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Debreceni Egyetem
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Péter Gyöngyvér
jelölt
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fent megnevezett Doktori Iskola Diofantikus és konstrukt́ıv számelmélet
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témavezető
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Chapter 1

Introduction

The question of the Diophantine equations can be found everywhere across

mathematical history. Already the ancient Babylonians could solve simple

equations and systems of equations in integers. Mostly because of philo-

sophical backgrounds integer numbers and the Diophantine equations were

in the center of interest and therefore flourishing in Ancient Greece with

many classical results. Also in the other great civilizations like China, In-

dia and the Islam world the questions of Diophantine problems remained

in interest without any tools for solving general Diophantine equations.

This is Hilbert’s tenth problem (from 1900), namely the determination

of the solvability of a Diophantine equation. Whether there exists a general

finite algorithm for any Diophantine equation with any number of variables

which determines whether the equation has rational integer solutions. In

1970 Matijasevic [59] proved that such an algorithm does not exist.

As a result, since there is no universal algorithm, methods for solving

certain classes of Diophantine equations gained big interest since then.

Such an efficient tool for solving different types of Diophantine equa-

tions is the Baker method, based on Baker’s inequality giving a non-trivial

lower bound for linear logarithmic forms. Baker gained his famous result
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in 1966. Based on this result since then also several further improvements

and applications were born. For further details in this topic we refer to

[3], [5], [6] and [7].

Next we introduce a sharper version of the original theorem, the Baker-

Wüstholz Theorem [9].

Let α1, . . . , αn be algebraic numbers, not 0 or 1, and by logα1, . . . ,

logαn we mean fixed determinations of the logarithms. Let K be the field

generated by α1, . . . , αn over the rationals Q and let d be the degree of K.

Set Aj = max (H(αj), e), where H(αj) denotes the classical height of

αj , i. e. the maximum of the absolute values of the coefficients of the

minimal defining polynomial of αj and e = 2, 718....

Theorem A Let b1, . . . , bn be rational integers, not all 0 and suppose that

B ≥ max |bj |. If Λ = b1 logα1 + b2 logα2 + · · ·+ bk logαk 6= 0 then

log |Λ| > −(16nd)2(n+2) logA1 . . . logAn logB.

In the following we present some applications of the Baker method for

special families of equations.

Now suppose that f(X,Y ) is a binary form with rational integer coef-

ficients and with at least three pairwise non-proportional linear factors in

its factorisation over C. Let k be a non-zero rational integer. We consider

the solutions of the equation

f(x, y) = k, (1.1)

called the Thue equation in rational integers x and y. Thue proved an in-

effective finiteness theorem on equation 1.1 however, by the Baker method

we get an effective result.
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Theorem B If x and y are rational integers satisfying equation 1.1, then

max(|x|, |y|) ≤ C1|k|C2

for some computable numbers C1 and C2 depending only on f .

See [77, Chapter 5].

Two other important types of equations are the hyper- and superellip-

tic equations in integers x and y. Let

f(x) = bym (1.2)

where f ∈ Z[x], deg f ≥ 2 and m ≥ 2 fixed and further b ∈ Z, b 6= 0. The

equation is called hyperelliptic in case m = 2, and called superelliptic in

case m ≥ 3. Applying his method Baker reached the following results in

some special cases.

Theorem C Let m ≥ 3. Suppose that f(X) has at least two simple roots.

If x and y are rational integers satisfying equation 1.2, then

max(|x|, |y|) ≤ C3

for some computable C3 depending only on b, m and f .

See [4].

Theorem D Suppose that m = 2 and f(X) has at least three simple

roots. Then all the solutions of equation 1.2 in rational integers x and y

satisfy

max(|x|, |y|) ≤ C4

where C4 is a computable number depending only on b and f .

See [4].
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In their theorem Schinzel and Tijdeman used the Baker method to get

an effective result for the exponent as a variable.

Theorem E Let f(X) be a polynomial with rational integer coefficients

and with at least two distinct roots. Suppose b 6= 0, m ≥ 0, x and y with

|y| > 1 are rational integers satisfying

f(x) = bym

Then m is bounded by a computable number depending only on b and

f .

This is the main result of [76].

Let us have the form of the equation where the polynomial f(x) has

the factorisation f(x) = (x− α1)
r1 · · · (x− αn)rn .

Also based on the Baker method the last result here in the theory of

superelliptic equations is the following theorem of Brindza. He also gave

in addition a quantitative version of this theorem.

Theorem F Let m ≥ 2 and n ≥ 2. Put

qi =
m

(m, ri)
(i = 1, . . . , n).

Suppose that (q1, . . . , qn) is not a permutation of either of the n-tuples

(q, 1, 1, . . . , 1), t ∈ N or (2, 2, 1, 1, . . . , 1). Let x and y rational inters satisfy

1.2. There exists a computable number C5 depending only on b, m and f

such that

max(|x|, |y|) ≤ C5.

See [77, Chapter 8].

There are several other effective results based on different results from

the Baker Theorem.
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The generalisation of the Thue equation is the Thue-Mahler equation.

Based on the result of van der Poorten and Yu, see [77] on the p-adic

analogue of the inequality of Baker, there exists also for this equation an

effective theorem.

Let f(X,Y ) be a binary form of degree n with rational integer coeffi-

cients and with at least three pairwise non-proportional linear factors in

its factorisation over Q.

The upper bound here is due to Győry.

Theorem G Let k and s be rational integers with k 6= 0 and s > 0. Let

p1, . . . , ps be primes with p1 < p2 < · · · < ps =: P . All solutions of the

equation

f(x, y) = kpz11 · · · p
zs
s in x, y, z1, . . . , zs ∈ Z

with (x, y) = 1 and z1 ≥ 0, . . . , zs ≥ 0, satisfy

max(|x|, |y|, zj) ≤ C6 (1 ≤ j ≤ s)

where C6 is a computable number depending only on f , k, n, s and P .

See [77, Chapter 7].

The previous theorem implies the following application.

Theorem H Let f(X,Y ) and g(X,Y ) be binary forms with rational in-

teger coefficients. Suppose f has at least three pairwise non-proportional

linear factors in its factorisation over C which do not divide g over Q.

Suppose deg(f) > deg(g). Then all solutions of the equation

f(x, y) = g(x, y) in rational integers x, y

with f(x, y) 6= 0 are such that max(|x|, |y|) is bounded by a computable

number depending only on f and g.
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See [77, Chapter 7].

For several classes of separable Diophantine equations of the form

f(x) = g(y) with f, g ∈ Z[x] in x, y rational integers such effective re-

sults do not exist. For the very specific superelliptic equations we have

such result as seen above.

However there are theorems which present general results for the equa-

tions of the type f(x) = g(y). There are two key results concerning sep-

arable Diophantine equations. The first one is due to Davenport, Lewis

and Schinzel [29].

Theorem I Let f(x) be a polynomial with integral coefficients of degree

n > 1 and g(y) be a polynomial with integral coefficients of degree m > 1.

Let D(λ) = disc(f(x) + λ) and E(λ) = disc(g(y) + λ). Suppose that there

are at least dn/2e distinct roots of D(λ) = 0 for which E(λ) 6= 0. Then

f(x) − g(y) is irreducible over the complex numbers. Further, the genus

of the equation f(x) − g(y) = 0 is strictly positive except possibly when

m = 2 or m = n = 3. Apart from these possible exceptions, the equation

has at most a finite number of integral solutions.

The last part of the theorem is based on Siegels famous result about the

number of integral points on irreducible algebraic curves. The Bilu-Tichy

Theorem [16] is an improvement of the previous theorem.

To formulate the theorem, we define five kinds of standard pairs of

polynomials.

In the sequel α and β denote non-zero rational numbers, q, s and t

are positive integers, r is a non-negative integer and v(X) ∈ Q[X] is a

non-zero polynomial, which may be constant.

A standard pair of the first kind is

(Xq, αXrv(X)q), or switched, (αXrv(X)q, Xq)

where 0 ≤ r < q, (r, q) = 1 and r + deg v(X) > 0.
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A standard pair of the second kind is

(X2, (αX2 + β)ν(X)2) (or switched).

Denote by Ds(X,α) the sth Dickson polynomial, defined by, for ex-

ample, the explicit formula

Ds(X,α) =

[s/2]∑
i=0

s

s− i

(
s− i
i

)
(−α)iXs−2i.

A standard pair of the third kind is

(
Ds(X,α

t), Dt(X,α
s)
)

where gcd(s, t) = 1.

A standard pair of the fourth kind is

(
α−s/2Ds(X,α),−β−t/2Dt(X,β)

)
,

where gcd(s, t) = 2.

A standard pair of the fifth kind is

(
(αX2 − 1)3, 3X4 − 4X3

)
(or switched).

Theorem J Let P (X), Q(X) ∈ Q[X] be non-constant polynomials such

that the equation P (x) = Q(y) has infinitely many solutions x, y with a

bounded denominator. Then we have P = φ ◦ f ◦ λ and Q = φ ◦ g ◦ µ,

where λ(X), µ(X) ∈ Q[X] are linear polynomials, φ(X) ∈ Q[X] and

(f(X), g(X)) is a standard pair.

This result relies on Siegel’s theorem.

In our dissertation we are going to investigate some specific types of

separable Diophantine equations. In our research we were focusing to find
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and give ineffective and effective theorems on certain classes of separable

Diophantine equations based on classical results like the Bilu-Tichy Theo-

rem or the Baker Theorem. Our goal was also to be able to give ineffective

general results, effective results for specific classes just as to give numerical

results for known parameters.

First we investigate the arithmetic properties of repdigit numbers.

Namely we study the equal values of repdigit and lth order k dimensional

polygonal numbers.

Second we are going to examine the question whether one can give

general conditions for two trinomials of the form axm+bxn+c = dyp+eyq

to have infinitely many equal values.

Last we are going to deal with the question of separable Diophantine

equations of discrete geometrical background. Namely we are going to

investigate the equal values of standard counting polynomials i.e. for m,

n positive integers the equally many integer points of an m-dimensional

and an n-dimensional unit cube, simplex, pyramid or octahedron.
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Chapter 2

On some polynomial values

of repdigit numbers

2.1 Introduction

Let

fk,l(x) =
x(x+ 1) · · · (x+ k − 2)((l − 2)x+ k + 2− l)

k!
(2.1)

be the lth order k dimensional polygonal number, where k ≥ 2 and l ≥ 3

are fixed integers. As special cases for fk,3(x) we get the binomial coeffi-

cient
(
x+k−1

k

)
, for f2,l(x) and f3,l(x) we have the corresponding polygonal

and pyramidal numbers, respectively. These figural numbers have already

been investigated from several aspects and therefore have a rich literature,

see Dickson [30]. For example, the question whether a perfect square is

a binomial coefficient, i.e., if fk,3(x) = f2,4(y) and also the more general

question on the power values of binomial coefficients was resolved by Győry

[38]. The equation
(
x
n

)
=
(
y
2

)
has been investigated by several authors, for

general effective finiteness statements we refer to Kiss [54] and Brindza

[18]. In the special cases l = 3, 4, 5 and 6, the corresponding Diophantine

equations were resolved by Avanesov [2], Pintér [66] and de Weger [86]
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(independently), Bugeaud, Mignotte, Stoll, Siksek, Tengely [25] and Haj-

du, Pintér [47], respectively. The equal values of polygonal and pyramidal

numbers were studied by Brindza, Pintér, Turjányi [23] and Pintér, Varga

[69].

Another important class of combinatorial numbers is the numbers of

the form d · 10n−110−1 , 1 ≤ d ≤ 9. They are called repdigits and for d = 1, re-

punits. Various results and conjectures have been stated concerning prime

repunits and certain Diophantine problems related to repdigits, see [35]

and [77, Chapter 12], respectively. For example, Ballew and Weger [10]

proved earlier that there are only six numbers, namely 1, 3, 6, 55, 66, 666

that are both triangular and repdigit numbers. Recently, Jaroma [50] gave

an elementary proof of the fact that 1 is the only triangular repunit num-

ber. Keith [52] investigated the problem to determine which polygonal

numbers are repdigits and solved it for numbers less than 107. He also

introduced an efficient algorithm for finding repdigit polygonal numbers

and gave a complete characterization of all such numbers up to 50 digits.

One can also define the so-called generalized repunits with the formula

bn − 1

b− 1
(2.2)

for an integer b ≥ 2. Dubner [31] gave a table of generalized repunit primes

and probable primes for b up to 99 and for large values of n.

In our work we study the equal values of repdigits and the k dimen-

sional polygonal numbers. We state some effective finiteness theorems,

and for small parameter values we completely solve the corresponding

equations.
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2.2 New results

A common generalization of repdigits and generalized repunits are num-

bers of the form

d · b
n − 1

b− 1
, (2.3)

i.e., taking repdigits with repeating digit d in the number system of base

b, where 1 ≤ d < b and b ≥ 2 integers.

We consider equation

d · b
n − 1

b− 1
= fk,l(x) (2.4)

and its special cases

d · 10n − 1

10− 1
= fk,l(x) (2.5)

and
bn − 1

b− 1
= fk,l(x). (2.6)

In our first result we represent an effective finiteness statement concerning

the most general equation 2.4.

Theorem 2.1 Suppose that k ≥ 3 or k = 2 and l = 4 or l > 13. Then

equation 2.4 has only finitely many integer solutions in x and n, further,

max (|x|, n) < c1,

where c1 is an effectively computable constant depending on k, l, b and d.

For k = 2 and l ∈ {3, 5, 6, 7, 8, 9, 10, 11, 12} equation 2.4 has infinitely

many solutions for infinitely many values of the parameters b, d.

In the following two theorems we consider the special cases of equation

2.4 with repdigits or generalized repunits.
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Theorem 2.2 Equation 2.5 with k ≥ 2 has only finitely many integer so-

lutions x, n except for the values (d, l) = (3, 8). In these cases the equation

has infinitely many solutions that can be given explicitly.

Theorem 2.3 Equation 2.6 with k ≥ 2 has only finitely many integer

solutions x, n except for the values (b, l) = (4, 8), (9, 3), (9, 6), (25, 5). In

these cases the equation has infinitely many solutions that can be given

explicitly.

In our numerical investigations we take those polynomials fk,l(x), where

k ∈ {2, 3}. For both cases we let d ∈ {1, 2, . . . , 9} and l ∈ {3, 4, . . . ,
20} and solve completely the corresponding equation. To state our nu-

merical results, we need the following concept. A solution to equation 2.5

is called trivial if it yields 0 = 0 or 1 = 1. This concept is needed because

of the huge number of trivial solutions; on the other hand, such solutions

of 2.5 can be listed easily for any fixed k.

Theorem 2.4 All nontrivial solutions of equation 2.5 in case of k = 2, 3,

respectively, are exactly those contained in Tables 2.2 and 2.1 respectively.

Remark. We considered some other related equations, corresponding to

larger values of the parameter k of the polynomial fk,l(x), that lead to

genus 2 equations. However, because of certain technical difficulties, we

could not solve them by the Chabauty method.

2.3 Proofs of the Theorems

Our proofs are based on the previously introduced theorem of Schinzel

and Tijdeman.

Lemma 2.1 Let f(X) be a polynomial with rational integer coefficients

and with at least two distinct roots. Suppose b 6= 0, m ≥ 0, x and y with
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|y| > 1 are rational integers satisfying

f(x) = bym.

Then m is bounded by a computable number depending only on b and f .

Proof of Theorem 2.1. Equation 2.4 is equivalent to

k!dbn = (b− 1)x(x+ 1) · · · (x+ (k− 2))((l− 2)x+ k+ 2− l) + dk!. (2.7)

Let us assume first that k ≥ 4. Our aim is to show that the polynomial on

the right-hand side of 2.7 is never an almost perfect power. On supposing

the contrary we have

(b−1)x(x+1) · · · (x+(k−2))((l−2)x+k+2− l)+dk! = c(x−α)k, (2.8)

with c, α ∈ Q. Substituting x = 0,−1,−2 in equation 2.8, we obtain the

equalities

dk! = c(−α)k, (2.9)

dk! = c(−1− α)k, (2.10)

dk! = c(−2− α)k. (2.11)

From 2.9 and 2.10 we get that

c(−α)k = c(−1− α)k,

which yields that (
1 + α

α

)k
= 1.

Therefore (1 + α)/α is a rational root of unity, i.e., ±1 which means

that α = −1/2. On the other hand, considering 2.9 and 2.11, we obtain
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that

c(−α)k = c(−2− α)k.

Following a similar calculation we get that α = −1, which is a contradic-

tion. Therefore, our theorem follows from Lemma 2.1 for the case k ≥ 4.

Now, let k = 3. Then equation 2.7 has the form

6dbn = (b− 1)x(x+ 1)((l − 2)x+ 5− l) + 6d.

After carrying out the multiplications on the right-hand side we obtain

that

6dbn = (b− 1)(−2)x3 + 3(b− 1)x2 + (b− 1)(5− l)x+ 6d. (2.12)

Let us again assume that the right-hand side is an almost perfect power,

i.e., equals c(x − α)3, with c, α ∈ Q. Then the original coefficients have

the form
(b− 1)(l − 2) = c, 3(b− 1) = −3cα,

(b− 1)(5− l) = 3cα2, 6d = −cα3.

From the first and second equation we get that α = 1
2−l . At the same

time from the second and third equation we get that α = l−5
3 . This yields

that l ∈ C\R. Hence we derived a contradiction again. As in the previous

case, Lemma 2.1 completes the proof for k = 3.

In the remaining case let k = 2. Then equation 2.7 has the form

2dbn = (b− 1)x ((l − 2)x+ 4− l) + 2d. (2.13)

If the right-hand side of 2.13 is an almost perfect square then

(b− 1)(l − 2)x2 + (b− 1)(4− l)x+ 2d = cx2 − 2cxα+ cα2
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with rational c and α, further, on comparing the corresponding coefficients

we have

(b− 1)(l − 2) = c, (b− 1)(4− l) = −2cα, 2d = cα2.

Hence we get that α = 4−l
4−2l and so b−1

d = 8(l−2)
(4−l)2 ≥ 1. This yields that

3 ≤ l ≤ 13 integer and l 6= 4 and

b− 1

d
∈
{

88

81
,
5

4
,
72

49
,
16

9
,
56

25
, 3,

40

9
, 8, 24

}
.

This is satisfied by infinitely many pairs b, d. Therefore for infinitely many

parameter values b, d the right-hand side of equation 2.13 can be an al-

most perfect square which yields infinitely many integer solutions n, x of

equation 2.4. Otherwise, Lemma 2.1 gives our statement for k = 2 and

l = 4 or l > 13.

Proof of Theorem 2.2. For k ≥ 3 the statement follows from Theorem

2.1. Now, let k = 2. By a similar argument as in the proof of Theorem

2.1, case k = 2, we obtain that

9

d
=

8(l − 2)

(4− l)2
> 0.

Since d and l are integers, their only possible value is (d, l) = (3, 8).

Apart from this case the right-hand side of 2.13 cannot be a perfect square.

Hence by Lemma 2.1 the theorem follows for k = 2. In addition, in the

exceptional case we show that equation 2.7 has infinitely many integer

solutions n, x. Our equation is

6 · 10n = 54x2 − 36x+ 6 = 54

(
x− 1

3

)2

.
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This yields that for arbitrary k ∈ N we have a solution n = 2k and

x = −10k−1
3 .

Proof of Theorem 2.3. For k ≥ 3 the statement follows from Theorem

2.1. In case of k = 2 a similar calculation has to be carried out as in

the proof of Theorem 2.2. This yields the exceptional cases: (b, l) =

(4, 8), (9, 3), (9, 6), (25, 5). Showing that for these parameters the original

equation has infinitely many solutions can be done similarly as in the

previous proof.

Proof of Theorem 2.4. Let k = 2. Then f2,l(x) = (l−2)x2+(4−l)x
2 . Since

the right-hand side of equation 2.5 is of degree 2 by reducing the left-hand

side to a polynomial of degree 3 we obtain an elliptic equation which can

further be solved by the program package MAGMA [17]. We illustrate

these computations by an example. Set (d, l) = (3, 11). Then equation 2.5

is

3 · 10n − 1

9
=

9x2 − 7x

2
. (2.14)

The left-hand side of this equation can be reduced to polynomials of degree

3 by considering n mod 3. If n ≡ i (mod 3), (i = 0, 1, 2) then 10n = 103k+i

for some k ∈ Z, (i = 0, 1, 2). Then substituting y = 10k, we get the

following three distinct equations:

2y3 − 2 = 27x2 − 21x, (2.15)

20y3 − 2 = 27x2 − 21x, (2.16)

200y3 − 2 = 27x2 − 21x. (2.17)

Multiplying both hand sides of equations 2.15,2.16,2.17 by 108, 10800,

1080000, respectively, and introducing the new variables X1 = 54x, Y1 =

6y; X2 = 540x, Y2 = 60y; X3 = 5400x, Y3 = 600y; respectively, we obtain

Y 3
1 − 216 = X2

1 − 42X1,
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Y 3
2 − 21600 = X2

2 − 420X2,

Y 3
3 − 2160000 = X2

3 − 4200X3,

respectively. With the procedure IntegralPoints of MAGMA one can

compute the integer points of these curves, and then determine the solu-

tions n, x of equation 2.14. The solutions are exactly the ones listed in

Table 2.2.

Now let k = 3. Then f3,l(x) = (l−2)x3+3x2+(5−l)x
6 . Since the right-

hand side of equation 2.5 is of degree 3 by reducing the left-hand side to a

polynomial of degree 2 we obtain an elliptic equation again which can be

solved by Magma. We illustrate these computations by an example. Set

(d, l) = (4, 3). Then equation 2.5 is

4 · 10n − 1

9
=
x3 + 3x2 + 2x

6
. (2.18)

The left-hand side of this equation can be reduced to polynomials of degree

2 by considering n modulo 2. If n ≡ i (mod 2), (i = 0, 1) then 10n = 102k+i

for some k ∈ Z, (i = 0, 1). Then substituting y = 10k, we get the following

two distinct equations:

8y2 − 8 = 3x3 + 9x2 + 6x, (2.19)

80y2 − 8 = 3x3 + 9x2 + 6x. (2.20)

Multiplying both hand sides of equations 2.19,2.20 by 72, 72000, respec-

tively, and introducing the new variables X1 = 6x, Y1 = 24y; X2 = 60x,

Y2 = 2400y; respectively, we obtain

Y 2
1 − 576 = X3

1 + 18X2
1 + 72X1,

and

Y 2
2 − 576000 = X3

2 + 180X2
2 + 7200X2,
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respectively. With the procedure IntegralPoints of MAGMA one can

compute the integer points of these curves, and then determine the solu-

tions n, x of equation 2.18. The solutions are exactly the ones listed in

Table 2.1.

(d, l) solutions (n, x) fk,l(x)

(1, 10) (2, 2) 11

(2, 6) (2, 3) 22

(4, 3) (1, 2) 4

(5, 4) (1, 2) 5

(5, 4) (2, 5) 55

(6, 5) (1, 2) 6

(6, 17) (2, 3) 66

(7, 6) (1, 2) 7

(8, 7) (1, 2) 8

(9, 8) (1, 2) 9

Table 2.1: The case of f3,l(x)
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(d, l) solutions (n, x) fk,l(x) (d, l) solutions (n, x) fk,l(x)

(1, 9) (3, 6) 111 (6, 3) (2, 11) 66

(1, 11) (2, 2) 11 (6, 3) (2,−12) 66

(1, 14) (2,−1) 11 (6, 3) (3, 36) 666

(1, 19) (4,−11) 1111 (6, 3) (3,−37) 666

(2, 5) (1,−1) 2 (6, 6) (1, 2) 6

(2, 5) (2, 4) 22 (6, 6) (2, 6) 66

(2, 5) (3,−12) 222 (6, 6) (3,−18) 666

(2, 10) (2,−2) 22 (6, 9) (1,−1) 6

(3, 3) (1, 2) 3 (6, 9) (2,−4) 66

(3, 3) (1,−3) 3 (6, 9) (4, 44) 6666

(3, 6) (1,−1) 3 (6, 17) (3,−9) 666

(3, 11) (3, 9) 333 (7, 5) (1,−2) 7

(3, 12) (2, 3) 33 (7, 5) (2,−7) 77

(4, 4) (1, 2) 4 (7, 7) (1, 2) 7

(4, 4) (1,−2) 4 (7, 10) (1,−1) 7

(4, 7) (1,−1) 4 (8, 8) (1, 2) 8

(5, 3) (2,−11) 55 (8, 11) (1,−1) 8

(5, 3) (2, 10) 55 (8, 16) (2, 4) 88

(5, 5) (1, 2) 5 (9, 4) (1, 3) 9

(5, 6) (2,−5) 55 (9, 4) (1,−3) 9

(5, 7) (2, 5) 55 (9, 7) (2,−6) 99

(5, 8) (1,−1) 5 (9, 9) (1, 2) 9

(6, 3) (1, 3) 6 (9, 12) (1,−1) 9

(6, 3) (1,−4) 6 (9, 19) (2,−3) 99

Table 2.2: The case of f2,l(x)
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Chapter 3

On equal values of

trinomials

3.1 Introduction

One of the classical results concerning equal values of trinomials is the

determination of rational integers which can be represented as a product

of two and three consecutive integers simultaneously. In other words, the

problem is to solve the Diophantine equation

x3 − x = y2 − y

in integers x and y. Using tools from algebraic number theory Mordell

[62] resolved this problem. By an elementary approach, one can prove

that the unique integer solution x, y of the x4 − x = y2 − y with |xy| > 1

is (x, y) = (−1, 2). Indeed a straightforward calculation yields that

(2x2 − 1)2 < 4x4 − 4x+ 1 = (2y − 1)2 < (2x2)2
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for x > 1 and similarly,

(2x2)2 < 4x4 − 4x+ 1 = (2y − 1)2 < (2x2 + 1)2

for x < −1. These inequalities imply that |x| ≤ 1. Recently, Bugeaud et.

al. [25] obtained all solutions of the five-degree equation x5 − x = y2 − y.

Their technique is based on some new methods of modern number theory.

Let m and p be fixed positive integers with m > p ≥ 2. As a general

result, Mignotte and Pethő [61] proved a finiteness statement on solutions

x, y to the equation

xm − x = yp − y.

The proof depends on Theorem I.

3.2 New results

Let a, b, c, d, e,m, n, p and q be fixed rational integers. In this chapter we

prove

Theorem 3.1 The Diophantine equation

axm + bxn + c = dyp + eyq (3.1)

where

m > n > 0, p > q > 0, (m,n) = (p, q) = 1, ab 6= 0, de 6= 0

and either m > p ≥ 3 or m = p ≥ 3, n ≥ q (3.2)

has infinitely many solutions x, y with a bounded denominator if and

only if either
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m = p, n = q, a = dtm, b = etn, t ∈ Q, c = 0 (3.3)

or

m = p = 3, n = q = 2, a2e3 + b3d2 = 0, c = − 4b3

27a2
, (3.4)

or

m = p = 3, n = 2, q = 1, 27a4e3 + b6d = 0, c =
2a2e3

b3d2
. (3.5)

The main ingredient in the proof of Theorem 3.1 is the Bilu-Tichy The-

orem, which is an ineffective result, so Theorem 3.1 provides the finiteness

of the number of solutions to (3.1), only.

In the special case p = 2 we give an upper bound for the solutions x

and y. Set H = max(|a|, |b|, |c|, |d|, |e|,m, n).

Theorem 3.2 Suppose that m ≥ 5, m > n > 0, abd 6= 0, m 6= 2n and

(m,n) /∈ {(6, 2), (6, 4)},

further, if 4dc+ e2 = 0 then assume that m− n ≥ 3 or m− n = 2 and n

is odd. The Diophantine equation

axm + bxn + c = dy2 + ey in integers x and y

implies max(|x|, |y|) < c2, where c2 is an effectively computable constant

depending only on H.

A result on solutions of hyperelliptic equations obtained by Brindza [19],

see Lemma 3.1, plays an important role in the proof. We give some families

of Diophantine equations with infinitely many integer solutions x and y
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for the exponential pairs (m,n) in the following table (here t, u and v are

integer parameters).

(m,n) equation solutions

(2n, n) x2n + 2bxn + b2 − 1 = y2 + 2y y = xn + b− 1

(3, 1) x3 − 3t4x+ t6 = y2 + 2t3y x = u2 − 2t2,

y = u(u2 − 3t2)− t3

(3, 2) x3 + 3t2x2 − 5t6 = y2 + 2t3y x = u2 + t2,

y = u(u2 + 3t2)− t3

(4, 1) x4 + 4t3x+ t4 = 2y2 + 4t2y u2 + 2t2 = 2v2,

x = u+ t, y = v(u+ 2t)− t2

(4, 3) x4 + 4tx3 + 25t4 = 2y2 + 4t2y u2 + 2t2 = 2v2,

x = u+ t, y = v(u+ 4t)− t2

(6, 2) x6 − 3t4x2 = 2y2 + 4t3y u2 + 2t2 = 2v2, x = u,

y = v(u2 − t2)− t3

(6, 4) x6 − 3t2x4 + 2t6 = 2y2 + 4t3y u2 + t2 = 2v2, x = u,

y = v(u2 − 2t2)− t3

Now suppose that d = 1, 4c + e2 = 0, m − n = 2, n is even, and we

choose the values of a and b, such that the Pellian equation s2 − at2 = b

has infinitely many integer solutions s and t. One can check that equation

4xn(ax2 + b) = (2y + e)2

possesses infinitely many solutions in integers x and y. For d = 1, 4c+e2 =

0, m − n = 1, n even and b ≡ f2 (mod a) we take x = (f2 − b)/a,

y = fxn/2 − e/2. Under the same conditions for odd values of n, a > 0,

a is not a square, the Pellian equation s2 − at2 = 1 has infinitely many

solutions in integers s, t such that

s ≡ 1 (mod 2a), t ≡ 0 (mod 2).

Then taking x = b(s− 1)/2a, y = btx(n−1)/2/2− e/2, we provide infinitely

many solutions as well.
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3.3 Auxiliary results

In the following we are going to use the previously introduced Bilu-Tichy

Theorem and the five kinds of standard pairs of polynomials.

Lemma 3.1 Let f be a polynomial with rational coefficients and suppose

that it possesses at least three zeros of odd multiplicity. Then the equation

f(x) = y2 in unknown x, y implies max {|x|, |y|} ≤ C7 where C7 is an

effectively computable constant depending only on the parameters of the

polynomial f .

Proof. This is a corollary of the main result in [19]. For further gener-

alizations and improvements see [24].

The following lemmata describe multiplicity of the zeros of trinomials

and connections between standard pairs and trinomials.

Lemma 3.2 Multiplicity of every zero of a polynomial AXm+BXn+C,

AC 6= 0 is at most two and if B = 0 than one.

Proof. This is an easy consequence of Hajós’ [48] result.

Lemma 3.3 Let f ∈ C[X] \ C and f(X)2|AXm +BXn + C, where m >

n > 0, ABC 6= 0. Then deg f ≤ (m,n).

Proof. By Lemma 3.2, every zero of f is simple. Let ζ be such a zero,

AXm +BXn + C = T (X). Since T (ζ) = T ′(ζ) = 0 we obtain

ζm =
Cn

(m− n)A
, ζn =

Cm
(n−m)B

,

thus ζ = ζ(m,n) is uniquely determined and deg f ≤ (m,n).

Lemma 3.4 If A(αx + β)m + B(αx + β)n + C = Dm(X, g), where m,n

satisfy 3.1, further, Aαg 6= 0 and Dm(X, g) is the mth Dickson polynomial,

then m ≤ 3.
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Proof. Put β = αβ1, B = B1α
−m. Clearly A = α−m, and we obtain

(X + β1)
m +B1(X + β1)

n + C = Dm(X, g)

=

bm/2c∑
i=0

m

m− i

(
m− i
i

)
(−g)iXm−2i.

(3.6)

The coefficient of Xm−1 on the right-hand side vanishes, hence it does on

the left-hand side and if β1 6= 0 we obtain n = m− 1

mβ1 +B1 = 0

and, unless m = 2,(
m

2

)
β21 + nB1β1 =

m

m− 1

(
m− 1

1

)
(−g) = −mg.

It follows that (
m

2

)
β21 −mnβ21 = −mg, β21 =

2g

m− 1

and unless m ≤ 3 (
m

3

)
β31 +

(
n

2

)
B1β

2
1 = 0,

hence

(
m

3

)
β31 −

(
n

2

)
mβ31 = 0;

(
m

3

)
=

(
n

2

)
m = 3

(
m

3

)
, which is a

contradiction.

Assume now that β1 = 0. Equation 3.6 gives either m ≤ 3 or n = m−2

and 0 = m − 4. However, in the latter case (m,n) = 2, contrary to our

assumptions.
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Lemma 3.5 If m, n, p, q satisfy 3.2 and ABα 6= 0 6= DEγ, then

< A(αX+β)m+B(αX+β)n+C, D(γX+δ)p+E(γX+δ)q+F > (3.7)

is not a standard pair.

Proof. Suppose first that 3.7 is a standard pair of the first kind. If

A(αX + β)m +B(αX + β)n + C = Xm. (3.8)

then β is a zero of AXm+BXn+C of multiplicity m, hence by Lemma 3.2

either m ≤ 2 < p, contrary to 3.2, or C = 0. In the latter case αX + β|X,

β = 0 and 3.7 contradicts B 6= 0. If

D(γX + δ)p + E(γX + δ)q + F = Xp. (3.9)

then a similar argument leads to a contradiction with p ≥ 3.

Suppose next that 3.7 is a standard pair of the second kind. Then

either m = 2 or p = 2, however this is impossible by 3.2.

Suppose next that 3.7 is a standard pair of the third or the fourth

kind. Then we have

A(αX + β)m +B(αX + β)n + C = Dm(X, ap) or a−m/2Dm(X, a),

D(γX + δ)p + E(γX + δ)q + F = Dp(X, a
m) or − b−p/2Dp(X, b),

respectively, where (m, p) = 1 or (m, p) = 2, respectively. By Lemma

3.4 m ≤ 3, p ≤ 3, thus by 3.2, m = p = 3 and (m, p) = 3, we get a

contradiction again.
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Suppose finally that 3.7 is a standard pair of the fifth kind. Then one

of the polynomials A(αX+β)m+B(αX+β)n+C, D(γX+δ)p+E(γX+

δ)q +F has two zeros of multiplicity three, which contradicts Lemma 3.2.

Lemma 3.6 Under the assumption 3.2 we have

aXm + bXn + c = d(εX + ξ)p + e(εX + ξ)q (3.10)

for some ε, ξ ∈ Q if and only if 3.3, 3.4 or 3.5 hold.

Proof. Assume first that we have 3.10. Clearly m = p and either

c = ξ = 0 or ξ 6= 0. In the former case we obtain 3.3 with t = ε. In

the latter case, by Lemma 3.2, q ≤ 2. However, the case m = p = 4,

q = 2 is excluded by 3.2, hence if m = p ≥ 4 we have p − q ≥ 3, thus

Xm−1 and Xm−2 occur on the right-hand side of 3.10 with the coefficients

dmεm−1ξ 6= 0 and d
(
m
2

)
εm−2ξ2 6= 0. On the left-hand side of 3.10 Xm−1

and Xm−2 cannot occur both with non-zero coefficients. The obtained

contradiction shows that m = p = 3. If n = q = 2, then 3.10 gives

a = dε3, b = 3dε2ξ + eε2, 0 = 3dεξ2 + 2eεξ, c = dξ3 + eξ2, which on

elimination of ε and ξ leads to 3.4. If n = 2, q = 1, then 3.10 gives

a = dε3, b = 3dε2ξ, 0 = 3dεξ2 + eε, c = dξ3 + eξ, which on elimination of ε

and ξ leads to 3.5. Finally, since ξ 6= 0 we cannot have n = q = 1, because

the coefficient of X2 on the left-hand side of 3.10 is 0, on the right-hand

side is 3dε2ξ 6= 0.

Assume now that we have 3.3, 3.4 or 3.5. If 3.3 holds, we get 3.8 with

ε = t, ξ = 0; if 3.4 holds we obtain 3.8 with

ε = −ae
bd
, ξ = −2e

3d

and finally if 3.5 holds we have 3.8 with

ε = − b2

3ae
ξ =

3a2e2

b3d
.
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Lemma 3.7 If aXm+bXn+c = f1◦f2(X), where 3.2 holds and fi ∈ Q[x],

then for a suitable linear function h ∈ Q[x] we have either f1 ◦ h = X,

h−1 ◦ f2 = aXm + bXn + c or f1 ◦ h = aXm + bXn + c, h−1 ◦ f2 = X.

Proof. This follows from Lemma 3 in [36] with h ∈ C[X]. Since f2 is

a polynomial with rational coefficients we have h ∈ Q[X].

3.4 Proofs of the Theorems

Proof of Theorem 3.1. Assume first that equation (3.1) has infinitely many

rational solutions with a bounded denominator. The Bilu-Tichy Theorem

gives

aXm + bXn + c = ϕ ◦ f ◦ λ, dXp + eXq = ϕ ◦ g ◦ µ,

where λ, µ are linear polynomials, ϕ ∈ Q[x] and (f, g) is a standard pair

of the ith kind (1 ≤ i ≤ 5).

By Lemma 3.7 there exist linear functions h1, h2 in Q[x] such that

either

ϕ◦h1 = X, h−11 ◦f ◦λ = aXm+bXn+c, ϕ◦h2 = X,h−12 ◦g◦µ = dXp+eXq

(3.11)

or

ϕ ◦ h1 = aXm + bXn + c, h−11 ◦ f ◦ λ = X (3.12)

and

ϕ ◦ h2 = dXp + eXq, h−12 ◦ g ◦ µ = X. (3.13)

In case 3.11 we have h1 = ϕ−1 = h2 and putting h1(X) = εX + ξ,

h1(aX
m+bXn+c) = AXm+BXn+C, h1(dX

p+eXq) = DXp+EXq+F,

λ−1(X) = αX + β, µ−1(X) = γX + δ we obtain that
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< A(αX + β)m +B(αX + β)n + C, D(γX + δ)p + E(γX + δ)q + F >

is a standard pair. However, by Lemma 3.5, this is impossible.

In case 3.12 taking h−12 ◦ h1 = εX + ξ we obtain

aXm + bXn + c = d(εX + ξ)p + e(εX + ξ)q. (3.14)

By Lemma 3.6 we have 3.3, 3.4 or 3.5. Conversely, if 3.3, 3.4 or 3.5

holds, we get 3.14 for some rational ε, ξ. Taking an arbitrary integer

x, we obtain infinitely many solutions (x, εx + ξ) of 3.1 with a bounded

denominator.

Proof of Theorem 3.2. Using Lemma 3.1 it is enough to show that the

trinomial

F (X) = 4adXm + 4bdXn + 4cd+ e2

has at least three zeros of odd multiplicity. First we consider the case

when the constant term 4cd+ e2 is non-zero. On supposing the contrary

we have

F (X) = f(X)2g(X),

where degree of polynomial g(X) is at most two, and, as a consequence of

Lemma 3.2 polynomial f(X) possesses only simple zeros. Let ζ be one of

them. Similarly to the proof of Lemma 3.3 we obtain ζ(m,n) is uniquely

determined and deg f ≤ (m,n). It follows that m < 2(m,n) + 3, hence

either m = 2n or (m,n) = (3, 1), (3, 2), (4, 1), (4, 3), (6, 2), (6, 3).

If 4cd+e2 is vanishing then F (X) = 4dXn(aXm−n+b) and apart from

the cases listed in Theorem 3.2 we cannot guarantee the existence of at

least three zeros of odd multiplicity.

Finally, we would like to remark here that Schinzel [75] omitted the

assumption (m,n) = (p, q) = 1 from Theorem 3.1.
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Chapter 4

Equal values of standard

counting polynomials

4.1 Introduction

The most fundamental polynomials counting integer points are Xn in an

n-dimensional unit cube,
(
X+n
n

)
in a standard n-simplex,

Sn−1(X) = 1n−1 + 2n−1 + . . .+Xn−1

in an n-dimensional pyramid, and

Pn(X) =
n∑
j=0

(
n

j

)(
X + n− j

n

)

for octahedron in dimension n, see [11, Chapter 2]. Our purpose is to

consider the possible equal values of these polynomials in case of integral

variables. In other words, for given positive integers m,n, how often can

two bodies (unit cube, simplex, pyramid, octahedron) of dimensions m and

n, respectively, contain equally many integral points? It is a bit surprising
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that this discrete geometrical question is the common background of some

classical Diophantine problems. One can see that the above problems lead

to 9 nontrivial families of Diophantine equations, see Table 4.1. We give

a survey of known results concerning these equations. Further, we prove

some new theorems for the solutions. For each family of solutions, the

following three types of results can be established. An ineffective finite-

ness theorem for the general case obtained by the Bilu-Tichy Theorem,

an effective result based on Baker’s theory when one of the dimensions

involved is small, and the resolution by computer algebraic packages if

both dimensions are small.

No equation remark

1 Sm(x) = Sn(y) n > m ≥ 1

2 Sm(x) = yn m ≥ 1, n ≥ 2, (m,n) /∈ {(1, 2), (3, 2), (3, 4), (5, 2)}
3 Sm(x) =

(
y
n

)
m ≥ 1, n ≥ 2, (m,n) 6= (1, 2)

4 Sm(x) = Pn(y) m ≥ 1, n ≥ 2, (m,n) 6= (1, 2)

5
(
x
m

)
= yn m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

6
(
x
m

)
=
(
y
n

)
n > m ≥ 2

7
(
x
m

)
= Pn(y) m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

8 Pm(x) = yn m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

9 Pm(x) = Pn(y) n > m ≥ 2

Table 4.1: The investigated families of Diophantine equations

4.2 Lemmas and auxiliary results

First we note that Sn−1(X) can be expressed in the form

Sn−1(X) =
1

n
(Bn(X + 1)−Bn(0)), (4.1)
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where Bn(X) denotes the n-th Bernoulli polynomial which is of degree n

and has its coefficients in Q.

We now collect some lemmas to prove our new results. The first one

deals with the simple zeros of a family of polynomials. Let n be a positive

integer, f(X) an integer-valued polynomial with deg f(X) ≤ n − 1, and

g(X) a polynomial with rational integer coefficients.

Lemma 4.1 Suppose that n ≥ 6 and let p denote a prime for which

2

3
n < p ≤ n.

If an is an integer not divisible by p then the polynomial

F (X) = an

(
X

n

)
+ f(X) + g(X)

has at least
[
n
3

]
+ 1 simple zeros.

Proof. This is the Theorem in [65].

The following previously introduced result provides an effective upper

bound for the solutions to the hyperelliptic equations.

Lemma 4.2 Let f be a polynomial with rational coefficients and suppose

that it possesses at least three simple zeros. Then the equation f(x) = y2 in

unknown integers x, y implies max(|x|, |y|) < c4, where c4 is an effectively

computable constant depending on the degree and the maximum height of

the coefficients of f .

There is a similar result for superelliptic equations.

Lemma 4.3 Let f be a polynomial with rational coefficients and suppose

that it possesses at least two simple zeros. Then the equation f(x) = ym in

unknown integers x, y,m ≥ 2 implies max(|x|, |y|,m) < c5, where c5 is an
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effectively computable constant depending on the degree and the maximum

height of the coefficients of the polynomial f .

The next results are used in the proofs of our effective statements.

Lemma 4.4 Let m > 1, r, s 6= 0 be fixed integers. Then apart from the

cases when m = 3, r = 0 or s + 64r = 0; m = 5, r = 0 or s − 324r = 0,

the equation

s(1m + 2m + . . .+ xm) + r = yn

in integers x > 0, y with |y| ≥ 2, and n ≥ 2 has only finitely many

solutions which can be effectively determined.

Proof. This is Theorem 2.2 in [72].

Lemma 4.5 Let a, b, c and m be given integers with ab 6= 0 and m ≥ 3.

Apart from the cases when m = 4, c/a = −1/24 or 3/128, n = 2 and b/a

is not a square, the Diophantine equation

a

(
x

m

)
= byn + c

has only finitely many solutions in x, y > 1, n ≥ 2 and all these solutions

can be effectively bounded in terms of a, b, c and m.

Proof. This is the main result of [88].

Lemma 4.6 Let a, b,m, n be integers with a 6= 0, m ≥ 1, n > 2. The

equation

Sm(x) = a

(
y

n

)
+ b

in integers x and y has only finitely many solutions apart from the follow-

ing possible exceptions

(m,n) ∈ {(1, 4), (2, 3), (3, 4)}.

34



Proof. This is a special case of Theorem 2 in [71].

The next result will be useful for the application of the previous lemma

(cf. [78] and [68]).

Lemma 4.7 The product of two or more consecutive positive integers is

never a perfect power.

Proof. For the proof we refer to [34].

We need the following technical lemma. Let a, b, ã, b̃, ā, b̄ be rational

numbers with aãā 6= 0.

Lemma 4.8 None of the polynomials
(
aX+b
m

)
and Pm(ãX + b̃) is of the

form e1X
m + e0 with e1 ∈ Q \ {0} and m ≥ 3 or e1Dm(X,α) + e0 with

e1, α ∈ Q \ {0} and m ≥ 5. The polynomial Sm(āX+ b̄) is not of the form

e1X
q + e0 with q ≥ 3 or e1Dν(X,α) + e0 with ν > 4, where α, e1, e0 are

rational numbers with e1 6= 0.

Proof. For the fact that
(
aX+b
m

)
is not of the form e1X

m + e0 with

m ≥ 3 we refer to [15, Lemma 5.2].

Now suppose that(
aX + b

m

)
= e1Dm(X,α) + e0

for an integer m ≥ 5 and α ∈ Q \ {0} and set(
aX + b

m

)
=

m∑
i=0

ciX
i.

On comparing the corresponding coefficients, an easy calculation shows

that

cm =
am

m!
= e1,

cm−1 =
am−1

(
b− m−1

2

)
(m− 1)!

= 0,
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cm−2 =
am−2(12b2 + 12(1−m)b+ 3m2 − 7m+ 2)

24(m− 2)!
= −e1αm,

and

cm−4 =
am−4(240b4 + 480(1−m)b3 + f1(m)b2 + f2(m)b+ f3(m))

5760(m− 4)!
=

=
e1m(m− 3)α2

2
,

where f1(m) = 120(3m2 − 7m + 2), f2(m) = 120(−m3 + 4m2 − 3m) and

f3(m) = 15m4− 90m3 + 125m2− 18m− 8. Using the second equation, we

have b = m−1
2 and thus

cm−2 = −a
m−2(m+ 1)

24(m− 2)!
= −e1αm

and

cm−4 =
am−4(5m2 + 12m+ 7)

5760(m− 4)!
=
e1m(m− 3)α2

2
.

From these relations with cm = am

m! = e1 we get

(m− 1)(m+ 1)

24
= a2α

and
(m+ 1)(5m+ 7)(m− 1)(m− 2)

2880
= a4α2,

that is

(m+ 1)(m− 1) =
(5m+ 7)(m− 2)

5

and m = 3, a contradiction.

The proof of the corresponding statements for the polynomials Pm(ãX+

b̃) and Sm(āX + b̄) can be found in [81].
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4.3 New and known results

Family 1: equation

Sm(x) = Sn(y) (4.2)

where n > m ≥ 1 are fixed and x, y are unknown integers.

For (m,n) with m = 1 and m = 3, Brindza and Pintér [21] proved

some effective finiteness results for the solutions x and y. Their proof

is based on the structure of zeros of the corresponding shifted Bernoulli

polynomials. In the same paper they obtained an ineffective finiteness

result for an infinite class of pairs (m,n) using Davenport-Lewis-Schinzel

Theorem. Later, applying Bilu-Tichy Theorem, the authors of [15] ex-

tended this statement to every pair (m,n). For small values of m and

n the problem leads to certain elliptic curves. For the resolution of the

special cases (m,n) = (1, 2), (1, 3), (1, 5), (1, 7) we refer to [1] and [83], [26]

and [58], [47], [55], respectively. We propose the following

Conjecture 1 All the solutions to the equation (4.2) in integers n > m ≥
1 and x, y are

(m,n, x, y) = (1, 2, 10, 5), (1, 2, 13, 6), (1, 3, 8, 3), (1, 5, 23, 3), (1, 5, 353, 9).

This conjecture is based upon an extensive numerical investigation.

However, its proof seems well beyond the reach of current techniques.

Family 2: equation

Sm(x) = yn (4.3)
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where m ≥ 1, n ≥ 2, x ≥ 1, y ≥ 1 are unknown integers and Sm(X) =

1m + 2m + . . .+Xm.

Equation (4.3) has the solution (x, y) = (1, 1) which is called trivial.

For m = n = 2, (4.3) has only the nontrivial solution (x, y) = (24, 70).

This was proved by Watson [85]. In 1956, Schäffer [74] proved that for

fixed m ≥ 1 and n ≥ 3, (4.3) has at most finitely many solutions in x, y,

unless

(m,n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)}, (4.4)

where in each case, there are infinitely many such solutions.

Schäffer’s proof is ineffective. Using Baker’s method, Győry, Tijdeman

and Voorhoeve [44] proved a more general and effective result in which the

exponent n is also unknown. A special case of their result is the following

Theorem 4.1 For given m ≥ 2 with m /∈ {3, 5}, all solutions x, y ≥
1, n ≥ 2 of (4.3) satisfy max(x, y, n) ≤ c6(m), where c6(m) is an effectively

computable number which depends only on m.

Later, Győry, Tijdeman and Voorhoeve [84] showed that for any fixed

polynomial R(X) with integral coefficients, the equation

Sm(x) +R(x) = yn

has only finitely many solutions in integers x, y ≥ 1, n ≥ 2 provided that

m ≥ 2 is fixed such that m 6= {3, 5}. The proof furnishes an effective

upper bound for n, but not for x and y. An effective version was obtained

in a more general form by Brindza [20].

Pintér [67] proved that for fixed m > 2, all solutions of (4.3) with

y > 1 satisfy n < c7m logm, where c7 is an effectively computable absolute

constant.
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For fixed m ≥ 2 with m /∈ {3, 5}, Theorem 4.1 makes it possible, at

least in principle, to determine all solutions of (4.3). However, the bound

c6(m) in Theorem 4.1 is not given explicitly. Moreover, even an explicit

value obtained by Baker’s method would be too large for practical use.

Schäffer [74] was able to prove that for some special pairs (m,n) with

small m,n, (4.3) has only the trivial solution. Further, he formulated the

following

Theorem 4.2 For m ≥ 1 and n ≥ 2 with (m,n) not in (4.4), equation

(4.3) has only one nontrivial solution, namely (m,n, x, y) = (2, 2, 24, 70).

Recently, a considerable progress has been made in this direction. Ja-

cobson, Pintér and Walsh [49] confirmed the conjecture for n = 2 and for

even m with m ≤ 58. Further, Bennett, Győry and Pintér [13] proved

completely Schäffer’s conjecture for m ≤ 11 and for arbitrary n.

For fixed m and (m,n) 6= (3, 4), Brindza and Pintér [22] gave the upper

bound max(c8, e
3m) for the number of solutions of (4.3) with x, y > 1, n >

2, where c8 is an effectively computable absolute constant.

In the proofs of the above presented results the first step is to express

Sm(X) in the form (4.1). This implies that Sm(X) is divisible by X2(X+

1)2 in Q[X] if m > 1 is odd, and by X(X + 1)(2X + 1) if m ≥ 2 is even.

Then (4.3) can be reduced both to superelliptic equations and to finitely

many binomial Thue equations of the form AXn − BY n = 1 in non-zero

X,Y ∈ Z with fixed non-zero integers A,B. Finally, various deep theorems

and techniques can be applied to these equations to establish the desired

results for equation (4.3).

For more details and related results we refer to the survey paper [42]

of Győry and Pintér.
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Family 3: equation

Sm(x) =

(
y

n

)
, (4.5)

where m ≥ 1, n ≥ 2 are fixed integers with (m,n) 6= (1, 2) and x, y

are unknown integers.

As an easy consequence of Lemma 4.6 we have

Theorem 4.3 If m ≥ 1, n ≥ 2 and (m,n) 6= (1, 2) then the equation (4.5)

has only finitely many solutions in integers x and y.

Proof. In view of Lemma 4.6 we have to check the possible exceptional

cases (m,n) ∈ {(1, 4), (2, 3), (3, 4)} only. For (m,n) = (1, 4), we get the

classical equation (
x+ 1

2

)
=

(
y

4

)
,

and for the resolution of this equation see [86] and [66]. In the case

(m,n) = (2, 3) we obtain

x(x+ 1)(2x+ 1) = y(y − 1)(y − 2).

By using MAPLE one can verify that the genus of the corresponding curve

is 1, so it has only finitely many solutions in integers x and y. Finally, if

(m,n) = (3, 4), our equation takes the form(
x(x+ 1)

2

)2

=

(
y

4

)
and, by [33], there is no integer solution of this problem.

If m or n is small then we have an effective result.
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Theorem 4.4 Let n ∈ {2, 4} and m ≥ 1 with (m,n) 6= (1, 2) or m ∈
{1, 3} and n ≥ 2. Then all the solutions of the equation (4.5) in integers

x and y are bounded by an effectively computable constant depending only

on m or n, respectively. Further, if m = 3 and n ≥ 2, then there is no

solution.

Proof. In the first case n = 2 or 4. Now, our equation (4.5) leads to

the equations

8Sm(x) + 1 = (2y − 1)2,

or

24Sm(x) + 1 = (y(y − 3) + 1)2,

respectively, and Lemma 4.4 completes the proof. If m = 1 or m = 3 we

have the equations

(2x+ 1)2 = 8

(
y

n

)
+ 1,

or (
x(x+ 1)

2

)2

=

(
y

n

)
,

respectively. Our statements follow from Lemma 4.5 and Theorem 4.7

below, respectively.

Family 4: equation

Sm(x) = Pn(y), (4.6)

where m ≥ 1, n ≥ 2 are fixed integers and x, y are unknown inte-

gers.

For small values of m or n we prove the following
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Theorem 4.5 If m ∈ {1, 3} and n ≥ 2 or n ∈ {2, 4} and m ≥ 1 then

the equation (4.6) implies that max(x, y) < c9, where c9 is an effectively

computable constant depending only on n or m, respectively.

Proof. If (m,n) = (1, 2) or (3, 2) we have the equations(
x

2

)
= 2y2 + 2y + 1

and (
x

2

)2

= 2y2 + 2y + 1,

respectively. One can check that in the first case there is no integer solution

in x and y, further the second equation represents a genus one curve, so

it possesses only finitely many and effectively determinable solutions in x

and y.

In the sequel we suppose that m ∈ {1, 3} and n ≥ 3. Then we have

the following families of equations

(2x− 1)2 = 8Pn(y) + 1

and (
x(x− 1)

2

)2

= Pn(y),

respectively. Since the leading coefficient of the polynomial Pn(X) is 2n

n! ,

Lemmata 4.1 and 4.2 give the proof of our theorem for n ≥ 6. In the

remaining cases a simple calculation shows that the corresponding poly-

nomials have only simple zeros.

Now assume that n ∈ {2, 4} and m ≥ 2. We have the Diophantine

equations

2Sm(x) = (2y + 1)2
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and

3Sm(x) + 5 = 2(y2 + y + 2)2,

respectively, and Lemma 4.4 proves the statement of our theorem.

Theorem 4.6 Assume that m ≥ 2, n > 2 and gcd(m + 1, n) = 1. Then

equation (4.6) has only finitely many solutions in integers x and y.

We conjecture that Theorem 4.6 is true omitting the condition for the

greatest common divisor of m+ 1 and n, cf. [71].

Proof. On supposing the contrary and using the Bilu-Tichy Theorem

we have

Sm(aX + b) = φ(f(X)), Pn(ãX + b̃) = φ(g(X)),

where a, ã, b, b̃ ∈ Q with aã 6= 0, φ(X) ∈ Q[X] and (f, g) is a standard

pair. Since the greatest common divisor of m+ 1 and n is 1, we have that

deg φ = 1, φ(X) = e0X + e1, say, where e0, e1 are rational numbers and

e0 6= 0. Now applying the conditions for m and n we get

deg f > 2,deg g > 2, gcd(deg f,deg g) = 1,

and this excludes the standard pairs of the second, fourth and fifth kind.

From Lemma 4.8 we obtain max{m,n} ≤ 5, and by the conditions for m,n

and Theorem 4.5, the remaining cases are (m,n) = (2, 5), (4, 3) and (5, 5).

However, using MAPLE, one can check that the genus of the corresponding

three curves is 4,4 and 10, respectively, so there are only finitely many

integral points on these curves.

Family 5: equation

(
x

m

)
= yn, (4.7)
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where m ≥ 2, n ≥ 2, x > m, y ≥ 2 are unknown integers.

For m = n = 2, equation (4.7) can be written in the form

(2x− 1)2 − 8y2 = 1

which has infinitely many solutions, and all these can be given in a recur-

sive way. For m = 3, n = 2, Meyl [60, x odd] and Watson [85, x even]

proved that

(
50

3

)
= 1402 (4.8)

is the only solution of (4.7).

It was conjectured by Erdős [32] that for n > 2, equation (4.7) has no

solution. Erdős [32] proved this for n = 3 and for n ≥ 2m, and Obláth

[63] for n = 4 and 5.

By means of an ingenious elementary method Erdős [33] confirmed his

conjecture for m ≥ 4. For m < 4, the method of Erdős does not work.

Using Baker’s method, Tijdeman [82] proved that for m = 2 and 3

equation (4.7) has only finitely many solutions, and all of them can be,

at least in principle, determined. Later, Terai [80] showed that for m = 2

and 3, (4.7) implies n < 4250.

Finally, Győry [38] proved Erdős’ conjecture for m = 2, 3 and n > 2,

and hence completed the proof of the following

Theorem 4.7 Apart from the case (m,n) = (2, 2), (4.8) gives the only

solution of equation (4.7).

Győry’s proof combines some results of Győry [37] and Darmon and

Merel [28] on generalized Fermat equations, and a theorem of Bennett and

de Weger [12] on binomial Thue equations.
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There are several related results in the literature, see e.g. the survey

papers [40] and [41] and the references given there. For example, Theorem

4.7 has been extended to the equation

x(x− 1) · · · (x−m+ 1) = byn (4.9)

by Saradha [73, m ≥ 4] and Győry [39, m < 4], where b ≥ 1 is also

unknown, but has only prime factors not exceeding m. For b = m!, the

results of [73] and [39] imply Theorem 4.7, while for b = 1, they give

the celebrated theorem of Erdős and Selfridge [34] which states that the

product of consecutive positive integers is never a power.

Family 6: equation

(
x

m

)
=

(
y

n

)
, (4.10)

where n > m ≥ 2 are fixed integers and x ≥ m, y ≥ n are unknown

integers.

This equation possesses a very extensive literature. There are several

scattered computational results for special pairs (m,n). For the resolution

of the corresponding equation in the cases (m,n) = (2, 3), (2, 4), (2, 5), (2, 6),

(3, 4) we refer to [2], [86] and [66], [25], [47], [87], respectively. For a

nice survey on certain numerical problems and for the cases (m,n) =

(2, 8), (3, 6), (4, 6), (4, 8) see [79]. Generalizing an earlier result by Kiss

[54], Brindza [18] proved an effective finiteness statement for the solutions

to the equation (4.10) with m = 2. Using some elementary considerations,

de Weger [87] dealt with equal values of binomial coefficients and proposed

the following general conjecture.
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Conjecture 2 All solutions of equation (4.10) in positive integers m,n,x,y

with n > m ≥ 2, x > m, y > n are(
16

2

)
=

(
10

3

)
,

(
56

2

)
=

(
22

3

)
,

(
153

2

)
=

(
19

5

)
,

(
221

2

)
=

(
17

8

)
(

78

2

)
=

(
15

5

)
=

(
14

6

)
,

(
21

2

)
=

(
10

4

)
,

(
120

2

)
=

(
36

3

)
,

and an infinite family(
F2i+2F2i+3

F2iF2i+3

)
=

(
F2i+2F2i+3 − 1

F2iF2i+3 + 1

)
for i = 1, 2, . . ., where Fn denotes the nth Fibonacci number defined by

F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 for n = 1, 2, . . ..

For general, however, ineffective finiteness results see [14] and [70].

Family 7: equation

(
x

m

)
= Pn(y), (4.11)

where m ≥ 2, n ≥ 2 are fixed integers and x ≥ m, y are unknown

integers.

In the special case (m,n) = (2, 2) we have the equation(
x

2

)
= 2y2 + 2y + 1

and a straightforward calculation gives that the transformed equation

(2x− 1)2 − (4y + 2)2 = 5
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has no solution in integers x ≥ 2 and y.

For small values of m or n we prove the following

Theorem 4.8 If m ∈ {2, 4} and n ≥ 3 or n ∈ {2, 4} and m ≥ 3 then

equation (4.11) implies that max(x, y) < c10, where c10 is an effectively

computable constant depending only on n or m, respectively.

Proof. First suppose that m ∈ {2, 4} and n ≥ 3. We have the equations

8Pn(y) + 1 = (2x− 1)2

and

24Pn(y) + 1 = (x2 − 3x− 1)2,

respectively. Using the fact that

Pn(X) = 2n
(
X

n

)
+ f(X),

where f(X) is an integer-valued polynomial of degree < n, and Lemmata

4.1 and 4.2 give our statement for n ≥ 6. If n = 3, 4, 5 then an easy

calculation shows that the corresponding polynomials have at least three

simple zeros, and the proof is completed in these cases as well.

Now assume that n ∈ {2, 4} and m ≥ 3. We get the equations

2

(
x

m

)
− 1 = (2y + 1)2

and

3

(
x

m

)
+ 5 = 2(y2 + y + 2)2,

respectively. Our Lemmata 4.5 and 4.2 completes the proof for m ≥ 3.

Theorem 4.9 Suppose that min{m,n} ≥ 3. Then (4.11) has only finitely

many solutions in integers x and y.
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Proof. On supposing the contrary and using the Bilu-Tichy Theorem

we have (
aX + b

m

)
= φ(f(X))

and

Pn(ãX + b̃) = φ(g(X)),

where (f, g) is a standard pair, φ(X) ∈ Q[X] and a, b, ã, b̃ ∈ Q with aã 6= 0.

We will prove that k := deg φ = 1. Indeed, it is clear that the ratio of

the leading coefficients of the polynomials
(
aX+b
m

)
and Pn(ãX+ b̃) is a kth

power in Q. On the other hand, this ratio is

am · n!

2n · ãn ·m!
.

Since m = k · deg f and n = k · deg g are divisible by k, then the number

n!/m! is a kth power in Q. Lemma 4.7 gives that k = 1 or k ≥ 2, |n−m| =
1. However, in the second case, 2 ≤ k ≤ gcd(m,n) = 1 and we have a

contradiction. Thus we obtain(
aX + b

m

)
= e1f(X) + e0

and

Pn(ãX + b̃) = f1g(X) + f0,

where e0, e1, f0, f1 are rational numbers with e1f1 6= 0. By the condition

min{m,n} ≥ 3, (f, g) is not a standard pair of the second kind, further

by Theorem 4.8, we get that (f, g) is not a standard pair of the fifth kind.

Using Lemma 4.8 and Theorem 4.8 our theorem is proved apart from the

case (m,n) = (3, 3). In this case the corresponding curve is

x(x− 1)(x− 2)

6
− 4

3
y3 − 2y2 − 8

3
y − 1 = 0,
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its genus determined by MAPLE is one, so we have only finitely many

integer solutions.

Family 8: equation

Pm(x) = yn, (4.12)

where m ≥ 2 is fixed and x, y, n ≥ 2 are unknown positive integers

with (m,n) 6= (2, 2).

In the trivial case (m,n) = (2, 2) we have P2(x) = 2x2 + 2x+ 1 so the

corresponding Diophantine equation is

2x2 + 2x+ 1 = y2,

or equivalently,

(2x+ 1)2 − 2y2 = −1

which is a Pellian equation with infinitely many solutions. We can rewrite

the polynomial Pn(X) as

Pn(X) =

n∑
j=0

(
n

j

)(
X + n− j

n

)
= 2n

(
X

n

)
+ f(X),

where f(X) is an integer-valued polynomial of degree< n. So from Lemma

4.1 we get that Pn(X) has at least three simple zeros for n ≥ 6. In the

remaining cases we obtain

P2(X) = 2X2 + 2X + 1, P3(X) =
4

3
X3 + 2X2 +

8

3
X + 1,

P4(X) =
2

3
X4 +

4

3
X3 +

10

3
X2 +

8

3
X + 1,
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and

P5(X) =
4

15
X5 +

2

3
X4 +

8

3
X3 +

13

3
X2 +

46

15
X + 1,

and one can calculate their non-zero discriminants showing that these

polynomials possess only simple zeros. Thus the following statement fol-

lows from Lemmata 4.2 and 4.3.

Theorem 4.10 Let m,n be integers with m ≥ 2, n ≥ 2 and suppose

that (m,n) 6= (2, 2). The equation (4.12) in integers x, y and n implies

max{|x|, |y|, n} < c11 where c11 is an effectively computable constant de-

pending only on m.

Cohn [27] resolved the equation x2 + 1 = yn and proved that all the

solutions of this equation in integers x, y, n with n > 1 are x = y = 1 and

x = 239, y = 13, n = 4. Using this result we have

Theorem 4.11 All the solutions of the equation P2(x) = yn in integers

x, y and n > 2 are x = 0, y = 1 and x = 119, y = 13, n = 4.

We note that Theorems 4.10 and 4.11 are new.

Family 9: equation

Pm(x) = Pn(y), (4.13)

where n > m ≥ 2 are fixed integers and x, y are unknown integers.

Hajdu studied the equation (4.13) for small values of m and n and

resolved the corresponding elliptic type Diophantine equations, see [45]

and [46]. Further, he conjectured that the equation has only finitely many

solutions for n > m = 2. This conjecture was confirmed by Kirschenhofer,
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Pethő and Tichy [53]. Later, using the Bilu-Tichy Theorem, Bilu, Stoll

and Tichy [81] extended their result to the general case by proving an

ineffective finiteness statement for the number of solutions x and y for

every pair (m,n).
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Summary

Our dissertation consists of four chapters. Since there is no universal finite

algorithm for the solvability of any types of Diophantine equations in gen-

eral, methods for solving certain classes of Diophantine equations became

in the center of interest. One of the main tools for solving these Diophan-

tine equations is Baker’s inequality giving a non-trivial lower bound for

linear logarithmic forms. Based on these results there were born further

improvements and applications. See [3], [5], [6] and [7]. A sharper version

of the original theorem is the Baker-Wüstholz Theorem, see Theorem A.

In their theorem Schinzel and Tijdeman used the Baker method to get

an effective result with also the exponent as a variable for the hyper- and

superelliptic type equations, see Theorem E.

There are also theorems which present general results for the equations

of the type f(x) = g(y). One of the two key results is the Bilu-Tichy The-

orem, see Theorem J. We introduced here the notion of the five standard

pairs as well.

In the second chapter we were dealing with the polynomial values of

repdigit numbers. On one hand we have the lth order k dimensional polyg-

onal numbers of the form (2.1) with special values like l = 3 the binomial

coefficients or k = 2 or k = 3 the corresponding polygonal or pyramidal

numbers respectively. Equal values of polynomial numbers have already

been widely investigated. See Dickson [30], Győry [38], Kiss [54], Brindza
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[18], Avanesov [2], Pintér [66], de Weger [86], Bugeaud, Mignotte, Stoll,

Siksek, Tengely [25] and Hajdu, Pintér [47], Brindza, Pintér, Turjányi [23]

and Pintér, Varga [69].

On the other hand we have an other important class of combinatorial

numbers i.e. the repdigits, generalised repdigits (2.3), repunits and gen-

eralized repunits (2.2). Results concerning these numbers can be found in

[35] and in [77, Chapter 12], Ballew and Weger [10] and Keith [52].

Using the effective finiteness criterion in the theorem of Schinzel and

Tijdeman and with elementary tools we proved effective finiteness theo-

rems in the general case for the equal values of polygonal numbers and

(generalized) repdigits i.e. for equations (2.4), (2.5) and (2.6). These are

the results in Theorems 2.1, 2.2 and 2.3.

In our numerical investigations we took the polygonal numbers fk,l(x)

in (2.5) with k ∈ {2, 3}, and l ∈ {3, 4, . . . , 20} and repdigits with d ∈
{1, 2, . . . , 9}. The right-hand side of the equation is of degree 2 or 3 re-

spectively and by reducing the left-hand side to a polynomial of degree

3 or 2 respectively we obtain an elliptic equation which can further be

solved by the program package MAGMA [17]. This way we solved these

equations completely. These results are contained in Theorem 2.4.

Other related equations, corresponding to larger values of the param-

eter k could not be solved because of certain technical difficulties.

In the third chapter we introduced some new results concerning equal

values of trinomials in the most general case.

There have already been several previous partial results concerning

some special and classical cases of equal values of trinomials. See Mordell

[62], Bugeaud et. al. [25] and Mignotte and Pethő [61].

Let a, b, c, d, e, m, n, p, q be fixed rational integers. As a new result we

managed to give an ineffective finiteness criterion for the general equation

axm + bxn + c = dyp + ey + q. The result is contained in Theorem 3.1.

The proof is mainly based on the ineffective Bilu-Tichy Theorem, on the
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decomposition properties of trinomials due to Fried and Schinzel and on

the theorem of Hajós on the multiplicity of the zeros of trinomials.

In the special case axm + bxn + c = dy2 + ey where p = 2 in integers

x and y we obtained an effective upper bound for the size of solutions.

The proof was mainly based on Brindza’s theorem on hyperelliptic

equations and on the fact that apart from the exceptional cases the corre-

sponding trinomial possesses at least three zeros of odd multiplicity. Our

result is presented in Theorem 3.2.

In the fourth chapter we introduced an extended examination of the

equal values of different standard counting polynomials. A standard count-

ing polynomial gives back by definition the number of integral points con-

tained in the body.

The four bodies in question are the unit cube, simplex, pyramid and

octahedron. The discrete geometrical problem behind the equations is that

for given positive integers m and n respectively when do two bodies with

dimensions m and n contain equally many integer points. This problem

leads to 9 nontrivial families of Diophantine equations, see Table 4.1. We

gave a survey of known results concerning these equations and we also

introduced new results.

For the 3rd, 4th, 7th and 8th families of equations both effective and

ineffective new results were introduced. These results are based on the

Bilu-Tichy Theorem and on the Baker Theorem respectively. These new

results are presented in Theorems 4.4, 4.5, 4.6, 4.8, 4.9, 4.10 and 4.11.

We proposed a conjecture on all solutions based on extensive numerical

investigations for Family 1, see Conjecture 1.

The proofs further relied on Pintér’s result on the number of simple

zeros in polynomials [65], on Rakaczki’s ineffective results on equation

Sm(x) = g(y) [71], on Schinzel and Tijdeman’s effective result [76], on

Rakaczki’s effective result on equation s(1m + 2 +m+ · · ·+ xm) + r = yn

[72], on Yuan’s effective finiteness theorem on a
(
x
m

)
= byn + c [88], on
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Győry’s effective result on the equation
(
n
k

)
= xl [38] and on the theorem

of Erdős and Selfridge on the product of consecutive integers [34].
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Összefoglaló

Disszertációnk négy fejezetből áll, az első fejezet a Bevezető.

Ismeretes Hilbert 10. problémája alapján, hogy tetszőleges diofanti-

kus egyenlet megoldhatósága általánosan nem eldönthető. Így a diofanti-

kus egyenletek megodhatóságát és megoldási módszereit vizsgálva a figye-

lem az egyes speciális és ı́gy már kezelhető egyenlett́ıpusok vizsgálata felé

fordult. Bevezetőnkben bemutattuk a legfontosabb, egyenletek bizonyos,

különböző t́ıpusai illetve osztályai esetén alkalmazható eredményeket.

Ilyen, nagy jelentőségű eredmény a Baker-módszer, amely diofantikus

egyenletek több osztálya esetén is alkalmazható. Lásd [77]. Alapja a

Baker-egyenlőtlenség, amely lineáris logaritmikus formák egy nem triviális

alsó becslését adja meg. Ebben a témakörben további részletek a [3], [5],

[6] és [7] cikkekben és jegyzetekben találhatók.

A következő tételben bemutatjuk az eredeti tétel egy éleśıtését, a

Baker-Wüstholz tételt.

Legyenek α1, . . . , αn 0-tól és 1-től különböző algebrai számok és jelölje

logα1, . . . , logαn a logaritmusok egy-egy rögźıtett értékét. Legyen K a

Q racionális számtest α1, . . . , αn általi algebrai bőv́ıtése, melynek fokát

jelölje d.

Legyen továbbá Aj = max (H(αj), e), ahol jelölje H(αj) az αj klasszi-

kus magasságát, amely alatt az αj algebrai szám definiáló főpolinomjában

szereplő együtthatók abszolutértékének maximumát értjük és legyen e =
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2, 718....

Tétel A. Legyenek b1, . . . , bn nem mind azonosan 0 racionális egészek és

tegyük föl, hogy B ≥ max |bj |. Ha Λ = b1 logα1+b2 logα2+· · ·+bk logαk 6=
0 teljesül, akkor

log |Λ| > −(16nd)2(n+2) logA1 . . . logAn logB.

A Baker-módszert felhasználva Schinzel és Tijdeman effekt́ıv végességi

álĺıtást nyert az x, y egész változójú

f(x) = bym,

(f ∈ Z[x], deg f ≥ 2, m ≥ 2 és b ∈ Z, b 6= 0 rögźıtett) hiper- illetve szuper-

elliptikus egyenletekre abban az esetben is, amikor a kitevőt is változónak

tekintjük.

Tétel E. Legyen f(X) racionális egész együtthatós polinom, melynek van

legalább két különböző gyöke. Legyenek b 6= 0, m ≥ 0, továbbá x és y olyan

racionális egészek, melyekre |y| > 1, és legyen

f(x) = bym.

Ekkor m értéke felülről korlátos, felső korlátja kiszámı́tható konstans,

mely csak b-től és f -től függ.

Tudományos munkánk során bizonyos szeparábilis diofantikus egyen-

letek vizsgálatával foglalkoztunk. Általánosan az f(x) = g(y) t́ıpusú sze-

parábilis diofantikus egyenletekre effekt́ıv eredmények nem léteznek.

Léteznek ugyanakkor az f(x) = g(y) t́ıpusú egyenletekre általános

esetben is ineffekt́ıv, végességi álĺıtások. Az egyik ilyen csúcseredmény

Davenport, Lewis és Schinzel tétele [29], a másik, mely ennek egy éleśıtése,

a Bilu-Tichy tétel.
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Tétel J. Legyenek P (X), Q(X) ∈ Q[X] olyan nem konstans polinomok,

melyekre a P (x) = Q(y) egyenletnek végtelen sok x, y korlátos nevezőjű

megoldása van. Ekkor P = φ ◦ f ◦ λ és Q = φ ◦ g ◦ µ, ahol λ(X), µ(X) ∈
Q[X] lineáris polinomok, φ(X) ∈ Q[X] és (f(X), g(X)) pedig egy standard

pár.

Ennek kapcsán szükség volt a dolgozatunkban ismertetett standard

párok öt t́ıpusának defińıciójára is.

A második fejezetben repdigit számok figurális értékeit vizsgáltuk. Egy

felől vizsgáltuk az

fk,l(x) =
x(x+ 1) · · · (x+ k − 2)((l − 2)x+ k + 2− l)

k!
,

l-ed rendű k dimenziójú figurális számokat melyek speciálisan l = 3 esetén

a binomiális együtthatók, k = 2 illetve k = 3 esetén a megfelelő poli-

gonális illetve piramidális számok. Polinomiális számok egyenlő értékeit

már sokszor vizsgálták. Lásd Dickson [30], Győry [38], Kiss [54], Brindza

[18], Avanesov [2], Pintér [66], de Weger [86], Bugeaud, Mignotte, Stoll,

Siksek, Tengely [25] és Hajdu, Pintér [47], Brindza, Pintér, Turjányi [23]

és Pintér, Varga [69].

Másfelől komibnatorikus számok egy fontos osztályának, a repdigitek-

nek d · 10n−110−1 , 1 ≤ d ≤ 9, továbbá tetszőleges b ≥ 2 esetén általánośıtott

repdigiteknek d · bn−1b−1 , illetve d = 1 esetén repunitoknak és általánośıtott

repunitoknak bn−1
b−1 a poligonális számokkal egyenlő értékeit vizsgáltuk.

Lásd repdigitekkel kapcsolatos eredmények [35] és [77, 12. fejezet], Ballew

és Weger [10] és Keith [52].

Schinzel és Tijdeman effekt́ıv végességi kritériumának felhasználásával

illetve elemi módszerek seǵıtségével általános esetben poligonális számok

és (általánośıtott) repdigitek egyenlő értékeire vonatkozó három effekt́ıv

végességi tételt mondtunk ki.
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1. Tétel. Tegyük fel, hogy k ≥ 3 vagy k = 2 és l = 4 vagy l > 13. Ekkor

a

d · b
n − 1

b− 1
= fk,l(x)

egyenletnek csak véges sok x és n egész megoldása van, továbbá

max (|x|, n) < c1,

ahol c1 effekt́ıven kiszámolható konstans, amely csak k, l, b és d értékétől

függ. k = 2 és l ∈ {3, 5, 6, 7, 8, 9, 10, 11, 12} esetén a 2.4 egyenletnek

végtelen sok megoldása van a b, d paraméterek végtelen sok értéke mellett.

2. Tétel. A

d · 10n − 1

10− 1
= fk,l(x)

egyenletnek k ≥ 2 esetén csak véges sok egész n, x megoldása van kivéve a

(d, l) = (3, 8) esetet. Ebben az esetben az egyenletnek végtelen sok explici-

ten megadható megoldása van.

3. Tétel. A
bn − 1

b− 1
= fk,l(x)

egyenletnek k ≥ 2 esetén csak véges sok egész n, x megoldása van, kivéve,

ha (b, l) = (4, 8), (9, 3), (9, 6), (25, 5). Ezekben az esetekben az egyenletnek

végtelen sok expliciten megadható megoldása van.

Numerikusan az fk,l(x) alakú figurális számok illetve a repdigitek azo-

nos értékeit vizsgáltuk k ∈ {2, 3} és l ∈ {3, 4, ..., 20}, illetve d ∈ {1, 2, ...9}
esetén. A bal oldali polinomot 2 illetve 3 fokúra redukálva elliptikus egyen-

letet kaptunk, melyet a MAGMA programcsomaggal oldottunk meg. Így

az összes egyenletet sikerült megoldanunk.

4. Tétel. A

d · 10n − 1

10− 1
= fk,l(x)
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egyenlet összes nemtriviális megoldását k = 2, 3 esetén rendre a 2.2 illetve

az 2.1 táblázat tartalmazza.

Megjegyezzük, hogy a fenti egyenletekkel azonos t́ıpusú egyenletek

vizsgálata nagyobb k paraméter esetén technikai nehézségekbe ütközött.

A harmadik fejezetben trinomok egyenlő értékeivel kapcsolatos új ered-

ményeinket mutattuk be a legáltalánosabb esetben.

Trinomok egyenlő értékeire vonatkozó eredmények már születtek ko-

rábban is néhány speciális és klasszikus esetben. Az x és y egész változójú

x3 − x = y2 − y diofantikus egyenlet összes megoldását Mordell [62]

határozta meg algebrai számelméleti eszközök seǵıtségével. Bugeaud és

társai [25] az x5 − x = y2 − y egyenlet összes megoldását megtalálták mo-

dern algebrai számelméleti módszerek seǵıtségével. Az xm − x = yp − y
alakú általános egyenletre, ahol m és p, m > p ≥ 2 rögźıtett egészek,

Mignotte és Pethő [61] bizonýıtott ineffekt́ıv végességi álĺıtást Davenport,

Levis és Schinzel tételének seǵıtségével.

Legyenek adva a, b, c, d, e,m, n, p, q rögźıtett racionális egészek. Új

eredményként ineffekt́ıv végességi kritériumot tudtunk adni az általános

axm + bxn + c = dyp + ey + q egyenlet esetén.

5. Tétel. Az

axm + bxn + c = dyp + eyq

diofantikus egyenletnek, ahol m > n > 0, p > q > 0, (m,n) = (p, q) = 1,

ab 6= 0, de 6= 0 és vagy m > p ≥ 3 vagy m = p ≥ 3, n ≥ q pontosan akkor

van végtelen sok x, y korlátos nevezőjű megoldása, ha

m = p, n = q, a = dtm, b = etn, t ∈ Q, c = 0

vagy

m = p = 3, n = q = 2, a2e3 + b3d2 = 0, c = − 4b3

27a2
,
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vagy

m = p = 3, n = 2, q = 1, 27a4e3 + b6d = 0, c =
2a2e3

b3d2
.

feltételek közül valamelyik teljesül.

A p = 2 speciális esetben felső korlátot is tudtunk adni x és y lehetséges

értékeire. Legyen H = max(|a|, |b|, |c|, |d|, |e|,m, n).

A bizonýıtás az ineffekt́ıv Bilu-Tichy tételen, Fried és Schinzel trino-

mok dekompoźıciós tulajdonságaira vonatkozó tételén illetve Hajós trino-

mok gyökeinek multiplicitására vonatkozó tételén alapszik.

A speciális, x és y egész változójú axm + bxn + c = dy2 + ey egyen-

let esetén, ahol p = 2, effekt́ıv felső korlátot sikerült adni a megoldások

abszolut értékére.

6. Tétel. Legyen m ≥ 5, m > n > 0, abd 6= 0, m 6= 2n és (m,n) /∈
{(6, 2), (6, 4)}, továbbá, ha 4dc + e2 = 0, akkor legyen m − n ≥ 3 vagy

m− n = 2 illetve n páratlan. Ekkor az

axm + bxn + c = dy2 + ey

diofantikus egyenlet x és y egész megoldásaira max(|x|, |y|) < c2, ahol c2

olyan effekt́ıven kiszámolható konstans, amely csak H értékétől függ.

A bizonýıtás Brindza hiperelliptikus egyenletekre vonatkozó tételén,

illetve azon a tényen alapszik, hogy a kivételes esetektől eltekintve a meg-

felelő trinom legalább három páratlan multiplicitású gyökkel rendelkezik.

A negyedik fejezetben különöbző számláló polinomok egyenlő értékeit

vizsgáltuk és bizonyos esetekben ilyen t́ıpusú egyenletekre vonatkozó új

eredményeket is megfogalmaztunk. A standard számlálópolinom defińıci-

ó szerint egy adott dimenziójú test egész pontjainak a számát határozza

meg.
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A négy vizsgált test az egységkocka, szimplex, gúla és az oktahed-

ron. Az egyenletekhez kapcsolódó diszkrét geometriai probléma a követ-

kező. Adott m és n pozit́ıv egészek esetén mikor tartalmaz egy n és egy

m dimenziójú test ugyanannyi egész pontot? Ez a probléma diofantikus

egyenletek 9 (nemtriviális) osztályát határozza meg, lásd alábbi táblázat.

No egyenlet megjegyzés

1 Sm(x) = Sn(y) n > m ≥ 1

2 Sm(x) = yn m ≥ 1, n ≥ 2, (m,n) /∈ {(1, 2), (3, 2), (3, 4), (5, 2)}
3 Sm(x) =

(
y
n

)
m ≥ 1, n ≥ 2, (m,n) 6= (1, 2)

4 Sm(x) = Pn(y) m ≥ 1, n ≥ 2, (m,n) 6= (1, 2)

5
(
x
m

)
= yn m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

6
(
x
m

)
=
(
y
n

)
n > m ≥ 2

7
(
x
m

)
= Pn(y) m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

8 Pm(x) = yn m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

9 Pm(x) = Pn(y) n > m ≥ 2

A vizsgált diofantikus egyenletek 9 osztálya

Munkánkban összegyűjtöttük és összegeztük az ezzel a kilenc egyenlő-

séggel kapcsolatos korábbi eredményeket illetve új eredményeket is meg-

fogalmaztunk. Széleskörű numerikus vizsgálatot követően az összes meg-

oldásra vonatkozó sejtést is megfogamaztunk az egyenletek 1. osztálya

esetén.

1. Sejtés. Sejtésünk, hogy az Sm(x) = Sn(y) egyenlet összes egész n >

m ≥ 1 és x, y megoldása az alábbi számnégyesek valamelyike.

(m,n, x, y) ∈ {(1, 2, 10, 5), (1, 2, 13, 6), (1, 3, 8, 3), (1, 5, 23, 3), (1, 5, 353, 9)}.

Az alább szereplő új eredményekben az általános esetre vonatkozó in-

effekt́ıv végességi álĺıtásokat a Bilu-Tichy tétel seǵıtségével kaptuk meg,
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mı́g effekt́ıv eredményeink alapja a Baker-módszer.

7. Tétel. Legyen m ≥ 1, n ≥ 2 és (m,n) 6= (1, 2). Ekkor az Sm(x) =
(
y
n

)
egyenletnek csak véges sok x és y egész megoldása van.

8. Tétel. Legyen n ∈ {2, 4} és m ≥ 1, ahol (m,n) 6= (1, 2) vagy m ∈
{1, 3} és n ≥ 2. Ekkor az Sm(x) =

(
y
n

)
összes egész x és y megoldásaira

effekt́ıv kiszámı́tható felső korlát adható, amely rendre csak m-től illetve

n-től függ. Továbbá, ha m = 3 és n ≥ 2, akkor nincs megoldás.

9. Tétel. Legyen m ∈ {1, 3} és n ≥ 2 vagy n ∈ {2, 4} és m ≥ 1. Ekkor az

Sm(x) = Pn(y) egyenlet megoldásaira teljesül, hogy max(x, y) < c9, ahol

c9 rendre csak n-től illetve m-től függö effekt́ıven kiszámolható konstans.

10. Tétel. Legyen m ≥ 2, n > 2 és (m + 1, n) = 1. Ekkor az Sm(x) =

Pn(y) egyenletnek csak véges sok x és y egész megoldása van.

Sejtésünk, hogy ezen tétel álĺıtásából elhagyva a (m+1, n) = 1 feltételt

az álĺıtás érvényben marad.

11. Tétel. Legyen m ∈ {2, 4} és n ≥ 3 vagy n ∈ {2, 4} és m ≥ 3. Ekkor

az
(
x
m

)
= Pn(y) egyenlet megoldásaira max(x, y) < c10, ahol c10 rendre

csak n-től vagy m-től függö effekt́ıven kiszámı́tható konstans.

12. Tétel. Legyen min{m,n} ≥ 3. Ekkor az
(
x
m

)
= Pn(y) egyenletnek

csak véges sok egész x és y megoldása van.

13. Tétel. Legyenek m,n egészek, ahol m ≥ 2, n ≥ 2 és legyen (m,n) 6=
(2, 2). Ekkor a Pm(x) = yn egyenlet egész x, y és n megoldásaira max{|x|,
|y|, n} < c11, ahol c11 effekt́ıven kiszámı́tható konstans, amely csak m-től

függ.
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14. Tétel. A P2(x) = yn egyenletnek az x, y és n > 2 egészek körében az

x = 0, y = 1 illetve x = 119, y = 13, n = 4 értékeken ḱıvül nincs más

megoldása.

A bizonýıtások során felhasznált további tételek Pintér polinomok egy-

szeres gyökeinek számára vonatkozó tétele [65], Rakaczki ineffekt́ıv ered-

ménye az Smx = g(y) t́ıpusú egyenletre [71], továbbá Schinzel és Tijde-

man effekt́ıv ereménye [76], Rakaczki effekt́ıv eredménye az s(1m + 2m +

· · · + xm) + r = yn t́ıpusú egyenletre [72], Yuan effekt́ıv végességi tétele

az a
(
x
m

)
= byn + c t́ıpusú egyenletre [88], Győry effekt́ıv eredménye az(

n
k

)
= xl egyenletre [38] illetve Erdős és Selfridge egymást követő egészek

szorzatáról szóló tétele [34].
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[32] P. Erdős, Note on the product of consecutive integers (II), J. London

Math. Soc., 14:245-249, 1939.
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