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A B S T R A C T   

A novel, highly modular approach has been developed for the synthesis of new chiral P,N,N ligands with the general 
formula Ph2P(CH3)CH(CH2)mCH(CH3)NHCH2CH2(CH2)nN(CH3)2 and Ph2P(CH3)CHCH2CH(CH3)NHCH2(CH2)n-2-Py 
(m, n = 0, 1). The systematic variation of their PeN and NeN backbone led to the conclusion that the activity, 
chemo- and enantioselectivity in the hydrogenation of α,β-unsaturated ketones are highly dependent on the com
bination of the two bridge lengths. It has been found that a minor change in the ligand's structure, i. e. varying the 
value of m from 1 to 0, can switch the chemoselectivity of the reaction, from 80% C]O to 97% C]C selectivity.   

1. Introduction 

Transition metal catalyzed asymmetric hydrogenation of ketones is 
one of the simplest chemical transformations affording optically active 
secondary alcohols that serve as useful intermediates for the synthesis 
of biologically active compounds such as medicines, perfumes, and 
agrochemicals [1–4]. Since the development of highly efficient chiral 
ruthenium-diphosphine/diamine complexes by Noyori et al. for the 
asymmetric hydrogenation of ketones in the 1990s [5], the design and 
synthesis of novel and even more efficient transition metal catalysts still 
represents a challenging direction in this research area [6,7]. Besides 
ruthenium-based systems, chiral iridium-complexes proved to be highly 
active, selective and robust catalysts in the asymmetric hydrogenation 
of a broad range of ketonic substrates. In this contribution, Ir-complexes 
modified by potentially tridentate P,N,N ligands constitute a unique 
class of chiral catalysts due to their extremely high activity and se
lectivity, structural modularity and high substrate tolerance (Fig. 1). 
Recently, Zhou and coworkers developed spiro pyridine-aminopho
sphine (SpiroPAP) based Ir-catalysts that were utilized in the asym
metric hydrogenation of simple [8] and functionalized ketones (ke
toesters [9–11], ketoacids [12], α-amino-ketones [13]) with 
outstanding activities (eg. TOF  >  100,000 h−1 for acetophenone) and 
enantioselectivities (> 99% ee). To date the Ir-SpiroPAP system is the 
only Ir(P,N,N) catalyst used in the hydrogenation of α,β-unsaturated 
ketones toward enantioselective preparation of chiral 2-substituted 
acyclic allylic alcohols [14,15]. Zhang et al. synthesized IreP,N,N cat
alysts containing ferrocene based aminophosphine-oxazoline type 

chiral ligands (f-Amphox) and sucessfully used them in the en
antioselective hydrogenation of simple ketones [16], α-hydroxy- [17] 
and halogenated ketones [18] and β-ketoesters [19] with remarkably 
high enantioselectivity and activity. Another ferrocene-containing li
gand family has been developed by the workgroups of Hu and Zhang 
and applied in the Ir-catalyzed hydrogenation of aromatic ketones 
[20,21] and β-ketoesters [22] as well as for the hydrogenation of α- 
alkyl-β-ketoesters [23] via dynamic kinetic resolution. In addition to 
these systems Hu et al. reported on the synthesis of an oxazoline-con
taining tridentate ligand that exhibited good performance in the hy
drogenation of β-ketoesters [24]. It should be pointed out that all of 
these ligands include aromatic moieties in the backbone which might 
decrease the conformational flexibility of the chelate ring. The Ir- 
complexes of these ligands are capable of producing chiral secondary 
alcohols with the same efficiency as the corresponding Ru-based sys
tems, and in several cases even outperform their catalytic efficiency in 
terms of both activity and enantioselectivity. 

A key factor in an efficient catalyst design is the careful stereo
electronic fine tuning of the ligands structure. In asymmetric transition 
metal catalysis, the majority of reports on ligand modifications have 
followed systematic variation of the simple spatial demands of the 
catalyst, and/or substituent controlled electronic tuning of the chiral 
ligands. Indeed, this trend can nicely be recognized regarding the above 
examples, as the structural modifications, marked with red color in  
Fig. 1, involve (i) the alteration of the phosphorus substituents (PAr2), 
(ii) the modification of pendant side groups (R or X) or (iii) the varia
tion of the relative configurations of the stereogenic elements. 
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Generally, less common are instances of the manipulation of the 
chelate ring size, despite the fact that such changes can be, in many 
cases, readily implemented resulting in steric and also electronic al
teration and producing similarly dramatic improvements in catalytic 
activity and enantioselectivity [25–27]. Surprisingly, the variation of 
the ring size of potentially tridentate ligands in catalysis is very rare 
[28–31] and to the best of our knowledge there is no such example 
concerning asymmetric catalytic transformations. However, as it was 
underlined by Crabtree and Peris, “this little studied area, analogous to 
bite angle effects in chelates, seems worth further efforts” [32]. 

In the present study we report on the development of a highly 
modular synthetic approach leading to a novel class of chiral P,N,N 
ligands based on two alkane-diyl backbones of different P,N and N,N 
tether lengths (Fig. 1). In order to compare the catalytic behavior of the 
new ligands, they were tested in the iridium catalyzed chemo- and 
enantioselective hydrogenation of enones, a challenging substrate class, 
with the intention to compare their activity, chemo- and enantioselec
tivity. Our primary aim was to vary the chelate ring size formed by the 
ligands and hence influence the bite angle and the conformational 
flexibility of the catalysts. Additionally, the effect of the reaction con
ditions and the substrate scope was carefully screened. 

2. Results and discussion 

2.1. Synthesis of the ligands 

The novel ligands were synthesized in two simple steps. At first, en
antiomerically pure (4S,5S)-4,5-dimethyl-1,3,2-dioxathiolane 2,2-dioxide 
(1a) or (4R,6R)- or (4S,6S)-4,6-dimethyl-1,3,2-dioxathiane-2,2-dioxide 
(1b) and the corresponding diamine were mixed in THF leading to ami
noalkyl sulfates 2a-f (Scheme 1). A remarkable feature of this metho
dology is that strong bases as deprotonating agents for the amines can be 
avoided. The addition of three equivalents of LiPPh2 in THF provided the 
desired P,N,N (L1-L6) ligands in good yields. Both the ring opening 

reaction of the cyclic sulfate with the amine and the second substitution 
reaction take place with complete inversion at the stereogenic centers. The  
31P{1H} NMR spectra of the compounds L1-L6 exhibit one singlet line 
indicating the formation of one single diastereomer. It is important to note 
that the present synthetic methodology is of high modularity and does not 
require tedious multiple reactions steps. Concerning the structural versa
tility of the commercially available chiral (or non-chiral) cyclic sulfates 
and diamines the structural fine tuning of the corresponding ligands can 
easily be implemented without tedious workup procedures. 

2.2. Catalytic studies 

At first, we chose (E)-chalcone (S1) as a standard substrate for the 
Ir-catalyzed hydrogenation to screen ligands L1-L6 (Scheme 2). Hy
drogenation of S1 in methanol in the presence of the Ir catalyst, syn
thesized in situ from [Ir(COD)Cl]2 and chiral P,N,N ligand (P,N,N/ 
Ir = 1), at a substrate catalyst molar ratio of 1000, 5 bar hydrogen 
pressure and room temperature afforded hydrogenation products A1, 
B1 and C1 in different ratio. 

The reactions completed within 60 min with ligands L2 and L4 
(Table 1, entries 2 and 4) and 87% conversion could be achieved with 
L3 (entry 3). Catalysts with more rigid skeleton, i.e. ligands of shorter 
backbone(s) (L1) or pyridyl containing side chain (L5 and L6), provided 
low turnovers. For the sake of comparison, we tested the bidentate 
analogue of ligand L3, with a simple N-ethyl substituent, under iden
tical conditions in the hydrogenation reaction of S1 (entry 7). No 
conversion could be achieved, indicating that the presence of the third 
coordination site is necessary to obtain catalytic turnover. Furthermore, 
it also suggests that the N atom of the side arm coordinates to the metal 
during the catalytic reaction forming an N,N chelate in addition to the 
P,N cycle. Zhou et al. reported that the introduction of a third co
ordination site to a P,N/Ir system (SpiroAP/Ir) lead to increased sta
bility and activity (SpiroPAP/Ir) [8]. In this case the pronounced dif
ference between the P,N and P,N,N systems was attributed to the ability 
of the former system to irreversibly form inactive dimers or trimers 
under hydrogenation conditions [33]. 

As the bidentate system was totally inactive in our case (entry 7), it 
was surmised that the introduction of the third coordination site not 
only prevents the formation of inactive metal species but through co
ordination to the metal may also change the conformation of the P,N 
chelate, thus potentially changing the substrate-catalyst interaction in 
the catalytic cycle. This is also in line with the data of Table 1, where 
the activity of the catalysts depends both on the structure of the P,N and 
the N,N backbone. The highest conversions could be achieved with li
gands L2 and L4 (Table 1, entries 2 and 4) having the most flexible 
dimethylaminopropyl side chain. 

The chemoselectivity of the reaction drastically changes with the 
length of the P,N backbone. Butane-2,3-diyl based systems L1 and L2 are 
less selective toward allylic alcohol A1 (entries 1 and 2). In fact, L2 
provided saturated ketone B1 with 94% chemoselectivity. Contrarily, 
ligands with pentane-2,4-diyl backbone and sp3 N-atoms, L3 and L4, 
proved to be rather selective to A1, giving 66 and 80% chemoselectivity, 
respectively (entries 3 and 4). 

Fig. 1. Subclasses of chiral P,N,N ligands used in Ir-catalyzed asymmetric hy
drogenation. 

Scheme 1. Synthesis of chiral ligands L1-L6  
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Ligands L3 and L4 were also highly enantioselective as the allylic 
alcohol A1 was produced with 90 and 94% ee, respectively. 
Interestingly, increasing the length of the side chain, i.e. the ring size of 
the N,N-chelate, slightly increases the enantioselectivity. Ligands L5 
and L6 with more rigid pyridyl-containing pendant side arm gave lower 
chemo- and enantioselectivities (entries 5 and 6). 

In order to gain a deeper insight into the reaction pathways leading 
to the formation of B1 and C1, racemic allylic alcohol A1 as starting 
material was subjected to hydrogenation by using ligands L2 and L4 
under identical conditions as in the first set of experiments (Table 1). 
No catalytic turnover could be achieved in either case. This experiment 
suggests that, in the catalytic reaction, product B1 is formed by the 
direct hydrogenation of the C]C double bond of (E)-chalcone (S1) 
instead of the transition metal catalyzed isomerization [34] of the 
allylic alcohol A1 (Scheme 3). The saturated alcohol C1 is consequently 
a product of the C]O hydrogenation of B1. Consequently, the L2/Ir 
system having five-membered P,N chelate exhibits high C]C selectivity 
in the hydrogenation reaction, while the L4/Ir catalyst with six-mem
bered P,N cycle switched chemoselectivity for the hydrogenation of C] 

O double bond. This phenomenon proves that the presence of the C]O 
double bond is a prerequisite for the hydrogenation of C]C moiety. 

Encouraged by these observations, P,N,N ligands L2 and L4 were also 
utilized in the chemoselective hydrogenation of α,β-unsaturated car
bonyl compounds S2-S5 with distinct steric and S6-S7 with different 

electronic properties. Based on the data of Table 2 it is clearly visible that 
the activity and selectivity of the two IreP,N,N systems are remarkably 
different with each conjugated substrates. This strongly suggest that the 
steric nature of the two systems are remarkably different. Albeit the 
electronic alteration of the substrate does not significantly change the 
activity and the chemoselectivity, the ee of hydrogenation of S6, con
taining electron withdrawing substituent, could be improved to 96%. 

Although the exact explanation for the rather distinct catalytic 
performance of ligands L1-L6 with different backbone length is cur
rently unknown, several factors influencing activity and selectivity can 
be highlighted. The (i) fac/mer stereoselectivity in the coordination of 
the tridentate ligands [35], (ii) the hemilability of the terminal N- 

Scheme 2. Chemo- and enantioselective hydrogena
tion of (E)-chalcone (S1) 

Table 1 
Ir-catalyzed chemo- and enantioselective hydrogenation of (E)-chalcone (S1): catalyst screeninga.        

Entry Ligand Reaction time (h) Conversion (%)b A:B:C molar ratio (%)b Ee of A (%)c  

1 24 h 42 43:41:16 78 

2 1 h  > 99 (91)d 2:94:4 – 

3 1 h 87 (47) 66:15:19 90 

4 1 h  > 99 (73) 80:8:12 94 

5 1 h 20 72:23:5 78 

6 1 h 10 34:60:4 64 

7 24 h 0 – – 

a Reaction conditions: Catalyst: 12.12 μmol ligand and 5.06 μmol [Ir(COD)Cl]2, substrate: 10 mmol (E)-chalcone, solvent: 6 ml MeOH, base: 100 μmol of tBuOK, H2 

pressure: 5 bar, temperature: RT. 
b The conversion and chemoselectivity were determined by NMR spectroscopy. Values in brackets are isolated yields of A1. 
c The enantioselectivity was determined by chiral HPLC. 
d Isolated yield of product B1.  

Scheme 3. Reaction pathways leading to the products of the enantioselective 
hydrogenation of S1 

Z. Császár, et al.   Catalysis Communications 146 (2020) 106128

3



containing functionality capable of creating vacant coordination sites 
[32], (iii) the mutual interactions between the two (P,N and N,N) 
chelates affecting ring conformation and (iv) the magnitude of the bite 
angle in the catalytically active species may largely contribute to the 
diverse reactivity pattern. Nevertheless, the proper choice of the ligand 
backbone enabled the hydrogenation of α,β-unsaturated ketones car
bonyl compounds with high activity, chemo- and enantioselectivity. 

Finally, we compared the catalytic performance of the Ir-catalysts 
modified by L2 and L4 under different reaction conditions by varying 
the solvent, the pressure and the temperature (Table 3). The catalysts 
proved to be active and selective even in 70 V/V% aqueous methanol 
(MeOH/H2O 70/30). At 1 bar hydrogen pressure the enantioselectivity 
of A1 could be increased to 96% ee, while the chemoselectivity some
what decreased. Interestingly, increasing the temperature to 40 °C the 

reaction was complete after 5 min and the ee remained unchanged 
compared to the experiment conducted at room temperature. This re
sult corresponds to a TOF value of higher than 12,000 h−1. 

In conclusion, a novel highly modular synthetic approach has been 
developed for the synthesis of chiral tridentate P,N,N type ligands L1- 
L6. The new methodology enables the variation of the P,N and N,N 
bridge length as well as the stereoselective synthesis of the ligands in 
two simple steps. The novel compounds L1-L6 were screened in the Ir- 
catalyzed chemo- and enantioselective hydrogenation of enones to in
vestigate the effects of their backbone length on the activity and se
lectivity of the catalytic reactions. The rate and the selectivity of the 
asymmetric hydrogenation were strongly sensitive to the size of the 
formed chelate rings. By simply changing the size of the P,N chelate 
switched the chemoselectivity of the reaction. Furthermore, by properly 

Table 2 
Hydrogenation of α,β-unsaturated ketones S2-S7 by using chiral P,N,N ligands L2 and L4.a         

Entry Substrate Ligand PH2 (bar) Conv. (%)b Molar ratio of A in the product (%)b Ee of A (%)c  

1d L2 5  > 99  > 99 86 
2d L4 5 23  > 99 70 

3e L2 15 98 85 76 
4e L4 15 6 – – 

5 L2 5 65 36 22 
6 L4 5  > 99 97 36 

7 L2 5  > 99  > 99 – 
8 L4 5  > 99  > 99 – 

9 L2 5  > 99 5 – 
10 L4 5  > 99 81 96 

11 L2 5 84 2 – 
12 L4 5 95 77 92 

a Reaction conditions: Catalyst: 12.12 μmol ligand and 5.06 μmol [Ir(COD)Cl]2, substrate: 10 mmol, solvent: 6 ml MeOH, base: 100 μmol of tBuOK, reaction time: 1 h. 
b The conversion and chemoselectivity were determined by NMR spectroscopy. 
c The enantioselectivity was determined by chiral HPLC. 
d Substrate: 2 mmol, reaction time: 24 h. 
e Substrate: 2 mmol.  

Table 3 
Asymmetric hydrogenation of (E)-chalcone (S1)a.           

Entry Solvent Ligand T (°C) PH2 (bar) Time (h) Conv. 
(%)b 

A:B:C molar ratio (%)b Ee of A (%)c  

1 MeOH/H2O 85/15 L2 25 5 2 79 2:98:0 – 
2 L4 90 67:18:15 88 
3 MeOH/H2O 70/30 L2 25 5 2 85 5:93:2 – 
4 L4 91 63:22:15 88 
5d MeOH L2 25 1 1 78 5:95:0 – 
6d L4 58 73:21:6 96 
7 MeOH L2 40 10 5 min 57 5:95:0 – 
8 L4  > 99 74:8:18 94 

a Reaction conditions: Catalyst: 12.12 μmol ligand and 5.06 μmol [Ir(COD)Cl]2, substrate: 10 mmol, solvent: 6 ml MeOH, base: 100 μmol of tBuOK, reaction time: 1 h. 
b The conversion and chemoselectivity were determined by NMR spectroscopy. 
c The enantioselectivity was determined by chiral HPLC. 
d Substrate: 2 mmol.  
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combining the backbone lengths high enantioselectivities (up to 96% 
ee) and chemoselectivities (98%) could be obtained. As a unique feature 
of the PNN/Ir systems, the hydrogenation reactions could also be per
formed in aqueous methanol solutions. 

The substantial improvements of the chemo- and enantioselectivities 
and catalytic activities by the simple variation of the backbone length of 
P,N,N systems clearly indicate the high potential of this new strategy in 
successful catalyst design. We believe this can be applied to other cata
lytic reactions. A detailed mechanistic study of the ring size effects in the 
catalytic reaction is currently in progress in our laboratory. 
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