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Chapter 1

Introduction

The question of the Diophantine equations can be found everywhere across
mathematical history. Already the ancient Babylonians could solve simple
equations and systems of equations in integers. Mostly because of philo-
sophical backgrounds integer numbers and the Diophantine equations were
in the center of interest and therefore flourishing in Ancient Greece with
many classical results. Also in the other great civilizations like China, In-
dia and the Islam world the questions of Diophantine problems remained

in interest without any tools for solving general Diophantine equations.

This is Hilbert’s tenth problem (from 1900), namely the determination
of the solvability of a Diophantine equation. Whether there exists a general
finite algorithm for any Diophantine equation with any number of variables
which determines whether the equation has rational integer solutions. In
1970 Matijasevic [59] proved that such an algorithm does not exist.

As a result, since there is no universal algorithm, methods for solving
certain classes of Diophantine equations gained big interest since then.

Such an efficient tool for solving different types of Diophantine equa-
tions is the Baker method, based on Baker’s inequality giving a non-trivial

lower bound for linear logarithmic forms. Baker gained his famous result
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in 1966. Based on this result since then also several further improvements
and applications were born. For further details in this topic we refer to
3], [5], [6] and [7].

Next we introduce a sharper version of the original theorem, the Baker-
Wiistholz Theorem [9].

Let aq, ..., a, be algebraic numbers, not 0 or 1, and by logay, ...,
log o, we mean fixed determinations of the logarithms. Let K be the field
generated by aq, ..., a, over the rationals Q and let d be the degree of K.

Set A; = max (H(«; ), e), where H(c;) denotes the classical height of
aj, i. e. the maximum of the absolute values of the coefficients of the

minimal defining polynomial of o; and e = 2,718....

Theorem A Letby,..., b, be rational integers, not all 0 and suppose that
B > max |bj|. If A =bilogay + balogag + - -+ + by log oy, # 0 then

log |A| > —(16nd)?>™*? log A; .. .log A, log B.

In the following we present some applications of the Baker method for
special families of equations.

Now suppose that f(X,Y) is a binary form with rational integer coef-
ficients and with at least three pairwise non-proportional linear factors in
its factorisation over C. Let k be a non-zero rational integer. We consider

the solutions of the equation

f(@,y) =k, (1.1)

called the Thue equation in rational integers x and y. Thue proved an in-
effective finiteness theorem on equation 1.1 however, by the Baker method

we get an effective result.



Theorem B If x and y are rational integers satisfying equation 1.1, then
Ca
max(|zl, [y]) < C1[k|

for some computable numbers C1 and Co depending only on f.

See [77, Chapter 5].
Two other important types of equations are the hyper- and superellip-

tic equations in integers x and y. Let

Fla) = by™ (1.2)

where f € Z[z], deg f > 2 and m > 2 fixed and further b € Z, b # 0. The
equation is called hyperelliptic in case m = 2, and called superelliptic in
case m > 3. Applying his method Baker reached the following results in

some special cases.

Theorem C Let m > 3. Suppose that f(X) has at least two simple roots.

If x and y are rational integers satisfying equation 1.2, then
max(|z], [y|) < C3

for some computable C5 depending only on b, m and f.
See [4].

Theorem D Suppose that m = 2 and f(X) has at least three simple
roots. Then all the solutions of equation 1.2 in rational integers x and y
satisfy

max(|z[, [y[) < Cy

where Cy is a computable number depending only on b and f.

See [4].



In their theorem Schinzel and Tijdeman used the Baker method to get

an effective result for the exponent as a variable.

Theorem E Let f(X) be a polynomial with rational integer coefficients
and with at least two distinct roots. Suppose b # 0, m > 0, x and y with

ly| > 1 are rational integers satisfying

Then m is bounded by a computable number depending only on b and

This is the main result of [76].

Let us have the form of the equation where the polynomial f(z) has
the factorisation f(z) = (x — a1)™ - (x — a,)™.

Also based on the Baker method the last result here in the theory of
superelliptic equations is the following theorem of Brindza. He also gave

in addition a quantitative version of this theorem.

Theorem F Let m > 2 and n > 2. Put

qi

Suppose that (qi,...,qn) is not a permutation of either of the n-tuples
(¢,1,1,...,1),t e Nor(2,2,1,1,...,1). Letx andy rational inters satisfy
1.2. There exists a computable number C5 depending only on b, m and f
such that

max(|al, [y]) < Cs.

See [77, Chapter 8|.
There are several other effective results based on different results from
the Baker Theorem.



The generalisation of the Thue equation is the Thue-Mahler equation.
Based on the result of van der Poorten and Yu, see [77] on the p-adic
analogue of the inequality of Baker, there exists also for this equation an
effective theorem.

Let f(X,Y) be a binary form of degree n with rational integer coeffi-
cients and with at least three pairwise non-proportional linear factors in
its factorisation over Q.

The upper bound here is due to Gydry.

Theorem G Let k and s be rational integers with k # 0 and s > 0. Let
D1,---,Ps be primes with p1 < py < --- < ps =: P. All solutions of the

equation

flx,y) =kpi'---pZ inx,y,z,...,2, €L

with (x,y) =1 and z1 > 0,...,zs > 0, satisfy

max(‘$|7’y‘7zj) SCG (1 SJSS)
where Cg is a computable number depending only on f, k, n, s and P.

See [77, Chapter 7).

The previous theorem implies the following application.

Theorem H Let f(X,Y) and g(X,Y) be binary forms with rational in-
teger coefficients. Suppose f has at least three pairwise non-proportional
linear factors in its factorisation over C which do not divide g over Q.

Suppose deg(f) > deg(g). Then all solutions of the equation
f(z,y) =g(z,y) in rational integers x,y

with f(x,y) # 0 are such that max(|z|,|y|) is bounded by a computable

number depending only on f and g.



See [77, Chapter 7].

For several classes of separable Diophantine equations of the form
f(x) = g(y) with f,g € Z[z] in z, y rational integers such effective re-
sults do not exist. For the very specific superelliptic equations we have
such result as seen above.

However there are theorems which present general results for the equa-
tions of the type f(x) = g(y). There are two key results concerning sep-
arable Diophantine equations. The first one is due to Davenport, Lewis
and Schinzel [29].

Theorem I Let f(x) be a polynomial with integral coefficients of degree
n > 1 and g(y) be a polynomial with integral coefficients of degree m > 1.
Let D(X\) = disc(f(z) + A) and E(N\) = disc(g(y) + A). Suppose that there
are at least [n/2] distinct roots of D(A) = 0 for which E(X) # 0. Then
f(x) — g(y) is irreducible over the complex numbers. Further, the genus
of the equation f(z) — g(y) = 0 is strictly positive except possibly when
m =2 orm=mn=3. Apart from these possible exceptions, the equation

has at most a finite number of integral solutions.

The last part of the theorem is based on Siegels famous result about the
number of integral points on irreducible algebraic curves. The Bilu-Tichy
Theorem [16] is an improvement of the previous theorem.

To formulate the theorem, we define five kinds of standard pairs of
polynomials.

In the sequel a and [ denote non-zero rational numbers, ¢, s and ¢
are positive integers, r is a non-negative integer and v(X) € Q[X] is a
non-zero polynomial, which may be constant.

A standard pair of the first kind is

(X9, aX"v(X)?), or switched, (X v(X)?, X7)
where 0 < r < g, (r,q) =1 and r + degv(X) > 0.
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A standard pair of the second kind is

(X2, (aX? + B)r(X)?) (or switched).

Denote by Ds(X,«) the sth Dickson polynomial, defined by, for ex-

ample, the explicit formula

[s/2] .

S s —1 i 5—9i

D.xa) =3 ()i
1=0

A standard pair of the third kind is
(DS(X7 at)7 Dt(X> as))
where ged(s,t) = 1.
A standard pair of the fourth kind is
(a=/2Dy(X, ), —67/2Dy(X. B) )
where ged(s,t) = 2.
A standard pair of the fifth kind is

((aX? —1)3,3X* — 4X?%) (or switched).

Theorem J Let P(X), Q(X) € Q[X] be non-constant polynomials such
that the equation P(x) = Q(y) has infinitely many solutions x, y with a
bounded denominator. Then we have P = ¢o fo X and Q = ¢pogopu,
where \(X), pu(X) € Q[X] are linear polynomials, ¢(X) € Q[X] and
(f(X),9(X)) is a standard pair.

This result relies on Siegel’s theorem.
In our dissertation we are going to investigate some specific types of

separable Diophantine equations. In our research we were focusing to find
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and give ineffective and effective theorems on certain classes of separable
Diophantine equations based on classical results like the Bilu-Tichy Theo-
rem or the Baker Theorem. Our goal was also to be able to give ineffective
general results, effective results for specific classes just as to give numerical
results for known parameters.

First we investigate the arithmetic properties of repdigit numbers.
Namely we study the equal values of repdigit and [th order k£ dimensional
polygonal numbers.

Second we are going to examine the question whether one can give
general conditions for two trinomials of the form ax™ +bz" + ¢ = dyP +ey?
to have infinitely many equal values.

Last we are going to deal with the question of separable Diophantine
equations of discrete geometrical background. Namely we are going to
investigate the equal values of standard counting polynomials i.e. for m,
n positive integers the equally many integer points of an m-dimensional

and an n-dimensional unit cube, simplex, pyramid or octahedron.



Chapter 2

On some polynomial values

of repdigit numbers

2.1 Introduction

Let
for(z) = x(x+1)---(w—l—k:—i:)!((l—Q):L‘%-k—l-Z—l) 2.1)

be the [th order k dimensional polygonal number, where kK > 2 and [ > 3

are fixed integers. As special cases for fi 3(z) we get the binomial coeffi-
cient (z+l]§—1)’ for fo;(x) and f3,;(x) we have the corresponding polygonal
and pyramidal numbers, respectively. These figural numbers have already
been investigated from several aspects and therefore have a rich literature,
see Dickson [30]. For example, the question whether a perfect square is
a binomial coefficient, i.e., if f3(z) = f24(y) and also the more general
question on the power values of binomial coefficients was resolved by Gyory
[38]. The equation () = (4) has been investigated by several authors, for
general effective finiteness statements we refer to Kiss [54] and Brindza
[18]. In the special cases | = 3,4,5 and 6, the corresponding Diophantine

equations were resolved by Avanesov [2], Pintér [66] and de Weger [86]
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(independently), Bugeaud, Mignotte, Stoll, Siksek, Tengely [25] and Haj-
du, Pintér [47], respectively. The equal values of polygonal and pyramidal

numbers were studied by Brindza, Pintér, Turjanyi [23] and Pintér, Varga
[69].

Another important class of combinatorial numbers is the numbers of

the form d - 1105__11, 1 <d < 9. They are called repdigits and for d = 1, re-

punits. Various results and conjectures have been stated concerning prime

repunits and certain Diophantine problems related to repdigits, see [35]
and [77, Chapter 12], respectively. For example, Ballew and Weger [10]
proved earlier that there are only six numbers, namely 1, 3,6, 55, 66, 666
that are both triangular and repdigit numbers. Recently, Jaroma [50] gave
an elementary proof of the fact that 1 is the only triangular repunit num-
ber. Keith [52] investigated the problem to determine which polygonal
numbers are repdigits and solved it for numbers less than 107. He also
introduced an efficient algorithm for finding repdigit polygonal numbers

and gave a complete characterization of all such numbers up to 50 digits.

One can also define the so-called generalized repunits with the formula

" —1
b—1

(2.2)

for an integer b > 2. Dubner [31] gave a table of generalized repunit primes

and probable primes for b up to 99 and for large values of n.

In our work we study the equal values of repdigits and the k£ dimen-
sional polygonal numbers. We state some effective finiteness theorems,
and for small parameter values we completely solve the corresponding

equations.
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2.2 New results

A common generalization of repdigits and generalized repunits are num-

bers of the form
bt —1

-1
i.e., taking repdigits with repeating digit d in the number system of base
b, where 1 < d < b and b > 2 integers.

(2.3)

We consider equation

-1
45 = ) (2.4)
and its special cases
L = fuala) (25)
0—1 R '
and I
= o). (26)

In our first result we represent an effective finiteness statement concerning

the most general equation 2.4.

Theorem 2.1 Suppose thatk > 3 ork =2 andl =4 orl > 13. Then

equation 2.4 has only finitely many integer solutions in x and n, further,
max (|z],n) < ¢1,

where ¢y is an effectively computable constant depending on k,l,b and d.

For k = 2 and | € {3,5,6,7,8,9,10,11,12} equation 2.4 has infinitely

many solutions for infinitely many values of the parameters b, d.

In the following two theorems we consider the special cases of equation

2.4 with repdigits or generalized repunits.
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Theorem 2.2 FEquation 2.5 with k > 2 has only finitely many integer so-
lutions x,n except for the values (d,l) = (3,8). In these cases the equation

has infinitely many solutions that can be given explicitly.

Theorem 2.3 Equation 2.6 with k > 2 has only finitely many integer
solutions x,n except for the values (b,1) = (4,8),(9,3),(9,6),(25,5). In
these cases the equation has infinitely many solutions that can be given

explicitly.

In our numerical investigations we take those polynomials fj;(x), where
k € {2,3}. For both cases we let d € {1,2,...,9} and [ € {3,4,...,
20} and solve completely the corresponding equation. To state our nu-
merical results, we need the following concept. A solution to equation 2.5
is called trivial if it yields 0 = 0 or 1 = 1. This concept is needed because
of the huge number of trivial solutions; on the other hand, such solutions

of 2.5 can be listed easily for any fixed k.

Theorem 2.4 All nontrivial solutions of equation 2.5 in case of k = 2,3,

respectively, are exactly those contained in Tables 2.2 and 2.1 respectively.

Remark. We considered some other related equations, corresponding to
larger values of the parameter k of the polynomial fi;(x), that lead to
genus 2 equations. However, because of certain technical difficulties, we
could not solve them by the Chabauty method.

2.3 Proofs of the Theorems

Our proofs are based on the previously introduced theorem of Schinzel

and Tijdeman.

Lemma 2.1 Let f(X) be a polynomial with rational integer coefficients

and with at least two distinct roots. Suppose b # 0, m > 0, x and y with
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ly| > 1 are rational integers satisfying

Then m is bounded by a computable number depending only on b and f.

Proof of Theorem 2.1. Equation 2.4 is equivalent to
Eldbd" =0b—-1)z(x+1)---(x+(k=2)((I-2)z+k+2—1)+dk!. (2.7)

Let us assume first that £ > 4. Our aim is to show that the polynomial on
the right-hand side of 2.7 is never an almost perfect power. On supposing

the contrary we have
(b—Dz(z+1) - (x4+k-2)((1-2)z+k+2—1)+dk! = c(z—a)*, (2.8)

with ¢, € Q. Substituting x = 0, —1, —2 in equation 2.8, we obtain the

equalities
dk! = c(—a)F, (2.9)
dk! = ¢(=1 — a)*, (2.10)
dk! = ¢(=2 — )", (2.11)

From 2.9 and 2.10 we get that

which yields that

k
1
( +a) .
@

Therefore (1 + )/« is a rational root of unity, i.e., £1 which means
that @« = —1/2. On the other hand, considering 2.9 and 2.11, we obtain

13



that
co(—a)* = ¢(—2 — a)k.

Following a similar calculation we get that o = —1, which is a contradic-

tion. Therefore, our theorem follows from Lemma 2.1 for the case k > 4.
Now, let £k = 3. Then equation 2.7 has the form
6db™ = (b— 1D)z(z+ 1)((l —2)x +5—1) + 6d.

After carrying out the multiplications on the right-hand side we obtain
that

6db"™ = (b—1)(—=2)x3 +3(b — 1)a® 4+ (b — 1)(5 — )z + 6d. (2.12)

Let us again assume that the right-hand side is an almost perfect power,

i.e., equals ¢(x — )3, with ¢,a € Q. Then the original coefficients have

the form
b-1)(1-2)=c 3(b—1) = —3ca,
(b—1)(5—1) = 3ca?, 6d = —ca®.
From the first and second equation we get that o = ﬁ At the same
time from the second and third equation we get that o = l%’ This yields

that [ € C\R. Hence we derived a contradiction again. As in the previous

case, Lemma 2.1 completes the proof for k = 3.

In the remaining case let £ = 2. Then equation 2.7 has the form

2db" = (b— 1)z (I — 2)a +4 — I) + 2d. (2.13)

If the right-hand side of 2.13 is an almost perfect square then
(b—1)(1—2)z* 4+ (b—1)(4 — )z + 2d = cx® — 2cxa + ca?

14



with rational ¢ and «, further, on comparing the corresponding coefficients

we have

b-1)(1-2)=¢, (b-1)(4-1)=—2ca, 2d=ca’

Hence we get that a = ff_gll and so b?Tl = ?il:l)i) > 1. This yields that

3 <1< 13 integer and [ # 4 and

b—1 {88572 16 56 408,24}.

i S\ 9

This is satisfied by infinitely many pairs b, d. Therefore for infinitely many
parameter values b, d the right-hand side of equation 2.13 can be an al-
most perfect square which yields infinitely many integer solutions n,z of
equation 2.4. Otherwise, Lemma 2.1 gives our statement for k& = 2 and
l=4orl>13.

Proof of Theorem 2.2. For k > 3 the statement follows from Theorem
2.1. Now, let £k = 2. By a similar argument as in the proof of Theorem
2.1, case k = 2, we obtain that

Since d and [ are integers, their only possible value is (d,[) = (3, 8).

Apart from this case the right-hand side of 2.13 cannot be a perfect square.
Hence by Lemma 2.1 the theorem follows for k£ = 2. In addition, in the
exceptional case we show that equation 2.7 has infinitely many integer

solutions n,x. Our equation is

1\ 2
6-10":54x2—36x+6:54<x—3> .
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This yields that for arbitrary & € N we have a solution n = 2k and

___10k-1
xr = 3 -

Proof of Theorem 2.3. For k > 3 the statement follows from Theorem
2.1. In case of k = 2 a similar calculation has to be carried out as in
the proof of Theorem 2.2. This yields the exceptional cases: (b,l) =
(4,8),(9,3),(9,6),(25,5). Showing that for these parameters the original
equation has infinitely many solutions can be done similarly as in the
previous proof.

Proof of Theorem 2.4. Let k = 2. Then fy;(x) = w. Since
the right-hand side of equation 2.5 is of degree 2 by reducing the left-hand
side to a polynomial of degree 3 we obtain an elliptic equation which can
further be solved by the program package MAGMA [17]. We illustrate
these computations by an example. Set (d,l) = (3,11). Then equation 2.5
is
10" -1  92° -7z

9 2
The left-hand side of this equation can be reduced to polynomials of degree
3 by considering n mod 3. If n =i (mod 3), (i = 0,1, 2) then 10" = 103++
for some k € Z, (i = 0,1,2). Then substituting y = 10%, we get the

following three distinct equations:

3.

(2.14)

2y — 2 = 272% — 21x, (2.15)
20y — 2 = 272% — 21x, (2.16)
200y° — 2 = 27x% — 21z. (2.17)

Multiplying both hand sides of equations 2.15,2.16,2.17 by 108, 10800,
1080000, respectively, and introducing the new variables X; = 54z, Y =
6y; Xo = 540x, Yo = 60y; X3 = 5400x, Y3 = 600y; respectively, we obtain

VP - 216 = X7 — 42X,
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Yy — 21600 = X2 — 420X>,
Y3 — 2160000 = X3 — 4200X3,

respectively. With the procedure IntegralPoints of MAGMA one can
compute the integer points of these curves, and then determine the solu-
tions n,x of equation 2.14. The solutions are exactly the ones listed in
Table 2.2.

Now let k = 3. Then f3;(z) = (172)x3+3g32+(571)x. Since the right-
hand side of equation 2.5 is of degree 3 by reducing the left-hand side to a

polynomial of degree 2 we obtain an elliptic equation again which can be
solved by Magma. We illustrate these computations by an example. Set
(d,1) = (4,3). Then equation 2.5 is

10" —1 2%+ 322 + 20

4. = 2.18

The left-hand side of this equation can be reduced to polynomials of degree
2 by considering n modulo 2. If n = i (mod 2), (i = 0, 1) then 10" = 10+
for some k € Z, (i = 0,1). Then substituting y = 10¥, we get the following

two distinct equations:
8y* — 8 = 32% 4 927 + 6w, (2.19)

80y? — 8 = 323 + 922 + 6z (2.20)

Multiplying both hand sides of equations 2.19,2.20 by 72, 72000, respec-
tively, and introducing the new variables X; = 6z, Y1 = 24y; X9 = 60z,
Ys = 2400y; respectively, we obtain

Y2 - 576 = X; + 18X7 + 72X,

and
Y3 — 576000 = X3 + 180X3 + 7200X>,

17



respectively. With the procedure IntegralPoints of MAGMA one can
compute the integer points of these curves, and then determine the solu-
tions n,x of equation 2.18. The solutions are exactly the ones listed in
Table 2.1.

(d,1) | solutions (n,z) | fri(z)
(1,10) (2,2) 11
(2,6) (2,3) 22
(4,3) (1,2) 4
(5,4) (1,2) 5
(5,4) (2,5) 55
(6,5) (1,2) 6
(6,17) (2,3) 66
(7,6) (1,2) 7
(8,7) (1,2) 8
(9,8) (1,2) 9

Table 2.1: The case of f3;(x)
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Chapter 3

On equal values of

trinomials

3.1 Introduction

One of the classical results concerning equal values of trinomials is the
determination of rational integers which can be represented as a product
of two and three consecutive integers simultaneously. In other words, the

problem is to solve the Diophantine equation

B or——y

in integers x and y. Using tools from algebraic number theory Mordell
[62] resolved this problem. By an elementary approach, one can prove
that the unique integer solution x, %y of the z* — x = y? — y with |zy| > 1
is (z,y) = (—1,2). Indeed a straightforward calculation yields that

(227 —1)? < da? —dx + 1= (2y — 1)* < (22%)?
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for x > 1 and similarly,
(222)? < da* —dax+1=(2y — 1)? < (222 +1)?

for x < —1. These inequalities imply that |z| < 1. Recently, Bugeaud et.
al. [25] obtained all solutions of the five-degree equation x° —x = y? — y.
Their technique is based on some new methods of modern number theory.

Let m and p be fixed positive integers with m > p > 2. As a general
result, Mignotte and Pethé [61] proved a finiteness statement on solutions

x, y to the equation

" —x =9y’ —y.

The proof depends on Theorem 1.

3.2 New results

Let a,b,c,d,e,m,n,p and g be fixed rational integers. In this chapter we

prove

Theorem 3.1 The Diophantine equation
ax™ + bx" + ¢ = dy” + ey? (3.1)

where

m>n>0,p>q>0,(m,n)=(p,q) =1,ab# 0,de #0
and either m >p>3orm=p>3,n>q (3.2)

has infinitely many solutions x,y with a bounded denominator if and

only if either

22



m=pn=qa=dt",b=ect",t € Q,c=0 (3.3)

or
m:p:3n:q:2a263+63d2:Oc:—4—b3 (3.4)
’ ’ ’ 27a2’ ’
or
2a%e?
m=p=3n=2q=127a'’ +1°d=0,c="0. (35

The main ingredient in the proof of Theorem 3.1 is the Bilu-Tichy The-
orem, which is an ineffective result, so Theorem 3.1 provides the finiteness
of the number of solutions to (3.1), only.

In the special case p = 2 we give an upper bound for the solutions x

and y. Set H = max(|al, bl |, ] |e], m, n).
Theorem 3.2 Suppose that m > 5, m >n >0, abd # 0, m # 2n and

(m,n) ¢ {(6,2),(6,4)},

further, if 4dc + e? = 0 then assume that m —n >3 orm —n =2 and n

1s odd. The Diophantine equation
ax™ + bx" 4 ¢ = dy* + ey in integers x and y

implies maz(|x|, |y|) < ca2, where ca is an effectively computable constant

depending only on H.

A result on solutions of hyperelliptic equations obtained by Brindza [19],
see Lemma 3.1, plays an important role in the proof. We give some families

of Diophantine equations with infinitely many integer solutions x and y
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for the exponential pairs (m,n) in the following table (here ¢, u and v are

integer parameters).

(m,n) equation solutions
(2n,n) 22 4 2bx™ + b2 — 1 =y% + 2y y=a"+b—1
(3,1) a3 — 3thy +1° = y? + 263y T =u?— 22,
y = u(u? — 3t%) — 3
(3,2) x3 + 31222 — 516 = ¢? + 23y r=u?+ 12,
y = u(u?+3t?) — 3
(4,1) o+ Ar + 1 = 297 + 4%y u? + 2% = 202,
r=u+t,y=uv(u+2t)—t
(4,3) b+ 4txd + 25t% = 22 + 4t%y u? 4+ 2t? = 202,
r=u+t,y=uv(u+4it) -t
(6,2) 28 — 3ttz? = 2y% + 413y u? + 2% = 20%, ¥ = u,
y=ovu?—t) -
(6,4) 20 — 3t22% + 215 = 2y% + 4t3y w2 =202 ¢ =u,
y=ov(u?—2t%) — 3

Now suppose that d = 1, 4c+ €2 =0, m —n = 2, n is even, and we
choose the values of a and b, such that the Pellian equation s> — at? = b

has infinitely many integer solutions s and ¢t. One can check that equation
4z™(az?® +b) = (2y + e)?

possesses infinitely many solutions in integers x and y. For d = 1, 4c+e? =
0, m—n =1, n even and b = f? (mod a) we take z = (f? — b)/a,
y = fa"?

a is not a square, the Pellian equation s> — at?> = 1 has infinitely many

— €/2. Under the same conditions for odd values of n, a > 0,

solutions in integers s, ¢ such that
s=1 (mod2a), t=0 (mod 2).

Then taking = = b(s — 1)/2a, y = btz(»1/2/2 — ¢ /2, we provide infinitely

many solutions as well.
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3.3 Auxiliary results

In the following we are going to use the previously introduced Bilu-Tichy

Theorem and the five kinds of standard pairs of polynomials.

Lemma 3.1 Let f be a polynomial with rational coefficients and suppose
that it possesses at least three zeros of odd multiplicity. Then the equation
f(z) = y? in unknown z,y implies max {|z|, |y|} < C7 where C; is an
effectively computable constant depending only on the parameters of the

polynomial f.

Proof. This is a corollary of the main result in [19]. For further gener-
alizations and improvements see [24].
The following lemmata describe multiplicity of the zeros of trinomials

and connections between standard pairs and trinomials.

Lemma 3.2 Multiplicity of every zero of a polynomial AX™+ BX"™+C,
AC # 0 is at most two and if B =0 than one.

Proof. This is an easy consequence of Hajds’ [48] result.

Lemma 3.3 Let f € C[X]\ C and f(X)?|AX™ + BX" + C, where m >
n >0, ABC #0. Then deg f < (m,n).

Proof. By Lemma 3.2, every zero of f is simple. Let ¢ be such a zero,
AX™ 4+ BX" 4+ C =T(X). Since T(¢) = T'(¢) = 0 we obtain
Cn

= (m—mn)A’ "=

O
(n—m)B’

thus ¢ = ™™ is uniquely determined and deg f < (m,n).

Lemma 3.4 If A(ax + )™ 4+ B(ax + )" + C = Dy, (X, g), where m,n
satisfy 3.1, further, Aag # 0 and D, (X, g) is the mth Dickson polynomial,
then m < 3.
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Proof. Put § = af,, B= Bia™™. Clearly A = o=, and we obtain

(X4 61)" + Bi(X + b1)" +C = Dn(X,g)

L%/:% . (m_z> _ (3.6)
=5 T e

i—0 t

The coefficient of X™~! on the right-hand side vanishes, hence it does on
the left-hand side and if 81 # 0 we obtain n =m — 1

mp1+ B1 =0

and, unless m = 2,

—1
(?) B? + nB1 B = % (ml ) (—g) = —mgy.

It follows that

and unless m < 3

(?) B+ (Z) B\ =0,
hence <Tg> ﬁi)’ - <Z> mﬁ{’ = 0; <7Z:) = <Z> m = (?), which is a

contradiction.

Assume now that 87 = 0. Equation 3.6 gives either m < 3 orn = m—2
and 0 = m — 4. However, in the latter case (m,n) = 2, contrary to our

assumptions.
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Lemma 3.5 If m, n, p, q satisfy 3.2 and ABa # 0 # DE~, then
< A(aX+B)"+B(aX+8)"+C, D(X+6)P+E(X+06)1+F > (3.7)

1s not a standard pair.

Proof. Suppose first that 3.7 is a standard pair of the first kind. If
AlaX + )"+ BlaX +8)"+C=X". (3.8)

then g is a zero of AX™+4 BX"+C of multiplicity m, hence by Lemma 3.2
either m < 2 < p, contrary to 3.2, or C'= 0. In the latter case a X + 8|X,
£ =0 and 3.7 contradicts B # 0. If

D(yX +6)P + E(YX +6)1 + F = X?. (3.9)

then a similar argument leads to a contradiction with p > 3.
Suppose next that 3.7 is a standard pair of the second kind. Then
either m = 2 or p = 2, however this is impossible by 3.2.

Suppose next that 3.7 is a standard pair of the third or the fourth
kind. Then we have

A(aX 4+ )™ 4+ B(aX + )" + C = Dp(X, d?) or a” ™D, (X, a),

D(YX + 6P + E(YX +8)? + F = Dy(X,a™) or —bP2D,(X,b),

respectively, where (m,p) = 1 or (m,p) = 2, respectively. By Lemma
34 m < 3, p <3, thus by 3.2, m = p = 3 and (m,p) = 3, we get a

contradiction again.
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Suppose finally that 3.7 is a standard pair of the fifth kind. Then one
of the polynomials A(aX + )™+ B(aX+p)"+C, D(vX +6)P+ E(vX +

9)?+ F has two zeros of multiplicity three, which contradicts Lemma 3.2.

Lemma 3.6 Under the assumption 3.2 we have
aX™+bX"+c=d(eX + &P +e(eX + &)1 (3.10)

for some €,£ € Q if and only if 3.3, 3.4 or 3.5 hold.

Proof. Assume first that we have 3.10. Clearly m = p and either
c=&=0o0r & # 0. In the former case we obtain 3.3 with ¢t = €. In
the latter case, by Lemma 3.2, ¢ < 2. However, the case m = p = 4,
q = 2 is excluded by 3.2, hence if m = p > 4 we have p — ¢ > 3, thus
X1 and X™2 occur on the right-hand side of 3.10 with the coefficients
dme™1¢ # 0 and d(’;)sm_2§2 # 0. On the left-hand side of 3.10 X™~!
and X™ 2 cannot occur both with non-zero coefficients. The obtained
contradiction shows that m = p = 3. If n = ¢ = 2, then 3.10 gives
a = de3, b = 3de*€ + ee?, 0 = 3de£? + 2ee, ¢ = d€® + e£?, which on
elimination of € and £ leads to 3.4. If n = 2, ¢ = 1, then 3.10 gives
a=de3, b= 3de*¢, 0 = 3de£? + ee, c = d€3 + e, which on elimination of e
and & leads to 3.5. Finally, since £ # 0 we cannot have n = ¢ = 1, because
the coefficient of X2 on the left-hand side of 3.10 is 0, on the right-hand
side is 3de2¢ # 0.

Assume now that we have 3.3, 3.4 or 3.5. If 3.3 holds, we get 3.8 with
e =t,&=0;if 3.4 holds we obtain 3.8 with

ae 2e
b T 3
and finally if 3.5 holds we have 3.8 with

£ =—

R T
N obd
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Lemma 3.7 IfaX™+bX"+c = fiofa(X), where 8.2 holds and f; € Q[z],
then for a suitable linear function h € Q[x] we have either fi oh = X,
hlofo=aX™+bX"+cor fioh=aX™+bX"+¢, h™to fo = X.

Proof. This follows from Lemma 3 in [36] with h € C[X]. Since f3 is

a polynomial with rational coefficients we have h € Q[X].

3.4 Proofs of the Theorems

Proof of Theorem 3.1. Assume first that equation (3.1) has infinitely many
rational solutions with a bounded denominator. The Bilu-Tichy Theorem

gives

aX™4+bX"+c=pofol dXP+eX!=ypogoupu,

where A, p are linear polynomials, ¢ € Q[z] and (f,g) is a standard pair
of the 4th kind (1 <14 <5).
By Lemma 3.7 there exist linear functions hi, hy in Q[z] such that

either

pohy = X, hl_lofo)\ =aX"+bX"+c, poho = X, h;logou = dXP+eX?

(3.11)
or
wohi =aX™4+bX"+¢, hjlofod=X (3.12)
and
@ohy =dXP+eX9 hy'ogou=X. (3.13)

In case 3.11 we have hy = ¢! = hy and putting hy(X) = eX + &,
hi(@X™+bX"+¢) = AX"™+BX"+C, hy(dXP+eX9) = DXP+ EX9+F,
A HX)=aX + B, p 1 (X) =X + § we obtain that
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<A(aX+ )" +BaX+B)"+C, DX +6)P+EYX +0)1+F >

is a standard pair. However, by Lemma 3.5, this is impossible.
In case 3.12 taking h2_1 ohy; =eX + £ we obtain

aX™+bX"+c=d(eX + &P +e(eX +£)1. (3.14)

By Lemma 3.6 we have 3.3, 3.4 or 3.5. Conversely, if 3.3, 3.4 or 3.5
holds, we get 3.14 for some rational e, £&. Taking an arbitrary integer
x, we obtain infinitely many solutions (z,ex + £) of 3.1 with a bounded
denominator.

Proof of Theorem 3.2. Using Lemma 3.1 it is enough to show that the
trinomial

F(X) = 4adX™ + 4bdX"™ + 4ed + €2

has at least three zeros of odd multiplicity. First we consider the case
when the constant term 4cd + €? is non-zero. On supposing the contrary

we have

where degree of polynomial g(X) is at most two, and, as a consequence of
Lemma 3.2 polynomial f(X) possesses only simple zeros. Let ¢ be one of
them. Similarly to the proof of Lemma 3.3 we obtain ¢(™™) is uniquely
determined and deg f < (m,n). It follows that m < 2(m,n) + 3, hence
either m = 2n or (m,n) = (3,1),(3,2),(4,1),(4,3),(6,2), (6, 3).

If 4cd+€? is vanishing then F(X) = 4dX"(aX™ " +b) and apart from
the cases listed in Theorem 3.2 we cannot guarantee the existence of at
least three zeros of odd multiplicity.

Finally, we would like to remark here that Schinzel [75] omitted the

assumption (m,n) = (p,q) = 1 from Theorem 3.1.
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Chapter 4

Equal values of standard

counting polynomials

4.1 Introduction

The most fundamental polynomials counting integer points are X™ in an
n-dimensional unit cube, (X:”) in a standard n-simplex,

Spoi(X)=1""t gt 4 xnd

in an n-dimensional pyramid, and

an=$)(771)

J=0

for octahedron in dimension n, see [11, Chapter 2]. Our purpose is to
consider the possible equal values of these polynomials in case of integral
variables. In other words, for given positive integers m,n, how often can
two bodies (unit cube, simplex, pyramid, octahedron) of dimensions m and

n, respectively, contain equally many integral points? It is a bit surprising
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that this discrete geometrical question is the common background of some

classical Diophantine problems. One can see that the above problems lead

to 9 nontrivial families of Diophantine equations, see Table 4.1. We give

a survey of known results concerning these equations. Further, we prove

some new theorems for the solutions. For each family of solutions, the

following three types of results can be established. An ineffective finite-

ness theorem for the general case obtained by the Bilu-Tichy Theorem,

an effective result based on Baker’s theory when one of the dimensions

involved is small, and the resolution by computer algebraic packages if

both dimensions are small.

No equation remark

1 | Sp(x) = Sn(y) n>m>1

2 Sm(xz)=9y" |m>1n>2(mn)¢{(1,2),(3,2),(3,4),(5,2)}
3 Sm(z) = (¥) m>1,n>2,(m,n)# (1,2)

4 | Sp(z) = Pu(y) m>1,n>2 (m,n)# (1,2)

5 () =9" m>2,n>2 (m,n)#(2,2)

o -0 s mz

71 (2)=Puy) m>2,n>2 (m,n)#(2,2)

8 P (z) =y" m>2,n>2,(m,n) # (2,2)

9 | Pn(z) = Puly) n>m>2

Table 4.1: The investigated families of Diophantine equations

4.2 Lemmas and auxiliary results

First we note that S,,—1(X) can be expressed in the form

Sn—1(X)

L(Bu(X 1)~ B(0)),
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where B,,(X) denotes the n-th Bernoulli polynomial which is of degree n
and has its coefficients in Q.

We now collect some lemmas to prove our new results. The first one
deals with the simple zeros of a family of polynomials. Let n be a positive
integer, f(X) an integer-valued polynomial with deg f(X) < n — 1, and

g(X) a polynomial with rational integer coefficients.

LeIIlIIIa 4.1 Suppose that n Z 6 llnd let P den()t@ a pr1 1me f()7 U}h'lch
< <
77’[/ n-
3 P>

If a,, is an integer not divisible by p then the polynomial
X
FX) = an () 4 1060+ 0(3)

has at least [%} + 1 simple zeros.

Proof. This is the Theorem in [65].
The following previously introduced result provides an effective upper

bound for the solutions to the hyperelliptic equations.

Lemma 4.2 Let f be a polynomial with rational coefficients and suppose
that it possesses at least three simple zeros. Then the equation f(x) = y? in
unknown integers x,y implies max(|x|, |y|) < ca, where c4 is an effectively
computable constant depending on the degree and the mazimum height of
the coefficients of f.

There is a similar result for superelliptic equations.

Lemma 4.3 Let f be a polynomial with rational coefficients and suppose
that it possesses at least two simple zeros. Then the equation f(z) = y™ in

unknown integers x,y, m > 2 implies max(|z|, |y|,m) < c5, where c5 is an
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effectively computable constant depending on the degree and the mazximum
height of the coefficients of the polynomial f.

The next results are used in the proofs of our effective statements.

Lemma 4.4 Let m > 1,r,s # 0 be fixed integers. Then apart from the
cases when m =3,r =0 ors+64r =0; m =5,r =0 or s — 324r = 0,
the equation

s(Am 42"+ 42"+ r=y"

in integers x > 0, y with |y| > 2, and n > 2 has only finitely many

solutions which can be effectively determined.
Proof. This is Theorem 2.2 in [72].

Lemma 4.5 Let a,b,c and m be given integers with ab # 0 and m > 3.
Apart from the cases when m = 4,c/a = —1/24 or 3/128, n =2 and b/a

s not a square, the Diophantine equation

a(x> =by" +c¢
m

has only finitely many solutions in x,y > 1,n > 2 and all these solutions

can be effectively bounded in terms of a,b,c and m.
Proof. This is the main result of [88].

Lemma 4.6 Let a,b,m,n be integers with a # 0, m > 1, n > 2. The

S () = a<z> +b

in integers x and y has only finitely many solutions apart from the follow-

equation

ing possible exceptions

(m,n) € {(1,4),(2,3),(3,4)}.
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Proof. This is a special case of Theorem 2 in [71].
The next result will be useful for the application of the previous lemma,
(cf. [78] and [68]).

Lemma 4.7 The product of two or more consecutive positive integers is

never a perfect power.

Proof. For the proof we refer to [34].
We need the following technical lemma. Let a,b,a, b,a,b be rational

numbers with aaa # 0.

Lemma 4.8 None of the polynomials (a)fner) and Pn,(aX +b) is of the
form e X™ + eq with ey € Q\ {0} and m > 3 or e1 Dy (X, ) + ep with
e1,a € Q\ {0} and m > 5. The polynomial S,,(aX +b) is not of the form
e1 X9+ ey with g > 3 or e1D, (X, a) + eg with v > 4, where «, e1,eq are

rational numbers with e; # 0.

Proof. For the fact that (“)f,:rb) is not of the form e; X™ + e¢ with
m > 3 we refer to [15, Lemma 5.2].

Now suppose that

(aX+b

) =e1Dp(X, ) + e
m

for an integer m > 5 and aw € Q\ {0} and set

m

aX +b i
( m )Z;CiX.

On comparing the corresponding coefficients, an easy calculation shows
that

am
Cm = ml = €1,
-1 —1
c _ a™ (b mQ ) =0



a™ 2(126% + 12(1 — m)b + 3m? — Tm + 2)
24(m — 2)!

Cm—2 = = —ejam,

and

B a™=4(2406* + 480(1 — m)b® + f1(m)b? + fo(m)b+ f3(m)) B
m—4 = 5760(m — 4)! -

eym(m — 3)a?

2 )
where f1(m) = 120(3m? — Tm + 2), fa(m) = 120(—m? + 4m? — 3m) and
f3(m) = 15m* — 90m3 + 125m? — 18m — 8. Using the second equation, we

have b = mTfl and thus

a™ 2 (m+1)
Cppg = ———————~ = —ejam
me2 24(m — 2)! !
and
a™ At (5m2 +12m+7) eym(m — 3)a?
Cm—4 = = .
md 5760(m — 4)! 2
From these relations with ¢, = %7: = e; we get

(m—1)(m+1) _ 20

and
(m+1)(5m+7)(m —1)(m — 2) _ A2
2880 ’
that is . - 5
(m+ 1)(m — 1) = B+ DM =2)

5

and m = 3, a contradiction.

The proof of the corresponding statements for the polynomials P, (aX +
b) and S,,(@X + b) can be found in [81].
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4.3 New and known results

Family 1: equation

where n > m > 1 are fixed and z,y are unknown integers.

For (m,n) with m = 1 and m = 3, Brindza and Pintér [21] proved
some effective finiteness results for the solutions z and y. Their proof
is based on the structure of zeros of the corresponding shifted Bernoulli
polynomials. In the same paper they obtained an ineffective finiteness
result for an infinite class of pairs (m,n) using Davenport-Lewis-Schinzel
Theorem. Later, applying Bilu-Tichy Theorem, the authors of [15] ex-
tended this statement to every pair (m,n). For small values of m and
n the problem leads to certain elliptic curves. For the resolution of the
special cases (m,n) = (1,2),(1,3),(1,5), (1,7) we refer to [1] and [83], [26]
and [58], [47], [55], respectively. We propose the following

Conjecture 1 All the solutions to the equation (4.2) in integers n > m >

1 and x,y are
(m7 n7 'CC, y) = (17 27 107 5)7 (17 27 137 6)7 (17 37 87 3)7 (17 57 237 3)7 (17 57 3537 9)'

This conjecture is based upon an extensive numerical investigation.

However, its proof seems well beyond the reach of current techniques.

Family 2: equation
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where m > 1,n > 2,2 > 1,y > 1 are unknown integers and S,,(X) =
14 2m 4 o+ X

Equation (4.3) has the solution (x,y) = (1,1) which is called trivial.
For m = n = 2, (4.3) has only the nontrivial solution (z,y) = (24, 70).
This was proved by Watson [85]. In 1956, Schéffer [74] proved that for
fixed m > 1 and n > 3, (4.3) has at most finitely many solutions in x,y,

unless

(m,n) € {(1,2),(3,2),(3,4),(5,2)}, (4.4)

where in each case, there are infinitely many such solutions.
Schéffer’s proof is ineffective. Using Baker’s method, Gy6ry, Tijdeman
and Voorhoeve [44] proved a more general and effective result in which the

exponent n is also unknown. A special case of their result is the following

Theorem 4.1 For given m > 2 with m ¢ {3,5}, all solutions z,y >
1,n > 2 of (4.3) satisfy max(z,y,n) < cg(m), where cg(m) is an effectively

computable number which depends only on m.

Later, Gy6ry, Tijdeman and Voorhoeve [84] showed that for any fixed
polynomial R(X) with integral coefficients, the equation

Sm(z) + R(x) =y"

has only finitely many solutions in integers x,y > 1,n > 2 provided that
m > 2 is fixed such that m # {3,5}. The proof furnishes an effective
upper bound for n, but not for x and y. An effective version was obtained
in a more general form by Brindza [20].

Pintér [67] proved that for fixed m > 2, all solutions of (4.3) with
y > 1 satisfy n < cymlogm, where ¢y is an effectively computable absolute

constant.
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For fixed m > 2 with m ¢ {3,5}, Theorem 4.1 makes it possible, at
least in principle, to determine all solutions of (4.3). However, the bound
cg(m) in Theorem 4.1 is not given explicitly. Moreover, even an explicit
value obtained by Baker’s method would be too large for practical use.
Schéffer [74] was able to prove that for some special pairs (m,n) with
small m,n, (4.3) has only the trivial solution. Further, he formulated the

following

Theorem 4.2 For m > 1 and n > 2 with (m,n) not in (4.4), equation

(4.3) has only one nontrivial solution, namely (m,n,z,y) = (2,2,24,70).

Recently, a considerable progress has been made in this direction. Ja-
cobson, Pintér and Walsh [49] confirmed the conjecture for n = 2 and for
even m with m < 58. Further, Bennett, Gyéry and Pintér [13] proved
completely Schiffer’s conjecture for m < 11 and for arbitrary n.

For fixed m and (m,n) # (3,4), Brindza and Pintér [22] gave the upper
bound max(cg, €3™) for the number of solutions of (4.3) with z,y > 1,n >
2, where cg is an effectively computable absolute constant.

In the proofs of the above presented results the first step is to express
Sm(X) in the form (4.1). This implies that S,,,(X) is divisible by X?(X +
1)? in Q[X] if m > 1is odd, and by X (X + 1)(2X + 1) if m > 2 is even.
Then (4.3) can be reduced both to superelliptic equations and to finitely
many binomial Thue equations of the form AX™ — BY"™ = 1 in non-zero
X,Y € Z with fixed non-zero integers A, B. Finally, various deep theorems
and techniques can be applied to these equations to establish the desired
results for equation (4.3).

For more details and related results we refer to the survey paper [42]

of Gyéry and Pintér.
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Family 3: equation
S0 = (1), (45)

where m > 1,n > 2 are fixed integers with (m,n) # (1,2) and z,y

are unknown integers.

As an easy consequence of Lemma 4.6 we have

Theorem 4.3 Ifm > 1,n > 2 and (m,n) # (1,2) then the equation (4.5)

has only finitely many solutions in integers x and y.

Proof. In view of Lemma 4.6 we have to check the possible exceptional
cases (m,n) € {(1,4),(2,3),(3,4)} only. For (m,n) = (1,4), we get the

classical equation
z+1\ [y
2 ) \4)

and for the resolution of this equation see [86] and [66]. In the case
(m,n) = (2,3) we obtain

x4+ 1)2z+1)=yly—1)(y —2).

By using MAPLE one can verify that the genus of the corresponding curve
is 1, so it has only finitely many solutions in integers x and y. Finally, if

(m,n) = (3,4), our equation takes the form

() =)

and, by [33], there is no integer solution of this problem.

If m or n is small then we have an effective result.
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Theorem 4.4 Let n € {2,4} and m > 1 with (m,n) # (1,2) or m €
{1,3} and n > 2. Then all the solutions of the equation (4.5) in integers
x and y are bounded by an effectively computable constant depending only
on m or n, respectively. Further, if m = 3 and n > 2, then there is no

solution.

Proof. In the first case n = 2 or 4. Now, our equation (4.5) leads to
the equations
8Sm(z) +1=(2y — 1)2,

245 (z) + 1= (y(y — 3) + 1)%,

respectively, and Lemma 4.4 completes the proof. If m =1 or m = 3 we

have the equations

(22 + 1) = 8(y> +1,

n

() =)

respectively. Our statements follow from Lemma 4.5 and Theorem 4.7

or

below, respectively.

Family 4: equation

Sm(x) = Pn(y>7 (4'6)

where m > 1,n > 2 are fixed integers and z,y are unknown inte-

gers.

For small values of m or n we prove the following
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Theorem 4.5 If m € {1,3} and n > 2 orn € {2,4} and m > 1 then
the equation (4.6) implies that max(z,y) < cy, where cg is an effectively

computable constant depending only on n or m, respectively.

Proof. If (m,n) = (1,2) or (3,2) we have the equations

(;) =2y° +2y + 1
and

2
x
<2> =27 4+ 2y + 1,

respectively. One can check that in the first case there is no integer solution
in z and y, further the second equation represents a genus one curve, so
it possesses only finitely many and effectively determinable solutions in x
and y.

In the sequel we suppose that m € {1,3} and n > 3. Then we have

the following families of equations
(22 —1)2 =8P, (y) + 1

and

(WY = Pa(y),

respectively. Since the leading coefficient of the polynomial P, (X) is

on
nl
Lemmata 4.1 and 4.2 give the proof of our theorem for n > 6. In the
remaining cases a simple calculation shows that the corresponding poly-
nomials have only simple zeros.

Now assume that n € {2,4} and m > 2. We have the Diophantine
equations

28 (z) = (2y + 1)?
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and
3Sm(z) +5=2(y> +y +2)%,

respectively, and Lemma 4.4 proves the statement of our theorem.

Theorem 4.6 Assume that m > 2,n > 2 and ged(m + 1,n) = 1. Then

equation (4.6) has only finitely many solutions in integers x and y.

We conjecture that Theorem 4.6 is true omitting the condition for the

greatest common divisor of m + 1 and n, cf. [71].

Proof. On supposing the contrary and using the Bilu-Tichy Theorem

we have

Sm(aX +b) = ¢(f(X)), Pa(@X +b) = ¢(9(X)),

where a,a,b,b € Q with ad # 0,$(X) € Q[X] and (f,g) is a standard
pair. Since the greatest common divisor of m+ 1 and n is 1, we have that
degp = 1,¢(X) = epX + e1, say, where eg, e; are rational numbers and

eo # 0. Now applying the conditions for m and n we get
deg f > 2,degg > 2, gcd(deg f,degg) = 1,

and this excludes the standard pairs of the second, fourth and fifth kind.
From Lemma 4.8 we obtain max{m,n} < 5, and by the conditions for m,n
and Theorem 4.5, the remaining cases are (m,n) = (2,5), (4,3) and (5,5).
However, using MAPLE, one can check that the genus of the corresponding
three curves is 4,4 and 10, respectively, so there are only finitely many

integral points on these curves.

Family 5: equation

(m) — (4.7)



where m > 2,n > 2,2 > m,y > 2 are unknown integers.

For m = n = 2, equation (4.7) can be written in the form
(22— 1) —8y* =1

which has infinitely many solutions, and all these can be given in a recur-
sive way. For m = 3,n = 2, Meyl [60, z odd] and Watson [85, = even]
proved that

<530) = 1402 (4.8)

is the only solution of (4.7).

It was conjectured by Erdés [32] that for n > 2, equation (4.7) has no
solution. Erdés [32] proved this for n = 3 and for n > 2™, and Oblath
[63] for n =4 and 5.

By means of an ingenious elementary method Erdds [33] confirmed his
conjecture for m > 4. For m < 4, the method of Erdos does not work.

Using Baker’s method, Tijdeman [82] proved that for m = 2 and 3
equation (4.7) has only finitely many solutions, and all of them can be,
at least in principle, determined. Later, Terai [80] showed that for m = 2
and 3, (4.7) implies n < 4250.

Finally, Gyéry [38] proved Erdés’ conjecture for m = 2,3 and n > 2,

and hence completed the proof of the following

Theorem 4.7 Apart from the case (m,n) = (2,2), (4.8) gives the only

solution of equation (4.7).

Gy6ry’s proof combines some results of Gyéry [37] and Darmon and
Merel [28] on generalized Fermat equations, and a theorem of Bennett and

de Weger [12] on binomial Thue equations.
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There are several related results in the literature, see e.g. the survey
papers [40] and [41] and the references given there. For example, Theorem

4.7 has been extended to the equation

z(z—1)--(z—m+1)=by" (4.9)

by Saradha [73, m > 4] and Gy6ry [39, m < 4], where b > 1 is also
unknown, but has only prime factors not exceeding m. For b = m!, the
results of [73] and [39] imply Theorem 4.7, while for b = 1, they give
the celebrated theorem of Erd8s and Selfridge [34] which states that the

product of consecutive positive integers is never a power.

Family 6: equation

()-C)

where n > m > 2 are fixed integers and = > m,y > n are unknown

integers.

This equation possesses a very extensive literature. There are several
scattered computational results for special pairs (m,n). For the resolution
of the corresponding equation in the cases (m,n) = (2, 3), (2,4), (2,5), (2, 6),
(3,4) we refer to [2], [86] and [66], [25], [47], [87], respectively. For a
nice survey on certain numerical problems and for the cases (m,n) =
(2,8),(3,6),(4,6),(4,8) see [79]. Generalizing an earlier result by Kiss
[54], Brindza [18] proved an effective finiteness statement for the solutions
to the equation (4.10) with m = 2. Using some elementary considerations,
de Weger [87] dealt with equal values of binomial coefficients and proposed

the following general conjecture.
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Conjecture 2 All solutions of equation (4.10) in positive integers m,n,z,y

withn >m > 2,2 > m,y >n are
16\ (10\ [56\  (22\ (153\  (19\ [221\ (17
(2)-()G)-()(2)-G)(5)-()
78\ (15 (14 21\ (10 120\ (36
(2)-()-() ) - () (5)-(5)
and an infinite family

<F2i+2F2i+3> _ <F2i+2F2i+3 - 1)
Foi o3 FoyiFoiy3+1

for i =1,2,..., where F, denotes the nth Fibonacci number defined by
Fy=0,Fi=1and Fpy1 =F,+ Fph—1 forn=1,2,....

For general, however, ineffective finiteness results see [14] and [70].

Family 7: equation
x

where m > 2,n > 2 are fixed integers and x > m,y are unknown

integers.

In the special case (m,n) = (2,2) we have the equation

x
<2) =22 + 2y +1

and a straightforward calculation gives that the transformed equation
(22 —1)> - (4y+2)2 =5
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has no solution in integers x > 2 and y.

For small values of m or n we prove the following

Theorem 4.8 If m € {2,4} and n > 3 or n € {2,4} and m > 3 then
equation (4.11) implies that max(x,y) < c19, where c1g is an effectively

computable constant depending only on n or m, respectively.

Proof. First suppose that m € {2,4} and n > 3. We have the equations
8P, (y) +1= (22 —1)2
and
24P, (y) +1 = (2® — 3z — 1)?,
respectively. Using the fact that

X

n

Px) =2 (1) 4 £,

where f(X) is an integer-valued polynomial of degree < n, and Lemmata
4.1 and 4.2 give our statement for n > 6. If n = 3,4,5 then an easy
calculation shows that the corresponding polynomials have at least three
simple zeros, and the proof is completed in these cases as well.

Now assume that n € {2,4} and m > 3. We get the equations

2(2) —1=(2y+1)?

and
X
3( )+5=2(92+y+2)2,
m

respectively. Our Lemmata 4.5 and 4.2 completes the proof for m > 3.

Theorem 4.9 Suppose that min{m,n} > 3. Then (4.11) has only finitely

many solutions in integers x and y.
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Proof. On supposing the contrary and using the Bilu-Tichy Theorem

we have

aX +b
m

) — /(X))
and
Pu(aX +5) = ¢(g(X)),

where (f, g) is a standard pair, ¢(X) € Q[X] and a, b, a,b € Q with aa # 0.
We will prove that k := deg¢ = 1. Indeed, it is clear that the ratio of
the leading coefficients of the polynomials (“)fn +b) and P,(aX +0) is a kth
power in Q. On the other hand, this ratio is

a™ - n!

on.gn.-ml’

Since m = k - deg f and n = k - deg g are divisible by k, then the number
n!/m!is a kth power in Q. Lemma 4.7 gives that k =1 or k > 2, [n—m| =
1. However, in the second case, 2 < k < ged(m,n) = 1 and we have a

contradiction. Thus we obtain

<aX+b

m

) — e f(X) + o

and
P.(aX +b) = fig(X) + fo,

where eg, e1, fo, f1 are rational numbers with e; fi # 0. By the condition

min{m,n} > 3, (f,g) is not a standard pair of the second kind, further

by Theorem 4.8, we get that (f,¢g) is not a standard pair of the fifth kind.

Using Lemma 4.8 and Theorem 4.8 our theorem is proved apart from the

case (m,n) = (3,3). In this case the corresponding curve is
z(x—1)(z—2) 4

8

3 2

— ISP 22—y —1=0
6 3y Yy 3y 5
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its genus determined by MAPLE is one, so we have only finitely many

integer solutions.

Family 8: equation

Py (x) =9y", (4.12)

where m > 2 is fixed and z,y,n > 2 are unknown positive integers
with (m,n) # (2,2).

In the trivial case (m,n) = (2,2) we have Py(z) = 222 + 2z + 1 so the
corresponding Diophantine equation is
222 + 2z + 1 =y,
or equivalently,
(2 +1)% — 2% = —1

which is a Pellian equation with infinitely many solutions. We can rewrite

the polynomial P,(X) as
=35 () (52 ) = (%) .0,
=0

where f(X) is an integer-valued polynomial of degree < n. So from Lemma
4.1 we get that P,(X) has at least three simple zeros for n > 6. In the

remaining cases we obtain
2 43 2, 8
Py(X)=2X"4+2X+1,P3(X) = §X +2X* + §X+ 1,

2 4 10 8
Py(X) = §X4 + §X3 + §X2 +3X 41,
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and
4 2 8 13 46

= XS4+ XX+ EXP 4 —X 41
R S S T T

and one can calculate their non-zero discriminants showing that these

Ps5(X)

polynomials possess only simple zeros. Thus the following statement fol-

lows from Lemmata 4.2 and 4.3.

Theorem 4.10 Let m,n be integers with m > 2,n > 2 and suppose
that (m,n) # (2,2). The equation (4.12) in integers x,y and n implies
max{|z|,|y|,n} < c11 where c11 is an effectively computable constant de-

pending only on m.

Cohn [27] resolved the equation 22 + 1 = y™ and proved that all the
solutions of this equation in integers z,y,n with n > 1 are z =y = 1 and

x =239,y = 13,n = 4. Using this result we have

Theorem 4.11 All the solutions of the equation Py(z) = y™ in integers
z,yandn>2arex=0,y=1andz =119, y =13, n =4.

We note that Theorems 4.10 and 4.11 are new.

Family 9: equation

Pm('r) :Pn(y)7 (4‘13)

where n > m > 2 are fixed integers and z, y are unknown integers.

Hajdu studied the equation (4.13) for small values of m and n and
resolved the corresponding elliptic type Diophantine equations, see [45]
and [46]. Further, he conjectured that the equation has only finitely many

solutions for n > m = 2. This conjecture was confirmed by Kirschenhofer,
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Peth$ and Tichy [53]. Later, using the Bilu-Tichy Theorem, Bilu, Stoll
and Tichy [81] extended their result to the general case by proving an
ineffective finiteness statement for the number of solutions z and y for

every pair (m,n).
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Summary

Our dissertation consists of four chapters. Since there is no universal finite
algorithm for the solvability of any types of Diophantine equations in gen-
eral, methods for solving certain classes of Diophantine equations became
in the center of interest. One of the main tools for solving these Diophan-
tine equations is Baker’s inequality giving a non-trivial lower bound for
linear logarithmic forms. Based on these results there were born further
improvements and applications. See [3], [5], [6] and [7]. A sharper version

of the original theorem is the Baker-Wiistholz Theorem, see Theorem A.

In their theorem Schinzel and Tijdeman used the Baker method to get
an effective result with also the exponent as a variable for the hyper- and

superelliptic type equations, see Theorem E.

There are also theorems which present general results for the equations
of the type f(z) = g(y). One of the two key results is the Bilu-Tichy The-
orem, see Theorem J. We introduced here the notion of the five standard

pairs as well.

In the second chapter we were dealing with the polynomial values of
repdigit numbers. On one hand we have the [th order k dimensional polyg-
onal numbers of the form (2.1) with special values like [ = 3 the binomial
coefficients or kK = 2 or k = 3 the corresponding polygonal or pyramidal
numbers respectively. Equal values of polynomial numbers have already
been widely investigated. See Dickson [30], Gyéry [38], Kiss [54], Brindza
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[18], Avanesov [2], Pintér [66], de Weger [86], Bugeaud, Mignotte, Stoll,
Siksek, Tengely [25] and Hajdu, Pintér [47], Brindza, Pintér, Turjinyi [23]
and Pintér, Varga [69].

On the other hand we have an other important class of combinatorial
numbers i.e. the repdigits, generalised repdigits (2.3), repunits and gen-
eralized repunits (2.2). Results concerning these numbers can be found in
[35] and in [77, Chapter 12], Ballew and Weger [10] and Keith [52].

Using the effective finiteness criterion in the theorem of Schinzel and
Tijdeman and with elementary tools we proved effective finiteness theo-
rems in the general case for the equal values of polygonal numbers and
(generalized) repdigits i.e. for equations (2.4), (2.5) and (2.6). These are
the results in Theorems 2.1, 2.2 and 2.3.

In our numerical investigations we took the polygonal numbers f;(z)
in (2.5) with £ € {2,3}, and | € {3,4,...,20} and repdigits with d €
{1,2,...,9}. The right-hand side of the equation is of degree 2 or 3 re-
spectively and by reducing the left-hand side to a polynomial of degree
3 or 2 respectively we obtain an elliptic equation which can further be
solved by the program package MAGMA [17]. This way we solved these
equations completely. These results are contained in Theorem 2.4.

Other related equations, corresponding to larger values of the param-
eter k could not be solved because of certain technical difficulties.

In the third chapter we introduced some new results concerning equal
values of trinomials in the most general case.

There have already been several previous partial results concerning
some special and classical cases of equal values of trinomials. See Mordell
[62], Bugeaud et. al. [25] and Mignotte and Pethé [61].

Let a, b, ¢, d, e, m, n, p, q be fixed rational integers. As a new result we
managed to give an ineffective finiteness criterion for the general equation
ax™ 4+ bx™ + ¢ = dyP + ey + q. The result is contained in Theorem 3.1.

The proof is mainly based on the ineffective Bilu-Tichy Theorem, on the
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decomposition properties of trinomials due to Fried and Schinzel and on
the theorem of Hajés on the multiplicity of the zeros of trinomials.

In the special case az™ + bx" + ¢ = dy® + ey where p = 2 in integers
x and y we obtained an effective upper bound for the size of solutions.

The proof was mainly based on Brindza’s theorem on hyperelliptic
equations and on the fact that apart from the exceptional cases the corre-
sponding trinomial possesses at least three zeros of odd multiplicity. Our
result is presented in Theorem 3.2.

In the fourth chapter we introduced an extended examination of the
equal values of different standard counting polynomials. A standard count-
ing polynomial gives back by definition the number of integral points con-
tained in the body.

The four bodies in question are the unit cube, simplex, pyramid and
octahedron. The discrete geometrical problem behind the equations is that
for given positive integers m and n respectively when do two bodies with
dimensions m and n contain equally many integer points. This problem
leads to 9 nontrivial families of Diophantine equations, see Table 4.1. We
gave a survey of known results concerning these equations and we also
introduced new results.

For the 3rd, 4th, 7th and 8th families of equations both effective and
ineffective new results were introduced. These results are based on the
Bilu-Tichy Theorem and on the Baker Theorem respectively. These new
results are presented in Theorems 4.4, 4.5, 4.6, 4.8, 4.9, 4.10 and 4.11.
We proposed a conjecture on all solutions based on extensive numerical
investigations for Family 1, see Conjecture 1.

The proofs further relied on Pintér’s result on the number of simple
zeros in polynomials [65], on Rakaczki’s ineffective results on equation
Sm(z) = g(y) [71], on Schinzel and Tijdeman’s effective result [76], on
Rakaczki’s effective result on equation s(1" +24+m+---+2™)+r =y"
[72], on Yuan’s effective finiteness theorem on a(?) = by" + ¢ [88], on
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Gyéry’s effective result on the equation (2) — 2! [38] and on the theorem

of Erdés and Selfridge on the product of consecutive integers [34].
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Osszefoglalé

Disszertaciénk négy fejezetbol all, az elsé fejezet a Bevezetd.

Ismeretes Hilbert 10. problémé&ja alapjan, hogy tetszdleges diofanti-
kus egyenlet megoldhatdsaga altaldnosan nem eldonthetd. fgy a diofanti-
kus egyenletek megodhatdsagat és megoldasi mdodszereit vizsgalva a figye-
lem az egyes specidlis és igy mar kezelhetd egyenlettipusok vizsgélata felé
fordult. Bevezeténkben bemutattuk a legfontosabb, egyenletek bizonyos,
kiillonbo6z6 tipusai illetve osztalyai esetén alkalmazhaté eredményeket.

Ilyen, nagy jelentGségii eredmény a Baker-mddszer, amely diofantikus
egyenletek tobb osztélya esetén is alkalmazhaté. Lésd [77]. Alapja a
Baker-egyenlGtlenség, amely linearis logaritmikus formak egy nem trivialis
alsé becslését adja meg. Ebben a témakorben tovébbi részletek a [3], [5],
[6] és [7] cikkekben és jegyzetekben taldlhatdk.

A kovetkezd tételben bemutatjuk az eredeti tétel egy élesitését, a
Baker-Wiistholz tételt.

Legyenek aq, ..., a, 0-t4] és 1-t0l kiilonboz6 algebrai szamok és jelolje
logay,...,loga, a logaritmusok egy-egy rogzitett értékét. Legyen K a
Q racionalis szamtest «q,...,q, altali algebrai bovitése, melynek fokat
jelolje d.

Legyen tovabba A; = max (H (), e), ahol jeldlje H(«a;) az a; klasszi-
kus magassdgat, amely alatt az a; algebrai szam definidlé f6polinomjaban

szerepl6 egyiitthatok abszolutértékének maximumat értjik és legyen e =
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2,718....

Tétel A. Legyenek by, ..., b, nem mind azonosan 0 raciondlis egészek és
tegyiik fol, hogy B > max |b;|. Ha A = by log o1 +bylog an+- - -+by log oy, #
0 teljestil, akkor

log |A| > —(16nd)?>™*? log A; .. .log A, log B.

A Baker-médszert felhasznédlva Schinzel és Tijdeman effektiv végességi

allitast nyert az x, y egész valtozdju

(f €Zlx],deg f > 2, m >2ésb € Z, b # 0rogzitett) hiper- illetve szuper-
elliptikus egyenletekre abban az esetben is, amikor a kitevot is valtozonak
tekintjiik.

Tétel E. Legyen f(X) raciondlis egész egyiitthatds polinom, melynek van
legaldbb két kilonbozd gydke. Legyenek b #£ 0, m > 0, tovdbbd x és y olyan

raciondlis egészek, melyekre |y| > 1, és legyen
fx) =by™.

Ekkor m értéke felilrél korlatos, felsd korldtja kiszdmithato konstans,

mely csak b-tdl és f-tdl fiigg.

Tudoméanyos munkank soran bizonyos szepardbilis diofantikus egyen-
letek vizsgalatdval foglalkoztunk. Altaldnosan az f (x) = g(y) tipusu sze-
parabilis diofantikus egyenletekre effektiv eredmények nem léteznek.

Léteznek ugyanakkor az f(x) = g(y) tipusi egyenletekre &ltaldnos
esetben is ineffektiv, végességi allitdsok. Az egyik ilyen csiicseredmény
Davenport, Lewis és Schinzel tétele [29], a masik, mely ennek egy élesitése,
a Bilu-Tichy tétel.
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Tétel J. Legyenek P(X), Q(X) € Q[X] olyan nem konstans polinomok,
melyekre a P(x) = Q(y) egyenletnek végtelen sok x, y korldtos nevezdji
megolddsa van. Ekkor P = ¢o fo ) és Q = ¢ogopu, ahol \(X), u(X) €
Q[X] linedris polinomok, ¢(X) € Q[X] és (f(X), g(X)) pedig egy standard

pdr.

Ennek kapcsan sziikség volt a dolgozatunkban ismertetett standard

pdrok 6t tipusdnak definiciéjara is.

A masodik fejezetben repdigit szamok figuralis értékeit vizsgaltuk. Egy

felol vizsgaltuk az

fioale) = W”r1)'~-(a:+k—i)!((l—2)x+k+2—z)7

l-ed rendii k dimenzidja figuralis szamokat melyek specialisan | = 3 esetén
a binomidlis egyiitthatok, k = 2 illetve k = 3 esetén a megfelel6 poli-
gondlis illetve piramidélis szdmok. Polinomialis szamok egyenld értékeit
mar sokszor vizsgaltak. Lasd Dickson [30], Gy6ry [38], Kiss [54], Brindza
[18], Avanesov [2], Pintér [66], de Weger [86], Bugeaud, Mignotte, Stoll,
Siksek, Tengely [25] és Hajdu, Pintér [47], Brindza, Pintér, Turjanyi [23]
és Pintér, Varga [69].
Misfel6l komibnatorikus szamok egy fontos osztalyanak, a repdigitek-
nek d - 1{);:11, 1 < d <9, tovabba tetszbleges b > 2 esetén altalanositott
br—1

repdigiteknek d - %=, illetve d = 1 esetén repunitoknak és altalanositott

repunitoknak b;_—fll a poligonalis szamokkal egyenld értékeit vizsgaltuk.

Lésd repdigitekkel kapcsolatos eredmények [35] és [77, 12. fejezet], Ballew
és Weger [10] és Keith [52].

Schinzel és Tijdeman effektiv végességi kritériumanak felhasznaldsaval
illetve elemi moédszerek segitségével altaldnos esetben poligonalis szamok
és (altalanositott) repdigitek egyenld értékeire vonatkozé hérom effektiv

végességi tételt mondtunk ki.

59



1. Tétel. Tegyiik fel, hogy k > 3 vagy k =2 és | = 4 vagy | > 13. Ekkor

a
" —1

b—1

egyenletnek csak véges sok x és n egész megolddsa van, tovabbd

d-

= fri(x)

max (|z|,n) < e,

ahol c1 effektiven kiszdmolhato konstans, amely csak k,1,b és d értékétdl

figg. k = 2 ésl € {3,5,6,7,8,9,10,11,12} esetén a 2.4 egyenletnek

végtelen sok megolddsa van a b,d paraméterek végtelen sok értéke mellett.
2. Tétel. A

10" —1

101

egyenletnek k > 2 esetén csak véges sok egész n,x megolddsa van kivéve a

= fri(x)

(d,1) = (3,8) esetet. Ebben az esetben az egyenletnek végtelen sok explici-
ten megadhato megolddsa van.
3. Tétel. A o

p 1 = fe(@)
egyenletnek k > 2 esetén csak véges sok egész n,x megolddsa van, kivéve,
ha (b,1) = (4,8),(9,3),(9,6), (25,5). Ezekben az esetekben az egyenletnek

végtelen sok expliciten megadhato megolddsa van.

Numerikusan az fj;(x) alaku figurélis szamok illetve a repdigitek azo-
nos értékeit vizsgaltuk k € {2,3} és | € {3,4,...,20}, illetve d € {1,2,...9}
esetén. A bal oldali polinomot 2 illetve 3 fokira redukélva elliptikus egyen-
letet kaptunk, melyet a MAGMA programcsomaggal oldottunk meg. fgy

az Osszes egyenletet sikertilt megoldanunk.

4. Tétel. A

10" -1
o= = k@)
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egyenlet osszes nemtrividalis megolddsdt k = 2,3 esetén rendre a 2.2 illetve

az 2.1 tabldazat tartalmazza.

Megjegyezziik, hogy a fenti egyenletekkel azonos tipusu egyenletek

vizsgélata nagyobb k paraméter esetén technikai nehézségekbe iitkozott.

A harmadik fejezetben trinomok egyenl6 értékeivel kapcsolatos 1j ered-
ményeinket mutattuk be a legdltalanosabb esetben.

Trinomok egyenld értékeire vonatkozé eredmények mar sziilettek ko-
rabban is néhany specidlis és klasszikus esetben. Az x és y egész valtozdju
23 — 2z = y? — y diofantikus egyenlet Gsszes megolddsat Mordell [62]
hatarozta meg algebrai szamelméleti eszk6zok segitségével. Bugeaud és

> —z = y? — y egyenlet Ssszes megolddsat megtalaltak mo-

tarsai [25] az x
dern algebrai szamelméleti modszerek segitségével. Az 2™ —x = yP — gy
alaku altalanos egyenletre, ahol m és p, m > p > 2 rogzitett egészek,
Mignotte és Pethd [61] bizonyitott ineffektiv végességi &llitast Davenport,
Levis és Schinzel tételének segitségével.

Legyenek adva a,b,c,d,e,m,n,p,q rogzitett racionalis egészek. [/Jj
eredményként ineffektiv végességi kritériumot tudtunk adni az dltaldnos

ax™ 4 bx™ + ¢ = dyP + ey + q egyenlet esetén.

5. Tétel. Az
az™ 4+ bx" + ¢ = dyP + ey?

diofantikus egyenletnek, ahol m >mn >0, p>q >0, (m,n) = (p,q) =1,
ab # 0, de #0 és vagy m > p > 3 vagy m =p > 3, n > q pontosan akkor

van végtelen sok x,y korldtos nevezdjii megolddsa, ha
m=pn=qa=dt"b=cet",t€Q,c=0

vagy
43

m:p:3,n:q:2,a263+b3d2:0,c:—w,
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vagy
2a%e3
m:p:37n:2,q:1,27(1463—'—136(1:076: W

feltételek kozil valamelyik teljestil.

A p = 2 speciilis esetben felsé korldtot is tudtunk adni z és y lehetséges
értékeire. Legyen H = max(|al, [b], ||, |d], |e|, m,n).

A bizonyitas az ineffektiv Bilu-Tichy tételen, Fried és Schinzel trino-
mok dekompozicids tulajdonsigaira vonatkozo tételén illetve Hajos trino-
mok gyokeinek multiplicitasara vonatkozé tételén alapszik.

A specidlis, x és y egész valtozéji ax™ + bx™ + ¢ = dy® + ey egyen-
let esetén, ahol p = 2, effektiv felsé korlatot sikeriilt adni a megoldasok

abszolut értékére.

6. Tétel. Legyen m > 5, m > n > 0, abd # 0, m # 2n és (m,n) ¢
{(6,2),(6,4)}, tovdbbd, ha 4dc + €2 = 0, akkor legyen m —n > 3 vagy

m —n = 2 illetve n pdratlan. Ekkor az

az™ + bz 4 ¢ = dy* + ey

diofantikus egyenlet x és y egész megolddsaira max(|z|, |y|) < co, ahol co

olyan effektiven kiszdmolhato konstans, amely csak H értékétol figg.

A bizonyitds Brindza hiperelliptikus egyenletekre vonatkozd tételén,
illetve azon a tényen alapszik, hogy a kivételes esetektol eltekintve a meg-

felel6 trinom legaldbb harom paratlan multiplicitasu gyokkel rendelkezik.

A negyedik fejezetben kiilonobzé szamlalé polinomok egyenld értékeit
vizsgaltuk és bizonyos esetekben ilyen tipusu egyenletekre vonatkozd 1j
eredményeket is megfogalmaztunk. A standard szamlalépolinom definici-
0 szerint egy adott dimenziéju test egész pontjainak a szamat hatarozza

meg.
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A négy vizsgalt test az egységkocka, szimplex, gila és az oktahed-
ron. Az egyenletekhez kapcsol6dé diszkrét geometriai probléma a kovet-
kezb. Adott m és n pozitiv egészek esetén mikor tartalmaz egy n és egy
m dimenzidjd test ugyanannyi egész pontot? Ez a probléma diofantikus

egyenletek 9 (nemtrividlis) osztdlyat hatdrozza meg, lasd aldbbi tablazat.

No egyenlet megjegyzés

1 | Sp(x) = Sn(y) n>m>1

2 Sm(z)=9y" |m>1n>2(mn)¢{(1,2),(3,2),(3,4),(5,2)}
3 Sm(z) = (¥) m>1,n>2,(m,n)#(1,2)

4 | Sp(z) = Pu(y) m>1,n>2 (m,n)#(1,2)

5 (Z)y=y" m>2,n>2(m,n)#(2,2)
ANAER Y

7| (%) =Puy) m>2,n>2 (m,n) #(2,2)

8 Pp(x) =y" m>2,n>2(m,n)#(2,2)

9 | Pu(z) = P,.(y) n>m>2

A vizsgdalt diofantikus egyenletek 9 osztalya

Munkankban Gsszegyiijtottiik és Osszegeztiik az ezzel a kilenc egyenl6-
séggel kapcsolatos kordbbi eredményeket illetve 1j eredményeket is meg-
fogalmaztunk. Széleskori numerikus vizsgalatot kovetéen az Osszes meg-
oldasra vonatkozé sejtést is megfogamaztunk az egyenletek 1. osztdlya

esetén.

1. Sejtés. Sejtésink, hogy az Sy (x) = Sn(y) egyenlet dsszes egész n >

m > 1 és x,y megolddsa az aldbbi szamnégyesek valamelyike.
(m,n,z,y) € {(1,2,10,5),(1,2,13,6),(1,3,8,3),(1,5,23,3),(1,5,353,9) }.

Az aldbb szerepl6 1j eredményekben az dltaldnos esetre vonatkozé in-

effektiv végességi allitasokat a Bilu-Tichy tétel segitségével kaptuk meg,
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mig effektiv eredményeink alapja a Baker-mddszer.

7. Tétel. Legyen m > 1,n > 2 és (m,n) # (1,2). Ekkor az Spm(z) = (V)

n
egyenletnek csak véges sok x és y egész megolddsa van.

8. Tétel. Legyen n € {2,4} és m > 1, ahol (m,n) # (1,2) vagy m €
{1,3} és n > 2. Ekkor az Sm(z) = (Y) dsszes egész x és y megolddsaira
effektiv kiszamithato felsd korldt adhato, amely rendre csak m-tél illetve

n-tol figg. Tovdbbd, ha m = 3 és n > 2, akkor nincs megoldds.

9. Tétel. Legyen m € {1,3} ésn > 2 vagyn € {2,4} ésm > 1. Ekkor az
Sm(z) = P,(y) egyenlet megolddsaira teljesiil, hogy max(x,y) < cg, ahol

cg rendre csak n-tdl illetve m-tol fliggo effektiven kiszdmolhato konstans.

10. Tétel. Legyen m > 2,n > 2 és (m+ 1,n) = 1. Ekkor az Sp(z) =

P, (y) egyenletnek csak véges sok x és y egész megolddsa van.

Sejtésiink, hogy ezen tétel allitasabdl elhagyva a (m—+1,n) = 1 feltételt

az allitas érvényben marad.

11. Tétel. Legyen m € {2,4} ésn > 3 vagy n € {2,4} és m > 3. Ekkor
az (%) = Py(y) egyenlet megolddsaira max(z,y) < cio, ahol cig rendre

csak n-tol vagy m-tol figgo effektiven kiszdmithato konstans.

12. Tétel. Legyen min{m,n} > 3. Ekkor az () = Pu(y) egyenletnek

csak véges sok egész x és y megolddsa van.

13. Tétel. Legyenek m,n egészek, ahol m > 2,n > 2 és legyen (m,n) #
(2,2). Ekkor a Py(x) = y™ egyenlet egész x,y és n megolddsaira max{|z|,
lyl,n} < c11, ahol c11 effektiven kiszamithatd konstans, amely csak m-tdl

fiigg.
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14. Tétel. A Py(x) = y™ egyenletnek az x,y és n > 2 egészek korében az
=0,y =1idletve x =119, y = 13, n = 4 értékeken kivil nincs mds

megolddsa.

A bizonyitésok sordn felhasznalt tovabbi tételek Pintér polinomok egy-
szeres gyOkeinek szamdara vonatkozé tétele [65], Rakaczki ineffektiv ered-
ménye az Spy,x = g(y) tipusi egyenletre [71], tovdbba Schinzel és Tijde-
man effektiv ereménye [76], Rakaczki effektiv eredménye az s(1™ + 2™ +
<o 2™) 4+ r = y" tipusd egyenletre [72], Yuan effektiv végességi tétele
az a(l) = by" + c tipust egyenletre [88], Gylry effektiv eredménye az
(1) = 2 egyenletre [38] illetve Erdds és Selfridge egymast kovetd egészek

szorzatarol szolo tétele [34].
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