

x x2 + ω2
y y2 + ω2

z z2), (5)

with ωx �= ωy �= ωz . The ratio of the frequencies is:

ωx = ω0[1 − 2

3
ε cos(γ + 2π

3
)],

ωy = ω0[1 − 2

3
ε cos(γ − 2π

3
)],

ωz = ω0[1 − 2

3
ε cosγ ]. (6)

The volume conservation is expressed by: ωxωyωz = ω3
0.

We diagonalize the triaxially deformed Hamiltonian in cylindri-
cal coordinates [9–11], thus the Nilsson orbitals | ψα > of a given 
deformation (ε , γ ) are obtained as an expansion in terms of the 
asymptotic states:

| ψNα > =
∑

nz,
,�

Cα
nz,
,� | N,nz,
,� > . (7)

The effective (λ, μ), quantum numbers are determined from 
the equations:

< 2λ + μ > =
∑

f

< f | 2nz − n+n− | f >,

< μ > (< μ > +2) = 4
∑

f e

|< e | a†
+a− | f >|2, (8)

where the indices f and e refer to occupied (filled) and empty 
asymptotic Nilsson orbitals, respectively. The non-zero matrix ele-
ments of the second formula in Eq. (8) are given by [5]

|< Nnz
 + 2� | a†
+a− | Nnz
� >|2=

1

4
(N − nz − 
)(N − nz + 
 + 2) . (9)

When evaluating (9) one has to pay attention to which orbital is 
filled and if the final orbital is empty or not. 
 and � can have 
negative values and each orbital is doubly occupied for the case 
of even-even nuclei. In the above equations only those oscillator 
shells enter which are open, i.e. closed oscillator shells do not con-
tribute because the net sum of those in Eqs. (8) and (9) is zero.

The SU(3) symmetry determines the parameters of the quadrup-
ole deformation [12]:

β2 = 16π

5N2
0

(λ2 + μ2 + λμ), γ = arctan

( √
3μ

2λ + μ

)
, (10)

where N0 stands for the number of oscillator quanta, including the 
zero point contribution:

N0 = n + (A − 1)
3

2
. (11)

Here n is the sum of the U(3) quantum numbers: n = n1 + n2 + n3, 
and A is the mass number of the nucleus.
4. Application

We apply here the method described in the previous section for 
the determination of the shape isomers of the 16O, 20Ne, and 24Mg 
nuclei. The results are presented in Fig. 2, both in 2 dimensional 
and in 3 dimensional plots.

The comparison with the results of the energy-minimum cal-
culation is given in Table 1. The most systematic calculations have 
been carried out in Ref. [13] in terms of the Nilsson model, and in 
[14–16], in terms of the Bloch-Brink alpha-cluster model (for one, 
two, and three dimensional configurations). Therefore, we compare 
our results with those ones. The correspondence between the re-
sults of [13], and other works is based on the deformation param-
eters and the number of excitation quanta. The major-shell excita-
tions are determined in each calculations, therefore, their number 
of quanta can also be compared. As for the alpha-cluster calcula-
tions, the shell model configurations of [14–16] determine also the 
U(3) symmetries.

When calculating the quasi-dynamical (or effective) SU(3) 
quantum numbers, we obtain not only integer, but also real num-
bers. Furthermore, some uncertainties appear occasionally (as il-
lustrated by Fig. 2). In the Table 1 we presented the shape isomer 
states of the present calculation with the U(3) symmetry that cor-
responds to a simple shell-model configuration.

As illustrated by Table 1, the similarity of the results between 
the energy-minimum calculations and the new SCS method is very 
remarkable. In particular, for the 16O nucleus there are two shape 
isomers (in addition to the ground state) in each calculations: a su-
perdeformed state with a triaxial deformation and a linear alpha-
chain. In 20Ne there are three of them in alpha-cluster model and 
in the present work, and two in [13]. For 24Mg our method pre-
dicts five shape isomers, as compared to the four states of the 
previous works. The characteristics of the shapes from different 
theoretical frameworks (quadrupole shape, excitation quanta, U(3) 
symmetry, ratios of major axes) are also in good agreement.

5. Summary and conclusion

In this paper we have presented a method for the investigation 
of the stability and self-consistency of the SU(3) symmetry (called 
SCS method). It is carried out by applying the Nilsson-model and 
the concept of the quasi-dynamical SU(3) symmetry. Due to the 
unique relations between the SU(3) quantum numbers and the 
quadrupole deformation parameters it can also be considered as 
a procedure of the study of stability and self-consistency of the 
quadrupole shape.

The method is applicable for the determination of the shape 
isomers of light nuclei. It is an alternative of the well-known 
energy-minimum calculation. Nevertheless, the results are in very 
good agreement with each other. The fact that different theoret-
ical methods give very similar states for the shape isomers gives 
further credit to the theoretical prediction.

Having the SU(3) symmetry of the shape isomers a selection 
rule can be formulated for the determination of the allowed cluster 
configurations. The latter ones are directly related to the reaction 
channels, thus we have a simple and systematically applicable rule 
for finding the reactions which can populate the isomers [17].

From the theoretical viewpoint this kind of study gives an in-
teresting contribution to the problem of the validity of the SU(3) 
symmetry of light nuclei. It is known to be good in the ground-
state region. With the excitation, however, it breaks down. It was 
found for harmonic oscillator interaction that for the commensu-
rable ratios of the major axes it recovers [18]. We obtain a similar 
result here for the more realistic Nilsson-Hamiltonian.
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Fig. 2. Shape isomers from the symmetry stability and self-consistency calculations. In the two-dimensional plots the oblate shapes are indicated in the negative side of the 
β deformation.

Table 1
Shape isomers of the 16O, 20Ne, and 24Mg nuclei from different model calculations. The results of the Nilsson-
model calculations are from the work [13], the alpha-cluster model calculations (for one, two and three di-
mensional configurations) are presented in [14–16], while the column “shape” refers to the present work. The 
abbreviations are as follows: GS: ground state, SD: superdeformed, α − ch: alpha chain, Tri: triaxial, p: prolate, 
o: oblate, HD: hyperdeformed. The notations of the alpha-cluster configurations are: 2d and 3d means 2 and 3 
dimensional configuration, in the former case the parantheses contain the ratio of (ωy : ωx), tetrahed stands for 
tetrahedral shape, bipyram for bipyramidal, triax for triaxial, and cylsy for cylindrically symmetric configuration. 
h̄ω indicates the number of excitation quanta, (ε, γ ) are the parameters of the quadrupole deformation (γ is 
given in degrees), and a:b:c stands for the ratio of the major axes of the ellipsoid.

Nucl. Nilsson
ωx : ωy : ωz(ε, γ )

Alpha Shape h̄ω U(3) SU(3) (ε,γ ) a:b:c

16O
1:1:1 (0,0) tetrahed GS 0 [4,4,4] (0,0) (0,0) 1:1:1
4:2:1 (1.04,43) 2d(2:1) SD 4 [12,4,0] (8,4) (0.83,19) 2.5:1.5:1
4:4:1 (1.2,0) α − ch α − ch 12 [24,0,0] (24,0) (1.56,0) 4:1:1

20Ne

2:2:1 (0.40,0) bipyram GS 0 [12,4,4] (8,0) (0.50,0) 1.6:1:1
8:3:2 (1.17,50) 2d(3:2) Tri S D 4 [16,8,0] (8,8) (0.80,30) 2.6:1.8:1

2d(3:1) HD 8 [24,4,0] (20,4) (1.19,9) 3.4:1.4:1
5:5:1 (1.25,0) α − ch α − ch 20 [40,0,0] (40,0) (1.76,0) 5:1:1

24Mg

4:3:2 (0.45,20) 3d triax GS 0 [16,8,4] (8,4) (0.51,19) 1.8:1.3:1
(1.0,0) 3d cylsy SD(p) 4 [24,4,4] (20,0) (0.91,0) 2.3:1:1
3:1:1 (1.23,60) 2d(1:1) SD(o) 4 [16,16,0] (0,16) (0.72,60) 2.3:2.3:1
5:2:1 (1.26,42) 2d(2:1) Tri 8 [28,8,0] (20,8) (1.07,16) 3.3:1.7:1

HDT ri 16 [40,4,0] (36,4) (1.46,5) 4.3:1.3:1
6:6:1 (1.25,0) α − ch α − ch 32 [60,0,0] (60,0) (1.91,0) 6:1:1
The shape isomers have good SU(3) symmetry. Furthermore, 
it turns out, that their connection to the cluster states are usu-
ally extremely simple. The cluster states can be expanded in the 
shell basis. Since the SU(3) symmetry of the shape isomers usu-
ally have only multiplicity 1, it means that a cluster configuration 
having this symmetry is identical with the shell configuration, sim-
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ilarly to the well-known examples of the ground states of light 
nuclei.
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